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Abstract
Mathematical language in scientific communi-
cations and educational scenarios is important
yet relatively understudied compared to natural
languages. Recent works on mathematical lan-
guage focus either on representing stand-alone
mathematical expressions, especially in their
natural tree format, or mathematical reasoning
in pre-trained natural language models. Ex-
isting works on jointly modeling and generat-
ing natural and mathematical languages simply
treat mathematical expressions as text, without
accounting for the rigid structural properties
of mathematical expressions. In this paper, we
propose a series of modifications to existing
language models to jointly represent and gen-
erate text and math: representing mathemati-
cal expressions as sequences of node tokens
in their operator tree format, using math sym-
bol and tree position embeddings to preserve
the semantic and structural properties of math-
ematical expressions, and using a constrained
decoding method to generate mathematically
valid expressions. We ground our modifica-
tions in GPT-2, resulting in a model MathGPT,
and demonstrate that it outperforms baselines
on mathematical expression generation tasks.

1 Introduction

A part of human communication is performed in
rigorous mathematical language rather than more
flexible natural language, which often occurs in sce-
narios such as scientific communication and educa-
tion. While pre-trained large language models such
as BERT (Devlin et al., 2018) and GPT-3 (Brown
et al., 2020) have enjoyed many successes in repre-
senting and generating natural language, there is a
need for models that are effective in representing
and generating principled mathematical language
as well. While existing work focuses on various
aspects of mathematical language representation or
generation, combining mathematical language with
the aforementioned models for natural language re-
mains a challenging problem.

Mathematical and natural language are funda-
mentally different in many ways. While natural
language consists of large sets of words and phrases
that often have their meaning grounded in context,
mathematical language consists of different sym-
bols: a small set of mathematical operators with
precise meaning, variables, and numbers that exist
in a continuous space. Furthermore, mathematical
language follows rules that are much more strict
and rigorous than natural language. For example,
the multiplication operation acts on exactly two
operands, while an integral operates on a single
operand but with upper and lower limit arguments.
Operands are either variables, numbers, or the re-
sult of applying other operations. Given its hierar-
chical nature, mathematical language is naturally
represented with operator trees (OPTs), which are
directed tree graphs where non-leaf nodes are op-
erators and leaf nodes are variables or numbers
(Zanibbi et al., 2016a; Mansouri et al., 2019). OPTs
are effective at capturing both the semantic and
structural properties of mathematical expressions.

Existing work primarily focuses on two separate
approaches to modeling mathematical language:
representation and mathematical reasoning. A line
of work focuses on learning meaningful representa-
tions of mathematical expressions (often formulas),
such as Wang et al. (2021b); Davila and Zanibbi
(2017), motivated by the task of retrieving similar
expressions, which is especially relevant in infor-
mation search and retrieval. Although these meth-
ods produce dense representations of expressions in
their natural tree form, they cannot be directly con-
nected to natural language. Some works employ
BERT-like models to jointly represent natural and
mathematical language (Liang et al., 2022; Peng
et al., 2021; Shen et al., 2021). However, these
methods are not well suited for generation tasks.

Another line of work focuses on mathematical
reasoning, motivated by the task of mathematical
problem solving that is especially relevant in educa-



tional applications. These works treat problem solv-
ing as a sequence-to-sequence task (Saxton et al.,
2019a) and have found success on solving word
problems (Huang et al., 2018; Zou and Lu, 2019).
State-of-the-art methods use pre-trained large lan-
guage models (Cobbe et al., 2021; Lewkowycz
et al., 2022) and can even generate meaningful
step-by-step solutions (Wei et al., 2022). However,
these works do not take the principled structure of
math into account and treat mathematical expres-
sions as sequences of math LaTeX tokens in the
same way as text tokens (Taylor et al., 2022).

1.1 Contributions
In this paper, we introduce a series of novel modifi-
cations to language models for the joint represen-
tation and generation of natural and mathematical
languages. We apply these modifications to the pub-
licly available GPT-2 model as a proof-of-concept,
although we believe that these modifications ap-
ply to many autoregressive language models. Our
contributions can be summarized as follows:

• We develop a set of embeddings that preserve
both the semantic and structural properties of
mathematical expressions and connect them
to natural language token embeddings used in
language models. Our embeddings couple the
semantic meaning of math tokens with their
textual counterparts and explicitly capture the
position of nodes in the OPT of an expression.

• We develop a parallelizeable constrained de-
coding procedure that generates mathemati-
cally valid expressions via a set of rules.

• We apply these modifications to GPT-2 and
pre-train it on math Wikipedia articles, result-
ing in a model we call MathGPT.1 We demon-
strate that it outperforms GPT-2 (and other
baselines) on downstream generative tasks, es-
pecially on generating math expressions, and
analyze how it captures the semantic and struc-
tural properties of math expressions using its
semantic and position embeddings.

2 Methodology

We now detail our proposed modifications
grounded in our model MathGPT, visualized in Fig-
ure 1. First, we detail how natural and mathemati-
cal language are represented jointly by the model.

