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A B S T R A C T 

We study the properties of cosmic-ray (CR) driven galactic winds from the warm interstellar medium using idealized spherically 

symmetric time-dependent simulations. The key ingredients in the model are radiative cooling and CR-streaming-mediated 

heating of the gas. Cooling and CR heating balance near the base of the wind, but this equilibrium is thermally unstable, leading 

to a multiphase wind with large fluctuations in density and temperature. In most of our simulations, the heating eventually 

o v erwhelms cooling, leading to a rapid increase in temperature and a thermally driven wind; the exception to this is in galaxies 
with the shallowest potentials, which produce nearly isothermal T ≈ 10 

4 K winds driven by CR pressure. Many of the time- 
averaged wind solutions found here have a remarkable critical point structure, with two critical points. Scaled to real galaxies, 
we find mass outflow rates Ṁ somewhat larger than the observed star-formation rate in low-mass galaxies, and an approximately 

‘energy-like’ scaling Ṁ ∝ v −2 
esc . The winds accelerate slowly and reach asymptotic wind speeds of only ∼0.4 v esc . The total 

wind power is ∼ 1 per cent of the power from supernovae, suggesting inefficient prev entiv e CR feedback for the physical 
conditions modelled here. We predict significant spatially extended emission and absorption lines from 10 

4 –10 
5.5 K gas; this 

may correspond to extraplanar diffuse ionized gas seen in star-forming galaxies. 

Key words: cosmic rays – galaxies: evolution. 
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 INTRODUCTION  

osmic rays (CRs) are an energetically important constituent of
he interstellar medium (ISM) of galaxies, and likely also the hot
irialized plasma in galactic halos. CRs set the ionization state of
ense gas in the ISM. They also dynamically influence the bulk of
he ISM through pressure forces (mediated by the magnetic field)
nd potentially through heating of the thermal plasma. In the Milky
ay, the pressure of CRs in the local ISM is comparable to that of

he magnetic field and turbulence (Boulares & Cox 1990 ). This has
oti v ated a large body of work investigating whether the large CR

ressure gradient in the ISM can drive a galactic wind (e.g. Ipavich
975 ; Breitschwerdt, McKenzie & Voelk 1991 ; Everett et al. 2008 ;
ocrates, Davis & Ramirez-Ruiz 2008 ). More broadly, CR feedback

s an increasingly common ingredient in models of galaxy formation
e.g. Guo & Oh 2008 ; Uhlig et al. 2012 ; Booth et al. 2013 ; Pfrommer
t al. 2017 ; Ruszkowski, Yang & Zweibel 2017 ; Ji et al. 2020 ). 

The impact of CRs on our understanding of galaxies depends in
art on the poorly understood microphysics of what sets the ef fecti ve
ean free path of CRs in a plasma. CRs mo v e locally at nearly

he speed of light along the magnetic field, but are scattered by
mall-scale magnetic fluctuations. In this paper, we will focus on
cales larger than this scattering mean free path, in which case CR
ynamics can be modelled as that of a relativistic fluid (Skilling
971 ). The fluctuations that scatter CRs can either be produced by an
 E-mail: shaunak.modak@gmail.com 
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mbient turbulent cascade (‘extrinsic turbulence’) or by instabilities
enerated by the CRs themselves (‘self-confinement’). In particular,
ne might guess that absent any scattering by ambient turbulence,
Rs would collectively stream at nearly the speed of light along the

ocal magnetic field so as to eliminate any CR pressure gradient.
o we ver, streaming faster than the local Alfv ́en speed drives Alfv ́en
aves unstable (the ‘streaming instability’), which then act to scatter

he CRs and limit the streaming speed to be of order the Alfv ́en
peed (Kulsrud & Pearce 1969 ; Bai et al. 2019 ). Self-confinement
heory is on somewhat firmer theoretical ground for CRs with
nergies � 100 GeV (e.g. Blasi, Amato & Serpico 2012 ). These
Rs dominate the total CR energy density, and thus dominate the
ynamical impact of CRs on the gas in galaxies. For this reason,
n this work, we will assume that CR transport is mediated by
he streaming instability. Ho we ver, we stress that neither extrinsic
urbulence, nor self-confinement theory fare particularly well when
ompared to detailed observations of CRs in the Milky Way (Hopkins
t al. 2022 ; Kempski & Quataert 2022 ). 

A key feature of self-confinement theory is that the waves gener-
ted by the CRs damp by interaction with the thermal plasma, thus
ransferring energy from the CRs to the thermal plasma at a (local)
ate of | v A · ∇p c | (Wentzel 1971 ), where v A is the Alfv ́en velocity and
p c is the CR pressure gradient. This heating can be energetically

mportant in galactic winds or in lower density plasmas such as
he warm ISM, hot ISM, and the intracluster medium (Guo & Oh
008 ; Jacob & Pfrommer 2017 ; Kempski & Quataert 2020 ). W iener ,
weibel & Oh ( 2013 ) argued that there is indirect evidence for CR
eating of the warm ISM of the Milky Way in line ratios that deviate
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rom those expected in photoionization equilibrium. Moreover, the 
eviations increase with increasing height abo v e the mid-plane, 
uggesting that CR heating becomes increasingly important abo v e 
he disc, where a galactic wind would originate. 

Previous work on galactic winds driven by CRs has highlighted 
w o k ey mechanisms by which CRs contribute to driving the winds.
he first is the CR pressure gradient, and the second is CR heating of

he thermal plasma, which can contribute to a thermally driven wind 
Ipavich 1975 ). The relative importance of these two CR-mediated 
riving mechanisms depends primarily on the rate of gas cooling. If
he gas rapidly radiates away the energy supplied by the streaming 
Rs, then the dominant effect of the CRs is via their pressure forces.
n the other hand, if cooling is inefficient, then CRs also contribute

o driving the outflow by heating the thermal plasma. Despite the 
mportance of radiative cooling in the thermodynamics of galactic 
inds with streaming CRs, most idealized cosmic-ray driven wind 

alculations either assume that the gas is isothermal (the rapid cooling 
imit, as studied in Mao & Ostriker 2018 and Quataert, Jiang &
hompson 2022a ) or neglect radiative cooling entirely. In the hot 

SM, including CR heating but neglecting cooling can be a good 
pproximation (e.g. Everett et al. 2008 ), but in winds driven from the
arm ISM, cooling is particularly important to incorporate. Indeed, 

s demonstrated in Huang & Davis ( 2022 ) and Huang, Jiang & Davis
 2022 ), the inclusion of cooling can significantly alter the structure
f the wind. 
There is a large literature on CR-driven winds with dif fusi ve

ransport in a realistic cosmological context (e.g. Girichidis et al. 
016 ; Jacob et al. 2018 ; Chan et al. 2019 ; Rathjen et al. 2021 ;
impson et al. 2023 ). These calculations include many physical 

ngredients rele v ant to the formation of galactic winds, including 
adiative cooling, multiphase gas, and multiple stellar feedback 
hannels. Ho we ver, dif fusi ve CR transport does not lead to CR
eating of the gas and is thus physically very different from CR
ransport via streaming. Only recently have numerical methods been 
eveloped that accurately and efficiently model streaming transport 
n time dependent simulations (Jiang & Oh 2018 ; Chan et al. 2019 ;
homas, Pfrommer & Pakmor 2021 ). As a result, the interplay of gas
eating via CR streaming and cooling has not been explored in much
etail. This paper aims to bridge this gap by including streaming 
Rs and radiative cooling in idealized models of CR-driven galactic 
inds. We hope that the insights developed here will be valuable 

n interpreting CR feedback observationally and modelling it in 
ore realistic cosmological calculations. This work builds on recent 

tudies carried out by a subset of the authors (Quataert et al. 2022a ;
uataert, Thompson & Jiang 2022b ) by explicitly including radiative 

ooling and CR-streaming heating of the gas, rather than assuming 
n isothermal equation of state. The isothermal equation of state 
recludes the possibility of runaway heating or cooling of the gas, 
r thermal instability, both of which we will show are important for
alactic winds driven by streaming CRs. 

This paper is organized as follows. In Section 2 , we use steady-
tate wind theory to deriv e e xpectations for the role of cooling and
R heating in galactic winds. This includes a discussion of the very
nusual critical point structure of such winds, as well as analytic 
pproximations for the rapidly cooling, roughly isothermal base of 
he wind. In Section 3 , we present a suite of spherically symmetric
ime-dependent numerical simulations of CR-driven galactic winds 
arried out in ATHENA ++ , and compare their features to the steady-
tate predictions. In Section 4 , we discuss aspects of our results
ncluding the wind mass-loss rates and terminal speeds, connections 
o observations, and limitations and possible generalizations of our 
pproach. Finally, we summarize our main results in Section 5 . 
 ANALYTIC  EXPECTATIONS  

e begin by re vie wing some of the analytic expectations for steady-
tate wind solutions with CR streaming and radiative cooling. In 
articular, we highlight the unusual critical point structure possible 
n such solutions, and the role of thermal instability near the base of
he wind where CR heating of the gas and radiative cooling are both
mportant. 

.1 Steady-state equations of motion 

pproximating the flow as spherically symmetric and steady, con- 
ervation of mass for the wind leads to a constant mass outflow
ate, 

˙
 = 4 πr 2 ρv = constant , (1) 

hich may be used to eliminate either the gas density ρ or outflow
peed v from the equations of motion. The steady-state momentum 

quation for the gas is 

v 
d v 

d r 
= −d p 

d r 
− d p c 

d r 
+ ρg , (2) 

here p is the gas pressure, p c = E c /3 is the CR pressure, E c is the
R energy density, and g = −d φ/d r is the acceleration due to the
alaxy’s gravitational potential φ. 

Throughout this paper, we assume that CR transport is regulated 
y the streaming instability, as is plausible for the GeV CRs
hat dominate the total CR energy density (e.g. Blasi et al. 2012 ;
empski & Quataert 2022 and references therein). In steady-state, 

he CR energy density E c then evolves as 

 · F c = ( v + v s ) · ∇p c , (3) 

here F c = (4 / 3) E c ( v + v s ) is the steady-state CR energy flux,
 s = −sgn ( v A · ∇p c ) v A is the CR streaming velocity down the
ressure gradient, and v A = B / 

√ 

4 πρ is the Alfv ́en velocity.Note 
hat in equation ( 3 ), we have neglected both sources and sinks of
Rs. In particular, we have neglected pionic losses, because they 
re not significant in the Milky Way-like galaxies modelled here, 
hough they can be important in higher -density star -forming galaxies
Lacki, Thompson & Quataert 2010 ). CRs stream at exactly the
lfv ́en speed in equation ( 3 ) only if the scattering rate due to
av es e xcited by the streaming instability is very large, so that

he CRs are pinned to mo v e at e xactly the speed of the waves
cattering them. In general, when the scattering rate is finite, there is
 correction to pure streaming transport whose magnitude depends 
n the saturation amplitude of the streaming instability (e.g. Skilling 
971 ; Bai 2022 ). This correction is often modelled as an additional
iffusion term in the CR flux F c of the form −κ ˆ b ( ̂ b · ∇) E c (where κ
s the diffusion coefficient and ˆ b is the direction of the local magnetic
eld). Ho we ver, the magnitude of this correction, and indeed even
hether it is actually dif fusi ve, is not well understood and likely
epends sensitively on gas temperature and density (e.g. W iener ,
weibel & Oh 2018 ; Kempski & Quataert 2022 ). For this reason, we

ocus in this paper on the idealized problem of pure CR streaming
ith no dif fusi ve correction. 
Assuming spherical symmetry with d p c /d r < 0, equations ( 1 ) and

 3 ) combine to yield 

d p c 

d r 
= 

4 

3 

(
v + v A / 2 

v + v A 

)
p c 

ρ

d ρ

d r 
≡ c 2 eff 

d ρ

d r 
, (4) 

here we follow Quataert et al. ( 2022a ) in defining an ef fecti ve CR
ound speed c 2 eff . 
MNRAS 524, 6374–6391 (2023) 
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The steady-state energy equation for the gas takes the form 

vT 
d s 

d r 
= q A − q r . (5) 

ere, s = ( k / m )log ( p / ργ )/( γ − 1) is the specific entropy of the gas,
= 5/3 is its adiabatic index, and m is each gas particle’s mass.

he gas undergoes heating by the Alfv ́en waves generated by CR
treaming at a rate 

 A = −v A 
d p c 

d r 
, (6) 

nd radiates away energy at a rate 

 r = n 2 � = 

ρ2 

m 
2 
� , (7) 

or a radiative cooling function � = � ( T ). In practice, we will use
 cooling curve appropriate for collisional ionization equilibrium
CIE) (see Sections 2.5 and 3.1 for additional details). Note that we
eglect photoheating of the gas. This is important near the disc of the
alaxy, but CR heating scales much more weakly with density ( ∝ ρ1/6 

hen v � v A ) than photoheating ( ∝ ρ), and so CR heating becomes
ncreasingly dominant further from the galactic disc (Wiener et al.
013 ). Including photoheating is likely to only change the wind
olution mildly near T ∼ 10 4 K, and not at all at higher temperatures.

