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ABSTRACT

Active Galactic Nuclei (AGN) are believed to provide the energy that prevents runaway cooling of gas in the cores of galaxy
clusters. However, how this energy is transported and thermalized throughout the Intracluster Medium (ICM) remains unclear. In
recent work, we showed that streaming cosmic rays (CRs) destabilize sound waves in dilute ICM plasmas. Here, we show that CR
streaming in the presence of gravity also destabilizes a pressure-balanced wave. We term this new instability the CR buoyancy
instability (CRBI). In stark contrast to standard results without CRs, the pressure-balanced mode is highly compressible at short
wavelengths due to CR streaming. Maximal growth rates are of order (pc/pg)ﬂllzwff, where p./p, is the ratio of CR pressure
to thermal gas pressure, B is the ratio of thermal to magnetic pressure, and ws is the free-fall frequency. The CRBI operates
alongside buoyancy instabilities driven by background heat fluxes, i.e. the heat-flux-driven buoyancy instability (HBI) and the
magneto-thermal instability (MTI). When the thermal mean free path /5, is < the gas scale height H, the HBI/MTI set the
growth rate on large scales, while the CRBI sets the growth rate on small scales. Conversely, when [,5 ~ H and (pc/pg)ﬁ”2 pe
1, CRBI growth rates exceed HBI/MTI growth rates even on large scales. Our results suggest that CR-driven instabilities may
be partially responsible for the sound waves/weak shocks and turbulence observed in galaxy clusters. CR-driven instabilities

generated near radio bubbles may also play an important role redistributing AGN energy throughout clusters.
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1 INTRODUCTION

The cores of galaxy clusters are filled with virialized, hot gas, with
typical temperatures exceeding 10’ K. The X-ray luminosities of
most cluster cores imply cooling times that are significantly shorter
than the ages of these systems. Without a source of heating, this hot
gas is expected to cool, sink to the center and form stars at a high rate.
However, observations find significantly smaller star formation rates
and cold gas masses than are predicted by the ‘cooling flow” model
(e.g. Peterson & Fabian 2006). This suggests that there is a source
of heating present that keeps the gas in cluster cores in approximate
thermal balance.

Central Active Galactic Nuclei (AGN) and the interaction of their
jets with the Intracluster Medium (ICM) are believed to play an
important role in providing the energy that prevents runaway cooling
of ICM gas. In particular, observations suggest that energy is carried
away from the central AGN by jet-inflated bubbles of relativistic
plasma that buoyantly rise into the ICM. There is a strong correlation
between the power needed to inflate the bubbles and the radiative
losses of the hot gas (Churazov et al. 2000; Birzan et al. 2004;
Rafferty et al. 2006; Nulsen et al. 2009; Hlavacek-Larrondo et al.
2012; see Werner et al. 2019 for a recent review).

How this energy is subsequently transported and thermalized
throughout cluster cores remains an open question. It is possible
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that the buoyantly rising radio bubbles stir turbulence by exciting
internal gravity waves (IGWs; e.g. Zhuravleva et al. 2016; Zhang,
Churazov & Schekochihin 2018), launch sound waves and/or weak
shocks (e.g. Fabian et al. 2003, 2006; Sternberg & Soker 2009),
and/or inject cosmic rays (CRs) into the ICM (e.g. Guo & Oh
2008; Jacob & Pfrommer 2017a; Jacob & Pfrommer 2017b). These
processes can plausibly occur to some extent simultaneously, but it is
unclear which (if any) one is the dominant channel for ICM heating.

Relativistic CRs from both star formation and AGN may play an
important role in the evolution of gas in clusters by driving outflows
and heating diffuse gas (e.g. Breitschwerdt, McKenzie & Voelk
1991; Loewenstein, Zweibel & Begelman 1991; Everett et al. 2008;
Socrates, Davis & Ramirez-Ruiz 2008; Guo & Oh 2008; Zweibel
2013, 2017; Ruszkowski, Yang & Zweibel 2017; Jacob & Pfrommer
2017a, b; Ehlert et al. 2018; Farber et al. 2018; Kempski & Quataert
2020; Quataert, Jiang & Thompson 2022a; Quataert, Thompson &
Jiang 2022b). CRs couple to the thermal gas by scattering from
small-scale magnetic fluctuations. In self-confinement theory, CRs
are scattered by Alfvén waves propagating down the CR pressure
gradient, which they themselves excite through the streaming in-
stability (Kulsrud & Pearce 1969). Pitch-angle scattering by the
excited Alfvén waves isotropises the CRs in the frame of the waves.
In the absence of damping of the self-excited waves, this results
in CR streaming relative to the thermal gas at the local Alfvén
speed. If damping is present, CR propagation deviates from pure
Alfvénic streaming. The form of the transport correction is, however,
quite peculiar, as it corresponds to neither streaming nor diffusion
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(Skilling 1971, Wiener, Oh & Guo 2013; Kempski & Quataert
2022).

In recent work, we showed that streaming CRs drive a rapidly
growing acoustic instability in dilute ICM plasmas, the Cosmic
Ray Acoustic Braginskii (CRAB) instability (Kempski, Quataert &
Squire 2020). This suggests that the different channels for transfer-
ring and thermalizing energy in the ICM (waves, CRs, turbulence...),
usually considered separately in theoretical models, may in fact
be closely related. Here, we demonstrate that in the presence of
gravity, streaming CRs also destabilize a pressure-balanced wave,
more specifically the CR entropy mode modified by gravity. We
term this instability the CR buoyancy instability (CRBI) because
CRs and buoyancy (gravity) are critical for setting its properties. The
growth rates of the CRBI are of order the natural buoyancy frequency
(the local free-fall frequency) for plausible ICM parameters. Our
work demonstrates the potential physical richness of CR feedback in
dilute plasmas: both the CRBI considered in this work and the CRAB
instability in Kempski et al. (2020) are driven by CR streaming at the
Alfvén speed, which in a weakly collisional plasma depends on the
pressure anisotropy of the thermal gas (the pressure is anisotropic
because of the large thermal-particle mean free path in the ICM).
This dependence introduces a new form of coupling between the
CRs and the thermal gas, which is very unstable.

The remainder of this work is organized as follows. We present our
model of CRs coupled to a low-collisionality plasma in Section 2.
In Section 3, we provide a physical overview of the instability.
We derive a dispersion relation and asymptotic growth rates in
Section 4. In Section 5, we present numerical solutions to the
linearized system of equations for an isothermal background. We
discuss the relationship to other buoyancy instabilities and thermal
instability, and the importance of CR diffusion in Section 6. We
summarize our results in Section 7.

2 MODEL

2.1 Equations

We consider a low-collisionality plasma coupled to streaming CRs.
We use the weakly collisional Braginskii MHD model to describe
the thermal gas (Braginskii 1965). The equations for the gas and CRs
are,

9p
— + V. =0, 1
3 + V-(pv) (D

dv B? B.-VB an
p— ==V pr+p+ |+ + V-(bbAp) + pg.

dt 8w 4

2

0B yx(vxB) 3)
— = Vx(vxB),
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ds 3

pTE:—Vst,AP-VpL.—H:VV—V-Q—/O A(T), “
dp. 4 an

dt = _gp('v‘(v + Vst,Ap) - Vst,Ap * VPL- + V'(Kbb * VP(-), (5)

where v is the gas velocity, p is the gas density, B is the magnetic
field (with unit vector I;), s = kgln(pg/p?")/(y — 1)my is the gas
entropy per unit mass, A(7) is the temperature-dependent cooling
function, and p, is the CR pressure. d/dt = 9/9t + v - V denotes a
total (Lagrangian) time derivative. Ap = p, — pj is the gas pressure
anisotropy, where p; and p| denote the pressures in the directions
perpendicular and parallel to the magnetic field, respectively. p; and
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p are related to p, in equation (4) by

1
pPL=DPpg+ gAp- (6)

The pressure anisotropy in Braginskii MHD (with viscosity vy &
Pg/pvii, where vj; is the ion—ion collision rate; Braginskii 1965) is
given by

An 1
Ap=p, —p;=3pvs (bb:Vv—gv-v>. @)
The viscous stress tensor in the gas-entropy equation is

M=_nap (1313—%). ®)

In the absence of background Ap, the perturbed IT : Vv in the gas-
entropy equation is second-order and does not contribute in our linear
analysis. @ in equation (4) is the anisotropic thermal heat flux,

Q= —kghb-VT, ©)

where « g is the thermal conductivity.

Vg, ap in equation (5) is the CR streaming speed. We assume that
CRs stream down their pressure gradient at the Alfvén speed, which
in low-collisionality plasmas depends on the thermal-gas pressure
anisotropy, '

drAp\ '
”p), (10)

Vst,Ap = XVA,Ap = X VA (1 + B
where vy = B/+/4mp is the Alfvén velocity in the absence of
pressure anisotropy, and y = —b.v Pe/ |I; - Vp.| = £1 ensures that
the CRs stream along B down their pressure gradient and makes the
CR heating term —vg A + V p in the gas energy equation (4) positive
definite. We also include CR diffusion along the magnetic field in
equation (5).

