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A B S T R A C T 

Active Galactic Nuclei (AGN) are believed to provide the energy that prevents runaway cooling of gas in the cores of galaxy 

clusters. Ho we ver, ho w this energy is transported and thermalized throughout the Intracluster Medium (ICM) remains unclear. In 

recent work, we showed that streaming cosmic rays (CRs) destabilize sound waves in dilute ICM plasmas. Here, we show that CR 

streaming in the presence of gravity also destabilizes a pressure-balanced wave. We term this new instability the CR buoyancy 

instability (CRBI). In stark contrast to standard results without CRs, the pressure-balanced mode is highly compressible at short 
wavelengths due to CR streaming. Maximal growth rates are of order ( p c / p g ) β1/2 ω ff , where p c / p g is the ratio of CR pressure 
to thermal gas pressure, β is the ratio of thermal to magnetic pressure, and ω ff is the free-fall frequency. The CRBI operates 
alongside buoyancy instabilities driven by background heat fluxes, i.e. the heat-flux-driven buoyancy instability (HBI) and the 
magneto-thermal instability (MTI). When the thermal mean free path l mfp is � the gas scale height H , the HBI/MTI set the 
growth rate on large scales, while the CRBI sets the growth rate on small scales. Conversely, when l mfp ∼ H and ( p c / p g ) β1/2 � 

1, CRBI growth rates exceed HBI/MTI growth rates even on large scales. Our results suggest that CR-driven instabilities may 

be partially responsible for the sound waves/weak shocks and turbulence observed in galaxy clusters. CR-driven instabilities 
generated near radio bubbles may also play an important role redistributing AGN energy throughout clusters. 

Key words: instabilities – plasmas – cosmic rays – galaxies: clusters: intracluster medium – galaxies: evolution. 
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 I N T RO D U C T I O N  

he cores of galaxy clusters are filled with virialized, hot gas, with
ypical temperatures exceeding 10 7 K. The X-ray luminosities of 

ost cluster cores imply cooling times that are significantly shorter 
han the ages of these systems. Without a source of heating, this hot
as is expected to cool, sink to the center and form stars at a high rate.
o we ver, observ ations find significantly smaller star formation rates

nd cold gas masses than are predicted by the ‘cooling flow’ model
e.g. Peterson & Fabian 2006 ). This suggests that there is a source
f heating present that keeps the gas in cluster cores in approximate
hermal balance. 

Central Active Galactic Nuclei (AGN) and the interaction of their 
ets with the Intracluster Medium (ICM) are believed to play an 
mportant role in providing the energy that prev ents runa way cooling
f ICM gas. In particular, observations suggest that energy is carried 
way from the central AGN by jet-inflated bubbles of relativistic 
lasma that buoyantly rise into the ICM. There is a strong correlation
etween the power needed to inflate the bubbles and the radiative 
osses of the hot gas (Churazov et al. 2000 ; B ̂ ırzan et al. 2004 ;
afferty et al. 2006 ; Nulsen et al. 2009 ; Hlavacek-Larrondo et al.
012 ; see Werner et al. 2019 for a recent re vie w). 
How this energy is subsequently transported and thermalized 

hroughout cluster cores remains an open question. It is possible 
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hat the buoyantly rising radio bubbles stir turbulence by exciting 
nternal gra vity wa ves (IGWs; e.g. Zhura vle v a et al. 2016 ; Zhang,
hurazov & Schekochihin 2018 ), launch sound waves and/or weak 

hocks (e.g. Fabian et al. 2003 , 2006 ; Sternberg & Soker 2009 ),
nd/or inject cosmic rays (CRs) into the ICM (e.g. Guo & Oh
008 ; Jacob & Pfrommer 2017a ; Jacob & Pfrommer 2017b ). These
rocesses can plausibly occur to some extent simultaneously, but it is
nclear which (if any) one is the dominant channel for ICM heating.
Relativistic CRs from both star formation and AGN may play an

mportant role in the evolution of gas in clusters by driving outflows
nd heating diffuse gas (e.g. Breitschwerdt, McKenzie & Voelk 
991 ; Loewenstein, Zweibel & Be gelman 1991 ; Ev erett et al. 2008 ;
ocrates, Davis & Ramirez-Ruiz 2008 ; Guo & Oh 2008 ; Zweibel
013 , 2017 ; Ruszkowski, Yang & Zweibel 2017 ; Jacob & Pfrommer
017a , b ; Ehlert et al. 2018 ; Farber et al. 2018 ; Kempski & Quataert
020 ; Quataert, Jiang & Thompson 2022a ; Quataert, Thompson &
iang 2022b ). CRs couple to the thermal gas by scattering from
mall-scale magnetic fluctuations. In self-confinement theory, CRs 
re scattered by Alfv ́en waves propagating down the CR pressure
radient, which the y themselv es e xcite through the streaming in-
tability (Kulsrud & Pearce 1969 ). Pitch-angle scattering by the 
 xcited Alfv ́en wav es isotropises the CRs in the frame of the waves.
n the absence of damping of the self-excited waves, this results
n CR streaming relative to the thermal gas at the local Alfv ́en
peed. If damping is present, CR propagation deviates from pure 
lfv ́enic streaming. The form of the transport correction is, ho we ver,
uite peculiar, as it corresponds to neither streaming nor diffusion 
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1 We note that the original expression for the Alfv ́en speed in Kempski et al. 
( 2020 ) was incorrect, as the 1/2 exponent in the � p term in equation ( 10 ) 
was by accident omitted. This was corrected in Kempski, Quataert & Squire 
( 2021 ). Ho we ver, the conclusions of Kempski et al. ( 2020 ) are not affected 
by this change. 
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Skilling 1971 , W iener , Oh & Guo 2013 ; Kempski & Quataert
022 ). 
In recent work, we showed that streaming CRs drive a rapidly

rowing acoustic instability in dilute ICM plasmas, the Cosmic
ay Acoustic Braginskii (CRAB) instability (Kempski, Quataert &
quire 2020 ). This suggests that the different channels for transfer-
ing and thermalizing energy in the ICM (waves, CRs, turbulence...),
sually considered separately in theoretical models, may in fact
e closely related. Here, we demonstrate that in the presence of
ravity, streaming CRs also destabilize a pressure-balanced wave,
ore specifically the CR entropy mode modified by gravity. We

erm this instability the CR buoyancy instability (CRBI) because
Rs and buoyancy (gravity) are critical for setting its properties. The
rowth rates of the CRBI are of order the natural buoyancy frequency
the local free-fall frequency) for plausible ICM parameters. Our
ork demonstrates the potential physical richness of CR feedback in
ilute plasmas: both the CRBI considered in this work and the CRAB
nstability in Kempski et al. ( 2020 ) are driven by CR streaming at the
lfv ́en speed, which in a weakly collisional plasma depends on the
ressure anisotropy of the thermal gas (the pressure is anisotropic
ecause of the large thermal-particle mean free path in the ICM).
his dependence introduces a new form of coupling between the
Rs and the thermal gas, which is very unstable. 
The remainder of this work is organized as follows. We present our
odel of CRs coupled to a low-collisionality plasma in Section 2 .

