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ABSTRACT

We study the properties of cosmic-ray (CR) driven galactic winds from the warm interstellar medium using idealized spherically
symmetric time-dependent simulations. The key ingredients in the model are radiative cooling and CR-streaming-mediated
heating of the gas. Cooling and CR heating balance near the base of the wind, but this equilibrium is thermally unstable, leading
to a multiphase wind with large fluctuations in density and temperature. In most of our simulations, the heating eventually
overwhelms cooling, leading to a rapid increase in temperature and a thermally driven wind; the exception to this is in galaxies
with the shallowest potentials, which produce nearly isothermal 7 ~ 10* K winds driven by CR pressure. Many of the time-
averaged wind solutions found here have a remarkable critical point structure, with two critical points. Scaled to real galaxies,
we find mass outflow rates M somewhat larger than the observed star-formation rate in low-mass galaxies, and an approximately
‘energy-like’ scaling M oc v2. The winds accelerate slowly and reach asymptotic wind speeds of only ~0.4ves. The total
wind power is ~ 1 per cent of the power from supernovae, suggesting inefficient preventive CR feedback for the physical
conditions modelled here. We predict significant spatially extended emission and absorption lines from 10*~10>3 K gas; this

may correspond to extraplanar diffuse ionized gas seen in star-forming galaxies.
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1 INTRODUCTION

Cosmic rays (CRs) are an energetically important constituent of
the interstellar medium (ISM) of galaxies, and likely also the hot
virialized plasma in galactic halos. CRs set the ionization state of
dense gas in the ISM. They also dynamically influence the bulk of
the ISM through pressure forces (mediated by the magnetic field)
and potentially through heating of the thermal plasma. In the Milky
Way, the pressure of CRs in the local ISM is comparable to that of
the magnetic field and turbulence (Boulares & Cox 1990). This has
motivated a large body of work investigating whether the large CR
pressure gradient in the ISM can drive a galactic wind (e.g. Ipavich
1975; Breitschwerdt, McKenzie & Voelk 1991; Everett et al. 2008;
Socrates, Davis & Ramirez-Ruiz 2008). More broadly, CR feedback
is an increasingly common ingredient in models of galaxy formation
(e.g. Guo & Oh 2008; Uhlig et al. 2012; Booth et al. 2013; Pfrommer
et al. 2017; Ruszkowski, Yang & Zweibel 2017; Ji et al. 2020).

The impact of CRs on our understanding of galaxies depends in
part on the poorly understood microphysics of what sets the effective
mean free path of CRs in a plasma. CRs move locally at nearly
the speed of light along the magnetic field, but are scattered by
small-scale magnetic fluctuations. In this paper, we will focus on
scales larger than this scattering mean free path, in which case CR
dynamics can be modelled as that of a relativistic fluid (Skilling
1971). The fluctuations that scatter CRs can either be produced by an
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ambient turbulent cascade (‘extrinsic turbulence’) or by instabilities
generated by the CRs themselves (‘self-confinement’). In particular,
one might guess that absent any scattering by ambient turbulence,
CRs would collectively stream at nearly the speed of light along the
local magnetic field so as to eliminate any CR pressure gradient.
However, streaming faster than the local Alfvén speed drives Alfvén
waves unstable (the ‘streaming instability’), which then act to scatter
the CRs and limit the streaming speed to be of order the Alfvén
speed (Kulsrud & Pearce 1969; Bai et al. 2019). Self-confinement
theory is on somewhat firmer theoretical ground for CRs with
energies S 100GeV (e.g. Blasi, Amato & Serpico 2012). These
CRs dominate the total CR energy density, and thus dominate the
dynamical impact of CRs on the gas in galaxies. For this reason,
in this work, we will assume that CR transport is mediated by
the streaming instability. However, we stress that neither extrinsic
turbulence, nor self-confinement theory fare particularly well when
compared to detailed observations of CRs in the Milky Way (Hopkins
et al. 2022; Kempski & Quataert 2022).

A key feature of self-confinement theory is that the waves gener-
ated by the CRs damp by interaction with the thermal plasma, thus
transferring energy from the CRs to the thermal plasma at a (local)
rate of [va - Vp | (Wentzel 1971), where v, is the Alfvén velocity and
Vp. is the CR pressure gradient. This heating can be energetically
important in galactic winds or in lower density plasmas such as
the warm ISM, hot ISM, and the intracluster medium (Guo & Oh
2008; Jacob & Pfrommer 2017; Kempski & Quataert 2020). Wiener,
Zweibel & Oh (2013) argued that there is indirect evidence for CR
heating of the warm ISM of the Milky Way in line ratios that deviate
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from those expected in photoionization equilibrium. Moreover, the
deviations increase with increasing height above the mid-plane,
suggesting that CR heating becomes increasingly important above
the disc, where a galactic wind would originate.

Previous work on galactic winds driven by CRs has highlighted
two key mechanisms by which CRs contribute to driving the winds.
The first is the CR pressure gradient, and the second is CR heating of
the thermal plasma, which can contribute to a thermally driven wind
(Ipavich 1975). The relative importance of these two CR-mediated
driving mechanisms depends primarily on the rate of gas cooling. If
the gas rapidly radiates away the energy supplied by the streaming
CRs, then the dominant effect of the CRs is via their pressure forces.
On the other hand, if cooling is inefficient, then CRs also contribute
to driving the outflow by heating the thermal plasma. Despite the
importance of radiative cooling in the thermodynamics of galactic
winds with streaming CRs, most idealized cosmic-ray driven wind
calculations either assume that the gas is isothermal (the rapid cooling
limit, as studied in Mao & Ostriker 2018 and Quataert, Jiang &
Thompson 2022a) or neglect radiative cooling entirely. In the hot
ISM, including CR heating but neglecting cooling can be a good
approximation (e.g. Everett et al. 2008), but in winds driven from the
warm ISM, cooling is particularly important to incorporate. Indeed,
as demonstrated in Huang & Davis (2022) and Huang, Jiang & Davis
(2022), the inclusion of cooling can significantly alter the structure
of the wind.

There is a large literature on CR-driven winds with diffusive
transport in a realistic cosmological context (e.g. Girichidis et al.
2016; Jacob et al. 2018; Chan et al. 2019; Rathjen et al. 2021;
Simpson et al. 2023). These calculations include many physical
ingredients relevant to the formation of galactic winds, including
radiative cooling, multiphase gas, and multiple stellar feedback
channels. However, diffusive CR transport does not lead to CR
heating of the gas and is thus physically very different from CR
transport via streaming. Only recently have numerical methods been
developed that accurately and efficiently model streaming transport
in time dependent simulations (Jiang & Oh 2018; Chan et al. 2019;
Thomas, Pfrommer & Pakmor 2021). As a result, the interplay of gas
heating via CR streaming and cooling has not been explored in much
detail. This paper aims to bridge this gap by including streaming
CRs and radiative cooling in idealized models of CR-driven galactic
winds. We hope that the insights developed here will be valuable
in interpreting CR feedback observationally and modelling it in
more realistic cosmological calculations. This work builds on recent
studies carried out by a subset of the authors (Quataert et al. 2022a;
Quataert, Thompson & Jiang 2022b) by explicitly including radiative
cooling and CR-streaming heating of the gas, rather than assuming
an isothermal equation of state. The isothermal equation of state
precludes the possibility of runaway heating or cooling of the gas,
or thermal instability, both of which we will show are important for
galactic winds driven by streaming CRs.

This paper is organized as follows. In Section 2, we use steady-
state wind theory to derive expectations for the role of cooling and
CR heating in galactic winds. This includes a discussion of the very
unusual critical point structure of such winds, as well as analytic
approximations for the rapidly cooling, roughly isothermal base of
the wind. In Section 3, we present a suite of spherically symmetric
time-dependent numerical simulations of CR-driven galactic winds
carried out in ATHENA++-, and compare their features to the steady-
state predictions. In Section 4, we discuss aspects of our results
including the wind mass-loss rates and terminal speeds, connections
to observations, and limitations and possible generalizations of our
approach. Finally, we summarize our main results in Section 5.
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2 ANALYTIC EXPECTATIONS

We begin by reviewing some of the analytic expectations for steady-
state wind solutions with CR streaming and radiative cooling. In
particular, we highlight the unusual critical point structure possible
in such solutions, and the role of thermal instability near the base of
the wind where CR heating of the gas and radiative cooling are both
important.

2.1 Steady-state equations of motion

Approximating the flow as spherically symmetric and steady, con-
servation of mass for the wind leads to a constant mass outflow
rate,

M= 4nr2pv = constant , (1)

which may be used to eliminate either the gas density p or outflow
speed v from the equations of motion. The steady-state momentum
equation for the gas is

dv dp dp.
pU— = —— —

dr dr dr
where p is the gas pressure, p. = E./3 is the CR pressure, E; is the
CR energy density, and g = —d¢/dr is the acceleration due to the
galaxy’s gravitational potential ¢.

Throughout this paper, we assume that CR transport is regulated
by the streaming instability, as is plausible for the GeV CRs
that dominate the total CR energy density (e.g. Blasi et al. 2012;
Kempski & Quataert 2022 and references therein). In steady-state,
the CR energy density E. then evolves as

+ g, ()

V'Fc=(V+Vs)'VPc, (3)

where F. = (4/3)E.(v + v,) is the steady-state CR energy flux,
vy = —sgn(va - Vpe)va is the CR streaming velocity down the
pressure gradient, and v4 = B//4mp is the Alfvén velocity.Note
that in equation (3), we have neglected both sources and sinks of
CRs. In particular, we have neglected pionic losses, because they
are not significant in the Milky Way-like galaxies modelled here,
though they can be important in higher-density star-forming galaxies
(Lacki, Thompson & Quataert 2010). CRs stream at exactly the
Alfvén speed in equation (3) only if the scattering rate due to
waves excited by the streaming instability is very large, so that
the CRs are pinned to move at exactly the speed of the waves
scattering them. In general, when the scattering rate is finite, there is
a correction to pure streaming transport whose magnitude depends
on the saturation amplitude of the streaming instability (e.g. Skilling
1971; Bai 2022). This correction is often modelled as an additional
diffusion term in the CR flux F, of the form —«kb(b - V)E, (where i
is the diffusion coefficient and b is the direction of the local magnetic
field). However, the magnitude of this correction, and indeed even
whether it is actually diffusive, is not well understood and likely
depends sensitively on gas temperature and density (e.g. Wiener,
Zweibel & Oh 2018; Kempski & Quataert 2022). For this reason, we
focus in this paper on the idealized problem of pure CR streaming
with no diffusive correction.