2.2 Dimensionless parameters and characteristic frequencies

We define the ratio of CR pressure to gas pressure,

n= =, (11)
Pg

and the ratio of thermal to magnetic pressure,

= . (12)

The relevant frequencies are the gas sound frequency (with ¢, being
the isothermal gas sound speed),

w,; = key; (13)
the Alfvén and CR-streaming frequency,
wa =k - vy (14)
the CR diffusion frequency,
wg =« bk (15)
the free-fall frequency,

s
or= = (16)

'We note that the original expression for the Alfvén speed in Kempski et al.
(2020) was incorrect, as the 1/2 exponent in the Ap term in equation (10)
was by accident omitted. This was corrected in Kempski, Quataert & Squire
(2021). However, the conclusions of Kempski et al. (2020) are not affected
by this change.
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where H is the gas scale height; the cooling frequency,

2
A
we=22 an
Py
the ion—ion collision frequency vy and the associated Braginskii
viscous frequency,

op = vp(b -0 ~ LBk (18)
PVii
and the conductive frequency,

Weona = xa(b - k)2, (19)

where x g = kg/nkg is the thermal diffusion coefficient. We can relate
the diffusive time-scales by defining the thermal Prandtl number,

Pr="2, (20)
XB
We use Pr = 0.02 as the default thermal Prandtl number in this work
~ square root of the electron-to-ion mass ratio), i.e. heat conduction
due to electrons operates on a much shorter time-scale than viscous
forces due to the ions. We also define the ratio of the CR diffusion
coefficient to the Braginskii viscosity,

K
=—, ey
VB
which turns out to be an important parameter quantifying the
suppression of the CRBI and CRAB instability by CR diffusion
(see also Kempski et al. 2020).

2.3 Validity of the model

2.3.1 Thermal gas

The CR entropy mode describes the response of the two-fluid CR-
thermal gas system to a CR pressure perturbation. Since CRs propa-
gate along field lines at the Alfvén speed, this mode is characterized
by a frequency of order w, (absent CR diffusion). The collisional
(Braginskii MHD) regime then requires that ws < vj;, or equivalently
ke, K B 1”2 In addition, the assumption that the heat fluxes are due to
electrons (Pr ~ 0.02) is valid if the electron-ion thermal equilibration
rate is >wp. The electron—ion thermal equilibration rate is slower
than the ion—ion collision rate by the square root of the electron-to-
ion mass ratio, te;' ~ (mq/m;)'*vy ~ vy /40, which means that ions
and electrons are thermally coupled for @ ~ wa modes if ki, <
B'2/40. We will typically assume 8 ~ 100 and so the Braginskii
MHD model employed here is valid for kg < 1. Throughout the
paper we show results of our calculations for kg < 1 although we
stress that the Braginskii model is not strictly valid for klye, ~ 1.
However, our results using collisionless fluid models (Section 6.3
and Fig. 10) suggest that the growth rates are qualitatively similar
for klye, > 1.

We further note that the expression for the pressure anisotropy in
(7) ignores the effect of heat fluxes on Ap (Mikhailovskii & Tsypin
1971). In particular, in the collisional limit the pressure anisotropy
in the presence of heat fluxes is (e.g. Schekochihin et al. 2010),

_ Vel(gL —gqPh1+3¢.V - b
3py ’

~n 1
Ap =3pvp <bb:Vv—3V-v

(22)

where g, and g are the parallel fluxes of perpendicular and parallel
heat, respectively. In the high-collisionality limit with Ap < p,, the
heat fluxes are g, ~ q;/3 ~ —«gb - VT where kg is the thermal
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conductivity, T = pe/nkg and p, is given by (6). In this limit, we
find that the results of this paper are not significantly affected by
the heat-flux term in equation (22). We thus use equation (7) for
simplicity throughout this work. However, we note that the collisional
expressions for Ap, g, and g are not valid on scales approaching
the ion mean free path. In this limit, separate evolution equations for
the ion and electron perpendicular and parallel pressures should
be considered. We briefly discuss this regime in Section 6.3 and
Appendix A, focusing on the ions. Our results suggest that the CRBI
is qualitatively similar in the low-collisionality limit (Fig. 10).

In the dilute and hot ICM, the ion-ion collision rate is small

_3p
~ 8 x 10~ M5! r R

5% 107K 0.0l cm—3’

(23)

nie*w In A

yy ~ iemInA
L omi el

for a Coulomb logarithm In A = 38. The collision rate in (23)
corresponds to a mean free path of order 0.1 kpc.

2.3.2 CRs

The CR pressure equation (equation (5)) is a good model for the CRs
if the collision frequency of the energetically important GeV CRs is
much larger than any other time-scale of interest. As pointed out in
Kempski et al. (2020), the GeV CR collision frequency (the rate at
which the pitch angle changes by order unity, due to scattering by
magnetic fluctuations) is likely much higher than the thermal ion-ion
collision frequency in the ICM:

§B.\? 8B, /B\?
ver ~ (—BL) ~ 1078 ! ( L/ ) , (24)

10-3

where €2 is the non-relativistic gyro-frequency and §B, /B is evalu-
ated for fluctuations whose wavelength parallel to the mean B-field is
of order the Larmor radius of the GeV particles. The above collision
frequency corresponds to a CR mean free path of order 1 pc, which
approximately corresponds to the empirically derived CR mean free
path in the Milky Way (e.g. Amato & Blasi 2018). This suggests that
treating CRs as collisional on thermal-ion-mean-free-path scales is
a reasonable model for the ICM.

In the limit of good coupling between the GeV CRs and the self-
excited Alfvén waves (large pitch-angle scattering rate), CR transport
is to leading order described by Alfvénic streaming. Damping of
the self-excited Alfvén waves introduces corrections to Alfvénic
streaming. We model this by also including CR diffusion in our
linear analysis. As we will show, significant CR diffusion suppresses
the CRBI on small scales.

2.4 Background equilibrium

We consider static background equilibria with constant B =
(By, 0, B;), in which the CR and gas pressure gradients balance
gravity, g = —gZ,

d
= 2 = —pg. 25
dz(pg+p,) g (25)

If CR diffusion does not affect the background state (either because
k = 0 or dp./dz = const), CRs are in equilibrium according to
equation (5) if p. o« vo~*3, or equivalently,

pe o p*3. (26)

In this work we perturb equilibria that satisfy equations (25) and
(26), although these equations do not yet constrain the background
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temperature 7(z). We will consider different temperature profiles in
Sections 5 and 6.

2.5 Linearized equations

We carry out a linear stability calculation of the CR—thermal gas
equations (Section 2.1) for backgrounds that satisfy equations (25)
and (26). We focus on short-wavelength modes satisfying kH >
1 (in Fig. 8 we include kH ~ 1 modes just to show growth rates
of previously identified buoyancy instabilities) and perform a local
WKB calculation in which all perturbed quantities are assumed to
vary as 8X(r,t) x exp(ik - r —iwt). We consider two coordinate
systems in this work. We will mostly use the usual Cartesian
coordinate system with the z-axis antiparallel to g and x and y
defining the plane perpendicular to gravity. We define associated
polar angles such that B, = Bsin 0, B, = Bcos 0, k, = ksin 6,cos ¢,
ky, = ksin@;sin ¢y, and k, = kcosf;. We use ¢; = 0 in all the
figures except Fig. 6, because ¢, = 0 captures the fastest-growing
mode. For analytic purposes, it is convenient to also use a coordinate
system aligned with the direction of the magnetic field. We define
1 and || to denote the directions perpendicular and parallel to the
magnetic field. We will use this coordinate system in Section 4
when we derive an approximate dispersion relation, as it makes
the analytics more tractable. However, when we plot numerically
calculated growth rates of the instability in Figs 2-10, we adopt the
more standard notation with directions/angles defined relative to the
positive z-direction, i.e. cos 0y = —b-gandcost, = —k- 2.
The linearized equations are

5 1
0 —k.v-iv,22° « BG, @7
5 8pe 5B B
wv = kc? (ﬁ—i—n P +V%—“>—a)Av —
Dy Pe c; B B
. SA 5
—b(b-k)2=L g ©28)
Pg P
5B,
5L v 29
w B ”VJ_ ( )
e B 30
w B 1 V1 ( )
5 Spe 8 5pe
wﬁ = Vk'V—i()/ — Dcond (ﬁ - ﬁ) + xn(y — Dwa P
Pg Pg 1Y ¢
, oA dp, dlnAY 8p
—i(y - Do P ity — . (2 - i
W =Decgnr =, ~ )w‘( alnT) P
dl dln p,
+BG x [—ivz WP _iny — Dava,, L
z “d
i(y — 1 " .
+l(VT )V-(XBSbbAVT—I—bi&hVT)}, 31)
SA
P iV kv — ks - ). (32)
Pg Pg
Sp. 4 2 s 1 SA  spe
w2 — *k-V—*waprrfﬁwa P + (Xwa — iwg) P
Pe 3 3 p 3 < De
dinp. 2 dinp (8p. 8
FBG x |—iv, 2P L Sy, 200 (i——’o)
dZ 3 dZ DPe 1%
+ L v.(csbb - Vp, + kbsbh - v pc)} , 33)

where BG in equations (27)—(33) is a flag equal to 1 or 0. It specifies
whether gradients from the background equilibrium in equations
(25) and (26), i.e. terms of the form v.,dp/dz, are included in
the calculation. Without the background gradients equilibrium is
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not satisfied and so the BG terms should formally be kept in the
linear perturbation analysis. However, for analytic simplicity, we
set BG = 0 when we discuss the physics of the instability and
derive approximate dispersion relations in Sections 3.2, 3.3, and 4.
This turns out to be a reasonable approximation, as the CRBI is not
directly driven by the background gradients. We do, however, include
background gradients, i.e. we set BG = 1, when we solve for the exact
eigenmodes numerically (Section 5 and all the figures presented in
this paper).

3 PHYSICAL OVERVIEW OF THE
INSTABILITY

In this section, we provide an overview of the key physics describing
the CRBI. To start, we give a brief summary of entropy and gravity
waves in stratified CR MHD (Section 3.1). This will set the stage
for our analysis and elucidate how the CRBI is related to other
instabilities that may operate in the ICM (such as thermal instability
or other buoyancy instabilities).