n Section 3 , we provide a physical overview of the instability.
e derive a dispersion relation and asymptotic growth rates in

ection 4 . In Section 5 , we present numerical solutions to the
inearized system of equations for an isothermal background. We
iscuss the relationship to other buoyancy instabilities and thermal
nstability, and the importance of CR diffusion in Section 6 . We
ummarize our results in Section 7 . 

 M O D E L  

.1 Equations 

e consider a low-collisionality plasma coupled to streaming CRs.
e use the weakly collisional Braginskii MHD model to describe

he thermal gas (Braginskii 1965 ). The equations for the gas and CRs
re, 

∂ ρ

∂ t 
+ ∇·( ρv ) = 0 , (1) 

d v 
dt 

= −∇ 

(
p ⊥ + p c + 

B 
2 

8 π

)
+ 

B · ∇B 

4 π
+ ∇·( ̂  b ̂  b �p) + ρg , 

(2) 

∂ B 

∂ t 
= ∇×( v × B ) , (3) 

T 
ds 

dt 
= −v st ,� p · ∇ p c − � : ∇v − ∇ · Q − ρ2 � ( T ) , (4) 

dp c 

dt 
= −4 

3 
p c ∇·( v + v st ,� p ) − v st ,� p · ∇ p c + ∇·( κ ˆ b ̂  b · ∇ p c ) , (5) 

here v is the gas velocity, ρ is the gas density, B is the magnetic
eld (with unit vector ˆ b ), s = k B ln ( p g / ργ )/( γ − 1) m H is the gas
ntropy per unit mass, � ( T ) is the temperature-dependent cooling
unction, and p c is the CR pressure. d /d t ≡ ∂ / ∂ t + v · ∇ denotes a
otal (Lagrangian) time deri v ati ve. � p = p ⊥ − p � is the gas pressure
nisotropy, where p ⊥ and p � denote the pressures in the directions
erpendicular and parallel to the magnetic field, respectively. p ⊥ and
NRAS 524, 1893–1908 (2023) 
 � are related to p g in equation ( 4 ) by 

 ⊥ = p g + 

1 

3 
�p. (6) 

he pressure anisotropy in Braginskii MHD (with viscosity νB ≈
 g / ρν ii , where ν ii is the ion–ion collision rate; Braginskii 1965 ) is
iven by 

p = p ⊥ − p ‖ = 3 ρνB 

(
ˆ b ̂  b : ∇v − 1 

3 
∇ · v 

)
. (7) 

he viscous stress tensor in the gas-entropy equation is 

 = −�p 

(
ˆ b ̂  b − I 

3 

)
. (8) 

n the absence of background � p , the perturbed � : ∇v in the gas-
ntropy equation is second-order and does not contribute in our linear
nalysis. Q in equation ( 4 ) is the anisotropic thermal heat flux, 

Q = −κB ̂
 b ̂  b · ∇ T , (9) 

here κB is the thermal conductivity. 
v st, � p in equation ( 5 ) is the CR streaming speed. We assume that

Rs stream down their pressure gradient at the Alfv ́en speed, which
n low-collisionality plasmas depends on the thermal-gas pressure
nisotropy, 1 

 st ,� p = χv A ,� p = χv A 

(
1 + 

4 π�p 

B 
2 

)1 / 2 

, (10) 

here v A = B / 
√ 

4 πρ is the Alfv ́en velocity in the absence of
ressure anisotropy, and χ ≡ − ˆ b · ∇ p c / | ̂  b · ∇ p c | = ±1 ensures that
he CRs stream along B down their pressure gradient and makes the
R heating term −v st ,� p · ∇ p c in the gas energy equation ( 4 ) positive
efinite. We also include CR diffusion along the magnetic field in
quation ( 5 ). 

.2 Dimensionless parameters and characteristic frequencies 

e define the ratio of CR pressure to gas pressure, 

≡ p c 

p g 

, (11) 

nd the ratio of thermal to magnetic pressure, 

≡ 8 πp g 

B 
2 

. (12) 

he rele v ant frequencies are the gas sound frequency (with c s being
he isothermal gas sound speed), 

 s ≡ kc s ; (13) 

he Alfv ́en and CR-streaming frequency, 

 A ≡ k · v A ; (14) 

he CR diffusion frequency, 

 d ≡ κ ( ̂  b · k ) 2 ; (15) 

he free-fall frequency, 

 ff ≡ g 

c s 
= 

c s 

H 

, (16) 
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here H is the gas scale height; the cooling frequency, 

 c ≡ ρ2 � 

p g 

; (17) 

he ion–ion collision frequency ν ii and the associated Braginskii 
iscous frequency, 

 B ≡ νB ( ̂  b · k ) 2 ≈ p g 

ρνii 
( ̂  b · k ) 2 ; (18) 

nd the conductive frequency, 

 cond ≡ χB ( ̂  b · k ) 2 , (19) 

here χB = κB / nk B is the thermal diffusion coefficient. We can relate
he dif fusi ve time-scales by defining the thermal Prandtl number, 

r ≡ νB 

χB 
. (20) 

e use Pr = 0.02 as the default thermal Prandtl number in this work
 ≈ square root of the electron-to-ion mass ratio), i.e. heat conduction 
ue to electrons operates on a much shorter time-scale than viscous
orces due to the ions. We also define the ratio of the CR diffusion
oefficient to the Braginskii viscosity, 

 ≡ κ

νB 
, (21) 

hich turns out to be an important parameter quantifying the 
uppression of the CRBI and CRAB instability by CR diffusion 
see also Kempski et al. 2020 ). 