Assuming spherical symmetry with dp./dr < 0, equations (1) and
(3) combine to yield

dpe 4 (v4va/2\ pedp _ , dp
U+ va

o dr Ceffa’ 4

dr 3

where we follow Quataert et al. (2022a) in defining an effective CR
sound speed c¢Z;.
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The steady-state energy equation for the gas takes the form
ds
PP L (5)
Here, s = (k/m)log (p/p")/(y — 1) is the specific entropy of the gas,
y = 5/3 is its adiabatic index, and m is each gas particle’s mass.
The gas undergoes heating by the Alfvén waves generated by CR
streaming at a rate

pvT

dp
qr = —va——, ©)
dr
and radiates away energy at a rate
P
go=n’A="2n, @
m

for a radiative cooling function A = A(7T). In practice, we will use
a cooling curve appropriate for collisional ionization equilibrium
(CIE) (see Sections 2.5 and 3.1 for additional details). Note that we
neglect photoheating of the gas. This is important near the disc of the
galaxy, but CR heating scales much more weakly with density (o p!/6
when v < v,) than photoheating (o p), and so CR heating becomes
increasingly dominant further from the galactic disc (Wiener et al.
2013). Including photoheating is likely to only change the wind
solution mildly near 7 ~ 10* K, and not at all at higher temperatures.

The resulting total energy equation for both the gas and the CRs
is then

1d/. /1 y p
— M| =02 _r £
rzdr( (ZU +¢+V—1P>
+ 1677% pe(v + vA)) = —47n’A. )

From left to right, the terms in equation (8) include the gas kinetic
energy flux £ = (1/2)Mv?, the gravitational energy flux £ ¢ = Mo,
the gas enthalpy flux E, = y M p/((y — 1)p), and the (steady-state,
neglecting diffusion) CR energy flux E. = 47r?F, including both
advection of CR energy and streaming. Note that, the CR heating
term present in the gas energy equation (5) is exactly cancelled by
a corresponding loss term in the CR energy equation (3); the total
energy in the CR and gas system thus only decreases due to cooling,
as is apparent on the right hand side of equation (8).

The radial velocity, temperature, and CR pressure gradients can
be found by using equations (4) and (5) to relate the CR pressure and
gas pressure gradients, respectively, to the density gradient, and then
equation (1) to relate the density gradient to the velocity gradient.
The dynamics is then specified by a coupled system of ordinary
differential equations in the variables (v, T, p.). The resulting steady-
state wind equation is given by

r 7(y—1r3 -
dlogv _9 (- - D%)cl; + ya’] + 5 + %
dlogr V2 — [cgff(l —(y—-D")+ yaz}
2 _ .2
vy — v
=224 1, 9
e ©)
where a> = p/p = kT/m is the isothermal gas sound speed in

the absence of CRs. We have defined characteristic speeds in the
denominator and numerator of the wind equation (9) as follows

o2 = (1—@—1)%‘“) e+ ya, (10)
2 rg  2n(y — Drig
=—-— - —F . 11
v=-5 - an
With these definitions, the wind will have critical points wherever

v? = v} = v2; we will discuss the nature of these points in greater
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detail in Section 2.3. Equation (9) is equivalent to the wind equation in
Ipavich (1975) except for the addition of the cooling term in the
numerator. In many problems (such as the Parker solar wind; Parker
1958), the speed in the denominator of the wind equation vy is the
sound speed of the gas and the speed in the numerator v, is set by the
sound speed and the escape speed. This is not guaranteed, however
(e.g. Lamers & Cassinelli 1999), and indeed is not always the case
in the present problem. The total gas sound speed defined by d(p +
Pe)/dp is not always the same as the critical speed v? that appears
in the wind equation due to the presence of cooling. Combining
equations (1), (2), and (9) yields

27 (y — Drig, v? — v}

2=d(P+Pc)_
- M v2—2’

2
= —F——" =13+

W (12)

2.2 The role of cooling near the base of the wind

Any quasi-steady transonic CR-driven wind that satisfies equation
(9) is expected to initially have small velocities before accelerating
outward and passing through critical points at which v = v} = v2.
We discuss these critical points in greater detail in Section 2.3. In
the absence of radiative cooling, however, the critical point condition
for CR driven winds with streaming and CR heating is unusual, and
implies significant constraints on the properties of the flow at the

base. In particular, note that, vg < 0if

v < (y — 1)C§ff - O( Pc ) (13)
VA Cgff + )/az pet+p '

where in the second expression we have used the fact that cZ; is
positive definite and of order p./p, as defined in equation (4). Ipavich
(1975) noticed the fact that the critical point speed in the critical point
equation could be imaginary, and attributed it to the likely existence
of instabilities. Indeed, CR streaming is known to produce several
distinct linear instabilities of sound waves (e.g. Begelman & Zweibel
1994; Quataert et al. 2022a).

To further explore the consequence of equation (13), note that,
if cooling is negligible, we have v? > 0, so equation (9) implies
dlogv/dlogr < O whenever v < 0, i.e. the solution decelerates.
Thus v < 0 is incompatible with a transonic wind that accelerates
outwards. Requiring vﬁ > ( at all radii implies that even at the ‘base’
of the wind at small radii the outflow speed must be comparable
to va if p. ~ p. This is indeed assumed to be the case in the
original CR-driven wind solutions presented by Ipavich (1975). It
is unclear whether such solutions could be physically extended to
smaller galactic radii, where v/v, should decrease because of higher
gas densities.

A simple understanding of the difficulty in realizing a highly sub-
Alfvénic CR-driven wind absent radiative cooling can be obtained
by assuming v <« va and assessing the consequences. In this
limit, from equation (4), p. o p?3 and the steady-state gas energy
equation reduces to dp/dr = ypdlog p/dr — (y — 1)(va/v)dp./dr.
Substituting this result for the gas pressure gradient into the momen-
tum equation and assuming hydrostatic equilbrium (consistent with
the low velocities) yields

dlogp
dr

VA
rp+o-n(1-0-02)p] pg. (14)
where we have eliminated dp./dr in favour of dp/dr using p. o p*>.
If v < va, however, equation (14) implies dp/dr > 0 and thus dp./dr
> 0, which is inconsistent with the assumption that the CRs stream
outwards. Physically, the issue is that without radiative cooling, the
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CR heating of the gas (—vadp./dr) is too large to realize a quasi-
hydrostatic solution if va > v.

As we will show in this work, radiative cooling can remove the
difficulties we have just highlighted in obtaining sub-Alfvénic wind
solutions. In particular, its presence allows for the possibility that
v2 < 0, so accelerating winds are once again attainable. A strong
indication of this lies in the existence of isothermal CR-driven
winds with v < va (e.g. Mao & Ostriker 2018; Quataert et al.
2022a); these effectively represent the limit of very strong cooling
regulating the gas temperature. We discuss the formal isothermal
limit of the steady-state equations considered here in more detail in
Section 2.4.

2.3 Critical points

At a critical point of the wind, both v? = v? and v? = v3. From the
‘numerator’ equation, we arrive at a quartic equation for the velocity
at a critical point v, in terms of the position 7, and temperature 7, at
the critical point

4 reg(re) 2
v, v,
et 2 ¢ + 8wm?r,

The wind thus has critical points when its velocity is

e (1 . (1 8y - 1)re>”2)” ’

(y = DA(T) =0. 5)

(16)

Vet = 2 e

where we have identified the cooling time 7. = p/q, and some effective
expansion time f, = va*/(rg®), which should be evaluated at the
critical point r.. Unlike the critical points of the isothermal problem
studied in Mao & Ostriker (2018) and Quataert et al. (2022a), at
each radius, two critical speeds are possible in general, as long
as 8(y — e < t., i.e. when cooling is not so rapid that the gas
remains isothermal but is significant enough that we cannot neglect
the final term of equation (15). Note that, taking appropriate limits,
v, + 1s the unique critical speed in both the isothermal case (when
(y — DA = 0, see Section 2.4) and when cooling is negligible
(when A = 0).

In a typical transonic wind, there can only be an odd number of
critical points, because the wind speed is initially below the local
sound speed, but must exceed the local sound speed as » — co: any
intermediate regions in which ¢(r) > v(r)* must be followed by an
additional crossing at which v(r)? > csz(r) (e.g. Lamers & Cassinelli
1999). Indeed, previous hydrodynamic CR-driven winds that we
are aware of all pass through only one critical point (e.g. Ipavich
1975; Breitschwerdt et al. 1991; Everett et al. 2008; Mao & Ostriker
2018).

Remarkably, we will see that the time average of many of the
time-dependent simulations presented in this work pass through two
critical points. This is possible because v} < 0 and v? < 0 near
the base of the wind where v < va (see equations 9 and 10).
Thus the solution starts ‘supersonic’ in the sense that v > 0 > v3,
transitions to ‘subsonic’ at a first critical point, and then at a
larger radius undergoes a more conventional subsonic to supersonic
transition at a second critical point. At the first critical point, radiative
cooling is energetically important and v? < 0, while the second
critical point is essentially the classic Parker critical point (Parker
1958).

It would be very reasonable to doubt that steady-state solutions
with the critical point structure suggested here could be realized,
given the likely instabilities implied by v} < 0. However, we note
that the isothermal calculations presented in Quataert et al. (2022a)

CR driven galactic winds from the WIM 6377

are unstable, and yet present the expected isothermal critical point
structure. Indeed, the time-dependent solutions we present in Sec-
tion 3 are unstable. As we shall see in Section 3.4, though, the

time-averaged solutions none the less have the unusual critical point
structure suggested by the steady-state equations.

2.4 The isothermal limit

It is instructive to consider how the steady-state equations derived
here reduce to the corresponding isothermal equations used in
previous work (e.g. Mao & Ostriker 2018; Quataert et al. 2022a).
There are two ways to take the isothermal limit of our equations.
One is to take A — o0, i.e. the gas rapidly radiates away all added
heat to maintain a fixed temperature, and also set y — 1, since the
equation of state becomes p = pa? for fixed sound speed a. Therefore,
we must carefully consider the behaviour of the combination (y —
1)A: rearranging the expression for the gas energy in equation (5),
we find

pv dlogT va ¢\ dlogp
—DA == |- -Dl-—=" ) —
=D n? ( dr tr=1h v a? dr

a7

As we take the isothermal limit, the first term on the right tends
to zero, since 7T is constant, and since dlog p/dr must remain finite,
the second term is also zero as y — 1. So, comparing any steady-
state expression here to the analogous result in the isothermal case
can be done by setting y = 1 and the combination (y — 1)A = 0.
For example, doing so for equation (9) reproduces the isothermal
wind equation studied in Mao & Ostriker (2018) and Quataert
et al. (2022a). In particular, the isothermal limit of equation (9)
corresponds to v2 = —rg/2 and v3 = c%; + a’. Therefore, v3 > 0
and v? > 0as well, so none of the difficulties with v < v highlighted
in Section 2.2 are present in the isothermal limit when cooling is
rapid.