3.1 Gravity and entropy modes in stratified media
3.1.1 MHD modes

In a gravitationally stratified medium without magnetic fields, the
hydrodynamic entropy mode becomes an IGW characterized by the
Brunt—Viiséld frequency (e.g. Defouw 1970),

dlIn dlnp
N =8 (2P TN (34)
y dz dz

In MHD, gravitational stratification affects the MHD slow mag-
netosonic modes, as both buoyancy and magnetic tension act as
the modes’ restoring forces (e.g. Defouw 1970, Stein & Leibacher
1974). The resulting mode resembles the hydro IGW at long
wavelengths, and the standard MHD slow mode (absent gravity)
at short wavelengths. In contrast to hydrodynamics, in MHD there
is also a mode that is unaffected by buoyancy despite a non-zero
density perturbation (Defouw 1970). We refer to this mode as the
MHD entropy mode.

‘We now compute these modes more explicitly in high-8 collisional
MHD, first assuming that no CRs are present. For simplicity, we shall
consider the 2D case with B = BZ, g = —gZ, and k in the x—z plane.
We start with the momentum equation,

5 258 §B
wv = ké? (ﬂ+vi2—) — oAV — i L gt 35)
pg ¢ B B P

Crossing the momentum equation twice with k and taking the z-
component we find,

5
Wk vy — K2V,) = woavak? ko vy + gk 2. (36)
0

In the Boussinesq limit (8p,/p, < 8p/p), the adiabatic gas entropy
equation ds/dt = 0 (equation (31) without CRs, cooling and conduc-
tion) implies that
Sp i (dlnpg dlnp) vy
w— = —V, -y =]—
0 y dz dz g
Using incompressibility kv, ~ —k,v, we find the dispersion relation
for MHD slow modes modified by gravity,

dlnp, dlnp)

N2, 37

dz 4 dz

0k = wpvakk. + kf_f ( (38)
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or,

k2
o = o+ 5N (39)
For subdominant magnetic tension (first term on RHS) we get the
usual dispersion relation for the two hydrodynamic IGWs, w =
+Nk,/k. At short wavelengths where magnetic tension dominates,
the two gravity waves satisfy the standard dispersion relation for the
MHD slow modes at high 8.

Unlike the hydrodynamic entropy mode, the MHD entropy mode
does not pick up a buoyancy response. To see why this is the case,
we first note that a mode with @ = 0 and v = 0, but finite §p/p,
satisfies the continuity (equation (27)), induction (equations (29)
and (30)), as well as the gas-entropy (equation (31) absent heating,
cooling, and conduction) equations. In hydrodynamics, however, this
mode does not satisfy the momentum equation (see equation (35)
without the perturbed magnetic field), as the direction of gravity and
k are generally not co-linear. By contrast, in MHD the perturbed
pressure and magnetic-tension terms (first and second terms on the
RHS of equation (35)) are mutually orthogonal and can exactly cancel
the perturbed gravitational force. As a result, while a mode with
w = 0 and v = 0, but finite §p/p, is not an eigenmode in stratified
hydrodynamics, it is an eigenmode in stratified MHD and involves
a finite § B perturbation. When magnetic tension is negligible, i.e.
in the hydrodynamic limit with ws < N (long wavelengths or § —
o0), the w = 0 mode can only be satisfied if §B/B >> §p/p. The
hydrodynamic variables are therefore essentially unperturbed in this
limit, which is consistent with the result in stratified hydrodynamics.

3.1.2 CR MHD modes

When Alfvénically streaming CRs are present, the CR pressure
equation (equation (5)) introduces a new mode, which we refer to
as the CR entropy mode. Because CRs are assumed to stream at the
Alfvén speed along field lines, the CR entropy mode is characterized
by the Alfvén frequency, w = xk - vo = xwa (although the eigen-
frequency can deviate appreciably from the Alfvén frequency if CR
diffusion is important or if n 2 1 due to the fact that the CR entropy
mode is then associated with significant density fluctuations). The
x factor in front of w, reflects the fact that the CR entropy mode
propagates down the CR pressure gradient. For  — 0 the impact of
CRs on the thermal gas is small, and so the CR entropy mode does not
perturb the thermal gas. Using that the background density gradient
satisfies 2dIn p/dz = 3dln p./dz in equilibrium, (33) becomes,

dinp,\ 8p,
<w—wa+iw,, —iva,z—”') Pe o, (40)
dz De
with solution,
dIn p,
© = xor =g +ixva L 1)
Z

Diffusive corrections to CR streaming act to damp the mode. The
CR background gradient term also introduces an imaginary part that
looks like damping. However, the more accurate interpretation of this
term is that as the mode propagates down the CR pressure gradient,
the perturbation amplitude normalized by the local CR pressure,
dp./p.(z), remains constant.

Because streaming CRs heat the gas at a rate —x vy - V p,, they
also modify the gas-entropy mode by giving it a real (oscillatory)
frequency, which at small  is @ &~ —4nwa/15 (Kempski & Quataert
2020). Importantly, to leading order CR heating does not significantly
affect the growth/damping of the gas-entropy mode (e.g. due to
thermal instability), just its real frequency.

CR buoyancy instability 1897

Slow /IGW

Slow /IGW
= Gas Entropy
= CR Entropy
....... — iy
n=20.1,8 = 1000
Op = 45°,0), = 90°

CR MHD
0 T 10°
kH

Figure 1. Oscillation frequencies of gravity/slow and entropy modes in
stratified, collisional CR MHD. The frequencies are normalized by the Brunt—
Viisild frequency. Here, and in other figures (except Fig. 6), we use ¢y =
0. The two modes that are characterized by the buoyancy frequency at long
wavelengths (orange and pink lines) become the MHD slow magnetosonic
modes at short wavelengths. The oscillation frequency of the gas-entropy
mode (green line) is due to CR heating. The blue line shows the CR-entropy
mode with frequency ~wa, with the small deviation arising from finite . We
will show that gravity destabilizes the CR-entropy mode in low-collisionality
MHD. We term this instability the CRBI.

We summarize the discussion above by showing the oscillation
frequencies of gravity and entropy modes in stratified, collisional
CR MHD in Fig. 1. The frequencies are normalized by the Brunt—
Viisdld frequency. The two modes that are characterized by the
buoyancy frequency at long wavelengths (orange and pink lines)
become the MHD slow magnetosonic modes at short wavelengths.
The gas-entropy mode (green line) is unaffected by buoyancy, and its
oscillation frequency is due to CR heating. The blue line shows the
CR-entropy mode with frequency ~wj. Fig. 1 suggests that the CR-
entropy mode is not significantly affected by buoyancy in collisional
MHD. However, we will show that gravity destabilizes the mode in
low-collisionality MHD (i.e. on small scales), which we term the
CRBIL

3.2 Compressible CR entropy mode due to streaming

Surprisingly, the CR entropy mode becomes highly compressible
at short wavelengths due to the influence of a finite mean free
path in the background plasma, i.e. due to Ap (this is also true
in a uniform background without stratification). At high B, pressure
balance implies dp. + dp1 ~ 0. In the isothermal limit due to rapid
conduction (Pr < 1), such that to leading order 8p, /p, ~ §p/p, and
neglecting CR diffusion, this can be rewritten as (see equation (33)):

4 2 s 1 SAp
sp  Sp. 8 kv —5xoaT +3B0ax
By Py e LT o @2)
o Py P W — XA

In the limit of long wavelengths/high collisionality such that §Ap is
negligible, pressure balance is achieved if §p/p — 0, i.e. kyvy + kyv,
+ kv, =0or ky - vy + kv = 0. This is the standard result that
pressure-balanced modes are nearly incompressible at high .

At shorter wavelengths and high g, the  Ap/p, term is dominant
for the CR entropy mode with w & w, . Pressure balance then requires
that the pressure anisotropy is minimized, § Ap = 0. This condition
leads to the unusual requirement that the pressure-balanced mode is
highly compressible. In Braginskii MHD Ap oc 2kyvy —ky - v1)
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so that equation (42) is satisfied when,
kv, %2k”VH. (43)

The exact relation satisfied by v, and v can be different in the colli-
sionless regime, i.e. below the ion mean free path, where Braginskii
MHD is no longer valid. However, the qualitative conclusion remains
the same and the mode is very compressible. We next show how the
pressure-balanced compressible mode is destabilized by gravity.

3.3 How gravity destabilizes the compressible CR entropy
mode

To show how gravity destabilizes the compressible CR entropy mode
discussed above, we consider a simple model in which we ignore
magnetic tension and damping by anisotropic pressure (viscosity).
As in Section 3.1, we consider the case B = BZ, g = —gZ, and
consider a mode with k,v, = ak,v, imposed by pressure balance. As
described in Section 3.2, « = —1 in standard MHD, while @ = 2 in
Braginskii MHD with CRs. The momentum equations are,

k
vy, = ;XaPmt, (44)

k. 1+ a)k,v,
e = 25 Py — e, T 43)

where 8P = 8p, + 8p. + 8(B*/87) is the total perturbed pressure.
In the equation for v, we used that w§ p/p ~ (1 4+ a)k,v.. Multiplying
equation (44) by k, and subtracting from equation (45) times ak,, we
find that

8 Pt

z

(ak? — k2) = ia(l + @)k coomp (46)

1)
Using this expression for § P, back in equations (44) and (45) gives
a simple dispersion relation:

1 kx? 12
w~ E(l +1i) | (1 + a)kzcxa)ffm ~ Jowsw. A7
In this simplified picture gravity leads to growth rates that are of order
~ Jogws > wg. The above analysis can be easily repeated for the
case g L B (i.e. horizontal magnetic field in a vertical gravitational
field), with very similar results. We stress that the scaling ~ /oo,
in equation (47) does not describe compressible sound waves,
which are approximately longitudinal at high B: o ~ k2/k2 and the
denominator in equation (47) is approximately zero.