1https://github.com/umass-ml4ed/
mathGPT

Figure 1: We represent text and math regions differ-
ently, with tree position embeddings added to the math
token embeddings. The predicted token probability dis-
tribution is shown for the next token, 2; text tokens are
masked out by decoding constraints.

Second, we detail how we provide the model with
token-level tree position information, followed by
how we represent math token embeddings via a
learnable transformation on text token embeddings.
Third, we detail our rules for constrained decoding
and tree structure inference at test time.

2.1 Sequence Representation

We consider sequences that contain sep-
arable regions of text and math, i.e.,
S = (T1, F

s,M1, F
e, T2, F

s,M2, F
e, . . .),

where Tn = (t1, . . . , tN ) is a sequence of text
tokens, Mn = (m1, . . . ,mN ) is a sequence
of math tokens, F s indicates the start of a
mathematical expression, and F e indicates the
end of an expression. To leverage the structural
information of the expressions, we convert each
Mn into its corresponding OPT, M tree

n . In M tree
n ,

each token mi is assigned a node in the tree, and
each mi ∈ {O,V,N , E}, where O is the set of all
operators, V is the set of all variables, N is the set
of all numbers, and E is a special end node. In
the tree, operators become parent nodes and their
children are either variables, numbers, or other
operators. After this initial conversion, we make
several modifications to the tree to assist the model
with mathematical representation. First, we add
an E node as the last child of every operator node
to indicate the end of its list of children. Second,
we convert each number into a sub-tree where the
head is a special operator ON and its children are
the digits of the number, including the decimal
point. Third, since we use a fixed-size vocabulary
for math tokens, any out-of-vocabulary token mi

is converted into a sub-tree where the head is a

https://github.com/umass-ml4ed/mathGPT
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special operator OU and its children are the text
tokens of mi. Then, we convert M tree

n back to a
linear sequence, M lin

n , by traversing and adding
nodes in depth-first order, resulting in the sequence
S′ = (T1, F

s,M lin
1 , F e, T2, F

s,M lin
2 , F e, . . .).

See Supplementary Material E for an illustration of
this process along with other data processing steps.

To convert each token si ∈ S′ to its embedding
si as input to a language model, GPT-2 follows

si = embtok(si) + embsp(i),

where embtok(si) is the token embedding for si,
and embsp(i) is the position embedding at index i.
Our key innovation in MathGPT is a set of mod-
ified position embeddings that explicitly provide
the model with OPT structure information:

si =embtok(si) + embsp(i)

+ embtp(pi) + embtype(si),

where embtype(si) is the symbol type embedding
(text, operator, variable, etc.) of si and embtp(pi)
is the tree position embedding of si. Our approach
explicitly captures the tree position and role of each
math symbol in the context of the entire mathemat-
ical expression to preserve both semantic and struc-
tural properties. We also use different semantic
embeddings embtok(si) for text and math tokens,
which we detail below.

2.2 Tree Position Encoding
For tree position embeddings, we first define pi, a
unique position vector for node mi, and then use
a function embtp to transform pi to a vector with
the same dimensionality as the token embeddings.
We encode tree positions similar to the approach
in (Wang et al., 2021b): pi is a vector where the
entry at each index, pji , represents mj’s index in its
list of siblings. By following the indices in pi from
the tree root, node mi will eventually be reached,
and its index is the last entry in the vector. We then
convert pi to a vectorized version of the binary rep-
resentation of each of its entries and finally project
the resulting vector using a learnable transforma-
tion. The whole process is defined as

bin(pji ) = concat(onehot(b1j ), . . . , onehot(b
K
j ))

bin(pi) = concat(bin(p1i ), . . . , bin(p
|pi|
i ))

embtp(pi) = W bin(pi),

where bkj is the kth digit of pji ’s binary representa-
tion, onehot returns a one-hot 2-vector, and W is
a learnable projection matrix.

2.3 Math Token Embeddings
We construct our semantic embeddings for the
math symbols by linking them with the correspond-
ing text tokens in GPT-2’s pre-trained vocabulary.
Specifically, let the text representation of a math
symbol si be ti. We tokenize ti with the GPT-2
tokenizer to produce a corresponding sequence of
text tokens, (t1i , . . . , t

K
i ). The embedding of si is

then given by

ti =
∑K

k=1 embtok(t
k
i )/K

embtok(si) = ti + ϕp(ti),

where ϕp is a fully-connected neural network with
a single hidden layer, and we initialize the weights
to be small such that embtok(si) is initially very
close to ti. With this formulation, we leverage
the pre-trained information in GPT-2 while up-
dating text token representations during training
through MathGPT’s tree-structured representations
for mathematical expressions. For math symbols
that have no corresponding text representations,
such as F s, F e, ON , and OU , we learn their se-
mantic embeddings from scratch.

2.4 Sequence Generation
In addition to modifying GPT-2’s input format, we
also make several changes to the output process
to enable MathGPT to generate mathematically
meaningful expressions. We create a new linear
predictor head for math tokens, including special
control tokens (F s, F e, etc.), ϕmath. We concate-
nate the output of this projection to those of the
pre-trained text prediction head, ϕtext, to get a full
token probability vector, ai, at each time step.