A second way to consider the isothermal limit is to calculate the
cooling needed to maintain an exactly constant temperature for y #
1. In that case, from equation (17), we see that an isothermal profile
is possible only if

dp
n’A = (va® — UAC?H)E . (18)

Substituting this result into the gas energy equation (5) to eliminate
A again reproduces the isothermal wind equation.

2.5 The hydrostatic isothermal base of the wind

Near the base of the wind, where the densities are highest radiative
cooling is energetically important for the winds considered in this
work. For any sub-Alfvénic and sub-sonic wind with v < v, and v
<« a near the base, from the gas energy equation (5), the heating and
cooling rates must balance

dp.
Adr
Because this condition matches the criterion of equation (18) in
the limit v < va, we expect that any transonic wind with initially
small velocities will include an approximately isothermal region
near the base. For equation (19) to be realizable, however, the
cooling rate A(7) must be large enough. A rough estimate of the
minimum required cooling rate, A i, can be found by taking dp./dr
~ (2/3)(p./p)dp/dr in equation (19) (because v <K va) and using
the hydrostatic isothermal approximation for the density gradient

v =—n’A. (19)
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Figure 1. The minimum value of the cooling function for which cooling
can balance CR heating, Amin, as a function of the CR pressure p. and
number density n near the base radius for r = 1 kpc, vq4 = 10km s7! and
Vese = 204 /aé + cgff. The black solid line indicates the border between the
parameter space in which we expect an initially isothermal region (colored
by Amin value) and the region in which cooling is not strong enough to
offset CR heating (in white) for the parameters listed above. The upper and
lower grey dashed lines indicate how the boundary shifts if instead va =
10/3 or 30kms™!, respectively, and the upper and lower grey dotted lines
indicate how it shifts if instead vese = 604/a3 + 2 or (20/3)4/a3 + c%;.,
respectively. The black and grey points indicate values of the base density
and CR pressure used in our numerical simulations presented in Section 3,
with the black point indicating our fiducial choice.

derived in equation (21) below

_2pcgvA
3n2(a2 + %)

15x1o—zﬁergcm3( Pe )( va )
’ S eVem—3 10kms—!

1 2
r n -2 Vesc
— , (20
(kpC) (cm*3 ) (20 a2 + cgff> 20

where we have approximated rg =~ (1/9)v2, as is true at the base of
the Hernquist models we use in the simulations presented in Section 3
(see Section 3.1 for details).

In CIE, a typical value for the radiative cooling function from 7 ~
10* — 103K is A ~ 1072 — 10722 ergcm® s~! (e.g. Draine 2011).

Fig. 1 shows values of A, as a function of p. and n near the base
radius, for r = 1kpc, va = 10kms™!, and vese = 204/a3 + cZ;, and
indicates the region in which A > Ay, is not achievable.

In the hot ISM, because the number density may be as low as
~ 1073 cm~3, equation (20) may not be satisfied, though at such high
temperatures, thermal driving of the wind by the gas is likely to be
comparable in importance to CRs anyway. Other than this low density
regime, however, the condition in equation (20) is easily met across
a wide range of densities, CR pressures, and magnetic field strengths
appropriate for the warm ISM (7 ~ 10* K). This includes both Milky
Way-like physical conditions and those in starburst galaxies with
higher gas densities and CR pressures.

When A, < 1072-10"22ergem 3s™!, gas near the base of the
wind cools rapidly and remains at a roughly constant temperature
of ~10*K. Note that, this is also true if the gas is roughly in
photoionization equilibrium. We can approximate the gas in this
region as hydrostatic and isothermal, with constant gas sound speed

A > Amin =

%
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ap. In this approximation, the momentum equation simply yields
dp  dp.
dr + dr

Approximating p. o p~° because v < v and integrating, we arrive
at an implicit equation specifying the density profile p(r),

~1/3
aZlog (%) +2’;“0° (1 - (i) ) = o) —$(r).  (22)

where ¢ is the gravitational potential and ry, po, and p.y are the base
radius, density, and CR pressure, respectively. This generalizes the
results of Quataert et al. (2022a) to an arbitrary gravitational potential
é(n).

Given the density profile in equation (22), we can roughly estimate
the resulting temperature profile required for cooling to balance the
CR heating according to equation (19), namely

d
L (r)D , 23)

dp
= (a5 + ca) 5 = P8 @n

2/3

VA (V)Cgff(")

| -
T =A ( n(r)? dr

Here, the inverse is well defined, because the cooling curve near a
typical base temperature of T = 10* K is monotonically increasing
(Draine 2011). In particular, in CIE, the cooling curve is given
roughly by A(T) = A(T — Tp) for a normalization constant A ~
1.3 x 10 erg cm® s~! K~!. Substituting the result of equation (21),
we find

muva(r) g(r)
An(M)[1+ ad/ck(r)]

To be clear, the approximation leading to equation (24) is that we
first estimate the density profile assuming the gas is isothermal, and
then derive an updated temperature profile for the gas using that
isothermal density profile.

This also provides an estimate of the temperature profile near
the base of the wind that determines roughly the extent of the
isothermal region, beyond which the approximations used here may
not be reliable. We characterize the extent of the isothermal region
by the difference between the radius at which the temperature first
exceeds T= 1.5 x 10* K and the base radius. Throughout the allowed
parameter space where A > A, depicted in Fig. 1, the thickness of
this isothermal base varies from ~1072 kpc at low 7 and p, to ~1 kpc
at high n and p.. For most Milky Way-like base parameters (such
as those used in the simulations presented in Section 3), the typical
thickness of the isothermal base ranges from ~0.03-0.3 kpc. It is
very likely that in more realistic models the extent of the isothermal
region will be larger than in our idealized spherical calculations. In
particular, in winds from a galactic disc, the isothermal region will
likely be larger because the gas density decreases more slowly as gas
moves away from the galaxy mid-plane, enhancing the importance
of cooling relative to the spherical models considered here.

Fig. 2 compares the density and temperature profiles resulting
from these approximations to two of the numerical results presented
in Section 3.To calculate the profiles plotted in the Figure, we use
the same Hernquist gravitational potential and split-monopole Alfvén
speed profiles as in the simulations (see Section 3.1 for more details).
Because these approximate profiles assume hydrostatic equilibrium
at a fixed temperature and rely on a linear approximation to the
cooling curve valid only for temperatures below ~ 1.2 x 10* K,
we expect them to diverge from the simulations at fairly low radii.
However, overall, we find reasonable agreement across a wide range
of base parameters for the structure of the solution near the base of the
wind: the extent of the approximately isothermal region predicted by
equation (23) is within ~5 per cent of that found in the simulations.

T(}")I T()—

(24
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Figure 2. A comparison between the approximate density and temperature profiles for the base of the wind (equations 22 and 23, dashed curves) and the
time-averaged profiles (solid curves) from three numerical simulations, which we describe in Section 3. Specifically, the black, purple, and teal curves are
simulations 1, 7, and 8 of Table 1, respectively. These parameter values were chosen to demonstrate that the analytic approximations hold reasonably well

regardless of whether CR pressure (purple) or gas pressure (teal) dominates near the base.

One key prediction of Fig. 2 is that as the density drops with
increasing distance, the temperature required to maintain a balance
between heating and cooling increases, because the cooling function
has to increase to compensate for the lower density. As we now
discuss, this increase in temperature inevitably leads to the onset of

thermal instability.

2.6 The onset of thermal instability

Although the wind is approximately isothermal near its base, the
balance between heating and cooling that allows it to remain so can
be linearly unstable. As detailed in Kempski & Quataert (2020),
for a given cooling curve A(7), thermal instability will set in
approximately once

_ OlogA

" QlogT
where the critical value for the logarithmic slope of the cooling curve

Ar, ¢ is given by

—1.13
Arc~ 1 T
¢ % 1.19p ‘

The critical value At ¢ ranges from At ¢ = 0 for CR-dominated
plasmas with p. > p to At c = 11/6 for gas-pressure-dominated
plasmas. Because At ¢ > 0, in practice, thermal instability sets in
when the first local maximum of A(7) is reached, which occurs
at approximately 7 ~ 1.75 x 10* K for our cooling curve in CIE.
Fig. 2 shows that this temperature is reached not far from the wind
base in many cases. The simulations presented in Section 3 will
quantify the non-linear saturation of thermal instability for the CR-
driven wind problem (in spherical symmetry; see Huang et al. 2022
for multidimensional simulations).

< AT, C (25)

(26)

3 NUMERICAL SIMULATIONS

In what follows, we present time-dependent numerical solutions
for CR-streaming-driven galactic winds by solving the spherically

symmetric CR hydrodynamic equations. We elected to carry out
time-dependent simulations rather than attempt to find steady-state
solutions for several reasons. First, the known instabilities present in
the case of CR streaming can significantly modify the dynamics of
the wind (e.g. Huang & Davis 2022; Huang et al. 2022; Tsung,
Oh & Jiang 2022; Quataert et al. 2022a), so that capturing the
time-dependent instabilities is important. Additionally, the difficulty
realizing steady-state solutions with initial v < va as discussed in
Section 2.3 motivates time-dependent simulations to see if the same
difficulties are in fact present in the general problem. Finally, the
steady-state equations with radiative cooling are extremely stiff near
the base where cooling is important, so they cannot be easily directly

integrated.

3.1 Simulation setup and parameters

In our time-dependent simulations, we solve the CR hydrodynamic
equations in spherical symmetry using the numerical scheme de-
scribed in Jiang & Oh (2018), implemented in the ATHENA+ + code

(Stone et al. 2020):
27

0 19
5, PV + 55 oY) = pg = &+ 0u(Fe = (Ee + pov), (28)

oF 10 2 K
— + 550 (E+ pv) = v+ vs)oc(Fe — (Ec + plv) — 25 A,
ot r2 or m
(29)
0E. 19 ,
+ *7(" Fc) = _(U + US)UC(FC - (Ec + pc)v) ) (30)
or 29
1 0F. O0p.
E al ar - _UC(FC - (Ec + Pc)U) . (31)
Here, vy = —sgn(vadp./dr)va is the CR streaming speed, and

0" =3k + (E. + pe)va |dpe/dr|™" is the ratio between the total
CR flux and the CR pressure gradient. Note that, o, captures the
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Table 1. A summary of the simulation suite, with columns including the base gas density, base CR pressure, base Alfvén speed, Hernquist escape velocity
parameter, base radius of the simulation box, outer radius of the simulation box, mass-loss rate, wind speed at 80 per cent of the outer radius, theoretical
maximum wind speed (according to equation 36) at 80 per cent of the outer radius, and energy flux at 80 per cent of the outer radius normalized by the base CR
energy flux. The last three columns’ quantities are evaluated at 80 per cent of the outer radius to avoid the possibility of spurious boundary effects. Simulation
1 is the fiducial run, and runs are referenced in the text by the parameter(s) that differs from the fiducial value (e.g. vesc = 250km s~ ! for simulation 12, which
matches fiducial base values except for the strength of the potential). The parameters that differ are from fiducial are bolded in the Table for convenience.