Akin to standard buoyancy instabilities, the mode found here
is destabilized by the unbalanced gravitational force acting on
the mode’s density fluctuations. However, in contrast to standard
buoyancy instabilities, such as thermal convection in stars or the
magneto-thermal instability (MTI; Balbus 2000) and the heat-flux-
driven buoyancy instability (HBI; Quataert 2008) in clusters, the
density fluctuations in the CR-driven instability are not due to the
background stratification of the plasma. The density fluctuations at
short wavelengths are instead due to CR streaming, independent of
the background stratification.

In subsequent sections, we show that while magnetic tension
does not affect the growth rate significantly, the effect of damping
by anisotropic pressure should generally be retained. However, at
sufficiently high B there is a range of scales for which the simple
model considered in this section provides a good picture of the
instability (see equation (51) below), and the growth rates are
indeed ~ ,/w;ws. This regime is shown in Fig. 2. The solid black
line shows the instability growth rate, computed from numerical
solutions of the full set of linear equations in Section 2.5, as a
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Figure 2. Growth rates of the CRBI for 8 =107, p = 0.1, and H = 1000/ np.
The angles 6p and 6 are the directions of B and k with respect to the
positive z-direction (g = —gZ). At high 8, damping by anisotropic pressure
is negligible over a range of k and the instability is well-described by the
simple model in Section 3.3. The dotted line labelled ~ ,/wswfr shows the
predicted growth rate from equation (47). This elucidates the physics of the
CRBI in its simplest form. Figs 3—10 show results for more realistic ICM
conditions.

function of wavenumber for 8 = 107, n = 0.1, B antiparallel
to g, and k, = k,. The ‘x’ markers show the growth rate for
B perpendicular to g and k, = —k;. The dotted line labelled
~ Jwswg shows the predicted growth rate from equation (47),
which matches the exact solution very well over a wide range in
k.

We now discuss the instability in the astrophysically more relevant
regimes where equation (47) is not as accurate.

4 DISPERSION RELATION AND GROWTH
RATES OF SHORT-WAVELENGTH MODES

In Section 3.3, we neglected damping by anisotropic pressure
(viscosity), which generally changes the growth rates relative to those
predicted in equation (47) (except for certain asymptotic limits, e.g.
very large B as in Fig. 2). In this section, we present a more accurate
calculation and derive an approximate dispersion relation.

For simplicity, we here ignore background gradient terms (i.e.
we set BG = 0 in equations (27)—(33)) in our analytic derivation
of the growth rates. Ignoring background gradients is a reasonable
simplification because we find that short-wavelength modes (which
are the fastest growing modes) are not significantly affected by
explicitly including background gradients (even though they should
formally be included). This is because the CRBI is due to streaming-
induced compressibility and not background stratification.”> This
is in contrast to thermal convection in stars or the MTI/HBI in
clusters, which are driven by heat conduction and background
temperature gradients. Our analytic results from this section will be
supplemented by numerical solutions of the full system of linearized
equations (equations (27)—(33)) including background gradients in
Section 5.

ZHowever, we note that a non-zero CR pressure gradient along the magnetic
field is generally necessary for equilibrium and to couple CRs to the thermal
gas.
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4.1 Dispersion relation

In this section, it is convenient to work in a coordinate system
aligned with the magnetic field: B = (0,0, B), k = (k,, 0, k), and
g = (811, 8122, &) In this coordinate system, and if we neglect
background-gradient terms (which we do here), Alfvénic fluctuations
of the form §B = (0, §B,0) and év = (0, v, 0) decouple, which
leaves velocity/magnetic field fluctuations in the k — B plane for the
remaining modes. If background gradients are kept, this is strictly true
only if gravity is coplanar with k and B. In the high-8 and isothermal
limit (weona > ®), the third order dispersion relation for the slow-
magnetosonic and CR-entropy modes can be found by crossing the
momentum equation (28) twice with k, taking the component parallel
to B and using equation (42):

2
0= o (gim@w(zkﬁ —)+ k2A> +3ik2 wpwA
WA
w 7 ~ A
+ 2502 kywesw (—kz(b o)+ (k- g)k”)
WA

2 4 wp
— (J)AVAk k” —inx—w + A s (48)
3 [N
where,

4 2
A:w—wa—}—ia)d—}—gnw—gnwa. (49)

The three solutions of the cubic dispersion relation in equation (48)
are the two slow magnetosonic waves and the CR entropy mode. The
gas entropy mode is not present because our calculation assumed
that modes are isothermal, dp,/p, = §p/p, which eliminates the gas
entropy mode (i.e. the gas entropy equation acts as a constraint).
The first term in equation (48) comes from crossing the velocity
perturbation twice with k, the second term is the damping by
Braginskii viscosity, the third term is the gravitational force, and
the last term comes from the perturbed magnetic tension. We note
that the gravitational force term, which drives the instability, is zero
if g is perpendicular to the k — B plane.

As explained in Section 3.3, the instability is driven by gravity
mediated by compressibility induced by CR streaming. The com-
pressibility is a consequence of the perturbed pressure anisotropy
8 Ap, characterized by the Braginskii viscous frequency wg, in the
CR entropy equation. This suggests that compressibility effects are
most important in the short-wavelength limit wp/wa > 1. In this
limit, the dispersion relation can be simplified to

2
0= ZixnZ2 (22 —k2) +3ik2 wpA
3 WA
wWp 2.7 A A
+2xm ke, (K- &)+ (- k)
A

2 4, wp
—wAVAk knglﬂxwi. (50)
A

4.2 Growth rates of short-wavelength modes

We split the eigenmode frequency into real and imaginary parts, w =
wr + il", such that I' > 0 corresponds to exponential growth. We
note that if magnetic tension and damping by pressure anisotropy in
equation (50) can be ignored (fourth and second term, respectively),
we recover the growth rate that was derived in Section 3.3, i.e.
I' ~ /wsws. From equation (50), we see that damping by anisotropic
viscosity (pressure) can be ignored if the third term o wg is much
larger than the damping term, or

B> n2 (“’—) (51)

wff

CR buoyancy instability 1899

At sufficiently high § there is therefore a finite range of scales where
the simple model from Section 3.3 and equation (47) correctly predict
the solution (see Fig. 2).

We proceed by solving equation (50) in the limit n < 1, i.e. for
small CR pressure fractions. To leading order, A = 0 is a solution,
which, ignoring CR diffusion, implies

W R (WA. (52)

This mode is the CR entropy mode. We stress again that the
dependence on w, in the CR entropy mode does not come from
the perturbed magnetic tension, but from CR streaming along field
lines at the Alfvén speed, which also has characteristic frequency
wa. The growth rate of the mode can be found at first order in 1 and
is approximately given by,

—k%h - g + k- gk

V2
r %XTnﬂ]/zwff 2
1

; (53)
where x = =+£1 is the parameter that ensures that CR stream down
their pressure gradient (equation (10)). The growth rate increases
with increasing 8, as at higher B the pressure anisotropy is better
minimized (equation (42)) and anisotropic viscous damping is
reduced. There is no unstable growth if gravity is normal to the
k — B plane. In the case of a magnetic field that is antiparallel to g,
I~ xnB'wx, B =Bz, g=—g3. (54)
For a horizontal magnetic field along x,

k ky

k2 + k2

I~ —xnp"wg B = Bx, g = —gZ. (55)
While for B = BZ and x > 0 all modes are unstable (except when
k is approximately parallel to or perpendicular to B), for B = BX
growth occurs if ykk, < 0. Unless B || g and xB - g > 0 (dp./dz
> 0, which is unlikely), there exists a region in k-space where there
is wave growth. We note that for horizontal magnetic fields growth
rates can be higher than for vertical magnetic fields because of the
extra factor that depends on the direction of propagation, although
growth rates with k, > k,, k. do not diverge because the ordering
used to derive equations (53)—(55) breaks down.

The above solutions are for pure CR streaming and also do not
include the impact of background gradients on the growth rates. By
neglecting CR diffusion we have assumed that CRs are perfectly
coupled to the self-excited Alfvén waves and so stream at the
Alfvén speed. We include CR diffusion in our analysis to relax
the assumption of pure Alfvénic streaming, which certainly breaks
down on small scales. From equation (48), or from the fact that in the
presence of diffusion the CRs’ natural frequency is w ~ wa — iw,
(see equation (41)), we can estimate that CR diffusion suppresses the
instability when

wa 2 0B oy (56)

or equivalently

I 12
Kl > (dfl Ffpnﬁ”z) : (57)

where we used the parameter ¢ defined in equation (21).

Equation (41) also allows us to estimate how background gradients
affect the growth rate in equation (53). The background CR pressure
gradient modifies the mode’s imaginary part by va .dlnp./dz ~
Va../H ~ wi/B'"?, which encapsulates that as the perturbation prop-
agates down the CR pressure gradient, 5p./p.(z) remains constant in
collisional MHD without CR diffusion. The background therefore
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significantly modifies the growth rate if,

wif >

/31/2N77,31/2“)ff = 5B (58)

We stress again that for 7 < 87! the mode is not damped in the usual
sense, because it maintains approximately constant dp./p.(z) as it
propagates down the CR pressure gradient.