To ensure that MathGPT generates mathemat-
ically valid expressions, we employ constrained
decoding by applying a mask to ai that prohibits
certain tokens from being generated after si. We
apply the following constraints: First, text tokens
must be followed by text tokens or F s. Second, F s

must be followed by operator, variable, or number
tokens. Third, F e must be followed by text tokens.
Fourth, operator, variable, number, and E tokens
must be followed by other operator, variable, num-
ber, or E tokens. The exception is when a tree has
been fully generated, in which case they must be
followed by F e. Fifth, trees have limited depth and
width, so we prevent operator nodes from being
generated at the maximum depth level and cap the
maximum number of children for each node. Fi-
nally, OU must be followed by text tokens, which



can be followed by other text tokens or E, and ON

must similarly be followed by number tokens.
During training, we minimize the cross-entropy

loss using the masked version of token probabili-
ties ai to update the GPT-2 parameters along with
the MathGPT-specific parameters, including ϕmath,
ϕp, W, and embeddings of the special tokens.

During testing (generation), we infer the tree po-
sition of the next node directly from the position
of the previous node from depth-first ordering, ac-
cording to the following rules: If si ∈ O, then si+1

will be its first child. Thus pi+1 will be a copy of
pi with a 0 added to the end. If si ∈ {V ,N}, then
si+1 will be its next sibling. Thus pi+1 will be a
copy of pi where the last value is incremented by
1. If si = E, then si+1 will be its parent’s sibling.
Thus pi+1 will be a copy of pi without the last
value and the preceding value incremented by 1.

3 Experimental Setup

We now detail a series of experiments to vali-
date the effectiveness of MathGPT. We perform
pre-training on a large corpus of math-focused
Wikipedia articles and then use the model on var-
ious generative downstream tasks involving both
natural and mathematical languages.

3.1 Data Pre-Processing

In the pre-training and downstream task datasets,
the mathematical expressions are initially rep-
resented as plain text or HTML, occasionally
wrapped in text-based F s and F e tokens, and pre-
converted to MathML in the pre-training dataset.
To convert them to their OPT representations,
we introduce the following data pre-processing
pipeline. First, we convert all HTML math-specific
symbols, including variables, numbers, and oper-
ators, to their LaTeX equivalents, and remove re-
maining HTML tags. Second, we find all expres-
sions in each text sequence and wrap them with F s

and F e tokens. Third, we process each sequence
with LaTeXML 2, which converts each expression
to a tree-like MathML representation. Finally, we
process each MathML expression with code from
Tangent-CFT (Mansouri et al., 2019) to obtain its
standard OPT representation.

We note that LaTeXML introduces several un-
desirable distortions on mathematical expressions.
For example, it is often unable to differentiate be-

2https://math.nist.gov/~BMiller/
LaTeXML/

tween function calls and multiplications with paren-
theses, multi-character names and multiplications
between single character variables, numbers con-
taining commas and comma-delimited lists of num-
bers, etc. However, we found that in the majority
of cases it is accurate enough.

3.2 Pre-Training

We use a pre-trained GPT-2 model to initialize the
shared parameters in MathGPT, which enables us
to leverage GPT-2’s existing representations and
capabilities. We then pre-train MathGPT on a large
corpus of math-centered Wikipedia articles from
the 2016 NTCIR-12 MathIR Task (Zanibbi et al.,
2016b), which enables the model to learn the pa-
rameters that are unique from GPT-2. We reserve
5% of the articles for validation and pre-train for
50 epochs, which we found to be sufficient for the
model to perform reasonably well on downstream
tasks. Additional hyperparameters and model de-
tails are listed in Supplementary Material A.

3.3 Downstream Tasks

We evaluate MathGPT on the following down-
stream generative tasks, which together capture
a wide range of mathematical reasoning capabili-
ties. Additional details on the datasets can be found
in Supplementary Material D.

Headline Generation We evaluate on the task
of math headline generation using the EXEQ-300k
dataset (Yuan et al., 2020), which contains pairs of
user-authored questions and headlines from Mathe-
matics Stack Exchange. The content in this dataset
is generally on college-level math and science top-
ics, containing complex formulas with a large va-
riety of symbols. This task measures the model’s
ability to extract key information from the question
and generate a short summary. Due to reasons we
detail below in Section 3.4, we additionally con-
sider two sub-tasks: next mathematical expression
prediction and next text region prediction. For next
mathematical expression prediction, we consider
each expression in the headline to be a generation
target, while we use both the question and the por-
tion of the headline up to that expression as input.
Similarly, for next text region prediction, we con-
sider each text region that follows a mathematical
expression to be a generation target, while we use
both the question and the portion of the headline
up to that text region as input.

https://math.nist.gov/~BMiller/LaTeXML/
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Equation Extraction We evaluate on the task
of generating equations in math word problems
on a version of the Math23K (Wang et al., 2017)
dataset converted to English using Google Trans-
late. While the translations are not perfect, we do
see that they largely retain the necessary mathe-
matical information. The dataset contains pairs
of middle school-level math word problems and
single-variable equations that represent an execu-
tion plan to solve the problem. This task measures
the model’s ability to infer mathematical operations
and expression structure from unstructured text.