.3 Validity of the model 

.3.1 Thermal gas 

he CR entropy mode describes the response of the two-fluid CR–
hermal gas system to a CR pressure perturbation. Since CRs propa- 
ate along field lines at the Alfv ́en speed, this mode is characterized
y a frequency of order ω A (absent CR diffusion). The collisional 
Braginskii MHD) regime then requires that ω A � ν ii , or equi v alently
l mfp �β1/2 . In addition, the assumption that the heat fluxes are due to 
lectrons (Pr ≈ 0.02) is valid if the electron-ion thermal equilibration 
ate is 	ω A . The electron–ion thermal equilibration rate is slower 
han the ion–ion collision rate by the square root of the electron-to-
on mass ratio, τ−1 

eq ∼ ( m e /m i ) 1 / 2 νii ∼ νii / 40, which means that ions
nd electrons are thermally coupled for ω ∼ ω A modes if kl mfp �
1/2 /40. We will typically assume β ∼ 100 and so the Braginskii 
HD model employed here is valid for kl mfp � 1. Throughout the 

aper we show results of our calculations for kl mfp � 1 although we
tress that the Braginskii model is not strictly valid for kl mfp ∼ 1.
o we ver, our results using collisionless fluid models (Section 6.3 

nd Fig. 10 ) suggest that the growth rates are qualitatively similar
or kl mfp > 1. 

We further note that the expression for the pressure anisotropy in 
 7 ) ignores the effect of heat fluxes on � p (Mikhailovskii & Tsypin
971 ). In particular, in the collisional limit the pressure anisotropy 
n the presence of heat fluxes is (e.g. Schekochihin et al. 2010 ), 

p = 3 ρνB 

( 

ˆ b ̂  b : ∇v − 1 

3 
∇ · v − ∇·[( q ⊥ − q ‖ ) ̂  b ] + 3 q ⊥ ∇ · ˆ b 

3 p ‖ 

) 

, 

(22) 

here q ⊥ and q � are the parallel fluxes of perpendicular and parallel
eat, respectively. In the high-collisionality limit with � p � p g , the
eat fluxes are q ⊥ ≈ q ‖ / 3 ≈ −κB ̂  b · ∇ T where κB is the thermal
onductivity, T = p g / nk B and p g is given by ( 6 ). In this limit, we
nd that the results of this paper are not significantly affected by

he heat-flux term in equation ( 22 ). We thus use equation ( 7 ) for
implicity throughout this work. Ho we ver, we note that the collisional 
xpressions for � p , q ⊥ and q � are not valid on scales approaching
he ion mean free path. In this limit, separate evolution equations for
he ion and electron perpendicular and parallel pressures should 
e considered. We briefly discuss this regime in Section 6.3 and
ppendix A , focusing on the ions. Our results suggest that the CRBI

s qualitatively similar in the low-collisionality limit (Fig. 10 ). 
In the dilute and hot ICM, the ion-ion collision rate is small 

ii ∼ n i e 
4 π ln � 

m 

1 / 2 
i ( k B T ) 3 / 2 

∼ 8 × 10 −14 s −1 

(
T 

5 × 10 7 K 

)−3 / 2 
n i 

0 . 01 cm 
−3 

, 

(23) 

or a Coulomb logarithm ln � ≈ 38. The collision rate in ( 23 )
orresponds to a mean free path of order 0.1 kpc. 

.3.2 CRs 

he CR pressure equation (equation ( 5 )) is a good model for the CRs
f the collision frequency of the energetically important GeV CRs is
uch larger than any other time-scale of interest. As pointed out in
empski et al. ( 2020 ), the GeV CR collision frequency (the rate at
hich the pitch angle changes by order unity, due to scattering by
agnetic fluctuations) is likely much higher than the thermal ion-ion 

ollision frequency in the ICM: 

CR ∼ �0 

(
δB ⊥ 

B 

)2 

∼ 10 −8 s −1 

(
δB ⊥ /B 

10 −3 

)2 

, (24) 

here �0 is the non-relativistic gyro-frequency and δB ⊥ / B is evalu-
ted for fluctuations whose wavelength parallel to the mean B-field is
f order the Larmor radius of the GeV particles. The abo v e collision
requency corresponds to a CR mean free path of order 1 pc, which
pproximately corresponds to the empirically derived CR mean free 
ath in the Milky Way (e.g. Amato & Blasi 2018 ). This suggests that
reating CRs as collisional on thermal-ion-mean-free-path scales is 
 reasonable model for the ICM. 

In the limit of good coupling between the GeV CRs and the self-
xcited Alfv ́en waves (large pitch-angle scattering rate), CR transport 
s to leading order described by Alfv ́enic streaming. Damping of
he self-excited Alfv ́en waves introduces corrections to Alfv ́enic 
treaming. We model this by also including CR diffusion in our
inear analysis. As we will show, significant CR diffusion suppresses 
he CRBI on small scales. 

.4 Background equilibrium 

e consider static background equilibria with constant B = 

 B x , 0 , B z ), in which the CR and gas pressure gradients balance
ravity, g = −g ̂  z , 

d 

dz 
( p g + p c ) = −ρg. (25) 

f CR diffusion does not affect the background state (either because
= 0 or dp c / dz = const), CRs are in equilibrium according to

quation ( 5 ) if p c ∝ v A −4/3 , or equi v alently, 

 c ∝ ρ2 / 3 . (26) 

n this work we perturb equilibria that satisfy equations ( 25 ) and
 26 ), although these equations do not yet constrain the background
MNRAS 524, 1893–1908 (2023) 
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emperature T ( z). We will consider different temperature profiles in
ections 5 and 6 . 