5 CRBI IN AN ISOTHERMAL ATMOSPHERE

We now complement the analytics of Section 4 with numerical
solutions of equations (27)—(33) including background gradients.
In this section, we consider an isothermal atmosphere in order to
isolate the CRBI from the HBI/MTI, which require background
temperature gradients. As our fiducial set of parameters, we use n =
0.1, B =100, and H = 100l¢,. The background is in the hydrostatic
equilibrium described by equations (25) and (26). We assume that
the background CR heating is balanced by an unspecified cooling
function, which we do not perturb in our linear analysis, except
in Section 6.2 (see Kempski & Quataert 2020 for a discussion of
thermal instability with streaming CRs). Unless specified otherwise,
we will consider wavevectors k in the B — g plane, i.e. ¢, = 0 (see
Section 2.5), motivated by the fact that the instability is not present
if g is perpendicular to the B — k plane. We show how growth rates
depend on ¢, in Fig. 6.

The physics of the instability described in Section 3 becomes
apparent by plotting the properties of the CRBI. We show the mode
properties for n = 0.1 and 8 = 100 in Fig. 3. We plot the oscillation
frequency in panel (a), the growth rate in panel (b), kv /k v, , which
quantifies the compressibility of the mode (=—1 if incompressible),
in panel (c), and [8p, + 8(B/8m )1/8pg, which quantifies the degree of
pressure balance (=—1 if pressure balanced, i.e. 8p. + 8(B*/8w) +
dpg = 0), in panel (d). The blue line shows the unstable CR entropy
mode. For completeness, we also plot the MHD slow modes and
the gas-entropy mode. Panel (b) shows that all modes except the
CR entropy mode are strongly damped by low-collisionality physics
(viscosity and conduction). At small k, the CR entropy mode is
approximately incompressible (kv &~ —k, v ) and the growth rates
are <wg. At high k, the mode becomes compressible due to CR
streaming, approaches kv, = 2kjv|, and the growth rate reaches
the plateau given by equation (53). We note that k; v, does not quite
reach 2k v because we limit the x-axis to klng, < 1, where the
Braginskii MHD model is valid. The oscillation frequency ~w, is
set by the characteristic frequency of CR streaming.

In Fig. 4, we show growth rates of the CRBI for the fiducial
parameters and different ratios of CR pressure to gas pressure, 1.
The instability exists even for small CR pressures, but with reduced
growth rates. In the analytics in Section 4 without background
gradients, the instability exists for arbitrarily small CR pressures.
Here, we find that with background gradients, within our local WKB
framework, the instability exists for any n > B~' (ignoring CR
diffusion), which is consistent with the discussion at the end of
Section 4.2. However, we stress that because for very small n (e.g.
n =0.0251in Fig. 4) the mode’s e-folding distance is generally of order
or larger than the background scale height (if ['/wg < 87'"%), a more
general treatment than our local WKB approach would be valuable to
study the overstability in this parameter range. We show the number
of e-folds N, generated by the CRBI during one scale-height-crossing
time as a function of n in Fig. 5. We use that the mode propagates
along the magnetic field at approximately the Alfvén speed (equation
(52); this is correct to a very good approximation at small 7, for n ~
1 the real frequency is ~ 20 per cent less than predicted by equation
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Figure 3. Mode properties for n = 0.1, = 100, and H = 100/yf,. 65 =
45° and 0 = 90° are the directions of B and k with respectto Z (g = —g2),
while L and || are defined w.r.t. B. We plot oscillation frequencies in panel
(a), growth rates in (b) (I' > 0 corresponds to growth), kj v /kL v, which
quantifies the compressibility of the mode, in (c), and [§p. + S(Bz/Sn)]/(Spg,
which quantifies the degree of pressure balance, in (d). The blue line shows
the unstable CR entropy mode, the orange and pink lines are the MHD
slow modes, and the green line is the gas-entropy mode. All modes except the
CR entropy mode are damped by low-collisionality effects. Long-wavelength
CR entropy modes are approximately incompressible and the growth rates are
small. High-k CR entropy modes become compressible due to CR streaming
while maintaining pressure balance, and the growth rate reaches the plateau
given by equation (53).
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Figure 4. Growth rates of the CRBI for 8 = 100, H = 100/if,, and different
ratios of CR pressure to gas pressure, 1. The other parameters are set to
the fiducial values (Section 5). The angles O = 45° and 6y = 90° are the
directions of B and k with respect to the positive z-direction (g = —g2).
Even at very small CR pressures (small 7), the instability still exists in our
local analysis (see main text for more discussion), but with reduced growth
rates (equation (53)).

s/ ____. %nﬁl/QwﬂH/VA,z

102 101 10°

Figure 5. Number of e-folds, N,, generated by the CRBI in the time it takes
the mode to propagate one scale height in the vertical direction, as a function
of n and for selected values of kH. Here we use 8 = 100, 6p = 45°, and 6} =
90°. We use equation (52), i.e. that the mode propagates at the Alfvén speed
along the magnetic field (this is correct to a very good approximation at small
n, with ~ 20 per cent deviations for n ~ 1). The magenta dashed line uses
the growth rate from equation (53), which assumes small 1 and does not take
into account background gradients (which decrease the growth rate in our
local analysis, see discussion at the end of Section 4.2). The black lines use
growth rates computed numerically from equations (27) to (33). It is worth
noting that for parameters which yield No < 1 (here n < 0.05) the CRBI
does not result in significant amplification over one scale-height-crossing
time. The local WKB method we use to study the CRBI is most reliable for
Ne > 1.

(52)). Our WKB results are most reliable for parameters which yield
Ne> 1.

We show growth rates as a function of propagation direction at
fixed kH = 20 in Fig. 6 for different orientations of the background
magnetic field. The growth rates in the three panels have a qualita-
tively different angular dependence, consistent with equations (54)
and (55). For horizontal magnetic fields growth rates are larger than
for vertical magnetic fields, but growth occurs in a smaller region of
k-space.

CR buoyancy instability 1901
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Figure 6. CRBI growth rates as a function of propagation direction for n =
0.1, B = 100, H = 100/fp, and fixed kH = 20. The angles 04 and ¢; are
defined such that k, = ksin 6cos ¢y, ky = ksin 0sin ¢y, and k; = kcos 6 (all
the other figures in this paper use ¢; = 0). The three panels show growth
rates for different orientations of the background magnetic field relative to
gravity, which is in the —Z2 direction. The growth rates have a qualitatively
different angular dependence for the different field geometries (see equations
(53)-(55)).

In Section 4.2, we noted that significant CR diffusion suppresses
the CRBI at short wavelengths. We now show this explicitly in
Fig. 7 for different values of ®, which quantifies the strength of CR
diffusion (equation (21)).3 As predicted by equation (57), diffusion
suppresses the instability at high k.

3We assume that CR diffusion does not affect the background equilibrium,
i.e. we assume an approximately linear CR pressure profile, kd>p./dz> =~ 0.
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Figure 7. CRBI growth rates as a function of wavenumber and the CR
diffusion coefficient (quantified using the parameter ¢ defined in equation
(21)). We assume n = 0.1, B = 100, H = 100/, and the isothermal
background described in Section 5. CR diffusion suppresses growth at high k&
(equation (57)) and can completely shut off the instability if sufficiently large
(equation (59)).

Given that the CRBI typically becomes important on scales kH >> 1
and that at longer wavelengths buoyancy instabilities such as the HBI
and MTI are generally more important (see Section 6.1 and Fig. 8),
we can rephrase equation (57) in terms of a rough overall criterion
for the suppression of the CRBI by CR diffusion (however, we note
that for large thermal mean free paths, as in cluster outskirts, the CR-
driven instability is important on scales kH ~ 1, see Fig. 10). Setting
kminH as the largest scale on which the CRBI operates and using
equation (57), we find that CR diffusion suppresses the instability if,

H (kninH\

® > 0.01p8"2 — <L> . (59)
Imtp 10

For n = 0.1, B = 100, kyix H = 10, and H = 100/, CR diffusion

suppresses the instability for ® 2> 1, roughly consistent with Fig. 7.

6 DISCUSSION

6.1 CRBI versus HBI/MTI

‘We now consider the relationship between the CRBI and previously
identified buoyancy instabilities driven by background temperature
gradients and heat fluxes, i.e. the MTI (Balbus 2000) and the HBI
(Quataert 2008). How CRs may affect these buoyancy instabilities
has been considered in previous work (e.g. Chandran & Dennis 2006;
Dennis & Chandran 2009; Sharma et al. 2009). However, they did
not use streaming CR transport and so the CRBI was not included in
their calculation.

Instead of an isothermal atmosphere as in Section 5, we here
consider a background temperature that increases with height, as is
the case in cluster cores:

d a3 dInT 1
7(pg + pc) = —pg, Pec X o777, =H s (60)
dz dz

where H = ¢?/g = ¢, /wy. This equilibrium with vertical magnetic
field and T increasing with height is unstable to the HBI at high B
(driven by the background anisotropic heat flux). We also consider a
background with d7/dz < 0 and a horizontal magnetic field, B = BX,
which is unstable to the MTI. To study the MTI we consider the
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Figure 8. CRBI versus buoyancy instabilities driven by background strati-
fication and anisotropic heat conduction, the HBI (top) and MTI (bottom).
We use 8 = 100, H = 100/, and different 1. Long-wavelength modes are
destabilized by thermal conduction, as in the MTI/HBI. Short-wavelength
modes are stable to the HBI/MTI due to the stabilizing effect of magnetic
tension. Short-wavelength modes are, however, destabilized by the compress-
ibility induced by CR streaming. The CRBI therefore operates alongside the
long-wavelength HBI and MTI. For n = 0.4, the CRBI and the MTI are
destabilizing the same mode (also true for the HBI at higher 8).

following background,
dp, dinT , s

— = —pg, p = const, -H  =——. (61)
dZ Z Cs

For the MTI, we assume that |b - V p.|/p. < H™', so that the CRs
are coupled but their background gradient is sufficiently small to
be ignored (which is consistent with our choice of p & const). We
stress that this choice is made for the sake of simplicity and is not
necessarily representative of cluster conditions.