Student Action Prediction We evaluate on the
task of predicting how students act based on feed-
back while solving math problems in a step-by-step
setting. We use a dataset 3 from the Cognitive Tu-
tor system. At each step, the student chooses an
action (add, subtract, multiply, etc.) and enters a
corresponding input (a mathematical expression)
to perform on the problem’s equation. If the ac-
tion is incorrect, the system will provide feedback
to the student and let them retry. Our task is to
predict exactly what actions students make after
receiving feedback after incorrect steps, using the
equation being solved, a series of steps the student
made, sequential updates to the equation, and a
feedback message as input to generate the follow-
ing student action, input, and outcome as output.
This task measures the model’s ability to predict
which action a student will take based on their pre-
vious actions, which involves knowing what the
appropriate next step is for solving an equation.

3.4 Evaluation Metrics

Since we evaluate MathGPT on a variety of tasks
with different objectives, we similarly measure per-
formance using a wide set of task-specific metrics.
For headline generation, where we measure the
quality of both generated math and natural lan-
guage, we use text similarity metrics including
BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin,
2004), and METEOR (Banerjee and Lavie, 2005).
However, since MathGPT outputs mathematical ex-
pressions as OPTs while the baselines output them
as a sequence of LaTeX tokens, we convert Math-
GPT’s expression output back to LaTeX using a
custom tree parser before computing these metrics.
We compare the generated output for MathGPT
and baselines to a modified version of the ground

3https://pslcdatashop.web.cmu.edu/
DatasetInfo?datasetId=660

truth, where the expressions are converted to OPTs
via LaTeXML and then converted back to text via
the parser. This conversion is necessary since La-
TeXML can change the semantics of an expression.

However, these metrics are insufficient since
they do not consider the structural integrity of math
expressions; for MathGPT, the expressions are gen-
erated as trees yet evaluated as text token sequences.
To the best of our knowledge, there is no auto-
mated metric that can effectively evaluate natural
and mathematical languages jointly. Additionally,
while human evaluation can be valuable, designing
such an experiment is challenging since we need
to account for individual text and math properties
as well as cohesion between them. We leave both
of these aspects for future work. In the current pa-
per, we circumvent this roadblock by including two
new evaluation tasks that evaluate text and math
separately. On math expressions, we use tree edit
distance (TED) to evaluate their structural integrity.

We use pre-defined train/validation/test splits on
the headline generation dataset, and report mean
and standard deviation for each metric on the test
set over 5 random initializations. For other down-
stream datasets where pre-defined splits are not
available, we perform a 5-fold cross-validation,
where the train/test sets are rotated and 10% of
the remaining train set is reserved for validation.
We similarly report the mean and and standard de-
viation of each metric on the test set over the 5
folds. In all cases, we perform early stopping on
per-token loss on the validation set. In all result
tables, we place a * next to a metric value for Math-
GPT if it outperforms baselines with statistical sig-
nificance, i.e., p < 0.05 from the Student’s t-test
for cross-validation and Welch’s t-test otherwise.

3.5 Baselines

Since the key innovation in MathGPT is a struc-
tural modification on top of the original GPT-2
model, our goal is to show that MathGPT outper-
forms GPT-2 in terms of representing and gener-
ating mathematical content. Therefore, we use i)
standard GPT-2 and ii) GPT-2 pre-trained on the
math-centric Wikipedia articles as our baselines.
Moreover, for some of the downstream tasks, we
also report state-of-the-art results as an additional
baseline. For a fair comparison with MathGPT
on text-based metrics, for the headline generation
task, we train and evaluate GPT-2 on a version of
the dataset where the mathematical expressions are

https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=660
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Model BLEU-4 ROUGE-L METEOR
MathBERT 49.4 57.7 34.7
MathSum 52.0 54.8 37.5

GPT-2 55.3± 1.1 62.1± 0.0 43.7± 0.3
GPT-2 Wiki 56.1± 0.6 62.2± 0.1 43.7± 0.3

MathGPT 56.5± 0.5 62.2± 0.1 43.8± 0.3

Table 1: Results on headline generation.

converted to OPTs via the processing pipeline and
then back to LaTeX using the tree parser. For all
other tasks, we train GPT-2 on the original dataset.

4 Experimental Results

We now detail quantitative experimental results to
validate the effectiveness of MathGPT in jointly
modeling natural and mathematical languages.

4.1 Headline Generation

Table 1 shows results on overall headline genera-
tion on the EXEQ-300k dataset; see Supplementary
Material B.1 for results on the smaller OFEQ-10k
dataset. Table 2 shows results on the next math
expression and text region prediction sub-tasks.
We emphasize that when evaluated on text and
math regions separately, MathGPT significantly
outperforms GPT-2, especially on TED, which cap-
tures the structural integrity of math expressions,
although part of the reason for GPT-2’s high TED
numbers can be attributed to occasional parsing
errors in LaTeXML. Interestingly, MathGPT also
significantly outperforms both GPT-2 models in
next text region prediction on all metrics, which
suggests that trees are highly effective at conveying
the underlying meaning of math expressions, which
are reflected in the text regions of the headlines.