The resulting total energy equation for both the gas and the CRs
s then 

1 

r 2 

d 

d r 

(
Ṁ 

(
1 

2 
v 2 + φ + 

γ

γ − 1 

p 

ρ

)

+ 16 πr 2 p c ( v + v A ) 

)
= −4 πn 2 � . (8) 

rom left to right, the terms in equation ( 8 ) include the gas kinetic
nergy flux Ė k = (1 / 2) Ṁ v 2 , the gravitational energy flux Ė g = Ṁ φ,
he gas enthalpy flux Ė h = γ Ṁ p/ (( γ − 1) ρ), and the (steady-state,
eglecting diffusion) CR energy flux Ė c = 4 πr 2 F c including both
dvection of CR energy and streaming. Note that, the CR heating
erm present in the gas energy equation ( 5 ) is exactly cancelled by
 corresponding loss term in the CR energy equation ( 3 ); the total
nergy in the CR and gas system thus only decreases due to cooling,
s is apparent on the right hand side of equation ( 8 ). 

The radial velocity, temperature, and CR pressure gradients can
e found by using equations ( 4 ) and ( 5 ) to relate the CR pressure and
as pressure gradients, respectively, to the density gradient, and then
quation ( 1 ) to relate the density gradient to the velocity gradient.
he dynamics is then specified by a coupled system of ordinary
ifferential equations in the variables ( v, T , p c ). The resulting steady-
tate wind equation is given by 

d log v 

d log r 
= 2 

[
(1 − ( γ − 1) v A 

v 
) c 2 eff + γ a 2 

] + 

rg 

2 + 

2 π( γ−1) r 3 q r 
Ṁ 

v 2 − [
c 2 eff (1 − ( γ − 1) v A 

v 
) + γ a 2 

]
≡ 2 

v 2 d − v 2 n 

v 2 − v 2 d 

, (9) 

here a 2 ≡ p / ρ = kT / m is the isothermal gas sound speed in
he absence of CRs. We have defined characteristic speeds in the
enominator and numerator of the wind equation ( 9 ) as follows 

 
2 
d ≡

(
1 − ( γ − 1) 

v A 

v 

)
c 2 eff + γ a 2 , (10) 

 
2 
n ≡ − rg 

2 
− 2 π ( γ − 1) r 3 q r 

Ṁ 

. (11) 

With these definitions, the wind will have critical points wherever
 
2 = v 2 d = v 2 n ; we will discuss the nature of these points in greater
NRAS 524, 6374–6391 (2023) 
etail in Section 2.3 . Equation ( 9 ) is equi v alent to the wind equation in
pavich ( 1975 ) except for the addition of the cooling term in the
umerator. In many problems (such as the Parker solar wind; Parker
958 ), the speed in the denominator of the wind equation v d is the
ound speed of the gas and the speed in the numerator v n is set by the
ound speed and the escape speed. This is not guaranteed, ho we ver
e.g. Lamers & Cassinelli 1999 ), and indeed is not al w ays the case
n the present problem. The total gas sound speed defined by d( p +
 c )/d ρ is not al w ays the same as the critical speed v 2 d that appears
n the wind equation due to the presence of cooling. Combining
quations ( 1 ), ( 2 ), and ( 9 ) yields 

 
2 
s ≡

d( p + p c ) 

d ρ
= v 2 d + 

2 π ( γ − 1) r 3 q r 
Ṁ 

v 2 − v 2 d 

v 2 − v 2 n 

. (12) 

.2 The role of cooling near the base of the wind 

ny quasi-steady transonic CR-driven wind that satisfies equation
 9 ) is expected to initially have small velocities before accelerating
utward and passing through critical points at which v 2 = v 2 d = v 2 n .
e discuss these critical points in greater detail in Section 2.3 . In

he absence of radiati ve cooling, ho we ver, the critical point condition
or CR driven winds with streaming and CR heating is unusual, and
mplies significant constraints on the properties of the flow at the
ase. In particular, note that, v 2 d < 0 if 

v 

v A 
< 

( γ − 1) c 2 eff 

c 2 eff + γ a 2 
∼ O 

(
p c 

p c + p 

)
, (13) 

here in the second expression we have used the fact that c 2 eff is
ositive definite and of order p c / ρ, as defined in equation ( 4 ). Ipavich
 1975 ) noticed the fact that the critical point speed in the critical point
quation could be imaginary, and attributed it to the likely existence
f instabilities. Indeed, CR streaming is known to produce several
istinct linear instabilities of sound waves (e.g. Begelman & Zweibel
994 ; Quataert et al. 2022a ). 
To further explore the consequence of equation ( 13 ), note that,

f cooling is negligible, we have v 2 n > 0, so equation ( 9 ) implies
log v/dlog r < 0 whenever v 2 d < 0, i.e. the solution decelerates.
hus v 2 d < 0 is incompatible with a transonic wind that accelerates
utwards. Requiring v 2 d > 0 at all radii implies that even at the ‘base’
f the wind at small radii the outflow speed must be comparable
o v A if p c ∼ p . This is indeed assumed to be the case in the
riginal CR-driven wind solutions presented by Ipavich ( 1975 ). It
s unclear whether such solutions could be physically extended to
maller galactic radii, where v / v A should decrease because of higher
as densities. 

A simple understanding of the difficulty in realizing a highly sub-
lfv ́enic CR-driven wind absent radiative cooling can be obtained
y assuming v � v A and assessing the consequences. In this
imit, from equation ( 4 ), p c ∝ ρ2/3 and the steady-state gas energy
quation reduces to d p /d r = γ p dlog ρ/d r − ( γ − 1)( v A / v)d p c /d r .
ubstituting this result for the gas pressure gradient into the momen-

um equation and assuming hydrostatic equilbrium (consistent with
he low velocities) yields [ 
γp + ( γ − 1) 

(
1 − ( γ − 1) 

v A 

v 

)
p c 

] d log ρ

d r 
= ρg , (14) 

here we have eliminated d p c /d r in fa v our of d ρ/d r using p c ∝ ρ2/3 .
f v � v A , ho we ver, equation ( 14 ) implies d ρ/d r > 0 and thus d p c /d r
 0, which is inconsistent with the assumption that the CRs stream

utwards. Physically, the issue is that without radiative cooling, the
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R heating of the gas ( −v A d p c /d r ) is too large to realize a quasi-
ydrostatic solution if v A 	 v. 

As we will show in this work, radiative cooling can remove the
ifficulties we have just highlighted in obtaining sub-Alfv ́enic wind 
olutions. In particular, its presence allows for the possibility that 
 
2 
n < 0, so accelerating winds are once again attainable. A strong
ndication of this lies in the existence of isothermal CR-driven 
inds with v � v A (e.g. Mao & Ostriker 2018 ; Quataert et al.
022a ); these ef fecti v ely represent the limit of v ery strong cooling
egulating the gas temperature. We discuss the formal isothermal 
imit of the steady-state equations considered here in more detail in 
ection 2.4 . 

.3 Critical points 

t a critical point of the wind, both v 2 = v 2 n and v 2 = v 2 d . From the
numerator’ equation, we arrive at a quartic equation for the velocity 
t a critical point v c in terms of the position r c and temperature T c at
he critical point 

 
4 
c + 

r c g( r c ) 

2 
v 2 c + 

Ṁ 

8 πm 
2 r c 

( γ − 1) � ( T c ) = 0 . (15) 

he wind thus has critical points when its velocity is 

 c , ± = 

√ −r c g( r c ) 

2 

( 

1 ±
(

1 − 8( γ − 1) t e 
t c 

)1 / 2 
) 1 / 2 

, (16) 

here we have identified the cooling time t c = p / q r and some ef fecti ve
xpansion time t e = va 2 /( rg 2 ), which should be e v aluated at the
ritical point r c . Unlike the critical points of the isothermal problem
tudied in Mao & Ostriker ( 2018 ) and Quataert et al. ( 2022a ), at
ach radius, two critical speeds are possible in general, as long 
s 8( γ − 1) t e < t c , i.e. when cooling is not so rapid that the gas
emains isothermal but is significant enough that we cannot neglect 
he final term of equation ( 15 ). Note that, taking appropriate limits,
 c , + is the unique critical speed in both the isothermal case (when
 γ − 1) � = 0, see Section 2.4 ) and when cooling is negligible
when � ≡ 0). 

In a typical transonic wind, there can only be an odd number of
ritical points, because the wind speed is initially below the local 
ound speed, but must exceed the local sound speed as r → ∞ : any
ntermediate regions in which c 2 s ( r) > v( r) 2 must be followed by an
dditional crossing at which v( r ) 2 > c 2 s ( r ) (e.g. Lamers & Cassinelli
999 ). Indeed, previous hydrodynamic CR-driven winds that we 
re aware of all pass through only one critical point (e.g. Ipavich
975 ; Breitschwerdt et al. 1991 ; Everett et al. 2008 ; Mao & Ostriker
018 ). 
Remarkably, we will see that the time average of many of the

ime-dependent simulations presented in this work pass through two 
ritical points. This is possible because v 2 d < 0 and v 2 n < 0 near
he base of the wind where v � v A (see equations 9 and 10 ).
hus the solution starts ‘supersonic’ in the sense that v 2 > 0 > v 2 d ,

ransitions to ‘subsonic’ at a first critical point, and then at a
arger radius undergoes a more conventional subsonic to supersonic 
ransition at a second critical point. At the first critical point, radiative
ooling is energetically important and v 2 n < 0, while the second 
ritical point is essentially the classic Parker critical point (Parker 
958 ). 
It would be very reasonable to doubt that steady-state solutions 

ith the critical point structure suggested here could be realized, 
iven the likely instabilities implied by v 2 d < 0. However, we note
hat the isothermal calculations presented in Quataert et al. ( 2022a )
re unstable, and yet present the expected isothermal critical point 
tructure. Indeed, the time-dependent solutions we present in Sec- 
ion 3 are unstable. As we shall see in Section 3.4 , though, the
ime-averaged solutions none the less have the unusual critical point 
tructure suggested by the steady-state equations. 

.4 The isothermal limit 

t is instructive to consider how the steady-state equations derived 
ere reduce to the corresponding isothermal equations used in 
revious work (e.g. Mao & Ostriker 2018 ; Quataert et al. 2022a ).
here are two ways to take the isothermal limit of our equations.
ne is to take � → ∞ , i.e. the gas rapidly radiates away all added
eat to maintain a fixed temperature, and also set γ → 1, since the
quation of state becomes p = ρa 2 for fixed sound speed a . Therefore,
e must carefully consider the behaviour of the combination ( γ −
) � : rearranging the expression for the gas energy in equation ( 5 ),
e find 

 γ − 1) � = 

pv 

n 2 

(
−d log T 

d r 
+ ( γ − 1) 

(
1 − v A 

v 

c 2 eff 

a 2 

)
d log ρ

d r 

)
. 

(17) 

s we take the isothermal limit, the first term on the right tends
o zero, since T is constant, and since dlog ρ/d r must remain finite,
he second term is also zero as γ → 1. So, comparing any steady-
tate expression here to the analogous result in the isothermal case
an be done by setting γ = 1 and the combination ( γ − 1) � = 0.
 or e xample, doing so for equation ( 9 ) reproduces the isothermal
ind equation studied in Mao & Ostriker ( 2018 ) and Quataert

t al. ( 2022a ). In particular, the isothermal limit of equation ( 9 )
orresponds to v 2 n = −rg/ 2 and v 2 d = c 2 eff + a 2 . Therefore, v 2 d > 0
nd v 2 n > 0 as well, so none of the difficulties with v � v A highlighted
n Section 2.2 are present in the isothermal limit when cooling is
apid. 

A second way to consider the isothermal limit is to calculate the
ooling needed to maintain an exactly constant temperature for γ �= 

. In that case, from equation ( 17 ), we see that an isothermal profile
s possible only if 

 
2 � = ( va 2 − v A c 

2 
eff ) 

d ρ

d r 
. (18) 

ubstituting this result into the gas energy equation ( 5 ) to eliminate
 again reproduces the isothermal wind equation. 

.5 The hydrostatic isothermal base of the wind 

ear the base of the wind, where the densities are highest radiative
ooling is energetically important for the winds considered in this 
ork. F or an y sub-Alfv ́enic and sub-sonic wind with v � v A and v 
a near the base, from the gas energy equation ( 5 ), the heating and

ooling rates must balance 

 A 

d p c 

d r 
= −n 2 � . (19) 

ecause this condition matches the criterion of equation ( 18 ) in
he limit v � v A , we expect that any transonic wind with initially
mall velocities will include an approximately isothermal region 
ear the base. For equation ( 19 ) to be realizable, ho we ver, the
ooling rate � ( T ) must be large enough. A rough estimate of the
inimum required cooling rate, � min , can be found by taking d p c /d r
 (2/3)( p c / ρ)d ρ/d r in equation ( 19 ) (because v � v A ) and using

he hydrostatic isothermal approximation for the density gradient 
MNRAS 524, 6374–6391 (2023) 
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Figure 1. The minimum value of the cooling function for which cooling 
can balance CR heating, � min , as a function of the CR pressure p c and 
number density n near the base radius for r = 1 kpc, v A = 10 km s −1 , and 

v esc = 20 
√ 

a 2 0 + c 2 eff . The black solid line indicates the border between the 
parameter space in which we expect an initially isothermal region (colored 
by � min value) and the region in which cooling is not strong enough to 
offset CR heating (in white) for the parameters listed abo v e. The upper and 
lower grey dashed lines indicate how the boundary shifts if instead v A = 

10/3 or 30 km s −1 , respectively, and the upper and lower grey dotted lines 

indicate how it shifts if instead v esc = 60 
√ 

a 2 0 + c 2 eff or (20 / 3) 
√ 

a 2 0 + c 2 eff , 
respectively. The black and grey points indicate values of the base density 
and CR pressure used in our numerical simulations presented in Section 3 , 
with the black point indicating our fiducial choice. 
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erived in equation ( 21 ) below 

 > � min ≡ −2 p c gv A 

3 n 2 ( a 2 0 + c 2 eff ) 

≈ 1 . 5 × 10 −26 erg cm 
3 

s 

( p c 

eV cm 
−3 

)( v A 

10 km s −1 

)

×
(

r 

kpc 

)−1 ( n 

cm 
−3 

)−2 
( 

v esc 

20 
√ 

a 2 0 + c 2 eff 

) 2 

, (20) 

here we have approximated rg 
 (1 / 9) v 2 esc as is true at the base of
he Hernquist models we use in the simulations presented in Section 3
see Section 3.1 for details). 