We show growth rates for the backgrounds described by equations
(60) and (61) in Fig. 8, for B = 100, H/lyg; = 100, and different
values of n. We include kH ~ 1 in Fig. 8 to show HBI/MTI
growth rates, although we note that our WKB approach is not
rigorous in this wavelength regime. At small k, growth rates are
dominated by the HBI/MTI. At high k, the HBI is partially stabilized
by anisotropic viscosity (Kunz 2011), and the MTI and HBI are
completely suppressed by magnetic tension. The HBI is also partially
suppressed by the CR pressure gradient at long wavelengths (for large
n), where CRs are approximately adiabatic, wa < wg (Sharma et al.
2009). Short-wavelength modes are destabilized by compressibility
induced by CR streaming. We note that in the top panel there is a
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range of wavelengths where our calculation does not predict unstable
growth at small 7, which is not the case in the bottom panel. This
is due to the effect of the background CR pressure gradient on the
growth rate, explained in Section 4.2, which is not present in the
equilibrium used to study the MTI (equation (61)). Finally, we note
that for n = 0.4 the CRBI and the MTI are in fact driving the same
mode (this is also true for the HBI for g slightly larger than used in
Fig. 8).

The CRBI considered in this work therefore operates alongside
standard buoyancy instabilities driven by background gradients,
such as the HBI/MTI. Both types of instabilities are driven by
gravity acting on density fluctuations. At long wavelengths, for
which the HBI/MTI operate, the density fluctuations that intro-
duce unstable buoyancy are due to a combination of background
density stratification, rapid heat conduction and pressure balance.
At short wavelengths, the unstable density fluctuations are due to
CR streaming and pressure balance, independent of the background
stratification.

The transition from heat-flux-driven growth to CR-driven growth
in Fig. 8 occurs around kH ~ 5. The exact value is sensitive to our
choice of parameters, such as n or §. It also depends strongly on the
thermal mean free path, more specifically the ratio H/l,g,, which sets
the range of k for which CR streaming drives the mode away from
incompressibility. In particular, for H ~ I, the CRBI can have faster
growth rates than the HBI/MTI at long wavelengths (see Fig. 10) for
plausible parameters. We discuss the dependence of the CRBI on
the value of the thermal particle mean free path in more detail in
Section 6.3.

6.2 Impact of cooling

We have ignored cooling throughout this work. Given that the un-
stable short-wavelength CR entropy modes have significant density
fluctuations due to CR streaming, cooling could in principle have an
impact on the instability. However, because the unstable wavelengths
are characterized by thermal-conduction times that are much shorter
than the cooling time, the dominant response of the gas is simply
that it is isothermal, even in the presence of cooling and large CR-
driven density fluctuations. The perturbed cooling therefore has no
significant effect on the CRBI even when the cooling rate w, is
comparable to the growth rate, as we show in Fig. 9.

6.3 Dilute cluster outskirts and the collisionless regime

In Figs 3-9, we used a fixed H/lg, = 100. While H/lyyg, > 1 is
representative of the conditions in the inner regions of galaxy clusters,
Hllygp is likely smaller in the outskirts, where the ICM plasma
density is significantly reduced. A larger mean free path implies that
CR-streaming-induced compressibility effects become important on
larger scales; the growth rates of long-wavelength modes will thus
be enhanced relative to the results from Figs 3-9.

Considering a larger mean free path runs into the issue that the
range of scales for which both the Braginskii MHD model and the
WKB approximation are valid (kly,f, < 1 and kH > 1, respectively)
becomes very limited. To alleviate this issue, we here consider a
different model for the low-collisionality thermal plasma. We use
the kinetic MHD equations (Chew, Goldberger & Low 1956) with a
‘Landau-fluid’ prescription for the heat fluxes, i.e. the heat fluxes are
constrained by the requirement that the fluid equations approximately
match the linear response of the kinetic thermal plasma (Snyder,
Hammett & Dorland 1997). We use the heat fluxes from Snyder
et al. (1997) that depend on the collision rate, allowing for a smooth
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Figure 9. Growth rates of the CRBI are not significantly affected by cooling
even when the cooling rate @, is comparable to the growth rate. This is
because the mode is isothermal due to rapid conduction (the wavelengths
shown are below the Field length where thermal instability is suppressed by
conduction; Field 1965). For this plot, we assume thermal Bremsstrahlung to
be the dominant radiative cooling process.

transition between the weakly collisional (Braginskii MHD) and
collisionless regimes. The equations of the Landau-fluid model are
provided in Appendix A. For simplicity, we ignore electron physics
and only consider the thermal ions, which dominate the pressure
anisotropy because the ion collision rate is much smaller than the
electron collision rate. Ignoring the effect of the electron heat flux
on the ions is generally not rigorous (in our Braginskii calculation
the heat flux was due to electrons, hence Pr = 0.02). However, as
discussed in Section 2.3.1, the electron-ion thermal equilibration rate
is r;l' ~ (m,/m;)1?v; ~ v;/40, i.e. ions and electrons are thermally
decoupled for w ~ wa modes if klg, > B 12/40. For B ~ 100 and klntp
2 1 electrons and ions are then approximately thermally decoupled.
It is therefore reasonable to neglect the electron heat flux in the
collisionless regime, which is of primary interest in this section.

We show growth rates of the CRBI, calculated using the Landau-
fluid model (black lines), in Fig. 10 for n = 0.1, 8 = 100, and
different H/lg,. As expected, for larger /g, the growth rates of long-
wavelength modes are enhanced, as CR streaming leads to larger
density fluctuations on large scales. The asymptotic growth rate at
high k is independent of the mean free path (absent CR diffusion).
We also compare the Landau-fluid results to the Braginskii MHD
calculation for the fiducial case H/l s, = 100 (solid line and magenta
crosses in Fig. 10). There is good agreement between the two models
in the collisional regime, which shows that instability growth rates
are not very sensitive to the thermal Prandtl number, as the Braginskii
MHD model has Pr = 0.02 while the Landau-fluid model has Pr ~
1 (this is consistent with our finding that Pr = 0.02 and Pr ~ 1 yield
similar results in Braginskii MHD). The asymptotic high-k growth
rates in the two models are also remarkably similar. This is because
the qualitative physical picture of the instability does not change
between the collisional and collisionless regimes (although the exact
relationship satisfied by kv and k; v, at high k is different in the
two models, and in the Landau-fluid model kv > kv, ).

6.4 Diffusive correction to CR streaming

Fig. 7 shows that significant CR diffusion can suppress the CRBI.
The magnitude of the diffusive correction to Alfvénic streaming is
therefore critical. The diffusive correction depends on the damping
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Figure 10. Growth rates of the CRBI, calculated using the Landau-fluid
model (black lines), for n = 0.1, 8 = 100, and different H/l . The Landau-
fluid model allows us to compute approximate growth rates for both the
collisional and collisionless regimes. For larger Infp, as is likely the case
in dilute cluster outskirts, the growth rates of long-wavelength modes are
enhanced, as CR streaming leads to significant density fluctuations on large
scales. There is good agreement between Landau-fluid and Braginskii MHD
(magenta crosses) predictions in the collisional regime, as expected.

of the Alfvén waves excited by the CR streaming instability. In
the ICM, the dominant damping mechanisms are non-linear Landau
damping ~kvin(8B/B)? (Lee & Volk 1973; Kulsrud 2005) and linear
Landau damping of Alfvén waves in a turbulent background (Wiener,
Zweibel & Oh 2018). For turbulence injected on ~10 kpc (a common
scale for the radio bubbles) with perturbations comparable to the
Alfvén speed, the linear-Landau damping rate of k ~ r;' Alfvén
waves excited by GeV CRs (where ry, is the GeV CR gyroradius) is

0~4V1h
L~ 12
(rLLturb) /
—12 12
~ 1070 gV Luo \ "7 (_B_\" (62)
108cm s=! \ 10 kpc 1 G '

‘We compute the correction to Alfvénic streaming for a combination
of linear and non-linear damping mechanisms in Appendix B. The
resulting diffusion coefficient is a function of the background CR
pressure gradient. We split the total diffusion coefficient « into two
components, k(Vp.) = kaitr(Vp.) + k«(Vp.), where k is the part
of the diffusion coefficient that scales as « i o< (Vp.)~! and therefore
does not result in real diffusive behaviour (as needed to suppress the
CRBI). For purely linear damping mechanisms, ¥k = « (Skilling
1971). Diffusive behaviour in the form of a finite x4 comes from
non-zero non-linear damping.

K gige 18 plotted for different linear damping strengths in Fig. 11 as a
function of the CR pressure gradient, normalized using p. = 10~ erg
cm™3 and a scale height H, = 10 kpc. In addition to linear damping,
the waves excited by the streaming instability are damped by non-
linear Landau damping. We plot  gir rather than the total k = K giir +
ks because k gir 1S the component that acts as a diffusion term (see
Appendix B). The non-diffusive correction to Alfvénic streaming
Kk likely does not suppress the CRBI and is a small correction to
Alfvénic streaming for the GeV CRs in a steady state (Kempski &
Quataert 2022).

The horizontal dotted line in Fig. 11 shows the Braginskii viscosity
of the thermal plasma for /g = 0.2kpc and T = 3 x 107 K, and
is larger than « 4 in most of the parameter space. Fig. 11 therefore
shows that & < 1 is plausible in the ICM, and so the CRBI is not
completely suppressed by CR diffusion.