However, when we evaluate text and math re-
gions jointly on existing text-based metrics, Math-
GPT’s advantage over GPT-2 is minimal and not
statistically significant. This result can be attributed
to the lack of existing metrics that consider the
structural properties of math expressions while
combining them with text. Both MathGPT and
GPT-2 significantly outperform prior state-of-the-
art: MathSum, a sequence-to-sequence method
and MathBERT (Peng et al., 2021), a BERT-based
method that leverages tree information and adapted
to this task. These results show that the GPT family
of language models are well-suited to generation
tasks on math content even without task-specific
architectures such as the copying mechanism.

4.2 Underlying Equation Extraction

Table 3 shows results on the equation extraction
task. We also include two task-specific metrics: the
percentage of cases where the generated equation
and the true equation have the same exact same
OPT (Tree Match), and the percentage of cases
where both evaluate to the same numerical value
(Solve Rate). We see that MathGPT outperforms
both GPT-2 models significantly on all metrics,
which implies that MathGPT is effective at both
extracting mathematical information from textual
problem statements and generating equations as the
solution. We observe that MathGPT’s advantage
over GPT-2 on TED is less than that on the other
metrics, due to GPT-2 sometimes generating trees
that are similar to the ground truth but containing a
few key errors such as using an incorrect operator.
We also observe that Solve Rate is higher than Tree
Match for all models, since models often generate
equations that evaluate to the correct numerical
value but have slightly different trees.

4.3 Student Action Prediction

Table 4 shows results on the student action predic-
tion task where we only report the prediction Accu-
racy on each (outcome, action, input) triple. We ob-
serve that MathGPT outperforms both GPT-2 mod-
els. More specifically, when students are correct,
MathGPT predicts the action and input correctly
63.5% of the time, whereas GPT-2 and GPT-2 with
math Wikipedia pre-training are correct 61.2% and
61.5% of the time, respectively. However, when
students are incorrect, these numbers significantly
decrease to 6.6%, 6.4%, and 6.8%. This observa-
tion implies that MathGPT outperforms GPT-2 on
mathematical reasoning but not on predicting stu-
dent errors, which is expected since these models
do not account for variation in student knowledge.

4.4 Ablation Study

We examine the impact of various components of
MathGPT on its downstream performance via an
ablation study. Specifically, we create several ver-
sions of the model: with no tree position embed-
dings (TPE), with no math symbol type embed-
dings (TE), learning unique math token embed-
dings instead of linking with text token embeddings
(SE), and treating most frequent numbers as their
own token instead of as subtrees (NT). We note
that it is difficult to ablate on constrained decoding
since it is central to MathGPT; without these con-



Next Mathematical Expression Next Text Region
Model BLEU-4 ROUGE-L METEOR TED BLEU-4 ROUGE-L METEOR
GPT-2 77.4± 0.2 83.1± 0.0 56.1± 0.1 4.125± 0.035 42.5± 0.2 58.1± 0.3 38.3± 0.2
GPT-2 Wiki 77.4± 0.2 83.5± 0.1 56.2± 0.0 4.079± 0.045 43.8± 0.5 54.5± 0.2 40.6± 0.0

MathGPT 77.6± 0.2 *83.7± 0.1 *56.4± 0.1 *2.656± 0.023 *46.2± 0.1 *63.3± 0.1 *42.2± 0.1

Table 2: Results on next mathematical expression (left) and next text region (right) prediction.

Model Tree Match Solve Rate TED
GPT-2 47.8± 1.0 54.6± 1.1 2.669± 0.099
GPT-2 Wiki 47.2± 0.7 54.0± 0.8 2.595± 0.024

MathGPT *52.4± 1.1 *60.3± 1.3 2.449± 0.098

Table 3: Results on equation extraction.

Model Accuracy
GPT-2 40.0± 0.8
GPT-2 Wiki 40.3± 1.2

MathGPT *41.8± 1.0

Table 4: Results on student action prediction.

straints, we may generate unparseable sequences
that cannot be interpreted as trees, making some
evaluation metrics invalid (e.g., TED). We pre-train
all models in the ablation study for 25 epochs and
evaluate on the equation extraction task.

Table 5 shows results for the ablation study. We
see that all components, except for type embedding,
are critical to downstream task performance. Tree
position embeddings have a higher impact on ac-
curacy than TED, likely due to these embeddings
helping place nodes in correct positions. Remov-
ing numeric sub-trees hurts accuracy, likely since
it makes it harder for the model to differentiate be-
tween multi-token numbers. It also reduces TED,
as expected, since number mismatches have a lower
overall penalty. Finally, MathGPT pre-trained for
25 epochs outperforms 50 epochs, which implies
the model overfits on the Wikipedia data. This
observation suggests a more diverse pre-training
dataset would help, which we leave for future work.