.5 Linearized equations 

e carry out a linear stability calculation of the CR–thermal gas
quations (Section 2.1 ) for backgrounds that satisfy equations ( 25 )
nd ( 26 ). We focus on short-wavelength modes satisfying kH 	
 (in Fig. 8 we include kH ∼ 1 modes just to sho w gro wth rates
f previously identified buoyancy instabilities) and perform a local
KB calculation in which all perturbed quantities are assumed to

ary as δX( r , t) ∝ exp ( i k · r − iωt). We consider two coordinate
ystems in this work. We will mostly use the usual Cartesian
oordinate system with the z-axis antiparallel to g and x and y
efining the plane perpendicular to gravity. We define associated
olar angles such that B x = B sin θB , B z = B cos θB , k x = k sin θ k cos φk ,
 y = k sin θ k sin φk , and k z = k cos θ k . We use φk = 0 in all the
gures except Fig. 6 , because φk = 0 captures the fastest-growing
ode. For analytic purposes, it is convenient to also use a coordinate

ystem aligned with the direction of the magnetic field. We define
 and � to denote the directions perpendicular and parallel to the
agnetic field. We will use this coordinate system in Section 4
hen we derive an approximate dispersion relation, as it makes

he analytics more tractable. Ho we ver, when we plot numerically
alculated growth rates of the instability in Figs 2 –10 , we adopt the
ore standard notation with directions/angles defined relative to the

ositive z-direction, i.e. cos θB ≡ − ˆ b · ˆ g and cos θk ≡ − ˆ k · ˆ g . 
The linearized equations are 

 

δρ

ρ
= k · v − iv z 

d ln ρ

dz 
× BG , (27) 

 v = k c 2 s 

(
δp ⊥ 

p g 

+ η
δp c 

p c 

+ 

v A 2 

c 2 s 

δB ‖ 
B 

)
− ω A v A 

δB 

B 

− ˆ b ( ̂  b · k ) c 2 s 
δ�p 

p g 

+ i g 
δρ

ρ
, (28) 

 

δB ⊥ 

B 

= −k ‖ v ⊥ , (29) 

 

δB ‖ 
B 

= k ⊥ · v ⊥ , (30) 

 

δp g 

p g 

= γ k · v − i( γ − 1) ω cond 

(
δp g 

p g 

− δρ

ρ

)
+ χη( γ − 1) ω A 

δp c 

p c 

− i( γ − 1) ω c 

∂ ln � 

∂ ln T 

δp g 

p g 

− i( γ − 1) ω c 

(
2 − ∂ ln � 

∂ ln T 

)
δρ

ρ

+ BG ×
[
−i v z 

d ln p g 

dz 
− i χη( γ − 1) δv A , z 

d ln p c 

dz 

+ 

i( γ − 1) 

T 
∇·( χB δ ˆ b ̂ b · ∇ T + χB ̂  b δ ˆ b · ∇ T ) 

]
, (31) 

δ�p 

p g 

= i 
ρνB 

p g 

(2 k ‖ v ‖ − k ⊥ · v ⊥ ) . (32) 

 

δp c 

p c 

= 

4 

3 
k · v − 2 

3 
χω A 

δρ

ρ
+ 

1 

3 
βχω A 

δ�p 

p g 

+ ( χω A − iω d ) 
δp c 

p c 

+ BG ×
[
−i v z 

d ln p c 

dz 
+ 

2 

3 
i χv A , z 

d ln ρ

dz 

(
δp c 

p c 

− δρ

ρ

)

+ 

i 

p c 

∇·( κδ ˆ b ̂
 b · ∇ p c + κ ˆ b δ ˆ b · ∇ p c ) 

]
, (33) 

here BG in equations ( 27 )–( 33 ) is a flag equal to 1 or 0. It specifies
hether gradients from the background equilibrium in equations

 25 ) and ( 26 ), i.e. terms of the form v z d ρ/ dz , are included in
he calculation. Without the background gradients equilibrium is
NRAS 524, 1893–1908 (2023) 
ot satisfied and so the BG terms should formally be kept in the
inear perturbation analysis. Ho we ver, for analytic simplicity, we
et BG = 0 when we discuss the physics of the instability and
erive approximate dispersion relations in Sections 3.2 , 3.3 , and 4 .
his turns out to be a reasonable approximation, as the CRBI is not
irectly driven by the background gradients. We do, however, include
ackground gradients, i.e. we set BG = 1, when we solve for the exact
igenmodes numerically (Section 5 and all the figures presented in
his paper). 

 PHYSI CAL  OVERVI EW  O F  T H E  

NSTABILITY  

n this section, we provide an o v erview of the key physics describing
he CRBI. To start, we give a brief summary of entropy and gravity
aves in stratified CR MHD (Section 3.1 ). This will set the stage

or our analysis and elucidate how the CRBI is related to other
nstabilities that may operate in the ICM (such as thermal instability
r other buoyancy instabilities). 

.1 Gravity and entropy modes in stratified media 

.1.1 MHD modes 

n a gravitationally stratified medium without magnetic fields, the
ydrodynamic entropy mode becomes an IGW characterized by the
runt–V ̈ais ̈al ̈a frequency (e.g. Defouw 1970 ), 

 
2 = 

g 

γ

(
d ln p g 

dz 
− γ

d ln ρ

dz 

)
. (34) 

n MHD, gravitational stratification affects the MHD slow mag-
etosonic modes, as both buoyancy and magnetic tension act as
he modes’ restoring forces (e.g. Defouw 1970 , Stein & Leibacher
974 ). The resulting mode resembles the hydro IGW at long
avelengths, and the standard MHD slow mode (absent gravity)

t short wavelengths. In contrast to hydrodynamics, in MHD there
s also a mode that is unaffected by buoyancy despite a non-zero
ensity perturbation (Defouw 1970 ). We refer to this mode as the
HD entropy mode. 
We now compute these modes more explicitly in high- β collisional
HD, first assuming that no CRs are present. For simplicity, we shall

onsider the 2D case with B = B ̂  z , g = −g ̂  z , and k in the x −z plane.
e start with the momentum equation, 

 v = k c 2 s 

(
δp g 

p g 

+ 

v A 2 

c 2 s 

δB 

B 

)
− ω A v A 

δB 

B 

− i 
δρ

ρ
g ̂  z . (35) 

rossing the momentum equation twice with k and taking the z-
omponent we find, 

 
2 ( k z k x v x − k 2 x v z ) = ω A v A k 

2 k x v x + iωg k 2 x 

δρ

ρ
. (36) 

n the Boussinesq limit ( δp g / p g � δρ/ ρ), the adiabatic gas entropy
quation ds / dt = 0 (equation ( 31 ) without CRs, cooling and conduc-
ion) implies that 

 

δρ

ρ
= 

i 

γ
v z 

(
d ln p g 

dz 
− γ

d ln ρ

dz 

)
= i 

v z 
g 

N 
2 . (37) 

sing incompressibility k x v x ≈ −k z v z we find the dispersion relation
or MHD slow modes modified by gravity, 

 
2 k 2 = ω A v A k 

2 k z + k 2 x 

g 

γ

(
d ln p g 

dz 
− γ

d ln ρ

dz 

)
, (38) 
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Figure 1. Oscillation frequencies of gravity/slow and entropy modes in 
stratified, collisional CR MHD. The frequencies are normalized by the Brunt–
V ̈ais ̈al ̈a frequency. Here, and in other figures (except Fig. 6 ), we use φk = 