In CIE, a typical value for the radiative cooling function from T ∼
0 4 − 10 8 K is � ∼ 10 −23 − 10 −22 erg cm 

3 s −1 (e.g. Draine 2011 ). 
Fig. 1 sho ws v alues of � min as a function of p c and n near the base

adius, for r = 1 kpc, v A = 10 km s −1 , and v esc = 20 
√ 

a 2 0 + c 2 eff , and
ndicates the region in which � > � min is not achie v able. 

In the hot ISM, because the number density may be as low as
10 −3 cm 

−3 , equation ( 20 ) may not be satisfied, though at such high
emperatures, thermal driving of the wind by the gas is likely to be
omparable in importance to CRs anyway. Other than this low density
egime, ho we ver, the condition in equation ( 20 ) is easily met across
 wide range of densities, CR pressures, and magnetic field strengths
ppropriate for the warm ISM ( T ∼ 10 4 K). This includes both Milky
ay-like physical conditions and those in starburst galaxies with

igher gas densities and CR pressures. 
When � min � 10 −23 –10 −22 erg cm 

3 s −1 , gas near the base of the
ind cools rapidly and remains at a roughly constant temperature
f ∼10 4 K. Note that, this is also true if the gas is roughly in
hotoionization equilibrium. We can approximate the gas in this
egion as hydrostatic and isothermal, with constant gas sound speed
NRAS 524, 6374–6391 (2023) 
 0 . In this approximation, the momentum equation simply yields 

d p 

d r 
+ 

d p c 

d r 
= ( a 2 0 + c 2 eff ) 

d ρ

d r 
= ρg . (21) 

pproximating p c ∝ ρ2/3 because v � v A and integrating, we arrive
t an implicit equation specifying the density profile ρ( r ), 

 
2 
0 log 

(
ρ

ρ0 

)
+ 2 

p c0 

ρ0 

( 

1 −
(

ρ

ρ0 

)−1 / 3 
) 

= φ( r 0 ) − φ( r) , (22) 

here φ is the gravitational potential and r 0 , ρ0 , and p c0 are the base
adius, density, and CR pressure, respectively. This generalizes the
esults of Quataert et al. ( 2022a ) to an arbitrary gravitational potential
( r ). 
Given the density profile in equation ( 22 ), we can roughly estimate

he resulting temperature profile required for cooling to balance the
R heating according to equation ( 19 ), namely 

 ( r) = � 
−1 

(
v A ( r) c 2 eff ( r) 

n ( r) 2 

∣∣∣∣d ρ

d r 
( r) 

∣∣∣∣
)

, (23) 

ere, the inverse is well defined, because the cooling curve near a
ypical base temperature of T 0 = 10 4 K is monotonically increasing
Draine 2011 ). In particular, in CIE, the cooling curve is given
oughly by � ( T ) = A ( T − T 0 ) for a normalization constant A ≈
 . 3 × 10 −26 erg cm 

3 s −1 K 
−1 . Substituting the result of equation ( 21 ),

e find 

 ( r) = T 0 − mv A ( r) g( r) 

An ( r) 
[
1 + a 2 0 /c 

2 
eff ( r) 

] . (24) 

o be clear, the approximation leading to equation ( 24 ) is that we
rst estimate the density profile assuming the gas is isothermal, and

hen derive an updated temperature profile for the gas using that
sothermal density profile. 

This also provides an estimate of the temperature profile near
he base of the wind that determines roughly the extent of the
sothermal region, beyond which the approximations used here may
ot be reliable. We characterize the extent of the isothermal region
y the difference between the radius at which the temperature first
xceeds T = 1.5 × 10 4 K and the base radius. Throughout the allowed
arameter space where � > � min depicted in Fig. 1 , the thickness of
his isothermal base varies from ∼10 −2 kpc at low n and p c to ∼1 kpc
t high n and p c . For most Milky Way-like base parameters (such
s those used in the simulations presented in Section 3 ), the typical
hickness of the isothermal base ranges from ∼0.03–0.3 kpc. It is
ery likely that in more realistic models the extent of the isothermal
egion will be larger than in our idealized spherical calculations. In
articular, in winds from a galactic disc, the isothermal region will
ikely be larger because the gas density decreases more slowly as gas

o v es a way from the galaxy mid-plane, enhancing the importance
f cooling relative to the spherical models considered here. 
Fig. 2 compares the density and temperature profiles resulting

rom these approximations to two of the numerical results presented
n Section 3 .To calculate the profiles plotted in the Figure, we use
he same Hernquist gravitational potential and split-monopole Alfv ́en
peed profiles as in the simulations (see Section 3.1 for more details).
ecause these approximate profiles assume hydrostatic equilibrium
t a fixed temperature and rely on a linear approximation to the
ooling curve valid only for temperatures below ∼ 1 . 2 × 10 4 K,
e expect them to diverge from the simulations at fairly low radii.
o we v er, o v erall, we find reasonable agreement across a wide range
f base parameters for the structure of the solution near the base of the
ind: the extent of the approximately isothermal region predicted by

quation ( 23 ) is within ∼5 per cent of that found in the simulations.
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Figure 2. A comparison between the approximate density and temperature profiles for the base of the wind (equations 22 and 23 , dashed curves) and the 
time-averaged profiles (solid curves) from three numerical simulations, which we describe in Section 3 . Specifically, the black, purple, and teal curves are 
simulations 1, 7, and 8 of Table 1 , respecti vely. These parameter v alues were chosen to demonstrate that the analytic approximations hold reasonably well 
regardless of whether CR pressure (purple) or gas pressure (teal) dominates near the base. 
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One key prediction of Fig. 2 is that as the density drops with
ncreasing distance, the temperature required to maintain a balance 
etween heating and cooling increases, because the cooling function 
as to increase to compensate for the lower density. As we now
iscuss, this increase in temperature inevitably leads to the onset of
hermal instability. 

.6 The onset of thermal instability 

lthough the wind is approximately isothermal near its base, the 
alance between heating and cooling that allows it to remain so can
e linearly unstable. As detailed in Kempski & Quataert ( 2020 ),
or a given cooling curve � ( T ), thermal instability will set in
pproximately once 

 T ≡ ∂ log � 

∂ log T 
< � T , C , (25) 

here the critical value for the logarithmic slope of the cooling curve
 T , C is given by 

 T , C 
 

11 

6 

(
1 + 

p c 

1 . 19 p 

)−1 . 13 

. (26) 

he critical value � T , C ranges from � T , C = 0 for CR-dominated 
lasmas with p c 	 p to � T , C = 11 / 6 for gas-pressure-dominated
lasmas. Because � T , C > 0, in practice, thermal instability sets in 
hen the first local maximum of � ( T ) is reached, which occurs

t approximately T ∼ 1 . 75 × 10 4 K for our cooling curve in CIE.
ig. 2 shows that this temperature is reached not far from the wind
ase in many cases. The simulations presented in Section 3 will 
uantify the non-linear saturation of thermal instability for the CR- 
riven wind problem (in spherical symmetry; see Huang et al. 2022 
or multidimensional simulations). 

 NUMERICAL  SIMULATIONS  

n what follows, we present time-dependent numerical solutions 
or CR-streaming-driven galactic winds by solving the spherically 
ymmetric CR hydrodynamic equations. We elected to carry out 
ime-dependent simulations rather than attempt to find steady-state 
olutions for several reasons. First, the known instabilities present in 
he case of CR streaming can significantly modify the dynamics of
he wind (e.g. Huang & Davis 2022 ; Huang et al. 2022 ; Tsung,
h & Jiang 2022 ; Quataert et al. 2022a ), so that capturing the

ime-dependent instabilities is important. Additionally, the difficulty 
ealizing steady-state solutions with initial v � v A as discussed in 
ection 2.3 moti v ates time-dependent simulations to see if the same
ifficulties are in fact present in the general problem. Finally, the
teady-state equations with radiative cooling are extremely stiff near 
he base where cooling is important, so they cannot be easily directly
ntegrated. 

.1 Simulation setup and parameters 

n our time-dependent simulations, we solve the CR hydrodynamic 
quations in spherical symmetry using the numerical scheme de- 
cribed in Jiang & Oh ( 2018 ), implemented in the ATHENA + + code
Stone et al. 2020 ): 

∂ ρ

∂ t 
+ 

1 

r 2 

∂ 

∂ r 
( r 2 ρv) = 0 , (27) 

∂ 

∂ t 
( ρv) + 

1 

r 2 

∂ 

∂ r 
( r 2 ρv 2 ) = ρg − d p 

d r + σc ( F c − ( E c + p c ) v) , (28) 

∂ E 

∂ t 
+ 

1 

r 2 

∂ 

∂ r 
( r 2 ( E + p) v) = ( v + v s ) σc ( F c − ( E c + p c ) v) − ρ2 

m 
2 � ,

(29) 

∂ E c 

∂ t 
+ 

1 

r 2 

∂ 

∂ r 
( r 2 F c ) = −( v + v s ) σc ( F c − ( E c + p c ) v) , (30) 

1 

v 2 m 

∂ F c 

∂ t 
+ 

∂ p c 

∂ r 
= −σc ( F c − ( E c + p c ) v) . (31) 

ere, v s = −sgn( v A d p c /d r ) v A is the CR streaming speed, and
−1 
c = 3 κ + ( E c + p c ) v A | d p c / d r | −1 is the ratio between the total
R flux and the CR pressure gradient. Note that, σ c captures the
MNRAS 524, 6374–6391 (2023) 
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Table 1. A summary of the simulation suite, with columns including the base gas density, base CR pressure, base Alfv ́en speed, Hernquist escape velocity 
parameter, base radius of the simulation box, outer radius of the simulation box, mass-loss rate, wind speed at 80 per cent of the outer radius, theoretical 
maximum wind speed (according to equation 36 ) at 80 per cent of the outer radius, and energy flux at 80 per cent of the outer radius normalized by the base CR 

energy flux. The last three columns’ quantities are e v aluated at 80 per cent of the outer radius to a v oid the possibility of spurious boundary effects. Simulation 
1 is the fiducial run, and runs are referenced in the text by the parameter(s) that differs from the fiducial value (e.g. v esc = 250 km s −1 for simulation 12, which 
matches fiducial base values except for the strength of the potential). The parameters that differ are from fiducial are bolded in the Table for convenience. 

ρ0 p c0 v A 0 v esc r 0 r out Ṁ v(0.8 r out ) v ∞ (0.8 r out ) Ė (0 . 8 r out ) 
ID ( m p cm 

−3 ) (0.86 eV cm 
−3 ) (km s −1 ) (km s −1 ) (kpc) (kpc) ( M � yr −1 ) (km s −1 ) (km s −1 ) 

(
Ė c0 

)

1 1 1 10 420 1 10 0 .014 101 155 0.11 
2 1 1 10 420 1 100 0 .014 151 156 0.11 
3 3 3 10 420 1 10 0 .034 129 179 0.12 
4 1/3 1/3 10 420 1 10 0 .0057 72 136 0.09 
5 1/3 1/3 10 420 1 100 0 .0057 124 130 0.09 
6 10 10 10 420 1 10 0 .092 161 207 0.14 
7 1 3 10 420 1 10 0 .033 117 160 0.10 
8 1 1/3 10 420 1 10 0 .0044 77 149 0.09 
9 1 1 30 420 1 10 0 .036 137 194 0.18 
10 1 1 10/3 420 1 10 0 .0048 63 123 0.05 
11 1 1 10 330 1 10 0 .015 116 152 0.14 
12 1 1 10 250 1 10 0 .020 100 125 0.16 
13 1 1 10 180 1 10 0 .038 43 56 0.13 
14 1 1 10 130 1 10 0 .082 35 41 0.14 
15 0.1 1 10 420 1 10 0 .016 64 107 0.07 
16 1 1 10 420 5 50 0 .19 133 185 0.11 
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1 Our results should not depend strongly on the gas metallicity, since the 
occurrence of thermal instability only relies on the presence of a local 
minimum in the cooling curve between 10 4 –10 5 K, which is present from 

∼0.01–2 Z � (see e.g. fig. 34.2 of Draine 2011 ). Metallicity gradients in 
the wind would therefore not strongly affect its structure, though increased 
metallicity at the base would lead to a larger region near the base (see 
Section 2.5 ) due to the increased cooling rate. 
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ffects of both diffusion and streaming. Because we focus here
n winds driven by CR streaming instead of diffusion, we take
= 10 −3 kpc km s −1 in all of our simulations; this small value

s numerically useful but contributes little physically to the CR
ransport. The speed v m in the CR flux equation ( 31 ) is the reduced
peed of light; we take this to be v m = 3 × 10 4 km s −1 , chosen to
e much larger than v and v A throughout the simulation domain. To
heck that reasonable variations in v m do not alter our results, we
epeat the v esc = 250 km s −1 simulation (row 12 of Table 1 ) with v m =
0 4 km s −1 and v m = 10 5 km s −1 , and find no statistical difference in
he final profiles. 