TPE TE SE NT Tree Match TED Solve Rate
Pre-trained for 50 epochs

52.4± 1.1 2.449± 0.098 60.3± 1.3

Pre-trained for 25 epochs
53.1± 0.9 2.367± 0.060 61.2± 1.0

✕ 52.6± 0.5 2.371± 0.038 60.3± 0.8
✕ 53.0± 0.4 2.362± 0.021 61.0± 0.7

✕ 51.0± 0.4 2.464± 0.037 58.6± 0.6
✕ 49.4± 0.8 1.734± 0.026 57.1± 1.0

Table 5: Results of ablation on equation extraction.

Figure 2: MathGPT operator token embeddings.

Figure 3: GPT-2 operator token embeddings.

5 Qualitative Analysis

We now qualitatively investigate how MathGPT
represents the semantic and structural aspects of
mathematical language differently than GPT-2 fine-
tuned on the same math Wikipedia articles.

5.1 Math Token Embeddings

Figures 2 and 3 show the semantic embeddings
of the top 100 most frequent mathematical op-
erator tokens for MathGPT and GPT-2, respec-
tively, visualized in 2D using t-SNE (Van der
Maaten and Hinton, 2008). For MathGPT we show
embtok(si)+embtype(si), and for GPT-2 we show
the average token embeddings of an operator’s La-
TeX symbol. We see a few key differences. First,
MathGPT seems to group symbols together based
on mathematical semantic similarity, whereas GPT-
2 seems to group symbols together that may appear
in similar contexts. For example, MathGPT groups
= and inequalities together and keeps +, −, and ±
in a separate group. GPT-2 groups = with algebraic



Figure 4: Position embeddings for MathGPT (left) and
GPT-2 (right).

operators and other symbols and keeps inequalities
in a separate group. Second, MathGPT separates
several pairs of symbols that are grouped together
by GPT-2 such as (min, max) and (

⋃
,
⋂

). This
observation shows that MathGPT places high im-
portance on an operator’s effect on other symbols
in addition to its category. We note that different
initializations of t-SNE result in different visualiza-
tions; see Supplementary Material C.1 for details.

5.2 Tree Position Representations
Figure 4 shows the learned (tree) positional embed-
dings for MathGPT, i.e., embsp(i) + embtp(pi),
and for GPT-2, i.e., embsp(i), visualized in 2D us-
ing t-SNE, for the mathematical expression x =
280/(1−(2/5)−(1/3)). We see that the MathGPT
embeddings clearly show a tree structure, where
nodes that are deeper in the tree are further from
nodes high in the tree and sibling and cousin nodes
are close together. For GPT-2, while nodes that
appear later in the expression are far from those
that appear early, the mathematical structure of the
expression is not clearly reflected. While these
results are expected, they show that MathGPT’s po-
sition embeddings explicitly capture the structural
properties of mathematical expressions.

6 Related Work

Representations of mathematical language Ex-
isting work on studying the representations of math-
ematical language is mainly motivated by informa-
tion retrieval, i.e., retrieving a semantically and/or
structurally relevant mathematical expression (of-
ten formula) given a query (Zanibbi et al., 2016a;
Davila and Zanibbi, 2017). Both representations
based on expert-crafted rules (Zhong and Zanibbi,
2019; Zhong et al., 2020) and those learned from
large-scale scientific formula data (Mansouri et al.,
2019; Wang et al., 2021b) have been shown to be

highly effective at this task. However, most of
these works do not consider the important textual
context around expressions. Several recent works
jointly model text and math: TopicEq (Yasunaga
and Lafferty, 2019) learns topic keywords associ-
ated with expressions, MathSum (Yuan et al., 2020)
generates headlines for mathematical discussion
forum posts, and one of the MathBERT models
(Shen et al., 2021) learns how to grade students’
open-ended math responses. However, none of
these works leverage the tree structure of math ex-
pressions. Another MathBERT model (Peng et al.,
2021) and a recent work (Mansouri et al., 2022)
jointly represent textual tokens and expressions in
their tree format. However, neither is naturally
suited for generation tasks.

Mathematical reasoning in language models
Existing work on studying the mathematical rea-
soning ability of language models (Lample and
Charton, 2020; Saxton et al., 2019b) is mainly mo-
tivated by the math problem solving task. Despite
evidence that pre-trained neural language models
have limited mathematical reasoning ability (Sax-
ton et al., 2019a; Jin et al., 2021), they are able
to solve simple math word problems accurately
using techniques such as verifiers (Cobbe et al.,
2021), external computation engines (Schick et al.,
2023; Wolfram, 2023), chain-of-thought prompting
(Wei et al., 2022; Kojima et al., 2022), and self-
consistency (Wang et al., 2023). However, these
models do not take the tree structure of mathemati-
cal expressions into account and simply represent
them as LaTeX token sequences.