0. The two modes that are characterized by the buoyancy frequency at long 
wavelengths (orange and pink lines) become the MHD slow magnetosonic 
modes at short wavelengths. The oscillation frequency of the gas-entropy 
mode (green line) is due to CR heating. The blue line shows the CR-entropy 
mode with frequency ≈ω A , with the small deviation arising from finite η. We 
will show that gravity destabilizes the CR-entropy mode in low-collisionality 
MHD. We term this instability the CRBI. 
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r, 

 
2 = ω 

2 
A + 

k 2 x 

k 2 
N 

2 . (39) 

or subdominant magnetic tension (first term on RHS) we get the 
sual dispersion relation for the two hydrodynamic IGWs, ω = 

Nk x / k . At short wavelengths where magnetic tension dominates, 
he two gravity waves satisfy the standard dispersion relation for the 

HD slow modes at high β. 
Unlike the hydrodynamic entropy mode, the MHD entropy mode 

oes not pick up a buoyancy response. To see why this is the case,
e first note that a mode with ω = 0 and v = 0, but finite δρ/ ρ,

atisfies the continuity (equation ( 27 )), induction (equations ( 29 )
nd ( 30 )), as well as the gas-entropy (equation ( 31 ) absent heating,
ooling, and conduction) equations. In hydrodynamics, ho we ver, this 
ode does not satisfy the momentum equation (see equation ( 35 )
ithout the perturbed magnetic field), as the direction of gravity and 
 are generally not co-linear. By contrast, in MHD the perturbed 
ressure and magnetic-tension terms (first and second terms on the 
HS of equation ( 35 )) are mutually orthogonal and can exactly cancel

he perturbed gravitational force. As a result, while a mode with 
 = 0 and v = 0, but finite δρ/ ρ, is not an eigenmode in stratified
ydrodynamics, it is an eigenmode in stratified MHD and involves 
 finite δB perturbation. When magnetic tension is negligible, i.e. 
n the hydrodynamic limit with ω A � N (long wavelengths or β →
 ), the ω = 0 mode can only be satisfied if δB / B 	 δρ/ ρ. The

ydrodynamic variables are therefore essentially unperturbed in this 
imit, which is consistent with the result in stratified hydrodynamics. 

.1.2 CR MHD modes 

hen Alfv ́enically streaming CRs are present, the CR pressure 
quation (equation ( 5 )) introduces a new mode, which we refer to
s the CR entropy mode. Because CRs are assumed to stream at the
lfv ́en speed along field lines, the CR entropy mode is characterized
y the Alfv ́en frequency, ω = χk · v A = χω A (although the eigen-
requency can deviate appreciably from the Alfv ́en frequency if CR
iffusion is important or if η � 1 due to the fact that the CR entropy
ode is then associated with significant density fluctuations). The 
factor in front of ω A reflects the fact that the CR entropy mode

ropagates down the CR pressure gradient. For η → 0 the impact of
Rs on the thermal gas is small, and so the CR entropy mode does not
erturb the thermal gas. Using that the background density gradient 
atisfies 2 d ln ρ/ dz = 3 d ln p c / dz in equilibrium, ( 33 ) becomes, (
ω − χω A + iω d − iχv A ,z 

d ln p c 

dz 

)
δp c 

p c 

≈ 0 , (40) 

ith solution, 

 = χω A − iω d + iχv A ,z 
d ln p c 

dz 
. (41) 

if fusi ve corrections to CR streaming act to damp the mode. The
R background gradient term also introduces an imaginary part that 

ooks like damping. Ho we ver, the more accurate interpretation of this
erm is that as the mode propagates down the CR pressure gradient,
he perturbation amplitude normalized by the local CR pressure, 
p c / p c ( z), remains constant. 

Because streaming CRs heat the gas at a rate −χv A · ∇ p c , they
lso modify the gas-entropy mode by giving it a real (oscillatory)
requency, which at small η is ω ≈ −4 ηω A /15 (Kempski & Quataert
020 ). Importantly, to leading order CR heating does not significantly 
ffect the growth/damping of the gas-entropy mode (e.g. due to 
hermal instability), just its real frequency. 
We summarize the discussion abo v e by showing the oscillation
requencies of gravity and entropy modes in stratified, collisional 
R MHD in Fig. 1 . The frequencies are normalized by the Brunt–
 ̈ais ̈al ̈a frequency. The two modes that are characterized by the
uoyanc y frequenc y at long wavelengths (orange and pink lines)
ecome the MHD slow magnetosonic modes at short wavelengths. 
he gas-entropy mode (green line) is unaffected by buoyancy, and its
scillation frequency is due to CR heating. The blue line shows the
R-entropy mode with frequency ≈ω A . Fig. 1 suggests that the CR-
ntropy mode is not significantly affected by buoyancy in collisional 
HD. Ho we ver, we will sho w that gravity destabilizes the mode in

ow-collisionality MHD (i.e. on small scales), which we term the 
RBI. 

.2 Compressible CR entropy mode due to streaming 

urprisingly, the CR entropy mode becomes highly compressible 
t short wavelengths due to the influence of a finite mean free
ath in the background plasma, i.e. due to � p (this is also true
n a uniform background without stratification). At high β, pressure 
alance implies δp c + δp ⊥ ≈ 0. In the isothermal limit due to rapid
onduction ( Pr � 1), such that to leading order δp ⊥ / p g ∼ δρ/ ρ, and
eglecting CR diffusion, this can be rewritten as (see equation ( 33 )): 

δρ

ρ
+ 

δp c 

p g 

= 

δρ

ρ
+ η

4 
3 k · v − 2 

3 χω A 
δρ

ρ
+ 

1 
3 βω A χ

δ�p 

p g 

ω − χω A 
≈ 0 . (42) 

n the limit of long wavelengths/high collisionality such that δ� p is
egligible, pressure balance is achieved if δρ/ ρ → 0, i.e. k x v x + k y v y 
 k z v z = 0 or k ⊥ · v ⊥ + k ‖ v ‖ = 0. This is the standard result that

ressure-balanced modes are nearly incompressible at high β. 
At shorter wavelengths and high β, the δ� p / p g term is dominant

or the CR entropy mode with ω ≈ ω A . Pressure balance then requires
hat the pressure anisotropy is minimized, δ� p ≈ 0. This condition
eads to the unusual requirement that the pressure-balanced mode is 
ighly compressible. In Braginskii MHD �p ∝ (2 k ‖ v ‖ − k ⊥ · v ⊥ )
MNRAS 524, 1893–1908 (2023) 
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Figure 2. Growth rates of the CRBI for β = 10 7 , η = 0.1, and H = 1000 l mfp . 
The angles θB and θ k are the directions of B and k with respect to the 
positive z-direction ( g = −g ̂ z ). At high β, damping by anisotropic pressure 
is ne gligible o v er a range of k and the instability is well-described by the 
simple model in Section 3.3 . The dotted line labelled ∼ √ 