MNRAS 524, 1893-1908 (2023)

10294 — L =3x1071057!
- Ip=10"10s""
= L —— Tp=3x10""s""!
Im \.\\\
m’_‘ \\ ........................................................ '
= RN vg ~ lmfp\’th
.& \'\,
= [ TTTTT e ——— \‘\,
11 A o
RN
S,
SO\,
SO
\‘\;\.
\\\;\\'\
1072 107! 100 10!

dp./dz [10712 ergs/cm?/10kpc]

Figure 11. The diffusive correction to Alfvénic streaming calculated from
equation (B2) as a function of the CR pressure gradient, for different
magnitudes of the linear damping of Alfvén waves excited by the CR
streaming instability. The horizontal dotted line is the anisotropic viscosity
of the thermal gas for /g, ~ 0.2kpe and 7 = 3 x 107 K. Thus, ® < 1
(see equation (21)) is plausible in cluster cores and the CRBI is likely only
partially suppressed by CR diffusion (Fig. 7).

7 CONCLUSIONS

In Kempski et al. (2020), we showed that streaming CRs destabilize
sound waves in the low-collisionality ICM. The instability arises
because the Alfvén speed in low-collisionality plasmas depends on
the pressure anisotropy of the thermal gas (equation (10)). This
introduces a new unstable form of coupling between CRs and the
thermal plasma. In this work, we showed that Alfvénically streaming
CRs in a gravitationally stratified medium also destabilize a pressure-
balanced mode, more specifically the CR entropy mode. We term
this the CRBI because it is the combined action of CR streaming
and gravity (buoyancy) that drives the instability. CR entropy modes
are highly compressible on small scales (Fig. 3), which drives them
unstable in a gravitational field. In the limit of pure CR streaming (no
diffusion), there likely is no threshold for the CRBI (see discussion
in Sections 4.2 and 5). However, we stress that a global calculation,
rather than our local WKB approach, is necessary to check this
prediction, especially for parameters that result in slow amplification
(Fig. 5). The fastest growth occurs at short wavelengths, where the
mode is highly compressible, with growth rates of order n8"?wy
(equation (53)) where n = p./pg, B = Snpg/Bz, and wyy is the free-fall
frequency. Our results show that CR streaming in cluster plasmas is
a dramatically unstable process and that CR physics is important for
understanding wave propagation in the ICM, even for subdominant
CR pressures.

We gave a physical overview of the CRBI in Section 3. Instability
arises due to gravity acting on the mode’s density fluctuations. In
standard buoyancy instabilities, such as thermal convection in stars
or the MTI (Balbus 2000) and the HBI (Quataert 2008) in clusters,
the density fluctuations are due to the background stratification of
the plasma. Notably, in the CRBI the density fluctuations at short
wavelengths are due to the combined action of CR streaming and
pressure balance, independent of the background stratification. We
complemented the qualitative physical picture from Section 3 with a
quantitative dispersion-relation calculation in Section 4, and showed
growth rates and mode properties for a wide range of physical
parameters in Figs 3—10.
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7.1 Relationship to other instabilities

Previous work on dilute cluster plasmas showed that anisotropic
conduction leads to buoyancy instabilities, the MTI and HBIL
Fig. 8 shows that these instabilities dominate growth rates at long
wavelengths even in the presence of CRs, if the gas scale height is
significantly larger than the thermal mean free path, as is the case
in cluster cores. The CR-driven instability operates on small scales,
precisely where the heat-flux-driven buoyancy instabilities are stable
due to magnetic tension. The MTI/HBI and the CRBI of this paper
can thus operate simultaneously in cluster plasmas. However, we
note that the scale separation between the MTI/HBI and the CRBI
is not always so clear: in the more dilute cluster outskirts, where
the thermal mean free path is significantly larger, the CRBI can have
significant growth rates (of order the free-fall frequency for plausible
parameters) even for long-wavelength kH ~ 1 modes (Fig. 10).

In Fig. 12, we summarize how the CRBI and the CRAB instability
from Kempski et al. (2020) compare to previously identified insta-
bilities that may operate in ICM plasmas. We sketch representative
growth rates due to the different instabilities as a function of 7.
For small n, the HBI/MTI are the fastest growing instabilities
operating in the ICM (at large CR pressures we use a dashed line
for HBI/MTI because CRs may suppress the HBI, and the CRBI
and HBI/MTI can be associated with the same mode; see Fig. 8).
For n > B2 (recall that 8 > 1 in the ICM), the growth rate
of short-wavelength CR entropy modes driven compressible by CR
streaming becomes comparable to or larger than wg. For n > g~/
the CRAB instability of sound waves is also excited (Kempski et al.
2020). The impact of CRs on thermal-instability (TI) growth rates is
modest (Kempski & Quataert 2020). The CRAB instability generally
drives the fastest growing mode. This, however, does not necessarily
mean that for large n the non-linear dynamics are dominated by the
CRAB instability, as the saturation of both CR-driven instabilities
remains unclear and is the subject of ongoing work. In particular,
while the unstable CR entropy modes have smaller growth rates,
they also have smaller group speeds and so remain in the region in
which they are excited for longer. This is especially true at high 8:
waves propagating at the Alfvén speed with growth rates of order wy
undergo several e-foldings over the distance of one gas scale height
(Fig. 5).

7.2 The CRBI and CRAB instability in cluster cores

Heating by streaming CRs may balance cooling in the inner regions
of cluster cores (Guo & Oh 2008; Jacob & Pfrommer 2017a, b). For
a cooling rate w,, this requires CR pressures of order (Kempski &
Quataert 2020),

W,

n~p'2—=. (63)
st

The CRAB instability and the CRBI become important for ng'> >

1 and therefore destabilize a CR-heated medium if,

nB'2 ~ BE 21, (64)
wft

Observations suggest that wg/w,. 2 10 in cluster cores (e.g. McDon-

ald et al. 2010; Hogan et al. 2017). A CR-heated medium is therefore

plausibly unstable to the CRAB instability and the CRBI for 8 2 10,

a condition that is likely satisfied in the ICM.

We also note that the CRAB and CR buoyancy instabilities may
have, to some extent, similar observational appearances. In partic-
ular, although CR entropy modes are pressure-balanced, they are
compressible and involve finite gas-pressure fluctuations (balanced

1905

CR buoyancy instability

~ W
TI

~w,

Figure 12. Overview of instabilities in dilute ICM plasmas as a function of
1 = pelpg. For small 5, the HBI/MTT have the highest growth rates. For n 2
B2, the CRBI has growth rates larger than the HBI/MTI, and the CRAB
instability of sound waves is excited. We include approximate growth rates
of the CRBI and CRAB instability (I" ~ nB2wg for the CRAB instability is
valid above the instability threshold and as long as I' < w,; Kempski et al.
2020). CRs do not significantly affect thermal-instability (TI) growth rates for
n S 1 (Kempski & Quataert 2020). The CRAB instability drives the fastest
growing mode for n > B~"2. However, while the CR entropy modes have
smaller growth rates, they also have smaller group speeds and so remain in
the region in which they are excited for longer, potentially leading to larger
overall amplification.

by CR-pressure fluctuations). CR entropy modes may therefore
masquerade as sound waves if only the thermal-gas fluctuations are
measured. Moreover, due to their compressible nature both the CRAB
instability and the CRBI may evolve into shock-like structures that
resemble the weak shocks observed in the Perseus cluster (Fabian
et al. 2003, 2006).

In the standard picture, AGN in cool cluster cores excite sound
waves and IGWs via the time dependence of the AGN jet and the
buoyant motion of radio bubbles into the ICM. Kempski et al. (2020)
and this work suggest that waves can also be excited by the CR
pressure gradient that the bubbles provide. Future simulations will
address the non-linear evolution of the CR-driven instabilities. There
are two important stages that are crucial for the non-linear evolution
and saturation: when the amplitudes become large enough to locally
flatten the CR pressure gradient and shut off CR streaming (dp./p.
~ 1/kH; though this does not necessarily shut off the instability,
see Tsung, Oh & Jiang 2022) and when the amplitudes become large
enough for the pressure anisotropy to excite kinetic microinstabilities
such as the mirror (Barnes 1966; Hasegawa 1969) and firehose
(Rosenbluth 1956; Chandrasekhar, Kaufman & Watson 1958; Parker
1958) instabilities (which occur when |Ap| ~ B?/4r). Upcoming
work will address how this additional physics, which is not part of
the linear analysis presented here, affects the evolution of the CR-
driven instabilities and their impact on the ICM.

7.3 Dependence on CR transport physics

Both the CRBI considered in this work and the CRAB instability
in Kempski et al. (2020) are driven by CR streaming at the Alfvén
speed. The instabilities therefore operate only if the bulk of CRs
in the ICM are self-confined, rather than scattered by an extrinsic
turbulent cascade of magnetic fluctuations. According to current
theoretical models of MHD turbulence, CR scattering by Alfvénic
turbulence is likely negligible, due to the anisotropy of the cascade
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(Chandran 2000). The MHD weak cascade of fast modes may
be isotropic and more efficient at scattering CRs, and has been
proposed as an alternative to self-confinement (Yan & Lazarian
2004). However, because the weak cascade of fast modes is strongly
damped in dilute high-g plasmas, and may generally be suppressed
by wave steepening (Kadomtsev & Petviashvili 1973; Kempski &
Quataert 2022), scattering of energetically important GeV CRs by
fast modes is likely suppressed in the high-g ICM. Self-confinement
and streaming transport are therefore plausible.