7 Conclusions and Future Work

In this paper, we proposed a series of modifica-
tions to common language models to represent and
generate text and math jointly. We applied these
modifications to GPT-2, resulting in the MathGPT
model, which excels at capturing the semantic and
structural properties of mathematical expressions
in generative tasks. There are many avenues of fu-
ture work, including i) develop representations of
expressions that are invariant under structural trans-
formations that do not change their semantic mean-
ing, ii) conduct human evaluation to validate the
quality of the generated mathematical expressions
in multiple aspects, iii) develop similarity metrics
for mathematical language (like CodeBLEU (Ren
et al., 2020) for code) and validate them with hu-
man evaluation, and iv) explore MathGPT’s usage



in math education such as word problem genera-
tion (Wang et al., 2021a) and open-ended answer
prediction (Liu et al., 2022).

Limitations

There are several limitations to MathGPT, both
practical and fundamental. First, the model de-
pends on an external method for converting math-
ematical expressions to OPTs, currently being
LaTeXML. The conversion method is imperfect,
which limits MathGPT’s capabilities as it will be
presented with many distorted expressions during
training and at test time. Furthermore, the conver-
sion process is slow and requires dataset-specific
engineering to accommodate, making it difficult
to deploy the model across many datasets. Sec-
ond, because MathGPT outputs trees rather than
sequences, it is fundamentally difficult to evaluate
and utilize in text-based settings without a highly
accurate tree-to-text converter. The tree-to-text
converter is yet another imperfect process in the
pipeline, although it could be improved to a rea-
sonable degree with significant engineering effort.
Third, because MathGPT has additional compo-
nents and requires more information per token than
GPT-2, it has higher space and time requirements
that make training more expensive. Finally, be-
cause MathGPT is pre-trained on highly formal and
structured mathematical content, it may struggle to
generalize to student-generated mathematical lan-
guage, which is often error-prone and may exhibit
very different patterns.

Ethics Statement

All large language models are prone to reflecting
biases seen in their training data. Since Math-
GPT would likely find its greatest use in an ed-
ucational setting, extensive care would have to be
taken to identify and mitigate bias against students
across demographics and backgrounds if deployed
in these settings. It is also possible that differ-
ent patterns exist in mathematical language written
by students across demographic groups, such as
the choice of variable names or structural choices
that reflect different educational backgrounds. Be-
fore being deployed in an educational setting, stud-
ies should be performed to ensure that the model
would not “prefer” any patterns that tend to be ex-
hibited by certain groups of students. It would
also be necessary to examine the impact of bias
mitigation strategies on removing such preferences

and on the effectiveness of the model overall. We
did not perform any such studies as part of this
work since we did not use any student-generated
datasets that contained demographic information,
though we welcome such studies and consider it an
important part of the future of this line of work.
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B Additional Downstream Tasks

B.1 Headline Generation - OFEQ-10k
We examine the performance of MathGPT and
GPT-2 on the headline generation task using the
OFEQ-10k dataset (Yuan et al., 2020). We show
the overall task results in Table 6, the expression-
only task results in Table 7, and the text-only task
results in Table 8. We see surprisingly different
results than on the EXEQ-300k dataset. We ob-
serve that MathGPT performs worse on the task
overall than GPT-2 and GPT-2 Wiki, although it
still outperforms them on the expression-only and
text-only tasks. We also observe that, counterin-
tuitively, GPT-2 Wiki performs slightly worse on
the overall task than GPT-2, although it performs
higher on the expression-only and text-only tasks.
The negative impact of the Wikipedia pre-training,
along with the fact that the trends are reversed when
compared to the much larger EXEQ-300k dataset,
lead us to believe that pre-training on a larger and
more diverse dataset would improve performance
on OFEQ-10k. We leave this investigation for fu-
ture work.

B.2 Student Answer Scoring
We evaluate on the task of scoring student solutions
to open-ended math problems from the ASSIST-
ments system. This task helps assess the model’s
ability to apply mathematical reasoning to student
data, as well as generalize to a classification setting.
We use the same cleaned dataset and in-context
meta-learning method as (Zhang et al., 2022). We
also compare to the results from this work, which
used a BERT model, and is the current state of
the art on this dataset. Since this is a multi-label
classification task we use a different set of met-
rics, specifically Accuracy, F1, macro-averaged
area under the receiver operating characteristic
curve (AUC), root mean squared error (RMSE)
and Cohen’s Kappa. We show the results of cross-
validation on the task in Table 9. We observe that
there is no significant difference between MathGPT
and GPT-2 on this task. This is possibly due to the
fact that many of the samples in the dataset either
do not contain math expressions or contain only
small ones, minimizing the effect of MathGPT’s
representations. The results may also imply that
MathGPT sees most of its benefits in a generative
rather than classification setting, although more ex-
periments would need to be run to confirm this. We
did not evaluate this task on GPT-2 Wiki. We note

that the improvement over BERT is likely due to
additional data processing we performed and small
differences in our training setup.