PO Pco VA0 Vesc o Fout M v(0.8rout) Voo (0.870ut) E(0~8r0ut)
ID (mpem™)  (0.86eVem™)  (kms™!)  (kms™!) (kpc) (kpc) Mg yr— 1) (kms~1) (kms~1) (Eco)
1 1 1 10 420 1 10 0.014 101 155 0.11
2 1 1 10 420 1 100 0.014 151 156 0.11
3 3 3 10 420 1 10 0.034 129 179 0.12
4 1/3 1/3 10 420 1 10 0.0057 72 136 0.09
5 1/3 1/3 10 420 1 100 0.0057 124 130 0.09
6 10 10 10 420 1 10 0.092 161 207 0.14
7 1 3 10 420 1 10 0.033 117 160 0.10
8 1 1/3 10 420 1 10 0.0044 77 149 0.09
9 1 1 30 420 1 10 0.036 137 194 0.18
10 1 1 10/3 420 1 10 0.0048 63 123 0.05
11 1 1 10 330 1 10 0.015 116 152 0.14
12 1 1 10 250 1 10 0.020 100 125 0.16
13 1 1 10 180 1 10 0.038 43 56 0.13
14 1 1 10 130 1 10 0.082 35 41 0.14
15 0.1 1 10 420 1 10 0.016 64 107 0.07
16 1 1 10 420 5 50 0.19 133 185 0.11

effects of both diffusion and streaming. Because we focus here
on winds driven by CR streaming instead of diffusion, we take
k = 103 kpckms™! in all of our simulations; this small value
is numerically useful but contributes little physically to the CR
transport. The speed vy, in the CR flux equation (31) is the reduced
speed of light; we take this to be v,, = 3 x 10*kms~', chosen to
be much larger than v and v, throughout the simulation domain. To
check that reasonable variations in v,, do not alter our results, we
repeat the vese =250km s~ I'simulation (row 12 of Table 1) with v, =
10*kms~! and v, = 10° kms~!, and find no statistical difference in
the final profiles.

For the magnetic field, we consider a steady split-monopole
configuration, B(r) = By(r/ry)~%> where r, is taken here to be the
inner radius in the simulation (the ‘base’ of the wind). Due to the
spherical symmetry, the field is not separately evolved; it is only used
in defining the Alfvén speed, which is then

) —-1/2
VA(r) = Va0 (:—0) (%) , (32)

where v49 = Bo/+/47po and py is the base density. For the galaxy’s
potential, we use the Hernquist model (Hernquist 1990)
1 v;c
=—c— 33

o= T 33
where b is a chosen scale length that we set to b = 2ry, and ve is the
escape speed from r = 0 (note that the escape speed from the base
of the wind is a factor of /1 + ro/b ~ 1.22 smaller). For reference,
the mass enclosed within a radius 7 of the galaxy is then given by

r) = ——< -
2G r

-2
~ 1.45 x 10"M, b ( Vese )2 1+ b (34)
2kpc / \250kms~! r

Simulations with the isothermal potential used in Quataert et al.
(2022a, b) gave similar results to those presented here. Because of the
complexity of the critical point structure highlighted in Section 2.3,

MNRAS 524, 6374-6391 (2023)

we chose the Hernquist potential over the isothermal potential, since
the former has a well-defined escape speed.

We use a radiative cooling curve appropriate for solar abundance
gas in CIE!, and approximate its form by fitting a piecewise power
law to fig. 1 of Ji, Oh & McCourt (2018). Below ~11,500K, it is
linearly interpolated so that A(10* K) = 0, and A(T) =0 forall T <
10*K as well.

Our simulation domain extends from an inner radius of 1 kpc to an
outer radius of 10 kpc in most runs, although we additionally simulate
a larger box with an outer radius of 100 kpc for the fiducial set of pa-
rameters to check convergence and in any set of parameters for which
the second critical point occurs outside of 10 kpc. The simulations
are run on a radial grid of 8704 logarithmically spaced points, and
we have checked that using a grid with twice the resolution does not
significantly alter the resulting steady-state profiles in the fiducial and
Vese = 250 km s~! models. At the inner boundary, we fix pg and the
base CR pressure p.o, and enforce hydrostatic equilibrium, choosing
dp./dr = dp/dr. In the ghost zones, the velocity is set so that M is
constant between the last active zone and the ghost zones. At the
outer boundary, we match the gradients of p, p., and the CR flux F,
across the boundary, and again set the velocity in the ghost zones by
requiring M to be constant. We initialize the gas as isothermal with
T:(r)=10*K, set v;(r) =0, and equate the gas and CR pressures, pqj =
pi. The initial density is specified as p;(r) = po(r /7o) ¢0/24}  where
a? =kT;/ m, is the initial sound speed squared. We do not impose
any temperature boundary conditions, only an initial condition; we
conducted tests with varied 7; and found that the resulting statistical
steady-state did not change. The reason is that the simulations all lie

'Our results should not depend strongly on the gas metallicity, since the
occurrence of thermal instability only relies on the presence of a local
minimum in the cooling curve between 104-105 K, which is present from
~0.01-2Zg (see e.g. fig. 34.2 of Draine 2011). Metallicity gradients in
the wind would therefore not strongly affect its structure, though increased
metallicity at the base would lead to a larger region near the base (see
Section 2.5) due to the increased cooling rate.
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in the parameter space where the cooling time at the base of the wind
is sufficiently short to bring the gas to T ~ 10*K (as expected from
Fig. 1 and associated discussion in Section 2.5).

Table 1 gives a summary of the simulation parameter choices in
physical units as well as measures of the resulting mass-loss rates,
energy fluxes, and outflow speeds. Because we use a realistic atomic
cooling function, our simulations necessarily use real units. Our
fiducial simulation (the first row in the table) takes base conditions
typical of the warm ISM in the Milky Way: pg = 1m,/ cm’, poy =
0.86eVcem™3, and vao = 10kms™! at ry = 1 kpc. We take v, =
420kms~! similar to that of a Milky Way-like galaxy. In addition to
the fiducial parameter choices described above, we consider variation
in

(i) the base gas density at fixed base CR sound speed (modifica-
tions to both p¢ and peo)

(ii) the base ratio of CR pressure to gas pressure (modifications to
Peo at fixed po)

(iii) the magnetic field strength (modifications to v at fixed pg)

(iv) the galaxy escape speed from 130-420kms~!, to represent
galaxies of different masses

(v) the launching radius of the wind, ry (at fixed ro/b = 2)

We note that our ve, = 420, 250, and 130kms~! simulations
roughly map onto the V, = 10, 6, and 3 simulations in Quataert
et al. (2022a), respectively (taking the assumed constant sound speed
= 10km s~ in the latter simulations). Assuming an NFW halo with a
concentration parameter ¢ = 7, these escape speed parameter choices
correspond to virial mass values ranging from My ~ 2 x 10'°Mg
for the ves. = 130 km s~! model to Magy & 6 x 10" Mg, for the veg =
420km s~! model.

3.2 Overview of the simulation results

Fig. 3 shows the time-averaged density, temperature, CR pressure,
wind speed, heating-to-cooling ratio, and effective CR equation of
state p.(p) for each of the varied v, runs (simulations 1 and 11-14
of Table 1); we will discuss the the time variability of the solutions in
Section 3.3. The simulations range from nearly isothermal at lower
Vese to exhibiting a sharp temperature spike at higher ves., where the
gas quickly heats up from ~10*~10° K near the base of the wind.
At the fiducial ve,e = 420km s~! but with varied base densities, CR
pressures, and Alfvén speeds, the profiles are similar to the fiducial
result, though the spike in temperature occurs at a slightly different
location (see Fig. 2), and the outflow speed and mass-loss rates of
the outflow vary modestly (see Table 1).

Overall, we find that the depth of the gravitational potential is
the most significant parameter in determining the outflow properties.
Physically, this is because the stronger gravity solutions (higher v )
have much smaller gas density scale heights and thus much lower
densities just exterior to the base of the wind. This leads to cooling
being less important relative to heating of the gas by the streaming
CRs. Once CR heating drives the gas temperature > 10*K, the
putative balance between CR heating and radiative cooling becomes
thermally unstable. The relative noisiness of the time-averaged ves. =
250kms™!, v = 180 kms™!, and v, = 130kms™! profiles is
due to this instability occurring over an extended region, resulting
in a much more time-variable solution, as we discuss in detail in
Section 3.3.

Steady-state CR wind theory predicts that p. o p*® when v
< va and p. o3 when v > va (equation 4). Fig. 3 shows
that p. o« p?? is indeed satisfied at high densities near the base
when v < va, though at larger radii (lower densities), a p. < p

CR driven galactic winds from the WIM 6381

scaling is visible instead of p. oc p*?; this is because v ~ vy.
In addition, a p. o p"? scaling is apparent at intermediate radii
where thermal instability begins to occur and the fluctuations in
gas density are largest (see Section 3.3). Quataert et al. (2022a)
showed that p. o« p'? is a consequence of strong CR bottlenecks
(see Tsung et al. 2022 for related arguments). They further argued
that the larger CR pressure implied by p. & 02 (in comparison to
Pe < p*3) leads to stronger galactic winds than predicted by standard
CR wind theory. In Quataert et al. (2022a)’s simulations, however,
pe o p'”? was present over a larger range of radii than we find here.
This is a consequence of the more realistic thermodynamics in the
present simulations; the instabilities leading to CR bottlenecks are
suppressed once gas pressure becomes dynamically more important
exterior to the temperature spikes in Fig. 3 (see Section 3.3 for more
discussion).