For the magnetic field, we consider a steady split-monopole
onfiguration, B ( r ) = B 0 ( r / r 0 ) −2 where r 0 is taken here to be the
nner radius in the simulation (the ‘base’ of the wind). Due to the
pherical symmetry, the field is not separately evolved; it is only used
n defining the Alfv ́en speed, which is then 

 A ( r) = v A 0 

(
r 

r 0 

)−2 (
ρ( r) 

ρ0 

)−1 / 2 

, (32) 

here v A 0 = B 0 / 
√ 

4 πρ0 and ρ0 is the base density. For the galaxy’s
otential, we use the Hernquist model (Hernquist 1990 ) 

( r) = −1 

2 

v 2 esc 

1 + r/b 
, (33) 

here b is a chosen scale length that we set to b = 2 r 0 , and v esc is the
scape speed from r = 0 (note that the escape speed from the base
f the wind is a factor of 

√ 

1 + r 0 /b ≈ 1 . 22 smaller). For reference,
he mass enclosed within a radius r of the galaxy is then given by 

 ( r ) = 

bv 2 esc 

2 G 

(
1 + 

b 

r 

)−2 

≈ 1 . 45 × 10 10 M �

(
b 

2 kpc 

)( v esc 

250 km s −1 

)2 
(

1 + 

b 

r 

)−2 

, (34) 

imulations with the isothermal potential used in Quataert et al.
 2022a , b ) gave similar results to those presented here. Because of the
omplexity of the critical point structure highlighted in Section 2.3 ,
NRAS 524, 6374–6391 (2023) 
e chose the Hernquist potential o v er the isothermal potential, since
he former has a well-defined escape speed. 

We use a radiative cooling curve appropriate for solar abundance
as in CIE 

1 , and approximate its form by fitting a piecewise power
aw to fig. 1 of Ji, Oh & McCourt ( 2018 ). Below ∼11,500 K, it is
inearly interpolated so that � (10 4 K ) = 0, and � ( T ) = 0 for all T <
0 4 K as well. 
Our simulation domain extends from an inner radius of 1 kpc to an

uter radius of 10 kpc in most runs, although we additionally simulate
 larger box with an outer radius of 100 kpc for the fiducial set of pa-
ameters to check convergence and in any set of parameters for which
he second critical point occurs outside of 10 kpc. The simulations
re run on a radial grid of 8704 logarithmically spaced points, and
e have checked that using a grid with twice the resolution does not

ignificantly alter the resulting steady-state profiles in the fiducial and
 esc = 250 km s −1 models. At the inner boundary, we fix ρ0 and the
ase CR pressure p c0 , and enforce hydrostatic equilibrium, choosing
 p c /d r = d p /d r . In the ghost zones, the velocity is set so that Ṁ is
onstant between the last active zone and the ghost zones. At the
uter boundary, we match the gradients of ρ, p c , and the CR flux F c 

cross the boundary, and again set the velocity in the ghost zones by
equiring Ṁ to be constant. We initialize the gas as isothermal with
 i ( r ) = 10 4 K, set v i ( r ) ≡ 0, and equate the gas and CR pressures, p ci =
 i . The initial density is specified as ρi ( r) = ρ0 ( r/r 0 ) r 0 g( r 0 ) / 2 a 2 i , where
 
2 
i = kT i /m p is the initial sound speed squared. We do not impose
ny temperature boundary conditions, only an initial condition; we
onducted tests with varied T i and found that the resulting statistical
teady-state did not change. The reason is that the simulations all lie
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n the parameter space where the cooling time at the base of the wind
s sufficiently short to bring the gas to T ∼ 10 4 K (as expected from
ig. 1 and associated discussion in Section 2.5 ). 
Table 1 gives a summary of the simulation parameter choices in 

hysical units as well as measures of the resulting mass-loss rates, 
nergy fluxes, and outflow speeds. Because we use a realistic atomic 
ooling function, our simulations necessarily use real units. Our 
ducial simulation (the first row in the table) takes base conditions 

ypical of the warm ISM in the Milky Way: ρ0 = 1 m p / cm 
3 , p c0 =

.86 eV cm 
−3 , and v A0 = 10 km s −1 at r 0 = 1 kpc. We take v esc =

20 km s −1 similar to that of a Milky Way-like galaxy. In addition to
he fiducial parameter choices described abo v e, we consider variation 
n 

(i) the base gas density at fixed base CR sound speed (modifica- 
ions to both ρ0 and p c0 ) 

(ii) the base ratio of CR pressure to gas pressure (modifications to 
 c0 at fixed ρ0 ) 
(iii) the magnetic field strength (modifications to v A0 at fixed ρ0 ) 
(iv) the galaxy escape speed from 130–420 km s −1 , to represent 

alaxies of different masses 
(v) the launching radius of the wind, r 0 (at fixed r 0 / b = 2) 

We note that our v esc = 420, 250, and 130 km s −1 simulations
oughly map onto the V g = 10, 6, and 3 simulations in Quataert
t al. ( 2022a ), respectively (taking the assumed constant sound speed
 10 km s −1 in the latter simulations). Assuming an NFW halo with a

oncentration parameter c = 7, these escape speed parameter choices 
orrespond to virial mass values ranging from M 200 ≈ 2 × 10 10 M �
or the v esc = 130 km s −1 model to M 200 ≈ 6 × 10 11 M � for the v esc =
20 km s −1 model. 

.2 Ov er view of the simulation results 

ig. 3 shows the time-averaged density, temperature, CR pressure, 
ind speed, heating-to-cooling ratio, and ef fecti ve CR equation of

tate p c ( ρ) for each of the varied v esc runs (simulations 1 and 11–14
f Table 1 ); we will discuss the the time variability of the solutions in
ection 3.3 . The simulations range from nearly isothermal at lower 
 esc to exhibiting a sharp temperature spike at higher v esc , where the
as quickly heats up from ∼10 4 –10 6 K near the base of the wind.
t the fiducial v esc = 420 km s −1 but with varied base densities, CR
ressures, and Alfv ́en speeds, the profiles are similar to the fiducial
esult, though the spike in temperature occurs at a slightly different 
ocation (see Fig. 2 ), and the outflow speed and mass-loss rates of
he outflow vary modestly (see Table 1 ). 

Overall, we find that the depth of the gravitational potential is
he most significant parameter in determining the outflow properties. 
hysically, this is because the stronger gravity solutions (higher v esc )
ave much smaller gas density scale heights and thus much lower 
ensities just exterior to the base of the wind. This leads to cooling
eing less important relative to heating of the gas by the streaming
Rs. Once CR heating drives the gas temperature � 10 4 K, the
utative balance between CR heating and radiative cooling becomes 
hermally unstable. The relative noisiness of the time-averaged v esc = 

50 km s −1 , v esc = 180 km s −1 , and v esc = 130 km s −1 profiles is
ue to this instability occurring o v er an extended region, resulting
n a much more time-variable solution, as we discuss in detail in
ection 3.3 . 
Steady-state CR wind theory predicts that p c ∝ ρ2/3 when v 
v A and p c ∝ ρ4/3 when v 	 v A (equation 4 ). Fig. 3 shows

hat p c ∝ ρ2/3 is indeed satisfied at high densities near the base
hen v � v A , though at larger radii (lower densities), a p c ∝ ρ
caling is visible instead of p c ∝ ρ4/3 ; this is because v ∼ v A .
n addition, a p c ∝ ρ1/2 scaling is apparent at intermediate radii
here thermal instability begins to occur and the fluctuations in 
as density are largest (see Section 3.3 ). Quataert et al. ( 2022a )
howed that p c ∝ ρ1/2 is a consequence of strong CR bottlenecks
see Tsung et al. 2022 for related arguments). They further argued
hat the larger CR pressure implied by p c ∝ ρ1/2 (in comparison to
 c ∝ ρ2/3 ) leads to stronger galactic winds than predicted by standard
R wind theory. In Quataert et al. ( 2022a )’s simulations, ho we ver,
 c ∝ ρ1/2 was present o v er a larger range of radii than we find here.
his is a consequence of the more realistic thermodynamics in the
resent simulations; the instabilities leading to CR bottlenecks are 
uppressed once gas pressure becomes dynamically more important 
xterior to the temperature spikes in Fig. 3 (see Section 3.3 for more
iscussion). 
Fig. 3 demonstrates that as the gas mo v es further out of the

alaxy, the thermally unstable solutions are inevitably driven to 
ower densities and higher temperatures at which cooling is less 
ynamically important. In reality, the thermally unstable solutions 
hat we find here are likely to have a rich multiphase structure not
aptured in our 1D simulations; we return to this in Section 4 . To more
uantitatively describe the thermodynamics of the outflow and the 
mportance of cooling, Fig. 4 compares the expansion timescale t exp 

H / v (where H is the density scale height (dlog ρ/d r ) −1 ), the cooling
ime-scale t cool ≡ p /( n 2 � ), and the CR heating time-scale of the gas
 heat ≡ p / | v A d p c /d r | . Close to the base of the wind, t cool � t heat � t exp .
his is the approximately isothermal region in which cooling and 
eating balance, as described analytically in Section 2.5 . For v esc =
30 km s −1 this hierarchy of time-scales is maintained throughout 
he flow and the solution remains nearly isothermal everywhere. 
ote, ho we ver, that t cool / t exp still increases substantially with radius

or v esc = 130 km s −1 , and eventually, at sufficiently large radii, the
as density would decrease to the point that cooling would become
e gligible. F or winds with stronger gravity such as the fiducial v esc =
20 km s −1 , ho we ver, the cooling time increases much more rapidly
ith increasing radius and cooling is negligible exterior to ∼1.5 kpc.
f fecti v ely, this e xterior solution at larger radii is well modelled using

pavich ( 1975 )’s original CR streaming wind solutions that entirely
e glect radiativ e cooling. We also note that while the outward expan-
ion time of the CRs in the fiducial v esc = 420 km s −1 model in Fig. 4
s comparable to the pion loss time of ≈ 5 × 10 −2 ( n/ cm 

−3 ) −1 Gyr
t the base, because the density falls rapidly, the pion loss time
harply rises after ∼ 0 . 01 kpc and so neglect of pionic losses is
elf-consistent. This is only borderline true in the v esc = 130 km s −1 

alaxy, which has a longer wind expansion time due to the shallower
otential. 
Fig. 5 shows the contributions of each term in equation ( 8 ) to

he total energy flux of the wind in the fiducial model in the larger
00 kpc box. For reference, the initial input CR power is given by 

˙
 c0 = 16 πr 2 0 p c0 v A 0 

≈ 7 . 7 × 10 38 erg / s 

(
r 0 

1 kpc 

)2 (
p c0 

1 eV cm 
−3 

)( v A 0 

10 km s −1 

)
. (35) 

he total Ė decreases sharply at small radii near the base of the wind
ue to cooling, but remains constant for r � 2 kpc once the density has
ecreased significantly (so the effect of cooling becomes negligible). 
hen the wind speed is low, the dominant contributions to Ė are the

R energy flux and the gravitational energy flux, which balance each
ther across a wide range of radii. In Section 4.1 , we will use this
eature of the wind to estimate its mass-loss rate. The gas enthalpy
ux rises rapidly following the onset of thermal instability due to the
MNRAS 524, 6374–6391 (2023) 
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Figure 3. The steady-state radial density (upper left), temperature (upper right), CR pressure (middle left), wind speed (middle right), heating-to-cooling ratio 
(bottom left), and ef fecti ve CR equation of state p c ( ρ) (bottom right) profiles for the varied v esc simulations (simulations 1 and 11–14 of Table 1 ). In the upper 
two rows, the shaded regions indicate ±1 σ (temporal) variations at each radius. In the bottom right-hand panel, the dashed lines on the left, middle, and right of 
the plot indicate power-law slopes of p c ∝ ρ, p c ∝ ρ1/2 , and p c ∝ ρ2/3 , respectively. As v esc is increased from 130 km s −1 (orange) to 180 (green), 250 (blue), 330 
(red), and finally the fiducial 420 km s −1 (black), the extent of the strong cooling region near the base of the wind decreases. The decrease in cooling at higher 
v esc leads to progressively sharper spikes in temperature close to the base of the wind due to CR heating overwhelming cooling. Intermediate v esc solutions are 
the most time variable due to thermal instability, apparent here as larger ±1 σ variations and radial fluctuations even in the time-averaged profiles. 
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harp spike in temperature and gas pressure at small radii. At larger
adii, the wind accelerates primarily due to gas pressure while the
emperature falls; the kinetic energy flux eventually dominates over
he gas enthalpy flux. 