ω s ω ff shows the 
predicted growth rate from equation ( 47 ). This elucidates the physics of the 
CRBI in its simplest form. Figs 3 –10 show results for more realistic ICM 

conditions. 
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o that equation ( 42 ) is satisfied when, 

k ⊥ · v ⊥ ≈ 2 k ‖ v ‖ . (43) 

he exact relation satisfied by v ⊥ and v � can be different in the colli-
ionless regime, i.e. below the ion mean free path, where Braginskii

HD is no longer v alid. Ho we ver, the qualitati ve conclusion remains
he same and the mode is very compressible. We next sho w ho w the
ressure-balanced compressible mode is destabilized by gravity. 

.3 How gravity destabilizes the compressible CR entropy 
ode 

o show how gravity destabilizes the compressible CR entropy mode
iscussed abo v e, we consider a simple model in which we ignore
agnetic tension and damping by anisotropic pressure (viscosity).
s in Section 3.1 , we consider the case B = B ̂  z , g = −g ̂  z , and

onsider a mode with k x v x = αk z v z imposed by pressure balance. As
escribed in Section 3.2 , α = −1 in standard MHD, while α = 2 in
raginskii MHD with CRs. The momentum equations are, 

v x = 

k x 

ρ
δP tot , (44) 

v z = 

k z 

ρ
δP tot − iω ff c s 

(1 + α) k z v z 
ω 

, (45) 

here δP tot = δp ⊥ + δp c + δ( B 
2 /8 π ) is the total perturbed pressure.

n the equation for v z we used that ωδρ/ ρ ≈ (1 + α) k z v z . Multiplying
quation ( 44 ) by k x and subtracting from equation ( 45 ) times αk z , we
nd that 

δP tot 

ρ

(
αk 2 z − k 2 x 

) = iα(1 + α) k z c s ω ff 
k z v z 
ω 

. (46) 

sing this expression for δP tot back in equations ( 44 ) and ( 45 ) gives
 simple dispersion relation: 

 ≈ 1 √ 

2 
(1 + i) 

[
(1 + α) k z c s ω ff 

k x 2 

αk 2 z − k 2 x 

]1 / 2 

∼ √ 

ω s ω ff . (47) 

n this simplified picture gravity leads to growth rates that are of order√ 

ω ff ω s 	 ω ff . The abo v e analysis can be easily repeated for the
ase g ⊥ B (i.e. horizontal magnetic field in a vertical gravitational
eld), with very similar results. We stress that the scaling ∼ √ 

ω ff ω s 

n equation ( 47 ) does not describe compressible sound waves,
hich are approximately longitudinal at high β: α ≈ k 2 x /k 

2 
z and the

enominator in equation ( 47 ) is approximately zero. 
Akin to standard buoyancy instabilities, the mode found here

s destabilized by the unbalanced gravitational force acting on
he mode’s density fluctuations. Ho we ver, in contrast to standard
uoyancy instabilities, such as thermal convection in stars or the
agneto-thermal instability (MTI; Balbus 2000 ) and the heat-flux-

riv en buoyanc y instability (HBI; Quataert 2008 ) in clusters, the
ensity fluctuations in the CR-driven instability are not due to the
ackground stratification of the plasma. The density fluctuations at
hort wavelengths are instead due to CR streaming, independent of
he background stratification. 

In subsequent sections, we show that while magnetic tension
oes not affect the growth rate significantly, the effect of damping
y anisotropic pressure should generally be retained. Ho we ver, at
ufficiently high β there is a range of scales for which the simple
odel considered in this section provides a good picture of the

nstability (see equation ( 51 ) below), and the growth rates are
ndeed ∼ √ 

ω s ω ff . This regime is shown in Fig. 2 . The solid black
ine shows the instability growth rate, computed from numerical
olutions of the full set of linear equations in Section 2.5 , as a
NRAS 524, 1893–1908 (2023) 
unction of wavenumber for β = 10 7 , η = 0.1, B antiparallel
o g , and k x = k z . The ‘x’ markers show the growth rate for
B perpendicular to g and k x = −k z . The dotted line labelled√ 

ω s ω ff shows the predicted growth rate from equation ( 47 ),
hich matches the exact solution very well o v er a wide range in
 . 

We now discuss the instability in the astrophysically more rele v ant
egimes where equation ( 47 ) is not as accurate. 

 DI SPERSI ON  R E L AT I O N  A N D  G ROW T H  

ATES  O F  S H O RT- WAV E L E N G T H  M O D E S  

n Section 3.3 , we neglected damping by anisotropic pressure
viscosity), which generally changes the growth rates relative to those
redicted in equation ( 47 ) (except for certain asymptotic limits, e.g.
ery large β as in Fig. 2 ). In this section, we present a more accurate
alculation and derive an approximate dispersion relation. 

For simplicity, we here ignore background gradient terms (i.e.
e set BG = 0 in equations ( 27 )–( 33 )) in our analytic deri v ation
f the growth rates. Ignoring background gradients is a reasonable
implification because we find that short-wavelength modes (which
re the fastest growing modes) are not significantly affected by
xplicitly including background gradients (even though they should
ormally be included). This is because the CRBI is due to streaming-
nduced compressibility and not background stratification. 2 This
s in contrast to thermal convection in stars or the MTI/HBI in
lusters, which are driven by heat conduction and background
emperature gradients. Our analytic results from this section will be
upplemented by numerical solutions of the full system of linearized
quations (equations ( 27 )–( 33 )) including background gradients in
ection 5 . 
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.1 Dispersion relation 

n this section, it is convenient to work in a coordinate system
ligned with the magnetic field: B = (0 , 0 , B), k = ( k ⊥ , 0 , k ‖ ), and
g = ( g ⊥ ;1 , g ⊥ ;2 , g ‖ ). In this coordinate system, and if we neglect
ackground-gradient terms (which we do here), Alfv ́enic fluctuations 
f the form δB = (0 , δB, 0) and δv = (0 , δv , 0) decouple, which
eav es v elocity/magnetic field fluctuations in the k − B plane for the 
emaining modes. If background gradients are kept, this is strictly true 
nly if gravity is coplanar with k and B . In the high- β and isothermal
imit ( ω cond 	 ω), the third order dispersion relation for the slow-
agnetosonic and CR-entropy modes can be found by crossing the 
omentum equation ( 28 ) twice with k , taking the component parallel

o B and using equation ( 42 ): 