Fig. 3 demonstrates that as the gas moves further out of the
galaxy, the thermally unstable solutions are inevitably driven to
lower densities and higher temperatures at which cooling is less
dynamically important. In reality, the thermally unstable solutions
that we find here are likely to have a rich multiphase structure not
captured in our 1D simulations; we return to this in Section 4. To more
quantitatively describe the thermodynamics of the outflow and the
importance of cooling, Fig. 4 compares the expansion timescale f.,
= H/v (where H is the density scale height (dlog p/dr)~"), the cooling
time-scale .o = p/(n*>A), and the CR heating time-scale of the gas
thear = p/lvadp./dr]. Close to the base of the wind, fcool S fheat K fexp-
This is the approximately isothermal region in which cooling and
heating balance, as described analytically in Section 2.5. For v =
130kms~! this hierarchy of time-scales is maintained throughout
the flow and the solution remains nearly isothermal everywhere.
Note, however, that f.ool/fexp still increases substantially with radius
for vee = 130kms™!, and eventually, at sufficiently large radii, the
gas density would decrease to the point that cooling would become
negligible. For winds with stronger gravity such as the fiducial ve. =
420km s, however, the cooling time increases much more rapidly
with increasing radius and cooling is negligible exterior to ~1.5 kpc.
Effectively, this exterior solution at larger radii is well modelled using
Ipavich (1975)’s original CR streaming wind solutions that entirely
neglect radiative cooling. We also note that while the outward expan-
sion time of the CRs in the fiducial ve,. = 420 km s~! model in Fig. 4
is comparable to the pion loss time of ~ 5 x 1072(n/ cm™)~! Gyr
at the base, because the density falls rapidly, the pion loss time
sharply rises after ~ 0.01 kpc and so neglect of pionic losses is
self-consistent. This is only borderline true in the ves. = 130 kms™!
galaxy, which has a longer wind expansion time due to the shallower
potential.

Fig. 5 shows the contributions of each term in equation (8) to
the total energy flux of the wind in the fiducial model in the larger
100 kpc box. For reference, the initial input CR power is given by

E = 16773 peovao

2
7.7 x 10 o B0 (2 )es
x ere/s ( 1 kpe leVem™ 10kms™! (33)

The total E decreases sharply at small radii near the base of the wind
due to cooling, but remains constant for r 2 2 kpc once the density has
decreased significantly (so the effect of cooling becomes negligible).
When the wind speed is low, the dominant contributions to E are the
CR energy flux and the gravitational energy flux, which balance each
other across a wide range of radii. In Section 4.1, we will use this
feature of the wind to estimate its mass-loss rate. The gas enthalpy
flux rises rapidly following the onset of thermal instability due to the

%
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Figure 3. The steady-state radial density (upper left), temperature (upper right), CR pressure (middle left), wind speed (middle right), heating-to-cooling ratio
(bottom left), and effective CR equation of state p.(p) (bottom right) profiles for the varied veg simulations (simulations 1 and 11-14 of Table 1). In the upper
two rows, the shaded regions indicate +10 (temporal) variations at each radius. In the bottom right-hand panel, the dashed lines on the left, middle, and right of

12 2/3

the plot indicate power-law slopes of p.  p, pc & p''#, and p x p

, respectively. As veg is increased from 130kms~! (orange) to 180 (green), 250 (blue), 330

(red), and finally the fiducial 420kms~! (black), the extent of the strong cooling region near the base of the wind decreases. The decrease in cooling at higher
Vesc leads to progressively sharper spikes in temperature close to the base of the wind due to CR heating overwhelming cooling. Intermediate ves solutions are
the most time variable due to thermal instability, apparent here as larger =10 variations and radial fluctuations even in the time-averaged profiles.

sharp spike in temperature and gas pressure at small radii. At larger
radii, the wind accelerates primarily due to gas pressure while the
temperature falls; the kinetic energy flux eventually dominates over
the gas enthalpy flux.

The asymptotic wind power for the fiducial model shown in Fig.
5 is only ~ 10 per cent of the input CR power at the base of the
wind. Some of the input energy is lost radiatively, but most is lost to
gravity driving the wind to large radii; this is reflected in E. ~ E,
in Fig. 5. We find a similar ratio of the asymptotic wind power to
the input CR power in all of our simulations (see the last column of
Table 1). Since the energy per supernovae (SNe) supplied to CRs is
~ 10 per cent, this implies that the asymptotic wind power found
here is only ~ 1 per cent of the SNe power. This is unlikely to have
a significant dynamical impact on the surrounding circumgalactic
medium (CGM), i.e. the ‘preventive’ feedback due to the winds
found here will be minor.

MNRAS 524, 6374-6391 (2023)

Fig. 6 illustrates the acceleration of the wind for the fiducial model
in the larger 100 kpc box, in comparison to the Alfvén speed and the
local escape speed, with the individual components of the numerator
v2 and denominator v} in the wind equation (9) also plotted for
reference. Note that, the local escape speed /—2¢(r) is distinct
from the ves. parameter used in our parametrization of the Hernquist
potential; the latter is the escape speed from r = 0. From the base to r
~ 2kpc, we see that v < va, so we are well justified in utilizing that
approximation throughout Section 2. As anticipated in Section 2.2,
closest to the base, when v} < 0 (i.e. the blue dashed curve is greater
than the red curve), v2 < 0 as well (the orange curve is greater
than the green curve). Although v§ becomes positive at r & 1.1 kpc,

v? remains negative until » ~ 1.2kpc. Because this occurs when

n
|v3] < v%, though, per equation (9), the wind is able to continue
accelerating. This demonstrates how the time-averaged numerical

solution manages to evade the conceptual difficulties highlighted in
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Figure 4. The expansion (solid), heating (dotted), and cooling (dashed)
time-scales as functions of radius for the fiducial vese = 420 kms™! (black)
simulation and the vese = 130 km s ™! (orange) simulation. In the fiducial case,
the cooling time is initially the shortest but quickly the solution transitions
to one in which heating overwhelms cooling, leading to the strong spike in
temperature seen in Fig. 3. For the vese = 130 km s~ model, the cooling time-
scale is always significantly shorter than the heating and expansion timescales
and the solution is roughly isothermal.
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Figure 5. The gas kinetic energy flux (purple), gravitational energy flux
(green), gas enthalpy flux (red), CR energy flux (blue), and total energy flux
(black) as defined in equation (8) for the fiducial ves. = 420 kms~! model
in the larger 100 kpc box. The near equivalence of the gravitational and CR
energy fluxes leads to a simple expression for the mass-outflow rate (see
Section 4.1). Note also that, the asymptotic energy flux is only ~ 10 per cent
of the input energy flux, which corresponds to inefficient preventive feedback
at larger radii.

Section 2.2 and accelerate outwards continuously despite having v
< vy atits base. Another notable feature of Fig. 6 is that the solution
is magnetically dominated (v4 2 ¢) out to ~ 5 kpc.

Ultimately, the speed in the fiducial wind exceeds the local escape
velocity by r &~ 20 kpc, and continues to accelerate before reaching
a final velocity of approximately 150 kms~' near the boundary of
our larger domain. We note that in each of the models studied in the
larger simulation box of 100 kpc, the wind continues to accelerate
beyond the speeds achieved by the same model in the 10 kpc box. To
characterize the maximum speed achievable by the wind for models
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Figure 6. The wind speed (black), Alfvén speed (purple), local escape veloc-
ity (cyan), and components of the numerator and denominator critical point
speeds vg and vﬁ (equations (10) and (11)) for the fiducial vese = 420 km g1
model in the larger 100 kpc box. The blue curve shows the effective CR
sound speed contribution, and the dashed part of the curve indicates when its
square is negative, so it is imaginary. The red curve shows the gas sound speed
contribution. The orange curve represents the contribution of cooling, and the
green curve shows the gravitational velocity that appears in the numerator
of the steady-state wind equation (9). Note the very slow acceleration of the
wind and that the solutions are magnetically dominated out to large radii.

in which we do not simulate a larger box, Table 1 also includes a
value of

) 12
Ve = (vz+y71/1§) , (36)

for each wind, incorporating the enthalpy contributions to the wind’s
specific energy. As a check, the value calculated for v, in the larger
boxes closely matches the value calculated for the smaller boxes, as
well as the velocity of the wind near the outer boundary in the larger
boxes. As the wind accelerates to approach v, it passes through two
critical points, at » & 1.15 kpc and r & 6 kpc for the fiducial model,
where the speed is equal to the local values of v, or v4. These critical
points may be read off of Fig. 6 as the locations at which the square
of the black curve is equal to the sum of the square of the blue and
red curves (v? = v2) or the difference of the squares of the green and
orange curves (v? = v2). We discuss the critical points observed in
each simulation in further detail in Section 3.4.

3.3 Time dependence

In the numerical simulations, as ves is reduced, a transition occurs
between the smooth profiles of the fiducial or ve, = 330kms™!
models and the much more variable vee = 250 and 180kms™!
models; this is evident even in the time-averaged profiles in Fig. 3.
The origin of this difference is the larger amplitude time variability
that is introduced by the thermal instability in the lower v.s. models.
Fig. 7 highlights this strong time dependence by comparing the time-
averaged density, temperature, CR pressure to gas pressure ratio,
and plasma 8 = 2a?/v3 to individual time snapshots. Although the
snapshots were chosen at times where the profiles are observed to be
in statistical steady-state (i.e. averages over randomly chosen time
intervals have the same pointwise statistics), in the ves. = 250kms™!
model especially, there is significant time variability.
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Figure 7. Profiles of the fiducial vese = 420 km s~1 (black), vese = 250km s~! (blue), and vese = 130 kms~! (orange) simulation runs demonstrating the time
dependence of the wind’s density (upper left), temperature (upper right), CR-to-gas pressure ratio (lower left), and gas-to-magnetic pressure ratio 8 = 2a?/ v%
(lower right) near the base. The lighter coloured profiles are five different sample snapshots in which the wind is in statistical steady-state, and the darker coloured
profile is the time average. The individual snapshots show much more variation in the vesc = 250km s~! run, and the time-averaged profile is correspondingly
noisier. This large amplitude variability is due to thermal instability. For the veee = 130kms™! and vege = 420kms~! runs, much of the variability is likely due
to acoustic instabilities, though this is much smaller in amplitude than the variability produced by thermal instability.

The veie = 250km s~ model represents an intermediate regime
to the fiducial and vee = 130kms~! models. In the fiducial model,
thermal instability sets in quickly because cooling is only important
for a small range of radii near the base, while for ve,. = 130km s!,
cooling is important across the entire simulation domain and thermal
instability largely does not set in, since the gas remains on the
thermally stable part of the cooling curve at T ~ 10* K. Fig. 7 shows
that the more gradually rising time-averaged temperature profiles
with vee < 250kms~' can now be identified as an average over
a number of thermal-instability-induced temperature spikes that are
similar to those in the fiducial and v = 330km s~ models, just
across a larger range of radii. Eventually, at large radii, cooling
gradually becomes less important even for the vee = 250 km s~!
solution, and the wind solution is significantly more stable at a higher
temperature (as observed in the time averages in Fig. 3). The large
variations in the gas density seen in Fig. 7 also lead to corresponding
fluctuations in the CR pressure, analogous to the ‘staircase’ structure
observed in Tsung et al. 2022. In the bottom left-hand panel of
Fig. 7, we see that these fluctuations lead the ratio of CR and gas
pressure to vary across nearly two orders of magnitude in just a
1 kpc region near the base for the ves = 250kms~! model, while
pe/p ~ O(1) in the other solutions.