The finite CR mean free path in the frame moving with the
self-excited Alfvén waves necessarily implies a correction to the
pure Alfvénic streaming model. Significant CR diffusion resulting
from this correction can suppress the CRBI (Fig. 7). However, the
magnitude and nature of the correction to Alfvénic streaming remains
uncertain. In particular, the form of the transport correction turns
out to be rather peculiar, as it corresponds to neither streaming nor
diffusion (Skilling 1971; Wiener et al. 2013; Kempski & Quataert
2022). We attempted to quantify the magnitude of the diffusive part
of the transport correction, i.e. the contribution that may suppress
the CRBI, in Section 6.4, which was based on the calculation
from Appendix B. Fig. 11 shows that the CRBI is usually not
suppressed by CR diffusion for expected ICM conditions, although
we stress that our calculation of the transport correction is quite
uncertain. First-principle simulations of the CR streaming instability,
e.g. using particle-in-cell (PIC) or MHD-PIC methods (Holcomb &
Spitkovsky 2019; Haggerty, Caprioli & Zweibel 2019; Bai et al.
2019; Bambic, Bai & Ostriker 2021; Bai 2022), are essential for
better understanding the physics of streaming-instability-regulated
transport and for deriving simplified fluid models like the one used in
this paper. Interestingly, so far these simulations tend to produce CR
transport speeds that are somewhat larger than predicted analytically
using quasi-linear theory (e.g. Bai 2022). It would also be valuable
to carry out a more complete version of our calculation—based on
CR kinetic theory—to test the conclusions of our simplified fluid
treatment (although it is worth noting that existing theories of CR
transport are quite uncertain and have difficulties explaining CR
measurements in the Milky Way; e.g. Kempski & Quataert 2022,
Hopkins et al. 2022).
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APPENDIX A: LANDAU-FLUID CLOSURE FOR
LOW-COLLISIONALITY PLASMAS

Here we provide the kinetic MHD equations and the Landau-fluid
closure for the heat fluxes used in Section 6.3 and Fig. 10. The
kinetic MHD evolution equations for the pressures perpendicular
and parallel to the magnetic field are (Chew et al. 1956),

op

a—tl +Ve(piV)+ pLVV+ V(g h)+q.V - b

An 1
= p,bb: Vv — gvﬁAp, (Al)

5 R X " 2
P V-(pyv) + V(g h) —2¢,V - b = —2p,bb : Vv + gviiAp

ot
=3(y — Dvst - Vpe,
(A2)

where we made the somewhat uncertain assumption that CR heating
is predominantly in the direction parallel to the magnetic field. This
is motivated by the fact that CR heating is due to the excitation of
parallel-propagating modes, although we note that this is not true
if damping by Alfvénic turbulence dominates, which acts to shear
the waves to high k. This choice does not, however, significantly
affect the results. The above equations are not yet complete, as
the heat fluxes are still undetermined. In the Landau-fluid closure,
the heat fluxes are set such that the linear behaviour of the fluid
model approximately matches the linear response of the fully kinetic
thermal plasma (Snyder et al. 1997). The Landau-fluid closure has
been popular for modelling collisionless plasmas, as it recovers
the fully kinetic linear damping rates (e.g. linear Landau damping
of ion acoustic waves) and instabilities (e.g. MRI) of all MHD
modes. A convenient form for the heat fluxes, which recovers
Braginskii MHD in the collisional limit, is given by (Snyder et al.
1997),

= 2C52|\ [pVH <&)_PL (]_]771_> VHB:|
V2 |kyleg) + vii P P B |’
(A3)

8()? p
q = - ” PV (*”) .
V87 lkylegy + B — 8)vi p
where ¢ = /p;/p.InSection 6.3 and Fig. 10, we use the linearized
versions of (A1)-(A4) instead of the linearized Braginskii MHD
equations (31) and (32).

(A4)

CR buoyancy instability 1907
APPENDIX B: CR DIFFUSION COEFFICIENT
IN SELF-CONFINEMENT THEORY

In this section, we provide a heuristic calculation of the CR diffusion
coefficient in self-confinement theory (a similar calculation can be
found in Hopkins et al. 2021). One challenge in this calculation is
that leading-order corrections to Alfvénic streaming are often not
diffusive. Instead they are better described by a (super-Alfvénic)
streaming or sink term (this is the case when linear damping of Alfvén
waves dominates; Skilling 1971; Wiener et al. 2013; Kempski &
Quataert 2022). For our linear analysis calculation, we are mainly
interested in the leading-order diffusive correction, which is more
likely to suppress the instability than a streaming/sink term.

We calculate the amplitude of waves excited by the CR streaming
instability, and the resulting CR scattering frequency, by equating
Alfvén-wave growth and damping. We consider a steady state with

sB?
(FL+FNL)T. =|va-Vpdl, (B1)
54

where we split the wave damping into a linear and non-linear part
(ox 8B?). T'y_ is the sum of all linear damping contributions, turbulent
(Farmer & Goldreich 2004), linear-Landau (Wiener et al. 2018), ion-
neutral and dust (Squire et al. 2021) damping, although the latter
two are likely not important in the hot and dilute ICM. I'yp is the
non-linear Landau damping rate (Lee & Vo6lk 1973; Kulsrud 2005),
I'ne = ynL(8B/B)?, where yni ~ kv, kis the wavenumber of Alfvén
waves resonant with ~ GeV CRs and vy, is the ion thermal speed.
Equation (B1) becomes a quadratic equation for the wave amplitude

§B2\’
(%) +
where 'y = |va - V p.|/p. is the inverse of the Alfvén crossing time
and ep is the magnetic-field energy density. We first consider the

limit 'y > ['ne. Equation (B2) can then be solved perturbatively to
yield

632 o FAPC 1
B2 ZFLGB

I'L §B?

o Ca pe
L B?

2¥NL €B

=0, (B2)

VYNL FAPC ) ] (B3)

FiL 2FLGB
The pitch-angle scattering rate of GeV CRs is ver ~ $208B%/B?,
which corresponds to a diffusion coefficient

2

c
Ko~ —— R Kyt Kdiffs (B4)
VCr
where,
c? 2TLe
Ky = — ", (BS)
S20 1—‘Apc
and
c? cv
Kgitt = — el (B6)

QL I’

Kst X |Va + Ve |=! reflects the well-known result that for purely
linear damping rates the diffusion coefficient is inversely proportional
to the CR pressure gradient, so that the diffusion term V -(Kl;I; - Vpe)
ends up not being diffusive at all and is better described as a (super-
Alfvénic) streaming or sink term (Skilling 1971; Wiener et al. 2013;
Kempski & Quataert 2022). By contrast, kg is independent of the
CR pressure gradient and is therefore a regular diffusion coefficient.
Conversely, if non-linear Landau damping dominates, the CR
diffusion coefficient is to leading order (from equation (B2)):

c (ZVNLEB>I/2
KNL ~ Kdiff ~ —— . (B7)
Qo \ Tape
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Figure Bl. «girr as a function of the CR pressure gradient for a linear
damping rate I'y, = 107195~ where g is the component of the diffusion
coefficient « that gives rise to actually diffusive behaviour. We estimate « gifr
from self-confinement theory by computing the total diffusion coefficient
k from equation (B2) and subtracting kg (equation (B5)) in order to not
include the non-diffusive correction when linear damping dominates. While
this method of computing  giff is not exact, it correctly recovers the diffusive
correction in the two asymptotic limits shown by the dashed lines (equations
(B6) and (B7)). This suggests that the solid line is a reasonable approximation
of the diffusive correction to Alfvénic streaming.

knL X |V » Vp.|~"/? and so we end up with a term that is again
not diffusive in the usual sense. However, in linear theory with
a background CR pressure gradient, V.(kbb .V pe) still gives a
term o< kk> (where k depends on the background gradient) and is
therefore linearly diffusive.

In the high-g ICM, linear Landau damping (Wiener et al. 2018) is
likely the most important linear damping rate. For turbulence injected
on ~10 kpc (common scale of the radio bubbles) with perturbations

MNRAS 524, 1893-1908 (2023)

comparable to the Alfvén speed, the damping rate of k ~ r[l Alfvén
waves excited by GeV CRs (where r;, is the GeV CR gyroradius) is

0.4V[h
I~ 12
(rLLturb) /
—-1/2 1/2
~ 10710 871 Vth Lturb / B / (B8)
108cm s=! \ 10 kpc 1 uG '

We plot k gif, i.€. the component of the diffusion coefficient « that
gives rise to actually diffusive behaviour, as a function of the CR
pressure gradient in Fig. B1 (see also Fig. 11 for a different version
of this plot). We calculate x4 by computing the total diffusion
coefficient « from equation (B2) and subtracting « (equation (BS5))
in order to not include the non-diffusive correction when linear
damping dominates. Simply subtracting « to obtain the diffusive
correction is not exact. However, it correctly recovers the two
asymptotic limits (equations (B6) and (B7) and the dashed lines in
Fig. B1). This suggests that the solid line in Fig. B1 is a reasonable
approximation of the diffusive correction to Alfvénic streaming.

For large CR pressure gradients, the streaming instability reaches
large amplitudes (for a fixed linear damping rate) and non-linear
Landau damping is more important than linear damping mechanisms.
The resulting diffusion coefficients are o (dp./dz)~"/>. For small
CR pressure gradients, linear damping dominates as the amplitudes
reached by the streaming instability are not large enough for non-
linear Landau damping to be important. The diffusion coefficient is
constant and approximately given by equation (B6). The horizontal
dotted line in Fig. B1 is the anisotropic viscosity of the thermal gas
for I, ~ 0.2kpc and T = 3 x 107 K. It is therefore plausible to
expect & < 1 in cluster cores and the CRBI remains active, though
is likely partially suppressed (Fig. 7).
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