The asymptotic wind power for the fiducial model shown in Fig.
 is only ∼ 10 per cent of the input CR power at the base of the
ind. Some of the input energy is lost radiatively, but most is lost to
ravity driving the wind to large radii; this is reflected in Ė c 
 Ė g 

n Fig. 5 . We find a similar ratio of the asymptotic wind power to
he input CR power in all of our simulations (see the last column of
able 1 ). Since the energy per supernovae (SNe) supplied to CRs is

10 per cent , this implies that the asymptotic wind power found
ere is only ∼ 1 per cent of the SNe power. This is unlikely to have
 significant dynamical impact on the surrounding circumgalactic
edium (CGM), i.e. the ‘pre venti ve’ feedback due to the winds
NRAS 524, 6374–6391 (2023) 

ound here will be minor. s  
Fig. 6 illustrates the acceleration of the wind for the fiducial model
n the larger 100 kpc box, in comparison to the Alfv ́en speed and the
ocal escape speed, with the individual components of the numerator
 
2 
n and denominator v 2 d in the wind equation ( 9 ) also plotted for
eference. Note that, the local escape speed 

√ −2 φ( r) is distinct
rom the v esc parameter used in our parametrization of the Hernquist
otential; the latter is the escape speed from r = 0. From the base to r

2 kpc, we see that v � v A , so we are well justified in utilizing that
pproximation throughout Section 2 . As anticipated in Section 2.2 ,
losest to the base, when v 2 d < 0 (i.e. the blue dashed curve is greater
han the red curve), v 2 n < 0 as well (the orange curve is greater
han the green curve). Although v 2 d becomes positive at r ≈ 1.1 kpc,
 
2 
n remains ne gativ e until r ≈ 1.2 kpc. Because this occurs when
 v 2 d | < v 2 , though, per equation ( 9 ), the wind is able to continue
ccelerating. This demonstrates how the time-averaged numerical
olution manages to e v ade the conceptual difficulties highlighted in
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Figure 4. The expansion (solid), heating (dotted), and cooling (dashed) 
time-scales as functions of radius for the fiducial v esc = 420 km s −1 (black) 
simulation and the v esc = 130 km s −1 (orange) simulation. In the fiducial case, 
the cooling time is initially the shortest but quickly the solution transitions 
to one in which heating o v erwhelms cooling, leading to the strong spike in 
temperature seen in Fig. 3 . For the v esc = 130 km s −1 model, the cooling time- 
scale is al w ays significantly shorter than the heating and expansion timescales 
and the solution is roughly isothermal. 

Figure 5. The gas kinetic energy flux (purple), gravitational energy flux 
(green), gas enthalpy flux (red), CR energy flux (blue), and total energy flux 
(black) as defined in equation ( 8 ) for the fiducial v esc = 420 km s −1 model 
in the larger 100 kpc box. The near equi v alence of the gravitational and CR 

energy fluxes leads to a simple expression for the mass-outflow rate (see 
Section 4.1 ). Note also that, the asymptotic energy flux is only ∼ 10 per cent 
of the input energy flux, which corresponds to inefficient prev entiv e feedback 
at larger radii. 
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Figure 6. The wind speed (black), Alfv ́en speed (purple), local escape veloc- 
ity (cyan), and components of the numerator and denominator critical point 
speeds v 2 d and v 2 n (equations ( 10 ) and ( 11 )) for the fiducial v esc = 420 km s −1 

model in the larger 100 kpc box. The blue curve shows the effective CR 

sound speed contribution, and the dashed part of the curve indicates when its 
square is ne gativ e, so it is imaginary. The red curve shows the gas sound speed 
contribution. The orange curve represents the contribution of cooling, and the 
green curve shows the gravitational velocity that appears in the numerator 
of the steady-state wind equation ( 9 ). Note the very slow acceleration of the 
wind and that the solutions are magnetically dominated out to large radii. 
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ection 2.2 and accelerate outwards continuously despite having v 
v A at its base. Another notable feature of Fig. 6 is that the solution

s magnetically dominated ( v A � c s ) out to ∼ 5 kpc. 
Ultimately, the speed in the fiducial wind exceeds the local escape 

elocity by r ≈ 20 kpc, and continues to accelerate before reaching 
 final velocity of approximately 150 km s −1 near the boundary of
ur larger domain. We note that in each of the models studied in the
arger simulation box of 100 kpc, the wind continues to accelerate 
eyond the speeds achieved by the same model in the 10 kpc box. To
haracterize the maximum speed achie v able by the wind for models
n which we do not simulate a larger box, Table 1 also includes a
alue of 

 ∞ ≡
(

v 2 + 

2 γ

γ − 1 

p 

ρ

)1 / 2 

, (36) 

or each wind, incorporating the enthalpy contributions to the wind’s 
pecific energy. As a check, the value calculated for v ∞ in the larger
oxes closely matches the value calculated for the smaller boxes, as
ell as the velocity of the wind near the outer boundary in the larger
oxes. As the wind accelerates to approach v ∞ , it passes through two
ritical points, at r ≈ 1.15 kpc and r ≈ 6 kpc for the fiducial model,
here the speed is equal to the local values of v n or v d . These critical
oints may be read off of Fig. 6 as the locations at which the square
f the black curve is equal to the sum of the square of the blue and
ed curves ( v 2 = v 2 d ) or the difference of the squares of the green and
range curves ( v 2 = v 2 n ). We discuss the critical points observed in
ach simulation in further detail in Section 3.4 . 

.3 Time dependence 

n the numerical simulations, as v esc is reduced, a transition occurs
etween the smooth profiles of the fiducial or v esc = 330 km s −1 

odels and the much more variable v esc = 250 and 180 km s −1 

odels; this is evident even in the time-averaged profiles in Fig. 3 .
he origin of this difference is the larger amplitude time variability

hat is introduced by the thermal instability in the lower v esc models.
ig. 7 highlights this strong time dependence by comparing the time-
veraged density, temperature, CR pressure to gas pressure ratio, 
nd plasma β = 2 a 2 /v 2 A to individual time snapshots. Although the
napshots were chosen at times where the profiles are observed to be
n statistical steady-state (i.e. av erages o v er randomly chosen time
ntervals have the same pointwise statistics), in the v esc = 250 km s −1 

odel especially, there is significant time variability. 
MNRAS 524, 6374–6391 (2023) 
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Figure 7. Profiles of the fiducial v esc = 420 km s −1 (black), v esc = 250 km s −1 (blue), and v esc = 130 km s −1 (orange) simulation runs demonstrating the time 
dependence of the wind’s density (upper left), temperature (upper right), CR-to-gas pressure ratio (lower left), and gas-to-magnetic pressure ratio β ≡ 2 a 2 /v 2 A 
(lower right) near the base. The lighter coloured profiles are five different sample snapshots in which the wind is in statistical steady-state, and the darker coloured 
profile is the time average. The individual snapshots show much more variation in the v esc = 250 km s −1 run, and the time-averaged profile is correspondingly 
noisier. This large amplitude variability is due to thermal instability. For the v esc = 130 km s −1 and v esc = 420 km s −1 runs, much of the variability is likely due 
to acoustic instabilities, though this is much smaller in amplitude than the variability produced by thermal instability. 
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Figure 8. The normalized temporal variance in density for the fiducial v esc = 

420 km s −1 (black), v esc = 250 km s −1 (blue), and v esc = 130 km s −1 (orange) 
models. In the fiducial model, the variance rises sharply at the location of the 
temperature spike, which demonstrates the onset of the thermal instability. In 
the v esc = 250 km s −1 case, the rise in variance is much broader, because the 
thermal instability is not as localized in radius as in the v esc = 420 km s −1 

model. Thermal instability is not present in the v esc = 130 km s −1 model, for 
which the variability is likely due to sound wave instabilities. 
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The v esc = 250 km s −1 model represents an intermediate regime
o the fiducial and v esc = 130 km s −1 models. In the fiducial model,
hermal instability sets in quickly because cooling is only important
or a small range of radii near the base, while for v esc = 130 km s −1 ,
ooling is important across the entire simulation domain and thermal
nstability largely does not set in, since the gas remains on the
hermally stable part of the cooling curve at T ≈ 10 4 K. Fig. 7 shows
hat the more gradually rising time-averaged temperature profiles
ith v esc ≤ 250 km s −1 can now be identified as an av erage o v er
 number of thermal-instability-induced temperature spikes that are
imilar to those in the fiducial and v esc = 330 km s −1 models, just
cross a larger range of radii. Eventually, at large radii, cooling
radually becomes less important even for the v esc = 250 km s −1 

olution, and the wind solution is significantly more stable at a higher
emperature (as observed in the time averages in Fig. 3 ). The large
ariations in the gas density seen in Fig. 7 also lead to corresponding
uctuations in the CR pressure, analogous to the ‘staircase’ structure
bserved in Tsung et al. 2022 . In the bottom left-hand panel of
ig. 7 , we see that these fluctuations lead the ratio of CR and gas
ressure to vary across nearly two orders of magnitude in just a
 kpc region near the base for the v esc = 250 km s −1 model, while
 c /p ∼ O(1) in the other solutions. 
Next, we quantify the radii at which the thermal instability has the

reatest influence on the wind. Fig. 8 shows the pointwise temporal
ariance in the density normalized by the time-averaged profile for
he fiducial, v esc = 130 km s −1 , and v esc = 250 km s −1 simulations.

hile the fiducial model exhibits significant variation in time only
NRAS 524, 6374–6391 (2023) 
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Figure 9. The numerator and denominator of the wind equation for the v esc = 130 (orange), 180 (green), 330 (red), and fiducial 420 km s −1 (black) models. 
The left-hand panel shows the numerator ( v 2 d − v 2 n , dashed) and denominator ( v 2 − v 2 d , solid) expressions calculated using equations ( 10 ) and ( 11 ). Two critical 
points are present as the wind speed passes through the roots v c , − and then v c , + as expected from equation ( 16 ). The right-hand panel shows the numerator 
(dashed) and denominator (solid) expressions as calculated from the isothermal limit of equation ( 9 ) instead; only one critical point is present in this limit. 

w
c
m
t  

i  

c  

i
o

t
l
s  

g  

(
c
i
s  

t
s  

(  

m  

i  

i  

d
 

t  

i
0
a
i
e  

H
i
v  

a
i  

e  

i
t

3

W
d
t  

t
a  

a  

d
p  

v  

o
s  

i  

n  

1  

p  

w
s
t  

n  

v  

t
p  

n  

p  

i  

o

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/4/6374/7233115 by Princeton U
niversity user on 08 Septem

ber 2023
here the temperature increases dramatically (visible as a spike in the 
urve at r ≈ 1.05 kpc), the higher variance in the v esc = 250 km s −1 

odel extends throughout the simulation domain, and is substantial 
hrough r ≈ 3 kpc. In the v esc = 130 km s −1 model, while the variance
s higher in general, there is no clear rise in the variance: because
ooling is al w ays more rele v ant, thermal instability does not set
n. The density fluctuations are rarely spatially extended, typically 
ccurring o v er scales of just ∼10 pc. 
Although we identify thermal instability as the source of largest 

ime variability in our models, several other instabilities are also 
ikely to be present. In particular, the linear acoustic instabilities 
tudied in Quataert et al. ( 2022a ) (in isothermal winds, when back-
round gradients are present) and in Begelman & Zweibel ( 1994 )
in plasmas with CR-streaming-mediated heating, but without any 
ooling) are both realizable. The former occurs in the approximately 
sothermal region nearest the base, and is likely responsible for the 
mall initial fluctuations in temperature that result in the onset of
hermal instability. The change in the time-averaged CR equation of 
tate from p c ∝ ρ2/3 to p c ∝ ρ1/2 observed in Quataert et al.
 2022a ) as a consequence of CR bottlenecks is present in our
odels as well (see the lower right-hand panel of Fig. 3 ). Ho we ver,

t is driven more by thermal instability here than by the acoustic
nstabilities, in part because the latter are suppressed if gas pressure
ominates. 
We expect the Begelman & Zweibel ( 1994 ) instability to poten-

ially occur at large radii away from the base where cooling is less
mportant. All winds studied here include regions in which β � 

.2 and β � 0.5, so that both forward and backward propagating 
coustic waves may be unstable (Begelman & Zweibel 1994 ). These 
nstabilities are likely responsible for the small variations visible in 
.g. the fiducial model in the p c / p panel beyond the temperature spike.
o we ver, we emphasize that for the parameter space considered 

n our models, thermal instability leads to much more dramatic 
ariability, and is likely to hav e man y more important observational
nd dynamical consequences than the acoustic wave instabilities. For 
nstance, Fig. 8 shows that although there is a baseline variance in
ach of the models o v er a wide range of radii (likely due to acoustic
nstabilities), the variance due to the thermal instability far exceeds 
hat produced by the acoustic instabilities. 

.4 Critical points 

e find that the time-averaged profiles of our numerical solutions 
o pass through the analytically expected critical point(s), even 
hough the flow is only steady in a statistical sense. Fig. 9 shows
he wind equation numerator and denominator expressions, v 2 d − v 2 n 

nd v 2 − v 2 d , respectively from equation ( 9 ). Critical points are
pparent as sharp dips in the plot when both the numerator and
enominator expressions are simultaneously near-zero. The left-hand 
anel demonstrates the presence of 2 critical points for the higher
 esc models, while in the lower v esc models in the right-hand panel,
nly 1 critical point is present. The latter is because the low v esc 

olutions correspond to the nearly isothermal limit in which there is
ndeed only one critical point (see Section 2.4 ). Although the full
umerator and denominator expressions apply to the v esc = 130 and
80 km s −1 models, for those nearly isothermal solutions, we directly
lot the numerator and denominator of the isothermal limit of the
ind equation for clarity, because fluctuations due to cooling add 

ignificant noise to the numerator expression, making the zero harder 
o distinguish. As a check of the validity of this analysis method, we
ote that attempting to use the isothermal expressions for the higher
 esc models in the left-hand panel does not yield aligned zeros of
he numerator and denominator, demonstrating that the full critical 
oint expressions are important for those critical points. We also do
ot plot the intermediate-regime v esc = 250 km s −1 model in either
anel, because it does not exhibit clear isothermal critical points, and
ts time-averaged profile is too noisy to allow for clear identification
f the full critical points due to the increased variability. 
MNRAS 524, 6374–6391 (2023) 
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In our simulations exhibiting two critical points, the first occurs
hen v = v c , − and the second when v = v c , + , where v c , ± are the two

oots of equation ( 16 ). The two critical points in the v esc = 420 and
30 km s −1 models in Fig. 9 are consistent with the surprising analytic
ritical point structure discussed in Section 2.3 . The existence of two
ritical points is a consequence of the presence of both cooling and
n imaginary CR sound speed at some radii. The inner v = v c , −
ritical point occurs when cooling is energetically important, and the
osition may be determined approximately by when v 2 d and v 2 n first
ise abo v e 0. The outer critical point is the more f amiliar Park er-
ype critical point in which v = 

√ −rg/ 2 , as observed in the fiducial
odel velocities in Fig. 6 . 
In the lower v esc , solutions with just one critical point, the critical

peeds are similar such that v = v c , − ≈ v c , + . The single critical point
n these cases corresponds to taking the isothermal limit of equation
 16 ) as described in Section 2.4 . The slightly larger deviations
etween the location of zeros of the numerator and denominator
n the v esc = 130 km s −1 and v esc = 180 km s −1 models are due to
he increased time variability in those cases compared to the highest
 esc simulations shown in the left-hand panel, and also because the
inds are not exactly isothermal. 