Next, we quantify the radii at which the thermal instability has the
greatest influence on the wind. Fig. 8 shows the pointwise temporal
variance in the density normalized by the time-averaged profile for
the fiducial, veee = 130kms™!, and vee = 250kms~! simulations.
While the fiducial model exhibits significant variation in time only
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Figure 8. The normalized temporal variance in density for the fiducial vese =
420 km s~ (black), vese =250km s~! (blue), and ves. = 130km s~ (orange)
models. In the fiducial model, the variance rises sharply at the location of the
temperature spike, which demonstrates the onset of the thermal instability. In
the vese = 250kms~! case, the rise in variance is much broader, because the
thermal instability is not as localized in radius as in the vese = 420km g1
model. Thermal instability is not present in the vese = 130km s~! model, for
which the variability is likely due to sound wave instabilities.
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Figure 9. The numerator and denominator of the wind equation for the vesc = 130 (orange), 180 (green), 330 (red), and fiducial 420 km s~! (black) models.
The left-hand panel shows the numerator (vﬁ — vﬁ, dashed) and denominator (v? — vg, solid) expressions calculated using equations (10) and (11). Two critical
points are present as the wind speed passes through the roots v — and then v¢ 4 as expected from equation (16). The right-hand panel shows the numerator
(dashed) and denominator (solid) expressions as calculated from the isothermal limit of equation (9) instead; only one critical point is present in this limit.

where the temperature increases dramatically (visible as a spike in the
curve at r & 1.05kpc), the higher variance in the v, = 250kms™!
model extends throughout the simulation domain, and is substantial
through r & 3 kpc. In the ve,e = 130 km s~ model, while the variance
is higher in general, there is no clear rise in the variance: because
cooling is always more relevant, thermal instability does not set
in. The density fluctuations are rarely spatially extended, typically
occurring over scales of just ~10 pc.

Although we identify thermal instability as the source of largest
time variability in our models, several other instabilities are also
likely to be present. In particular, the linear acoustic instabilities
studied in Quataert et al. (2022a) (in isothermal winds, when back-
ground gradients are present) and in Begelman & Zweibel (1994)
(in plasmas with CR-streaming-mediated heating, but without any
cooling) are both realizable. The former occurs in the approximately
isothermal region nearest the base, and is likely responsible for the
small initial fluctuations in temperature that result in the onset of
thermal instability. The change in the time-averaged CR equation of
state from p. « p*? to p. o p'? observed in Quataert et al.
(2022a) as a consequence of CR bottlenecks is present in our
models as well (see the lower right-hand panel of Fig. 3). However,
it is driven more by thermal instability here than by the acoustic
instabilities, in part because the latter are suppressed if gas pressure
dominates.

We expect the Begelman & Zweibel (1994) instability to poten-
tially occur at large radii away from the base where cooling is less
important. All winds studied here include regions in which 8 <
0.2 and B < 0.5, so that both forward and backward propagating
acoustic waves may be unstable (Begelman & Zweibel 1994). These
instabilities are likely responsible for the small variations visible in
e.g. the fiducial model in the p./p panel beyond the temperature spike.
However, we emphasize that for the parameter space considered
in our models, thermal instability leads to much more dramatic
variability, and is likely to have many more important observational

and dynamical consequences than the acoustic wave instabilities. For
instance, Fig. 8 shows that although there is a baseline variance in
each of the models over a wide range of radii (likely due to acoustic
instabilities), the variance due to the thermal instability far exceeds
that produced by the acoustic instabilities.

3.4 Critical points

We find that the time-averaged profiles of our numerical solutions
do pass through the analytically expected critical point(s), even
though the flow is only steady in a statistical sense. Fig. 9 shows
the wind equation numerator and denominator expressions, v — v2
and v? — v, respectively from equation (9). Critical points are
apparent as sharp dips in the plot when both the numerator and
denominator expressions are simultaneously near-zero. The left-hand
panel demonstrates the presence of 2 critical points for the higher
Vese Mmodels, while in the lower v, models in the right-hand panel,
only 1 critical point is present. The latter is because the low ves
solutions correspond to the nearly isothermal limit in which there is
indeed only one critical point (see Section 2.4). Although the full
numerator and denominator expressions apply to the ve,. = 130 and
180 km s~! models, for those nearly isothermal solutions, we directly
plot the numerator and denominator of the isothermal limit of the
wind equation for clarity, because fluctuations due to cooling add
significant noise to the numerator expression, making the zero harder
to distinguish. As a check of the validity of this analysis method, we
note that attempting to use the isothermal expressions for the higher
Vese models in the left-hand panel does not yield aligned zeros of
the numerator and denominator, demonstrating that the full critical
point expressions are important for those critical points. We also do
not plot the intermediate-regime ves. = 250km s~ model in either
panel, because it does not exhibit clear isothermal critical points, and
its time-averaged profile is too noisy to allow for clear identification
of the full critical points due to the increased variability.
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In our simulations exhibiting two critical points, the first occurs
when v = v, _ and the second when v = v, ;, where v._ 4 are the two
roots of equation (16). The two critical points in the v, = 420 and
330km s~! models in Fig. 9 are consistent with the surprising analytic
critical point structure discussed in Section 2.3. The existence of two
critical points is a consequence of the presence of both cooling and
an imaginary CR sound speed at some radii. The inner v = v, _
critical point occurs when cooling is energetically important, and the
position may be determined approximately by when v3 and v? first
rise above 0. The outer critical point is the more familiar Parker-
type critical point in which v = \/—rg/2, as observed in the fiducial
model velocities in Fig. 6.

In the lower v.y., solutions with just one critical point, the critical
speeds are similar such thatv = v, _ ~ v, . The single critical point
in these cases corresponds to taking the isothermal limit of equation
(16) as described in Section 2.4. The slightly larger deviations
between the location of zeros of the numerator and denominator
in the vese = 130kms™! and vee = 180kms~! models are due to
the increased time variability in those cases compared to the highest
Vese Simulations shown in the left-hand panel, and also because the
winds are not exactly isothermal.

4 DISCUSSION

Informed by our numerical results, in the following sections, we
describe how to approximate the total mass-loss rate of the wind as
well as its maximum temperature and speed. We then discuss some of
the possible observational signatures of the CR-driven winds found
here and summarize limitations of our modeling, as well as possible
areas for future work.

4.1 Approximating mass-loss rates and outflow speeds

The simulations in Section 3 show that the asymptotic speeds of
CR-driven winds from the warm ISM are relatively small compared
to the initial escape speed. In this limit, the mass-loss rate is close to
the maximum mass-loss rate allowed by energy conservation. That
maximum rate is set by when the available energy primarily goes into
lifting matter out of the gravitational potential, so that | E| ~ E., i.e.
M|¢| ~ E., as demonstrated explicitly in Fig. 5. To estimate the
resulting mass-loss rate, however, we have to account for the fact
that cooling removes energy from the wind at small radii so that
only a fraction of the initial energy in CRs at the base of the wind
is available to drive gas to large radii. To do so, we will estimate
the radius r* at which cooling becomes negligible. Such a radius
does not exist for our lowest vee = 130kms™! simulation, which
is nearly isothermal out to large radii. More appropriate analytic
approximations for the mass-loss rate in this isothermal limit were
given in Mao & Ostriker (2018) and Quataert et al. (2022a).

Given an estimate of the radius r* at which cooling becomes
subdominant, the net mass-loss rate is roughly

M ~ E.(r")/|¢(r)], (37
= 167(r*) pe(r*)var*)/1¢(r)] (33%)
Because in most solutions cooling is only important at relatively

small radii, where v S v, we approximate p, ~ p>3. Then, using
the split-monopole configuration and Hernquist potential, we find

* * 1/6
M~ Mo (1+L) (W )) , (39)
b Lo
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where we have defined a reference mass-loss rate value,

2
My = 327 (024020
UCSC
~ o004 Mo (1 2( )
yr \ lkpc 10kms~!
Pco ) ( Vesc )_2 40
x (leV cm—3/ \250kms~! ' (40)

Note that while our models treat the base CR pressure and escape
velocity as independent parameters, galaxies with larger escape
velocities are likely to host increased star formation and thus maintain
an increased base CR pressure as well. From equation (40), therefore,
in real winds, we may expect the mass-loss rate to have only a sub-
linear scaling with peo (or equivalently, a steeper than v2> scaling
with escape velocity).

To estimate the density in equation (39), we use the analytic
implicit isothermal solution from equation (22). Although this
somewhat underestimates the true density in the simulations (see
Fig. 2), the weak ocp(r*)"/° scaling in equation (39) implies that our
estimate of M is not that sensitive to this uncertainty in the density
profile.

It then only remains to estimate r*. Because cooling enters the
wind equation only through v2, we estimate 7* by estimating when
v2(r*) = 0. For radii smaller than *, v2 < 0 and v} < 0, but beyond
*, we have solutions with v? > 0 matching more conventional
wind expectations as discussed in Section 2.2. Setting v2 = 0 using
equation (11) then yields

M= 47 (y — D)(r*)2q, (r*)
—g(r®)

> 47 (r*) p(r*)va(r*)

; (41

()/ - l)csz(r*)
cZe(r?) +a@r*)?’

where in the second line, we have used the heating-cooling balance
and assumed hydrostatic equilibrium. Once again taking p. o p*?
and assuming the split-monopole configuration, we ultimately arrive
at the approximate mass loss rate

F3UA0Peo (,O(V*)) Vo

2
ag Po

-1
T(r* 2 *\\ —1/3
) [ 2P0 (p(r)) , @3)
Ty 3 p0 \ po
where pg = poaé is the base gas pressure. Comparing equations (39)
and (43), we see that r* satisfies

(l —+ ﬁ) <T(r*) + %pco (P(r*)>l/3) — L_l vgsc .4

b T() 3 Po Po 12 (1(2)
Equation (44) can be solved implicitly for 7 given a temperature
and density profile. We use the analytic approximations for p(r) and
T(r) near the base of the wind from Section 2.5 to solve for r* and
then M.

Fig. 10 shows the resulting predicted M as a function of v, for
several varied choices of base parameters, normalized by the (ves-
dependent) reference value M, from equation (40). The dependence
of r* on v alters the profiles from M x v;f at low v, but at high
Vese» cOOling becomes unimportant almost immediately beyond the
base, and so the scaling M o v32 becomes reasonably accurate.
For the same reason, at higher v, the dominant variation with all
parameters is just through the prefactor term. Fig. 11 compares the

predicted mass-loss rates to the values realized in our simulations.