 = ω 
2 

(
2 

3 
iχη

ω B 

ω A 
ω(2 k 2 ‖ − k 2 ⊥ 

) + k 2 � 

)
+ 3 ik 2 ⊥ 

ω B ω� 

+ 2 χη
ω B 

ω A 
k ‖ ω ff c s ω 

(
−k 2 ( ̂  b · ˆ g ) + ( k · ˆ g ) k ‖ 

)

−ω A v A k 
2 k ‖ 

(
4 

3 
iηχ

ω B 

ω A 
ω + � 

)
, (48) 

here, 

 = ω − χω A + iω d + 

4 

3 
ηω − 2 

3 
ηχω A . (49) 

he three solutions of the cubic dispersion relation in equation ( 48 )
re the two slow magnetosonic waves and the CR entropy mode. The
as entropy mode is not present because our calculation assumed 
hat modes are isothermal, δp g / p g = δρ/ ρ, which eliminates the gas
ntropy mode (i.e. the gas entropy equation acts as a constraint). 
he first term in equation ( 48 ) comes from crossing the velocity
erturbation twice with k , the second term is the damping by 
raginskii viscosity, the third term is the gravitational force, and 

he last term comes from the perturbed magnetic tension. We note 
hat the gravitational force term, which drives the instability, is zero 
f g is perpendicular to the k − B plane. 

As explained in Section 3.3 , the instability is driven by gravity
ediated by compressibility induced by CR streaming. The com- 

ressibility is a consequence of the perturbed pressure anisotropy 
� p , characterized by the Braginskii viscous frequency ω B , in the
R entropy equation. This suggests that compressibility effects are 
ost important in the short-wavelength limit ω B / ω A 	 1. In this

imit, the dispersion relation can be simplified to 

 = ω 
2 2 

3 
i χη

ω B 

ω A 

(
2 k 2 ‖ − k 2 ⊥ 

) + 3 i k 2 ⊥ 
ω B � 

+ 2 χη
ω B 

ω A 
k ‖ ω ff c s 

(
−k 2 ( ̂  b · ˆ g ) + ( k · ˆ g ) k ‖ 

)

−ω A v A k 
2 k ‖ 

4 

3 
iηχ

ω B 

ω A 
. (50) 

.2 Growth rates of short-wavelength modes 

e split the eigenmode frequency into real and imaginary parts, ω =
 R + i �, such that � > 0 corresponds to exponential growth. We
ote that if magnetic tension and damping by pressure anisotropy in 
quation ( 50 ) can be ignored (fourth and second term, respectively),
e reco v er the gro wth rate that was deri ved in Section 3.3 , i.e.
 ∼ √ 

ω s ω ff . From equation ( 50 ), we see that damping by anisotropic
iscosity (pressure) can be ignored if the third term ∝ ω ff is much
arger than the damping term, or 

	 η−2 

(
ω s 

ω ff 

)
. (51) 
t sufficiently high β there is therefore a finite range of scales where
he simple model from Section 3.3 and equation ( 47 ) correctly predict
he solution (see Fig. 2 ). 

We proceed by solving equation ( 50 ) in the limit η � 1, i.e. for
mall CR pressure fractions. To leading order, � = 0 is a solution,
hich, ignoring CR diffusion, implies 

 ≈ χω A . (52) 

his mode is the CR entropy mode. We stress again that the
ependence on ω A in the CR entropy mode does not come from
he perturbed magnetic tension, but from CR streaming along field 
ines at the Alfv ́en speed, which also has characteristic frequency
 A . The growth rate of the mode can be found at first order in η and

s approximately given by, 

 ≈ χ

√ 

2 

3 
ηβ1 / 2 ω ff 

−k 2 ̂  b · ˆ g + k · ˆ g k ‖ 
k 2 ⊥ 

, (53) 

here χ = ±1 is the parameter that ensures that CR stream down
heir pressure gradient (equation ( 10 )). The growth rate increases
ith increasing β, as at higher β the pressure anisotropy is better
inimized (equation ( 42 )) and anisotropic viscous damping is 

educed. There is no unstable growth if gravity is normal to the
k − B plane. In the case of a magnetic field that is antiparallel to g , 

 ∼ χηβ1 / 2 ω ff , B = B ̂  z , g = −g ̂  z . (54) 

or a horizontal magnetic field along x , 

 ∼ −χηβ1 / 2 ω ff 
k z k x 

k 2 z + k 2 y 

, B = B ̂  x , g = −g ̂  z . (55) 

hile for B = B ̂  z and χ > 0 all modes are unstable (except when
k is approximately parallel to or perpendicular to B ), for B = B ̂  x 
rowth occurs if χk x k z < 0. Unless B ‖ g and χB · g > 0 ( dp c / dz
 0, which is unlikely), there exists a region in k -space where there

s wave growth. We note that for horizontal magnetic fields growth
ates can be higher than for vertical magnetic fields because of the
xtra factor that depends on the direction of propagation, although 
rowth rates with k x 	 k y , k z do not diverge because the ordering
sed to derive equations ( 53 )–( 55 ) breaks down. 
The abo v e solutions are for pure CR streaming and also do not

nclude the impact of background gradients on the growth rates. By
eglecting CR diffusion we have assumed that CRs are perfectly 
oupled to the self-excited Alfv ́en waves and so stream at the
lfv ́en speed. We include CR diffusion in our analysis to relax

he assumption of pure Alfv ́enic streaming, which certainly breaks 
own on small scales. From equation ( 48 ), or from the fact that in the
resence of diffusion the CRs’ natural frequency is ω ≈ ω A − i ω d 

see equation ( 41 )), we can estimate that CR diffusion suppresses the
nstability when 

 d � ηβ1 / 2 ω ff (56) 

r equi v alently 

l mfp � 

(
� 

−1 l mfp 

H 

ηβ1 / 2 

)1 / 2 

, (57) 

here we used the parameter � defined in equation ( 21 ). 
Equation ( 41 ) also allows us to estimate how background gradients

ffect the growth rate in equation ( 53 ). The background CR pressure
radient modifies the mode’s imaginary part by v A , z d ln p c / dz ∼
 A , z / H ∼ ω ff / β1/2 , which encapsulates that as the perturbation prop-
gates down the CR pressure gradient, δp c / p c ( z) remains constant in
ollisional MHD without CR diffusion. The background therefore 
MNRAS 524, 1893–1908 (2023) 
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Figure 3. Mode properties for η = 0.1, β = 100, and H = 100 l mfp . θB = 