 DISCUSSION  

nformed by our numerical results, in the following sections, we
escribe how to approximate the total mass-loss rate of the wind as
ell as its maximum temperature and speed. We then discuss some of

he possible observational signatures of the CR-driven winds found
ere and summarize limitations of our modeling, as well as possible
reas for future work. 

.1 Approximating mass-loss rates and outflow speeds 

he simulations in Section 3 show that the asymptotic speeds of
R-driven winds from the warm ISM are relatively small compared

o the initial escape speed. In this limit, the mass-loss rate is close to
he maximum mass-loss rate allowed by energy conservation. That

aximum rate is set by when the available energy primarily goes into
ifting matter out of the gravitational potential, so that | ̇E g | 
 Ė c , i.e.
˙
 | φ| 
 Ė c , as demonstrated explicitly in Fig. 5 . To estimate the

esulting mass-loss rate, ho we v er, we hav e to account for the fact
hat cooling remo v es energy from the wind at small radii so that
nly a fraction of the initial energy in CRs at the base of the wind
s available to drive gas to large radii. To do so, we will estimate
he radius r ∗ at which cooling becomes negligible. Such a radius
oes not exist for our lowest v esc = 130 km s −1 simulation, which
s nearly isothermal out to large radii. More appropriate analytic
pproximations for the mass-loss rate in this isothermal limit were
iven in Mao & Ostriker ( 2018 ) and Quataert et al. ( 2022a ). 
Given an estimate of the radius r ∗ at which cooling becomes

ubdominant, the net mass-loss rate is roughly 

˙
 ≈ Ė c ( r 

∗) / | φ( r ∗) | , (37) 

= 16 π ( r ∗) 2 p c ( r 
∗) v A ( r 

∗) / | φ( r ∗) | . (38) 

ecause in most solutions cooling is only important at relatively
mall radii, where v � v A , we approximate p c ∼ ρ2/3 . Then, using
he split-monopole configuration and Hernquist potential, we find 

˙
 ≈ Ṁ ref 

(
1 + 

r ∗

b 

)(
ρ( r ∗) 

ρ0 

)1 / 6 

, (39) 
NRAS 524, 6374–6391 (2023) 
here we have defined a reference mass-loss rate value, 

˙
 ref ≡ 32 π

r 2 0 v A 0 p c0 

v 2 esc 

≈ 0 . 04 
M �
yr 

(
r 0 

1 kpc 

)2 ( v A 0 

10 km s −1 

)

×
( p c0 

1 eV cm 
−3 

)( v esc 

250 km s −1 

)−2 
. (40) 

ote that while our models treat the base CR pressure and escape
elocity as independent parameters, galaxies with larger escape
elocities are likely to host increased star formation and thus maintain
n increased base CR pressure as well. From equation ( 40 ), therefore,
n real winds, we may expect the mass-loss rate to have only a sub-
inear scaling with p c0 (or equi v alently, a steeper than v −2 

esc scaling
ith escape velocity). 
To estimate the density in equation ( 39 ), we use the analytic

mplicit isothermal solution from equation ( 22 ). Although this
omewhat underestimates the true density in the simulations (see
ig. 2 ), the weak ∝ ρ( r ∗) 1/6 scaling in equation ( 39 ) implies that our
stimate of Ṁ is not that sensitive to this uncertainty in the density
rofile. 
It then only remains to estimate r ∗. Because cooling enters the

ind equation only through v 2 n , we estimate r ∗ by estimating when
 
2 
n ( r 

∗) = 0. For radii smaller than r ∗, v 2 n < 0 and v 2 d < 0, but beyond
 
∗, we have solutions with v 2 n > 0 matching more conventional
ind expectations as discussed in Section 2.2 . Setting v 2 n = 0 using

quation ( 11 ) then yields 

˙
 = 

4 π ( γ − 1)( r ∗) 2 q r ( r ∗) 

−g( r ∗) 
, (41) 


 4 π ( r ∗) 2 ρ( r ∗) v A ( r 
∗) 

( γ − 1) c 2 eff ( r 
∗) 

c 2 eff ( r ∗) + a( r ∗) 2 
, (42) 

here in the second line, we have used the heating-cooling balance
nd assumed hydrostatic equilibrium. Once again taking p c ∝ ρ2/3 

nd assuming the split-monopole configuration, we ultimately arrive
t the approximate mass loss rate 

˙
 
 

8 π

3 
( γ − 1) 

r 2 0 v A0 p c0 

a 2 0 

(
ρ( r ∗) 

ρ0 

)1 / 6 

×
( 

T ( r ∗) 

T 0 
+ 

2 

3 

p c0 

p 0 

(
ρ( r ∗) 

ρ0 

)−1 / 3 
) −1 

, (43) 

here p 0 ≡ ρ0 a 
2 
0 is the base gas pressure. Comparing equations ( 39 )

nd ( 43 ), we see that r ∗ satisfies (
1 + 

r ∗

b 

)( 

T ( r ∗) 

T 0 
+ 

2 

3 

p c0 

p 0 

(
ρ( r ∗) 

ρ0 

)−1 / 3 
) 

= 

γ − 1 

12 

v 2 esc 

a 2 0 

. (44) 

Equation ( 44 ) can be solved implicitly for r ∗ given a temperature
nd density profile. We use the analytic approximations for ρ( r ) and
 ( r ) near the base of the wind from Section 2.5 to solve for r ∗ and

hen Ṁ . 
Fig. 10 shows the resulting predicted Ṁ as a function of v esc for

e veral v aried choices of base parameters, normalized by the ( v esc -
ependent) reference value Ṁ ref from equation ( 40 ). The dependence
f r ∗ on v esc alters the profiles from Ṁ ∝ v −2 

esc at low v esc , but at high
 esc , cooling becomes unimportant almost immediately beyond the
ase, and so the scaling Ṁ ∝ v −2 

esc becomes reasonably accurate.
or the same reason, at higher v esc , the dominant variation with all
arameters is just through the prefactor term. Fig. 11 compares the
redicted mass-loss rates to the values realized in our simulations.
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Figure 10. Analytic approximation to the mass-outflow rate Ṁ (equations 
39 and 44 ) as a function of v esc , normalized by Ṁ ref (see equation 40 ). The 
solid black curve is for the fiducial parameter choices; the dashed and dotted 
curves represent factor of 3 increases and decreases in v A0 (red), ρ0 (green), 
and p c 0 (blue), respectively. 

Figure 11. A comparison between the predicted (equations 37 and 44 ) and 
simulated mass-loss rates. The black point is the fiducial v esc = 420 km s −1 

simulation, the coloured points indicate the varied v esc = 330 (red), 250 
(blue), 180 (green), and 130 km s −1 (orange) simulations, and the grey points 
are the remaining models. The analytic estimate of the mass-loss rate is good 
to about a factor of two. Together with Fig. 10 , this implies that equations 
( 40 ) & ( 45 ) are a reasonable approximation of the mass-loss rate in our 
CR-driven winds. 
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he predicted values are correct within a factor of ∼2, with deviations 
rimarily due to errors in estimating r ∗. The predictions are more
ccurate for the smaller v esc simulations because those density 
rofiles are better fit by the isothermal approximation of equation 
 22 ). 

A useful alternative expression for the reference mass-loss rate is 
˙
 ref 
 2 ̇E c0 /v 

2 
esc where Ė c0 = 16 πr 2 0 v A0 p c0 is the total CR power

f the galaxy. The latter can also be expressed as Ė c0 = εc Ṁ ∗c 2 

here Ṁ ∗ is the star-formation rate and εc ≡ 10 −6 . 3 εc , −6 . 3 is set by 
he fraction of SNe energy that goes into CRs: for 10 51 erg per SNe
nd 1 SNe per100 M � of stars formed, εc = 10 −6.3 if 10 per cent of
he SNe energy goes into primary CRs. The reference mass-loss rate 
n equation ( 40 ) can thus be rewritten as 

Ṁ ref 

Ṁ ∗

 

2 εc c 
2 

v 2 esc 


 1 . 4 εc, −6 . 3 

( v esc 

250 km s −1 

)−2 
. (45) 

Figs 10 and 11 show that our simulations produce mass-loss rates
˙
 ∼ O( Ṁ ref ) particularly at higher v esc . The mass-loss rates are

omewhat higher for lower v esc because the density scale-height is 
arger and thus ρ( r ∗)/ ρ0 is larger (see equation 39 ). Our numerical
esults and equation ( 45 ) thus imply that CR-driven winds can
enerate a mass-loss rate of order or larger than the star-formation
ate, particularly in lower mass galaxies. This is on the low end
f the mass-loss rates required to reconcile the galaxy stellar-mass 
ass function and the halo mass function in cosmological galaxy 

ormation models (Somerville & Dav ́e 2015 ). One unusual feature
f our models is that the mass-loss is dominated by the warm ISM,
et the gas often ends up hotter than its initial temperature at large
adii. 

In addition to its value in calculating Ṁ , equation ( 44 ) also allows
or an estimate of the maximum temperature the wind will achieve, 
nd hence its maximum speed. From the gas energy equation, the
emperature profile is determined by the solution to 

v k 
d T 

d r 
= ( γ − 1)( v a 2 − v A c 

2 
eff ) 

d ρ

d r 
− ( γ − 1) q r , (46) 

nd we see that the initial increase in temperature is driven by the fact
hat va 2 � v A c 

2 
eff near the base (since d ρ/d r is al w ays < 0). For radii

eyond the predicted instability-driven temperature spike, ho we ver, 
e expect va 2 to become comparable to v A c 2 eff due to the increased

emperature and accelerating wind speeds, and so the outer portion 
f the temperature profile must be decreasing. Therefore, we expect 
he largest temperatures to typically be reached at radii somewhat 
omparable to r ∗, and we can use equation ( 44 ) to estimate a rough
pper bound 

kT ( r ∗) 

m 

< 

kT max 

m 

≡
(

γ − 1 

12 

(
1 + 

r 0 

b 

)−1 
v 2 esc −

2 

3 

p c0 

ρ0 

)
. (47) 

ith r 0 / b held constant, we can identify an approximate T max ∝ v 2 esc 

caling. We emphasize that equation ( 47 ) assumes that va 2 = v A c 
2 
eff 

s satisfied near or interior to r ∗; otherwise, the temperature could in
rinciple continue to increase outwards. We do not have a rigorous
roof that this ordering is satisfied but it is roughly true in our
imulations: for reference, empirically, the simulations exhibit a 

10 per cent increase in temperature beyond T ( r ∗) before ultimately 
ecreasing adiabatically at larger radii. Ho we ver, the upper bound
redicted by equation ( 47 ) is still not saturated in most of our
imulations. Fig. 12 compares the maximum temperature achieved 
y the simulated winds to the predicted T max assuming fiducial pa-
ameter choices for p c 0 and ρ0 , as a function of v esc . An approximate
 max ∝ v 2 esc scaling is somewhat visible, although as shown by the
ide range of maximum temperatures for the models with v esc =
20 km s −1 , variations in the base density, CR pressure, and Alfv ́en
peed are also important in determining the maximum temperature 
he wind achieves. 