42)

. 8
M~ —(y—1
3(1/ )
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Figure 10. Analytic approximation to the mass-outflow rate M (equations
39 and 44) as a function of Ve, normalized by Mes (see equation 40). The
solid black curve is for the fiducial parameter choices; the dashed and dotted
curves represent factor of 3 increases and decreases in vag (red), po (green),
and p.o (blue), respectively.
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Figure 11. A comparison between the predicted (equations 37 and 44) and
simulated mass-loss rates. The black point is the fiducial vesc = 420 km s~!
simulation, the coloured points indicate the varied vese = 330 (red), 250
(blue), 180 (green), and 130 km g1 (orange) simulations, and the grey points
are the remaining models. The analytic estimate of the mass-loss rate is good
to about a factor of two. Together with Fig. 10, this implies that equations
(40) & (45) are a reasonable approximation of the mass-loss rate in our
CR-driven winds.

The predicted values are correct within a factor of ~2, with deviations
primarily due to errors in estimating r*. The predictions are more
accurate for the smaller ve, simulations because those density
profiles are better fit by the isothermal approximation of equation
(22).

A useful alternative expression for the reference mass-loss rate is
Mot =~ 2E0/v2, where Eqo = 16rduaopeo is the total CR power
of the galaxy. The latter can also be expressed as E. = e.M,c?
where M, is the star-formation rate and e, = 107%%¢, _¢ 3 is set by
the fraction of SNe energy that goes into CRs: for 10°! erg per SNe
and 1 SNe per100 M, of stars formed, €, = 107 if 10 per cent of
the SNe energy goes into primary CRs. The reference mass-loss rate

CR driven galactic winds from the WIM 6387

in equation (40) can thus be rewritten as

Mref 26C62
M, — 2

esc

Vesc -2
250km s—l) ’ 45)

~ 1.460,_6_3 (

Figs 10 and 11 show that our simulations produce mass-loss rates
M ~ O(M,) particularly at higher v.,.. The mass-loss rates are
somewhat higher for lower v because the density scale-height is
larger and thus p(7*)/po is larger (see equation 39). Our numerical
results and equation (45) thus imply that CR-driven winds can
generate a mass-loss rate of order or larger than the star-formation
rate, particularly in lower mass galaxies. This is on the low end
of the mass-loss rates required to reconcile the galaxy stellar-mass
mass function and the halo mass function in cosmological galaxy
formation models (Somerville & Davé 2015). One unusual feature
of our models is that the mass-loss is dominated by the warm ISM,
yet the gas often ends up hotter than its initial temperature at large
radii.

In addition to its value in calculating M, equation (44) also allows
for an estimate of the maximum temperature the wind will achieve,
and hence its maximum speed. From the gas energy equation, the
temperature profile is determined by the solution to

dT dp
nvka =(y — D(va® — UAcgff)E —(r = Dg:, (46)

and we see that the initial increase in temperature is driven by the fact
that va® < vac; near the base (since dp/dr is always <0). For radii
beyond the predicted instability-driven temperature spike, however,
we expect va? to become comparable to v4c%; due to the increased
temperature and accelerating wind speeds, and so the outer portion
of the temperature profile must be decreasing. Therefore, we expect
the largest temperatures to typically be reached at radii somewhat
comparable to r*, and we can use equation (44) to estimate a rough
upper bound

kT (r*) k Tinax y—1 ro\~! , 2 peo
= 1+ — - = . 47
m - m < 12 ( +b) Yo T 3 00 7

With ro/b held constant, we can identify an approximate Ty, o V2,

scaling. We emphasize that equation (47) assumes that va* = v c%;
is satisfied near or interior to r*; otherwise, the temperature could in
principle continue to increase outwards. We do not have a rigorous
proof that this ordering is satisfied but it is roughly true in our
simulations: for reference, empirically, the simulations exhibit a
~ 10 per centincrease in temperature beyond 7(r*) before ultimately
decreasing adiabatically at larger radii. However, the upper bound
predicted by equation (47) is still not saturated in most of our
simulations. Fig. 12 compares the maximum temperature achieved
by the simulated winds to the predicted Ty, assuming fiducial pa-
rameter choices for p.o and pg, as a function of ve,. An approximate
Tinax o v2 scaling is somewhat visible, although as shown by the
wide range of maximum temperatures for the models with ve, =
420kms~!, variations in the base density, CR pressure, and Alfvén
speed are also important in determining the maximum temperature
the wind achieves.

Note that, this upper bound predicts that the maximum sound
speed of the gas is only a small fraction of ve,.. Under the assumption
that by the time the temperature reaches its maximum, cooling is no
longer energetically important, we may estimate the maximum speed
achievable in the wind by assuming that the enthalpy of the wind is
ultimately converted into kinetic energy
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Figure 12. The maximum temperature predicted by equation (47) compared
to the maximum temperatures of the simulations. The black curve uses the
fiducial values of pg and p.o, while the grey shaded region indicates the upper
bound predicted allowing for up to factor of 3 variations in po and p.o. The
black point is the fiducial vese = 420 km s~ model, and the varied vese =
330 (red), 250 (blue), 180 (green) and 130 km s~1 (orange) models are shown
as coloured points, while all other models are shown in grey. The one grey
point exceeding the maximum estimate is the ro = 5 kpc model (the last row
in Table 1), and the grey point with the smallest maximum temperature is the
po=0.1 m, cm~3 model (the second-to-last row in Table 1).

2]/ kTmax 1/2
Umax = ﬁ? ) (43)
) 4 172
=(2(1+2) - L) e 49)
6 b 3(y — 1) povZ,

To good approximation, because vgsc > peo/Po, We see that v,y
scales linearly with ves, and for our models in which y = 5/3 and
ro/b = 1/2, we expect v ~ 0.4ves.. Once again, although there is
no rigorous proof that the maximum wind speed is determined by
matching the enthalpy and kinetic energy fluxes of equation (8), we
find that this estimate is well justified in our simulations because most
of the winds become gas pressure dominated due to run-away CR
heating as the density drops. The only exception to this is our nearly
isothermal solutions at the lowest ve, (for which the isothermal
models of Mao & Ostriker 2018 and Quataert et al. 2022a are a good
analytic approximation). Fig. 13 compares the predicted vy, from
equation (48) to the simulated vy, (r = 0.874y) shown in Table 1.
Overall, the estimated maximum wind speed matches the simulated
value to within ~ 50 per cent, although there is significant variation
among winds with the fiducial v, =420 km s~ potential when other
parameters are varied. The strong connection between the asymptotic
wind speed and the galaxy escape speed found here is reminiscent
of similar trends in observations (e.g. Weiner et al. 2009) although
the normalization of our correlation between wind speed and escape
speed is a factor of few lower than that observed.

4.2 Emission and absorption in the wind

The models presented in this paper are sufficiently idealized to
preclude a detailed comparison to observations. None the less, it is
valuable to highlight a few features of the solutions found here that
bear on observations of galactic winds with emission and absorption
line diagnostics.
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Figure 13. A comparison of the maximum wind speeds predicted using
equation (48) and the simulated v, (from Table 1, calculated using equation
36) at 0.8r¢y. Similar to Fig. 12, the black curve uses the fiducial values of
po and pco, while the grey shaded region indicates the upper bound predicted
allowing for up to factor of 3 variations in po and p.o. The black point is
the fiducial vese = 420 kms™! simulation, the coloured points indicate the
varied vese = 330 (red), 250 (blue), 180 (green), and 130 km g1 (orange)
simulations, and the grey points are all the remaining models.

To quantify the luminosity radiated by the outflowing wind, we
define

L(r) = / 4r?dr'q, (p(r'), T(r)), (50
o

and calculate the luminosity from logarithmically spaced bins
of radius and temperature, dL/dlogr and dL/dlog7, respectively.
These profiles normalized by the base CR power (see equation
35) are shown for the fiducial vee = 420kms~!, intermediate
Vese = 250 kms™!, and nearly isothermal v, = 130km s~! models
in the upper left-hand and upper right-hand panels of Fig. 14,
respectively. The upper left-hand panel shows that emission from
the gas is spatially extended, with ~1-10 per cent of the base CR
power being emitted at radii of ~5 times the base radius of the
wind. Note that, this would correspond to outside the galaxy in any
realistic galaxy model. This extended emission is a consequence of
the interplay between CR heating and cooling of the wind and is
thus a direct diagnostic of the physical origin of the wind. The upper
right-hand panel of Fig. 14 shows that the emission in the nearly
isothermal ve,. = 130kms™' solution is dominated by the ~10* K
gas. By contrast, the other models show emission over a wide range
of temperatures from 10* — a few x 10° K. Emission signatures
would thus be present from the optical to the UV. Interestingly,
however, the relatively low maximum temperatures highlighted in
Section 4.1 imply that there would not be significant X-ray emission
from these CR-driven winds. The lower left-hand panel of Fig. 14
shows dL/dlogr as a function of radius plotted against the wind
speed at that radius; the emission is velocit resolved, and in the
non-isothermal winds, a significant fraction is emitted at quite slow
speeds of ~ 10 kms™!.

To quantify the potential absorption signatures associated with the
wind as viewed towards the central galaxy, we define the column
density of the wind exterior to a given radius using

N@) = /00 dr'n(r'), 51)
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Figure 14. Proxy quantities for the emission as a function of radius (upper left), the emission as a function of temperature (upper right), emission as a
function of wind speed (lower left), and absorption column density as a function of wind speed (lower right). In each panel, the black curve is the fiducial
Vese = 420km s~ model, the blue curve is the vese = 250 km g1 model, and the orange curve is the vese = 130 km s~ model. For reference, in these models

E.0 ~ 6.6 x 103 ergs™! (see equation 35).

The lower right-hand panel of Fig. 14 shows N(r) as function of
the wind speed at that radius v(r) for the same fiducial, vese =
250kms™!, and vese = 130 kms~! models shown in the left-hand
and middle panels. The wind speed here is a proxy for the range of
Doppler shifted wavelengths that would be present in absorption line
diagnostics of the wind. The column density profiles of the nearly
isothermal wind is steeper and more sharply peaked at the base of
the wind than those of the winds involving thermal instability, but
among the non-isothermal winds, the columns are similar across a
wide range of ves.. We stress, however, that for resonance lines with
high-cross sections, the observed absorption line depth will depend
strongly on the covering fraction as a function of velocity, not the
column density we show in the right-hand panel of Fig. 14. Of course,
our 1D models cannot predict this covering fraction.