C Additional Qualitative Analysis

C.1 Additional Math Token Representations
We examine the effects of different random seeds
for t-SNE initialization on operator token repre-
sentations. We show two such visualizations for
MathGPT in Figure 5 and two such visualizations
for GPT-2 (fine-tuned on math Wikipedia articles)
in Figure 6. We observe that while most clusters
stay the same across initializations, a few tokens
tend to float around, in particular log, ln, and exp.

We also show the representations of the 50 most
common variable tokens, for both MathGPT and
GPT-2, in Figure 7. For both models, we observe
that lower- and upper-case versions of the same let-
ter are close together, and that Greek letters are dis-
tant from the English letters. Interestingly, in con-
trast to operator tokens, there is very little change in
variable token relationships across the models. This
may be because the semantic meaning of variables
is highly context-sensitive, preventing MathGPT
from making generalizations at the token-level.

D Additional Dataset Details

For completeness and transparency, we list the
statistics and other details of all datasets used in
this work. We list licenses when they are available,
and privacy details when they are relevant.

The math Wikipedia articles used for pre-
training are provided under a Creative Commons
BY-SA license. We exclusively use the MathTagAr-
ticles portion of the dataset, which contains 31,839
articles.

The EXEQ-300k and OFEQ-10k datasets consist
of (train, validation, test) splits of sizes (261,341,
14,564, 14,574) and (10,301, 1,124, 1,123), respec-
tively. Due to processing errors in a small portion
of samples, the EXEQ-300k test set was reduced
to a size of 14,474. However, we believe that this
reduction is small enough (∼ 0.7%) to not have a
significant impact on reported results.

The Math23k dataset consists of 23,162 math
word problems originally in Chinese and translated
to English for use in this work. We chose to not
use the publicly available test split for this dataset
because it is very small compared to the size of the
dataset (1000 samples), so cross-validation would
provide a better measure of performance.



Model BLEU-4 ROUGE-L METEOR
MathSum 29.4 39.0 26.8

GPT-2 34.8± 0.6 46.9± 0.5 33.2± 0.3
GPT-2 Wiki 34.5± 0.6 46.4± 0.2 32.8± 0.3

MathGPT 34.2± 0.9 47.2± 0.4 32.6± 0.5

Table 6: Results on headline generation for OFEQ-10k dataset.

Model BLEU-4 ROUGE-L METEOR TED
GPT-2 58.1± 1.4 74.0± 0.3 47.0± 0.6 3.806± 0.066
GPT-2 Wiki 60.0± 1.4 76.2± 0.3 48.1± 0.6 3.444± 0.092

MathGPT *62.2± 0.8 *76.8± 0.1 *49.1± 0.3 *2.862± 0.031

Table 7: Results on next expression prediction for OFEQ-10k dataset.

Model BLEU-4 ROUGE-L METEOR
GPT-2 15.1± 0.5 40.4± 0.5 20.2± 0.5
GPT-2 Wiki 20.5± 0.2 38.3± 0.4 25.0± 0.3

MathGPT 20.6± 0.5 *43.7± 0.2 *26.6± 0.3

Table 8: Results on next text region prediction for OFEQ-10k dataset.

Model Accuracy F1 AUC RMSE Kappa
BERT – – 73.3± 0.6 1.077± 0.002 58.9± 0.4

GPT-2 82.4± 0.2 61.8± 0.5 94.3± 0.2 0.933± 0.007 63.6± 0.4

MathGPT 82.2± 0.3 61.8± 0.7 94.2± 0.1 0.935± 0.014 63.7± 0.5

Table 9: Results on student answer scoring task.

Figure 5: MathGPT operator token embeddings with different t-SNE random seeds.

Figure 6: GPT-2 operator token embeddings with different t-SNE random seeds.



Figure 7: Variable token embeddings for MathGPT (left) and GPT-2 (right).

The Cognitive Tutor dataset consists of 8,298
unique problems and 95 students. All student iden-
tities are anonymized. Since student responses are
constrained by the software, it is unlikely that they
contain personally identifying information.

The version of the student answer scoring dataset
we use consists of 1,333 unique problems and
130,940 responses, with each assigned a score from
1 to 5. The original dataset was introduced by
(Erickson et al., 2020). While student identities
are anonymized, it is possible that personally iden-
tifying information is present in the open-ended
student responses, and as such the dataset is not
publicly available.

E Data Pipeline Illustration

In Figure 8, we show the full data processing
pipeline for a single expression.



Figure 8: Data processing pipeline for the expression newvelocity = 9.8t. The expression is initially converted to
Content MathML format by LaTeXML, and is stored as HTML. It is then converted to a recursive operator tree
format by TangentCFT, and is stored as JSON. Each node is represented by a 3-tuple, storing the TangentCFT
type, followed by the node’s name, followed by the list of children or null if there are none. The expression is
then sent through the post-processing pipeline, which tokenizes nodes, converts nodes out of the vocabulary to
GPT-2-tokenized sub-trees, converts numbers to sub-trees, adds end nodes, and computes tree position vectors
(shown to the upper right of each node). This representation can be converted to a depth-first traversal of the tokens
in order to be processed by MathGPT. It may also be converted back to human-readable text as LaTeX.
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