Note that, this upper bound predicts that the maximum sound 
peed of the gas is only a small fraction of v esc . Under the assumption
hat by the time the temperature reaches its maximum, cooling is no
onger energetically important, we may estimate the maximum speed 
chie v able in the wind by assuming that the enthalpy of the wind is
ltimately converted into kinetic energy 
MNRAS 524, 6374–6391 (2023) 
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M

Figure 12. The maximum temperature predicted by equation ( 47 ) compared 
to the maximum temperatures of the simulations. The black curve uses the 
fiducial values of ρ0 and p c 0 , while the grey shaded region indicates the upper 
bound predicted allowing for up to factor of 3 variations in ρ0 and p c 0 . The 
black point is the fiducial v esc = 420 km s −1 model, and the varied v esc = 

330 (red), 250 (blue), 180 (green) and 130 km s −1 (orange) models are shown 
as coloured points, while all other models are shown in grey. The one grey 
point exceeding the maximum estimate is the r 0 = 5 kpc model (the last row 

in Table 1 ), and the grey point with the smallest maximum temperature is the 
ρ0 = 0 . 1 m p cm 

−3 model (the second-to-last row in Table 1 ). 
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Figure 13. A comparison of the maximum wind speeds predicted using 
equation ( 48 ) and the simulated v ∞ (from Table 1 , calculated using equation 
36 ) at 0.8 r out . Similar to Fig. 12 , the black curve uses the fiducial values of 
ρ0 and p c0 , while the grey shaded region indicates the upper bound predicted 
allowing for up to factor of 3 variations in ρ0 and p c 0 . The black point is 
the fiducial v esc = 420 km s −1 simulation, the coloured points indicate the 
varied v esc = 330 (red), 250 (blue), 180 (green), and 130 km s −1 (orange) 
simulations, and the grey points are all the remaining models. 
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 max 
 

(
2 γ

γ − 1 

kT max 

m 

)1 / 2 

, (48) 

= 

(
γ

6 

(
1 + 

r 0 

b 

)−1 
− 4 γ

3( γ − 1) 

p c0 

ρ0 v 2 esc 

)1 / 2 

v esc . (49) 

o good approximation, because v 2 esc 	 p c0 /ρ0 , we see that v max 

cales linearly with v esc , and for our models in which γ = 5/3 and
 0 / b = 1/2, we expect v max ≈ 0.4 v esc . Once again, although there is
o rigorous proof that the maximum wind speed is determined by
atching the enthalpy and kinetic energy fluxes of equation ( 8 ), we
nd that this estimate is well justified in our simulations because most
f the winds become gas pressure dominated due to run-away CR
eating as the density drops. The only exception to this is our nearly
sothermal solutions at the lowest v esc (for which the isothermal

odels of Mao & Ostriker 2018 and Quataert et al. 2022a are a good
nalytic approximation). Fig. 13 compares the predicted v max from
quation ( 48 ) to the simulated v ∞ ( r = 0.8 r out ) shown in Table 1 .
verall, the estimated maximum wind speed matches the simulated
alue to within ∼ 50 per cent , although there is significant variation
mong winds with the fiducial v esc = 420 km s −1 potential when other
arameters are varied. The strong connection between the asymptotic
ind speed and the galaxy escape speed found here is reminiscent
f similar trends in observations (e.g. Weiner et al. 2009 ) although
he normalization of our correlation between wind speed and escape
peed is a factor of few lower than that observed. 

.2 Emission and absorption in the wind 

he models presented in this paper are sufficiently idealized to
reclude a detailed comparison to observations. None the less, it is
aluable to highlight a few features of the solutions found here that
ear on observations of galactic winds with emission and absorption
ine diagnostics. 
NRAS 524, 6374–6391 (2023) 
To quantify the luminosity radiated by the outflowing wind, we
efine 

 ( r) ≡
∫ r 

r 0 

4 πr ′ 2 d r ′ q r ( ρ( r ′ ) , T ( r ′ )) , (50) 

nd calculate the luminosity from logarithmically spaced bins
f radius and temperature, d L /dlog r and d L /dlog T , respectively.
hese profiles normalized by the base CR power (see equation
5 ) are shown for the fiducial v esc = 420 km s −1 , intermediate
 esc = 250 km s −1 , and nearly isothermal v esc = 130 km s −1 models
n the upper left-hand and upper right-hand panels of Fig. 14 ,
espectively. The upper left-hand panel shows that emission from
he gas is spatially extended, with ∼1–10 per cent of the base CR
ower being emitted at radii of ∼5 times the base radius of the
ind. Note that, this would correspond to outside the galaxy in any

ealistic galaxy model. This extended emission is a consequence of
he interplay between CR heating and cooling of the wind and is
hus a direct diagnostic of the physical origin of the wind. The upper
ight-hand panel of Fig. 14 shows that the emission in the nearly
sothermal v esc = 130 km s −1 solution is dominated by the ∼10 4 K
as. By contrast, the other models show emission o v er a wide range
f temperatures from 10 4 – a few × 10 5 K. Emission signatures
ould thus be present from the optical to the UV. Interestingly,
o we ver, the relati vely lo w maximum temperatures highlighted in
ection 4.1 imply that there would not be significant X-ray emission
rom these CR-driven winds. The lower left-hand panel of Fig. 14
hows d L /dlog r as a function of radius plotted against the wind
peed at that radius; the emission is velocit resolved, and in the
on-isothermal winds, a significant fraction is emitted at quite slow
peeds of ∼ 10 km s −1 . 

To quantify the potential absorption signatures associated with the
ind as viewed towards the central galaxy, we define the column
ensity of the wind exterior to a given radius using 

( r) ≡
∫ ∞ 

r 

d r ′ n ( r ′ ) , (51) 
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Figure 14. Proxy quantities for the emission as a function of radius (upper left), the emission as a function of temperature (upper right), emission as a 
function of wind speed (lower left), and absorption column density as a function of wind speed (lower right). In each panel, the black curve is the fiducial 
v esc = 420 km s −1 model, the blue curve is the v esc = 250 km s −1 model, and the orange curve is the v esc = 130 km s −1 model. For reference, in these models 
Ė c0 ≈ 6 . 6 × 10 38 erg s −1 (see equation 35 ). 
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he lower right-hand panel of Fig. 14 shows N ( r ) as function of
he wind speed at that radius v( r ) for the same fiducial, v esc =
50 km s −1 , and v esc = 130 km s −1 models shown in the left-hand
nd middle panels. The wind speed here is a proxy for the range of
oppler shifted wavelengths that would be present in absorption line 
iagnostics of the wind. The column density profiles of the nearly 
sothermal wind is steeper and more sharply peaked at the base of
he wind than those of the winds involving thermal instability, but 
mong the non-isothermal winds, the columns are similar across a 
ide range of v esc . We stress, ho we ver, that for resonance lines with
igh-cross sections, the observed absorption line depth will depend 
trongly on the co v ering fraction as a function of velocity, not the
olumn density we show in the right-hand panel of Fig. 14 . Of course,
ur 1D models cannot predict this co v ering fraction. 
Ov erall, man y of these features correspond well with the luminous,

xtended emission from diffuse ionized gas present in low-mass and 
tarburst galaxies (e.g. Heckman et al. 2015 , McQuinn, van Zee &
killman 2019 , Marasco et al. 2022 , Rautio et al. 2022 , Lu et al.
023 , Xu et al. 2023 ). In several of these galaxies, ∼ 0 . 1 per cent of
he bolometric luminosity can be observed as far as 6 kpc from the
alaxy’s centre. The typical wind speed measured in such systems 
ay also be as low as 10–100 km s −1 , consistent with our models. 
Finally, we emphasize that the key feature of many of the solutions

resented here is that thermal instability is important near the base of
he wind. The non-linear outcome of thermal instability is not well 

odelled in 1D but the outcome is undoubtedly that a multiphase 
edium develops for the radii in the wind where CR heating 

nd radiative cooling are both important (see Huang et al. 2022 ).
he resulting mulitphase wind solutions are likely to have many 
pplications to understanding the complex phase structure seen in 
eal galactic winds (Veilleux, Cecil & Bland-Hawthorn 2005 ), but 
e defer more detailed calculations of the predicted emission and 
bsorption line signatures to future multidimensional simulations. 

.3 Caveats and generalizations 

he goal of this work has been to explore the rather subtle interplay
etween CR-streaming-mediated heating and radiative cooling in 
alactic winds. For this purpose, the idealized spherically symmetric 
ind models presented here allow rapid exploration of parameter 

pace and some analytic progress in modelling the wind solutions. 
he downside is that we have made a number of simplifications that

imit the quantitative applicability of our results to realistic winds. 
First and foremost, we expect the gas to develop a complex 3D
ultiphase structure due to thermal instability, as in Huang et al.

 2022 ): the significant variance in density and temperature near
he radii where the instability occurs (as seen in Figs 7 and 8 )
s the manifestation of this in our 1D solutions. Additionally, we
eglect thermal conduction, which may play an important role in 
he thermal structure of the wind due to the strong temperature
radients associated with CR heating o v erwhelming cooling (upper 
ight-hand panel of Fig. 3 ). Thermal conduction is also important
or setting a physical length-scale for the thermal instability. It is
triking that none of our models with thermal instability produce 
ospatial cold and hot gas at large radii: CR heating al w ays eventually
 v erwhelms cooling. This is different from other simulations of cold
louds embedded in a CR filled medium in which the bottleneck
ffect suppresses CR heating in the cold clouds and enables them
o be accelerated intact (e.g. W iener , Oh & Zweibel 2017 ; W iener ,
weibel & Ruszkowski 2019 ; Huang et al. 2022 ). It is unclear if

his difference is a result of the much larger dynamic range in
ensity, temperature, and radii simulated here or a limitation of poorly
MNRAS 524, 6374–6391 (2023) 
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esolved cold clouds in our simulations without thermal conduction.
ur results are statistically converged at the resolutions simulated
ere, but this does not guarantee that inclusion of additional physics
ike conduction will lead to the same result or the same convergence
roperties. 
Our simulations did not include CR diffusion in addition to CR

treaming. The moti v ation for this is that there are good observational
nd theoretical arguments that the bulk of the CR population (with
nergies ∼ GeV) can be self-confined by the streaming instability
e.g. Blasi et al. 2012 ). That said, there is also in general a correction
o the pure CR streaming flux we have assumed here (the form of
his correction is subtle and typically does not take the form of a
if fusi ve flux; e.g. Wiener et al. 2019 ; Kempski & Quataert 2022 ).
uture calculations of galactic winds with a full treatment of this
treaming correction would be valuable. Another important aspect
f multidimensional simulations is that the geometric expansion of
he wind in a disc-like geometry is more gradual than in the spherical
plit-monopole setup considered in this paper. As a result, the gas
ensity is likely to decrease more slowly away from the galaxy.
his would mo v e the transition where CR heating e xceeds radiativ e
ooling out in radius relative to the models presented here. We also
ote that the simulations found here are magnetically dominated o v er
 large range of radii (see Figs 6 and 7 ). As a result, it is likely that
here is a combination of closed and open field lines that can only be

odelled using more realistic multidimensional simulations. 
One somewhat unusual property of the wind solutions found here

s that the asymptotic wind speeds are quite slow: they remain factors
f few below the escape speed from r = 0, as shown in Fig. 13 . The
cceleration of the wind in radius is also relatively gradual, as shown
n Fig. 3 . F or massiv e galaxies, the significant bounding pressure of
he ambient CGM might therefore inhibit wind propagation into the
GM, particularly since our outflows are not supersonic with respect

o the virialized gas in the CGM. Calculations with a more realistic
mbient CGM would be valuable for determining its effects on the
roperties of CR-driven winds. 
Finally, we note that, in all of our models, we neglect additional

ources of gas heating and cooling, including photoheating from
tarlight, which is important in the warm ISM. Wiener et al.
 2013 ) show in models of the Milky Way that CR heating becomes
ncreasingly important relative to photoheating above the mid-plane
f the disc. Our models are a natural extension of their solutions to
ven larger heights where CR heating dominates. It would, ho we ver,
e valuable to carry out more complete calculations including both
hotoheating and CR heating. Explicit inclusion of pionic losses in
he CR energy equation would also be useful to include since the slow
ind speeds found here imply that pionic losses can be important in

tar-forming galaxies with a dense ISM. 

 SUMMARY  

sing idealized spherically symmetric models, we have studied
alactic winds driven by CR streaming incorporating realistic radia-
ive cooling. The inclusion of cooling is particularly important for
tudying winds from the warm ISM; cooling is comparatively less
mportant for the hot ISM. The wind solutions found here exhibit
istinctive features not present in winds ne glecting radiativ e cooling
r assuming that the gas is isothermal (which corresponds to the limit
f extremely rapid cooling). 
Near the base of the wind, where the wind speed is low, the

ensity and temperature profiles can be roughly approximated as
ydrostatic and arising from a balance between CR heating and
ooling (see Fig. 2 ). This balance is, ho we ver, linearly unstable once
NRAS 524, 6374–6391 (2023) 
he temperature exceeds T ∼ 1 . 75 × 10 4 K (Kempski & Quataert
020 ). To study the effects of thermal instability, we carried out
ime-dependent numerical simulations of CR-driven winds using
THENA ++ with parameters appropriate for the warm ISM. Across
 range of gravitational potentials, magnetic field strengths, base gas
ensities, and base CR pressures, we find that the winds broadly
onsist of 3 regimes: a nearly isothermal base in which heating and
ooling balance, a region where CR heating dominates o v er cooling
nd expansion, and a region where the solution is nearly adiabatic.
e find that the key parameter determining the properties of the
ind and the spatial extent of these three regimes is the depth of

he gravitational potential, which we parametrize by the potential’s
scape speed from r = 0 (see Fig. 3 ). 

When the escape speed is low, cooling remains strong throughout
he wind, so thermal instability does not set in and the wind remains
early isothermal. These nearly isothermal solutions are similar to
he (fully) isothermal solutions in Quataert et al. ( 2022a ). In contrast,
t higher escape speeds, thermal instability causes large fluctuations
n density and temperature at intermediate radii (see Figs 7 and
 ). Because the density decreases at larger radii, cooling becomes
rogressively less important relative to CR heating, and the thermal
nstability inevitably ‘saturates’ with a sharp increase in temperature.
his leads to a thermal gas pressure dominated wind at larger radii.
revious wind solutions with CR heating but neglecting cooling (e.g.
pavich 1975 ; Everett et al. 2008 ) ef fecti vely start from relatively
igh temperature ‘base’ conditions, and accurately describe the
tructure of our solutions at larger radii where cooling is negligible.
ur calculations sho w ho w these non-radiative models can be self-

onsistently extended deeper into a galaxy starting from physical
onditions in the warm ISM. 