Overall, many of these features correspond well with the luminous,
extended emission from diffuse ionized gas present in low-mass and
starburst galaxies (e.g. Heckman et al. 2015, McQuinn, van Zee &
Skillman 2019, Marasco et al. 2022, Rautio et al. 2022, Lu et al.
2023, Xu et al. 2023). In several of these galaxies, ~ 0.1 per cent of
the bolometric luminosity can be observed as far as 6 kpc from the
galaxy’s centre. The typical wind speed measured in such systems
may also be as low as 10-100 km s™!, consistent with our models.

Finally, we emphasize that the key feature of many of the solutions
presented here is that thermal instability is important near the base of
the wind. The non-linear outcome of thermal instability is not well
modelled in 1D but the outcome is undoubtedly that a multiphase
medium develops for the radii in the wind where CR heating
and radiative cooling are both important (see Huang et al. 2022).
The resulting mulitphase wind solutions are likely to have many
applications to understanding the complex phase structure seen in
real galactic winds (Veilleux, Cecil & Bland-Hawthorn 2005), but

we defer more detailed calculations of the predicted emission and
absorption line signatures to future multidimensional simulations.

4.3 Caveats and generalizations

The goal of this work has been to explore the rather subtle interplay
between CR-streaming-mediated heating and radiative cooling in
galactic winds. For this purpose, the idealized spherically symmetric
wind models presented here allow rapid exploration of parameter
space and some analytic progress in modelling the wind solutions.
The downside is that we have made a number of simplifications that
limit the quantitative applicability of our results to realistic winds.
First and foremost, we expect the gas to develop a complex 3D
multiphase structure due to thermal instability, as in Huang et al.
(2022): the significant variance in density and temperature near
the radii where the instability occurs (as seen in Figs 7 and 8)
is the manifestation of this in our 1D solutions. Additionally, we
neglect thermal conduction, which may play an important role in
the thermal structure of the wind due to the strong temperature
gradients associated with CR heating overwhelming cooling (upper
right-hand panel of Fig. 3). Thermal conduction is also important
for setting a physical length-scale for the thermal instability. It is
striking that none of our models with thermal instability produce
cospatial cold and hot gas at large radii: CR heating always eventually
overwhelms cooling. This is different from other simulations of cold
clouds embedded in a CR filled medium in which the bottleneck
effect suppresses CR heating in the cold clouds and enables them
to be accelerated intact (e.g. Wiener, Oh & Zweibel 2017; Wiener,
Zweibel & Ruszkowski 2019; Huang et al. 2022). It is unclear if
this difference is a result of the much larger dynamic range in
density, temperature, and radii simulated here or a limitation of poorly
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resolved cold clouds in our simulations without thermal conduction.
Our results are statistically converged at the resolutions simulated
here, but this does not guarantee that inclusion of additional physics
like conduction will lead to the same result or the same convergence
properties.

Our simulations did not include CR diffusion in addition to CR
streaming. The motivation for this is that there are good observational
and theoretical arguments that the bulk of the CR population (with
energies ~ GeV) can be self-confined by the streaming instability
(e.g. Blasi et al. 2012). That said, there is also in general a correction
to the pure CR streaming flux we have assumed here (the form of
this correction is subtle and typically does not take the form of a
diffusive flux; e.g. Wiener et al. 2019; Kempski & Quataert 2022).
Future calculations of galactic winds with a full treatment of this
streaming correction would be valuable. Another important aspect
of multidimensional simulations is that the geometric expansion of
the wind in a disc-like geometry is more gradual than in the spherical
split-monopole setup considered in this paper. As a result, the gas
density is likely to decrease more slowly away from the galaxy.
This would move the transition where CR heating exceeds radiative
cooling out in radius relative to the models presented here. We also
note that the simulations found here are magnetically dominated over
a large range of radii (see Figs 6 and 7). As a result, it is likely that
there is a combination of closed and open field lines that can only be
modelled using more realistic multidimensional simulations.

One somewhat unusual property of the wind solutions found here
is that the asymptotic wind speeds are quite slow: they remain factors
of few below the escape speed from r = 0, as shown in Fig. 13. The
acceleration of the wind in radius is also relatively gradual, as shown
in Fig. 3. For massive galaxies, the significant bounding pressure of
the ambient CGM might therefore inhibit wind propagation into the
CGM, particularly since our outflows are not supersonic with respect
to the virialized gas in the CGM. Calculations with a more realistic
ambient CGM would be valuable for determining its effects on the
properties of CR-driven winds.

Finally, we note that, in all of our models, we neglect additional
sources of gas heating and cooling, including photoheating from
starlight, which is important in the warm ISM. Wiener et al.
(2013) show in models of the Milky Way that CR heating becomes
increasingly important relative to photoheating above the mid-plane
of the disc. Our models are a natural extension of their solutions to
even larger heights where CR heating dominates. It would, however,
be valuable to carry out more complete calculations including both
photoheating and CR heating. Explicit inclusion of pionic losses in
the CR energy equation would also be useful to include since the slow
wind speeds found here imply that pionic losses can be important in
star-forming galaxies with a dense ISM.

5 SUMMARY

Using idealized spherically symmetric models, we have studied
galactic winds driven by CR streaming incorporating realistic radia-
tive cooling. The inclusion of cooling is particularly important for
studying winds from the warm ISM; cooling is comparatively less
important for the hot ISM. The wind solutions found here exhibit
distinctive features not present in winds neglecting radiative cooling
or assuming that the gas is isothermal (which corresponds to the limit
of extremely rapid cooling).

Near the base of the wind, where the wind speed is low, the
density and temperature profiles can be roughly approximated as
hydrostatic and arising from a balance between CR heating and
cooling (see Fig. 2). This balance is, however, linearly unstable once
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the temperature exceeds T ~ 1.75 x 10* K (Kempski & Quataert
2020). To study the effects of thermal instability, we carried out
time-dependent numerical simulations of CR-driven winds using
ATHENA++ with parameters appropriate for the warm ISM. Across
arange of gravitational potentials, magnetic field strengths, base gas
densities, and base CR pressures, we find that the winds broadly
consist of 3 regimes: a nearly isothermal base in which heating and
cooling balance, a region where CR heating dominates over cooling
and expansion, and a region where the solution is nearly adiabatic.
We find that the key parameter determining the properties of the
wind and the spatial extent of these three regimes is the depth of
the gravitational potential, which we parametrize by the potential’s
escape speed from r = O (see Fig. 3).

When the escape speed is low, cooling remains strong throughout
the wind, so thermal instability does not set in and the wind remains
nearly isothermal. These nearly isothermal solutions are similar to
the (fully) isothermal solutions in Quataert et al. (2022a). In contrast,
at higher escape speeds, thermal instability causes large fluctuations
in density and temperature at intermediate radii (see Figs 7 and
8). Because the density decreases at larger radii, cooling becomes
progressively less important relative to CR heating, and the thermal
instability inevitably ‘saturates’ with a sharp increase in temperature.
This leads to a thermal gas pressure dominated wind at larger radii.
Previous wind solutions with CR heating but neglecting cooling (e.g.
Ipavich 1975; Everett et al. 2008) effectively start from relatively
high temperature ‘base’ conditions, and accurately describe the
structure of our solutions at larger radii where cooling is negligible.
Our calculations show how these non-radiative models can be self-
consistently extended deeper into a galaxy starting from physical
conditions in the warm ISM.

Although our time-dependent solutions show some evidence for
the acoustic instabilities studied in Begelman & Zweibel (1994),
Quataert et al. (2022a), and Tsung et al. (2022), we find that thermal
instability is by far the dominant source of large amplitude variability
in our models; this is particularly true at intermediate escape speeds
where cooling and heating remain comparable (but linearly unstable)
for a range of radii.

The asymptotic wind speed in our models scales approximately
linearly with the escape speed, but is only at most ~ 50 per cent of
the escape speed. This low asymptotic speed implies that most of the
CR energy supplied to the wind at the base is used to lift material out
of the galaxy’s gravitational potential. This energy balance argument
can be used estimate the mass-loss rate, maximum temperature, and
maximum outflow speed of the wind, as we demonstrate in Sec-
tion 4.1. The mass-loss rates we find can be comparable to or larger
than the star formation rate in lower mass galaxies and they obey
a roughly energy-like scaling of M oc vZ2. Our mass-loss rates are,
however, on the low end of what is required to reconcile the galaxy
stellar and halo mass functions. Because most of wind energy is
lost escaping the gravitational potential of the galaxy, the asymptotic
wind energy flux in our models is only ~ 10 per cent of the input CR
power, and thus ~ 1 per cent of the input supernova power. These
winds are thus inefficient in providing preventive feedback in the
CGM.

Theoretically, the inclusion of cooling and CR heating in the
dynamics of galactic winds leads to a unique critical point structure
that defies textbook expectations (e.g. Lamers & Cassinelli 1999). In
particular, the total sound speed of the gas-CR system is imaginary
when v < va (Ipavich 1975). Absent cooling, wind solutions only
exist if the base velocity is large enough to avoid this unusual property
of the CR hydrodynamic equations (e.g. Ipavich 1975; Everett et al.
2008). With cooling, a wind with v < v, is possible, but is in a
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formal sense supersonic near its base (because ¥ >0> vﬁ, where
vq is the critical point speed ( see equations 9—11).

Although the winds we find are time-dependent, the time-averaged
wind profiles pass through two critical points matching the properties
predicted by steady-state theory (see Fig. 9). The initial critical
point occurs around where vq ~ 0, i.e. where the CR sound speed
becomes real. Formally, this is analogous to a super-sonic to sub-
sonic transition that is traditionally discarded as a possibility in wind
models for being acausal. The second critical point we find is at
larger radii and is the more conventional Parker-type critical point
(see Sections 2.3 and 3.4). The solutions we find thus have two critical
points rather than the odd number traditionally expected. These are,
to the best of our knowledge, the only wind solutions with these
unusual properties, which are a consequence of both the imaginary
CR sound speed and strong cooling.

A key observational signature of the winds found here is their slow
acceleration to large radii. This leads to spatially extended emission
and absorption lines from the optical to the UV (see Fig. 14). Up to
~ 10 per cent of the wind’s radiative luminosity is produced at radii
larger than a few times the base radius, and is emitted over a wide
range of T~ 10*~10° K in all but the nearly isothermal models. This
regime of the wind may directly correspond to the extraplanar diffuse
ionized gas observed in many star-forming galaxies. Additionally,
the variability due to thermal instability present across nearly all
of our models strongly suggests that the gas develops a multiphase
structure (as in Huang et al. 2022). An important direction for future
work is to study the non-linear outcome of thermal instability in
multiple dimensions and its impact on both CR transport and the
observational properties of galactic winds. Other generalizations of
this work could involve including the bounding pressure of the CGM,
which we neglect, including a more realistic disc-like geometry for
the wind streamlines, and including photoheating to develop a more
realistic ISM model.
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