Although our time-dependent solutions show some evidence for
he acoustic instabilities studied in Begelman & Zweibel ( 1994 ),
uataert et al. ( 2022a ), and Tsung et al. ( 2022 ), we find that thermal

nstability is by far the dominant source of large amplitude variability
n our models; this is particularly true at intermediate escape speeds
here cooling and heating remain comparable (but linearly unstable)

or a range of radii. 
The asymptotic wind speed in our models scales approximately

inearly with the escape speed, but is only at most ∼ 50 per cent of
he escape speed. This low asymptotic speed implies that most of the
R energy supplied to the wind at the base is used to lift material out
f the galaxy’s gravitational potential. This energy balance argument
an be used estimate the mass-loss rate, maximum temperature, and
aximum outflow speed of the wind, as we demonstrate in Sec-

ion 4.1 . The mass-loss rates we find can be comparable to or larger
han the star formation rate in lower mass galaxies and they obey
 roughly energy-like scaling of Ṁ ∝ v −2 

esc . Our mass-loss rates are,
o we ver, on the low end of what is required to reconcile the galaxy
tellar and halo mass functions. Because most of wind energy is
ost escaping the gravitational potential of the galaxy, the asymptotic
ind energy flux in our models is only ∼ 10 per cent of the input CR
ower, and thus ∼ 1 per cent of the input supernova power. These
inds are thus inefficient in providing pre venti ve feedback in the
GM. 
Theoretically, the inclusion of cooling and CR heating in the

ynamics of galactic winds leads to a unique critical point structure
hat defies textbook expectations (e.g. Lamers & Cassinelli 1999 ). In
articular, the total sound speed of the gas-CR system is imaginary
hen v � v A (Ipavich 1975 ). Absent cooling, wind solutions only

xist if the base velocity is large enough to a v oid this unusual property
f the CR hydrodynamic equations (e.g. Ipavich 1975 ; Everett et al.
008 ). With cooling, a wind with v � v A is possible, but is in a
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ormal sense supersonic near its base (because v > 0 > v d , where
 d is the critical point speed ( see equations 9 –11 ). 

Although the winds we find are time-dependent, the time-averaged 
ind profiles pass through two critical points matching the properties 
redicted by steady-state theory (see Fig. 9 ). The initial critical 
oint occurs around where v d ∼ 0, i.e. where the CR sound speed
ecomes real. Formally, this is analogous to a super-sonic to sub-
onic transition that is traditionally discarded as a possibility in wind 
odels for being acausal. The second critical point we find is at

arger radii and is the more conventional Parker-type critical point 
see Sections 2.3 and 3.4 ). The solutions we find thus have two critical
oints rather than the odd number traditionally expected. These are, 
o the best of our knowledge, the only wind solutions with these
nusual properties, which are a consequence of both the imaginary 
R sound speed and strong cooling. 
A key observational signature of the winds found here is their slow

cceleration to large radii. This leads to spatially extended emission 
nd absorption lines from the optical to the UV (see Fig. 14 ). Up to

10 per cent of the wind’s radiative luminosity is produced at radii 
arger than a few times the base radius, and is emitted o v er a wide
ange of T ∼ 10 4 –10 5.5 K in all but the nearly isothermal models. This
egime of the wind may directly correspond to the extraplanar diffuse
onized gas observed in many star-forming galaxies. Additionally, 
he variability due to thermal instability present across nearly all 
f our models strongly suggests that the gas develops a multiphase 
tructure (as in Huang et al. 2022 ). An important direction for future
ork is to study the non-linear outcome of thermal instability in 
ultiple dimensions and its impact on both CR transport and the 

bservational properties of galactic winds. Other generalizations of 
his work could involve including the bounding pressure of the CGM,
hich we neglect, including a more realistic disc-like geometry for 

he wind streamlines, and including photoheating to develop a more 
ealistic ISM model. 

CKNOWLEDGEMENTS  

e thank Eve Ostriker and Navin Tsung for useful conversations. 
M acknowledges support from the National Science Foundation 
raduate Research Fellowship under grant no. DGE-2039656. TAT 

s supported in part by NASA #80NSSC18K0526. This work was 
lso supported in part by a Simons Investigator grant from the 
imons Foundation and by NSF AST grant 2107872. The analysis 
resented in this article was performed in part on computational 
esources managed and supported by Princeton Research Comput- 
ng, a consortium of groups including the Princeton Institute for 
omputational Science and Engineering (PICScie) and the Office of 

nformation Technology’s High Performance Computing Center and 
isualization Laboratory at Princeton University. 

ATA  AVAILABILITY  

he numerical simulation results used in this paper will be shared on
equest to the corresponding author. 

EFERENCES  

ai X.-N. , 2022, ApJ , 928, 112 
ai X.-N. , Ostriker E. C., Plotnikov I., Stone J. M., 2019, ApJ , 876, 60 
egelman M. C. , Zweibel E. G., 1994, ApJ , 431, 689 
lasi P. , Amato E., Serpico P. D., 2012, Phys. Rev. Lett. , 109, 061101 
2023 The Author(s) 
ublished by Oxford University Press on behalf of Royal Astronomical Society 
ooth C. M. , Agertz O., Kravtsov A. V., Gnedin N. Y., 2013, ApJ , 777, L16 
oulares A. , Cox D. P., 1990, ApJ , 365, 544 
reitschwerdt D. , McKenzie J. F., Voelk H. J., 1991, A&A, 245, 79 
han T. K. , Kere ̌s D., Hopkins P. F., Quataert E., Su K. Y., Hayward C. C.,

Faucher-Gigu ̀ere C. A., 2019, MNRAS , 488, 3716 
raine B. T. , 2011, Physics of the Interstellar and Intergalactic Medium.

Princeton Univ. Press, Princeton, p. 382 
verett J. E. , Zweibel E. G., Benjamin R. A., McCammon D., Rocks L.,

Gallagher John S. I., 2008, ApJ , 674, 258 
irichidis P. et al., 2016, ApJ , 816, L19 
uo F. , Oh S. P., 2008, MNRAS , 384, 251 
eckman T. M. , Alexandroff R. M., Borthakur S., Overzier R., Leitherer C.,

2015, ApJ , 809, 147 
ernquist L. , 1990, ApJ , 356, 359 
opkins P. F. , Squire J., Butsky I. S., Ji S., 2022, MNRAS , 517, 5413 
uang X. , Davis S. W., 2022, MNRAS , 511, 5125 
uang X. , Jiang Y.-F., Davis S. W., 2022, ApJ , 931, 140 

pavich F. M. , 1975, ApJ , 196, 107 
acob S. , Pfrommer C., 2017, MNRAS , 467, 1449 
acob S. , Pakmor R., Simpson C. M., Springel V., Pfrommer C., 2018,

MNRAS , 475, 570 
i S. , Oh S. P., McCourt M., 2018, MNRAS , 476, 852 
i S. et al., 2020, MNRAS , 496, 4221 
iang Y.-F. , Oh S. P., 2018, ApJ , 854, 5 
empski P. , Quataert E., 2020, MNRAS , 493, 1801 
empski P. , Quataert E., 2022, MNRAS , 514, 657 
ulsrud R. , Pearce W. P., 1969, ApJ , 156, 445 
acki B. C. , Thompson T. A., Quataert E., 2010, ApJ , 717, 1 
amers H. J. G. L. M. , Cassinelli J. P., 1999, Introduction to Stellar Winds

Cambridge University Press, Cambridge, UK 

u L.-Y. et al., 2023, MNRAS , 519, 6098 
ao S. A. , Ostriker E. C., 2018, ApJ , 854, 89 
arasco A. et al., 2022, A&A , 670, 25 
cQuinn K. B. W. , van Zee L., Skillman E. D., 2019, ApJ , 886, 74 

arker E. N. , 1958, ApJ , 128, 664 
frommer C. , Pakmor R., Schaal K., Simpson C. M., Springel V., 2017,

MNRAS , 465, 4500 
uataert E. , Jiang F., Thompson T. A., 2022a, MNRAS , 510, 920 
uataert E. , Thompson T. A., Jiang Y.-F., 2022b, MNRAS , 510, 1184 
athjen T.-E. et al., 2021, MNRAS , 504, 1039 
autio R. P. V. , Watkins A. E., Comer ́on S., Salo H., D ́ıaz-Garc ́ıa S., Janz J.,

2022, A&A , 659, A153 
uszkowski M. , Yang H. Y. K., Zweibel E., 2017, ApJ , 834, 208 
impson C. M. , Pakmor R., Pfrommer C., Glo v er S. C. O., Smith R., 2023,

MNRAS , 520, 4621 
killing J. , 1971, ApJ , 170, 265 
ocrates A. , Davis S. W., Ramirez-Ruiz E., 2008, ApJ , 687, 202 
omerville R. S. , Dav ́e R., 2015, ARA&A , 53, 51 
tone J. M. , Tomida K., White C. J., Felker K. G., 2020, ApJS , 249, 4 
homas T. , Pfrommer C., Pakmor R., 2021, MNRAS , 503, 2242 
sung T. H. N. , Oh S. P., Jiang Y.-F., 2022, MNRAS , 513, 4464 
hlig M. , Pfrommer C., Sharma M., Nath B. B., Enßlin T. A., Springel V.,

2012, MNRAS , 423, 2374 
eilleux S. , Cecil G., Bland-Hawthorn J., 2005, ARA&A , 43, 769 
einer B. J. et al., 2009, ApJ , 692, 187 
entzel D. G. , 1971, ApJ , 163, 503 
iener J. , Zweibel E. G., Oh S. P., 2013, ApJ , 767, 87 
iener J. , Oh S. P., Zweibel E. G., 2017, MNRAS , 467, 646 
iener J. , Zweibel E. G., Oh S. P., 2018, MNRAS , 473, 3095 
iener J. , Zweibel E. G., Ruszkowski M., 2019, MNRAS , 489, 205 
u X. et al., 2023, ApJ , 948, 28 

his paper has been typeset from a T E 
X/L A T E 

X file prepared by the author. 
MNRAS 524, 6374–6391 (2023) 

http://dx.doi.org/10.3847/1538-4357/ac56e1
http://dx.doi.org/10.3847/1538-4357/ab1648
http://dx.doi.org/10.1086/174519
http://dx.doi.org/10.1103/PhysRevLett.109.061101
http://dx.doi.org/10.1088/2041-8205/777/1/L16
http://dx.doi.org/10.1086/169509
http://dx.doi.org/10.1093/mnras/stz1895
http://dx.doi.org/10.1086/524766
http://dx.doi.org/10.3847/2041-8205/816/2/L19
http://dx.doi.org/10.1111/j.1365-2966.2007.12692.x
http://dx.doi.org/10.1088/0004-637X/809/2/147
http://dx.doi.org/10.1086/168845
http://dx.doi.org/10.1093/mnras/stac2909
http://dx.doi.org/10.1093/mnras/stac059
http://dx.doi.org/10.3847/1538-4357/ac69dc
http://dx.doi.org/10.1086/153397
http://dx.doi.org/10.1093/mnras/stx131
http://dx.doi.org/10.1093/mnras/stx3221
http://dx.doi.org/10.1093/mnras/sty293
http://dx.doi.org/10.1093/mnras/staa1849
http://dx.doi.org/10.3847/1538-4357/aaa6ce
http://dx.doi.org/10.1093/mnras/staa385
http://dx.doi.org/10.1093/mnras/stac1240
http://dx.doi.org/10.1086/149981
http://dx.doi.org/10.1088/0004-637X/717/1/110.48550/arXiv.0907.4161
http://dx.doi.org/10.1093/mnras/stad006
http://dx.doi.org/10.3847/1538-4357/aaa88e
http://dx.doi.org/10.48550/arXiv.2209.02726
http://dx.doi.org/10.3847/1538-4357/ab4c37
http://dx.doi.org/10.1086/146579
http://dx.doi.org/10.1093/mnras/stw2941
http://dx.doi.org/10.1093/mnras/stab3274
http://dx.doi.org/10.1093/mnras/stab3273
http://dx.doi.org/10.1093/mnras/stab900
http://dx.doi.org/10.1051/0004-6361/202142440
http://dx.doi.org/10.3847/1538-4357/834/2/208
http://dx.doi.org/10.1093/mnras/stac3601
http://dx.doi.org/10.1086/151210
http://dx.doi.org/10.1086/590046
http://dx.doi.org/10.1146/annurev-astro-082812-140951
http://dx.doi.org/10.3847/1538-4365/ab929b
http://dx.doi.org/10.1093/mnras/stab397
http://dx.doi.org/10.1093/mnras/stac1123
http://dx.doi.org/10.1111/j.1365-2966.2012.21045.x
http://dx.doi.org/10.1146/annurev.astro.43.072103.150610
http://dx.doi.org/10.1088/0004-637X/692/1/187
http://dx.doi.org/10.1086/150794
http://dx.doi.org/10.1088/0004-637X/767/1/87
http://dx.doi.org/10.1093/mnras/stx10910.48550/arXiv.1610.02041
http://dx.doi.org/10.1093/mnras/stx2603
http://dx.doi.org/10.1093/mnras/stz200710.48550/arXiv.1903.01471
http://dx.doi.org/10.3847/1538-4357/acbf46

	1 INTRODUCTION
	2 ANALYTIC EXPECTATIONS
	3 NUMERICAL SIMULATIONS
	4 DISCUSSION
	5 SUMMARY
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