45 ◦ and θ k = 90 ◦ are the directions of B and k with respect to ̂  z ( g = −g ̂ z ), 
while ⊥ and � are defined w.r.t. B . We plot oscillation frequencies in panel 
(a), growth rates in (b) ( � > 0 corresponds to growth), k � v � / k ⊥ v ⊥ , which 
quantifies the compressibility of the mode, in (c), and [ δp c + δ( B 2 /8 π )]/ δp g , 
which quantifies the degree of pressure balance, in (d). The blue line shows 
the unstable CR entropy mode, the orange and pink lines are the MHD 

slow modes, and the green line is the gas-entropy mode. All modes except the 
CR entropy mode are damped by low-collisionality effects. Long-wavelength 
CR entropy modes are approximately incompressible and the growth rates are 
small. High- k CR entropy modes become compressible due to CR streaming 
while maintaining pressure balance, and the growth rate reaches the plateau 
given by equation ( 53 ). 
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ignificantly modifies the growth rate if, 

ω ff 

β1 / 2 
� ηβ1 / 2 ω ff =⇒ η � β−1 . (58) 

e stress again that for η � β−1 the mode is not damped in the usual
ense, because it maintains approximately constant δp c / p c ( z) as it
ropagates down the CR pressure gradient. 

 C R B I  IN  A N  ISOTHERMAL  ATMO SPH ER E  

e now complement the analytics of Section 4 with numerical
olutions of equations ( 27 )–( 33 ) including background gradients.
n this section, we consider an isothermal atmosphere in order to
solate the CRBI from the HBI/MTI, which require background
emperature gradients. As our fiducial set of parameters, we use η =
.1, β = 100, and H = 100 l mfp . The background is in the hydrostatic
quilibrium described by equations ( 25 ) and ( 26 ). We assume that
he background CR heating is balanced by an unspecified cooling
unction, which we do not perturb in our linear analysis, except
n Section 6.2 (see Kempski & Quataert 2020 for a discussion of
hermal instability with streaming CRs). Unless specified otherwise,
e will consider wav ev ectors k in the B − g plane, i.e. φk = 0 (see
ection 2.5 ), moti v ated by the fact that the instability is not present

f g is perpendicular to the B − k plane. We show how growth rates
epend on φk in Fig. 6 . 
The physics of the instability described in Section 3 becomes

pparent by plotting the properties of the CRBI. We show the mode
roperties for η = 0.1 and β = 100 in Fig. 3 . We plot the oscillation
requency in panel (a), the growth rate in panel (b), k � v � / k ⊥ v ⊥ , which
uantifies the compressibility of the mode ( =−1 if incompressible),
n panel (c), and [ δp c + δ( B 

2 /8 π )]/ δp g , which quantifies the degree of
ressure balance ( =−1 if pressure balanced, i.e. δp c + δ( B 

2 /8 π ) +
p g = 0), in panel (d). The blue line shows the unstable CR entropy
ode. For completeness, we also plot the MHD slow modes and

he gas-entropy mode. Panel (b) shows that all modes except the
R entropy mode are strongly damped by low-collisionality physics

viscosity and conduction). At small k , the CR entropy mode is
pproximately incompressible ( k � v � ≈ −k ⊥ v ⊥ ) and the growth rates
re �ω ff . At high k , the mode becomes compressible due to CR
treaming, approaches k ⊥ v ⊥ = 2 k � v � , and the growth rate reaches
he plateau given by equation ( 53 ). We note that k ⊥ v ⊥ does not quite
each 2 k � v � because we limit the x -axis to kl mfp < 1, where the
raginskii MHD model is valid. The oscillation frequency ≈ω A is

et by the characteristic frequency of CR streaming. 
In Fig. 4 , we sho w gro wth rates of the CRBI for the fiducial

arameters and different ratios of CR pressure to gas pressure, η.
he instability exists even for small CR pressures, but with reduced
rowth rates. In the analytics in Section 4 without background
radients, the instability exists for arbitrarily small CR pressures.
ere, we find that with background gradients, within our local WKB

ramework, the instability exists for any η � β−1 (ignoring CR
iffusion), which is consistent with the discussion at the end of
ection 4.2 . Ho we v er, we stress that because for v ery small η (e.g.
= 0.025 in Fig. 4 ) the mode’s e-folding distance is generally of order
r larger than the background scale height (if �/ ω ff � β−1/2 ), a more
eneral treatment than our local WKB approach would be valuable to
tudy the o v erstability in this parameter range. We show the number
f e-folds N e generated by the CRBI during one scale-height-crossing
ime as a function of η in Fig. 5 . We use that the mode propagates
long the magnetic field at approximately the Alfv ́en speed (equation
 52 ); this is correct to a very good approximation at small η, for η ∼
 the real frequency is ∼ 20 per cent less than predicted by equation
NRAS 524, 1893–1908 (2023) 
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Figure 4. Growth rates of the CRBI for β = 100, H = 100 l mfp , and different 
ratios of CR pressure to gas pressure, η. The other parameters are set to 
the fiducial values (Section 5 ). The angles θB = 45 ◦ and θ k = 90 ◦ are the 
directions of B and k with respect to the positive z-direction ( g = −g ̂ z ). 
Ev en at v ery small CR pressures (small η), the instability still exists in our 
local analysis (see main text for more discussion), but with reduced growth 
rates (equation ( 53 )). 

Figure 5. Number of e-folds, N e , generated by the CRBI in the time it takes 
the mode to propagate one scale height in the vertical direction, as a function 
of η and for selected values of kH . Here we use β = 100, θB = 45 ◦, and θ k = 

90 ◦. We use equation ( 52 ), i.e. that the mode propagates at the Alfv ́en speed 
along the magnetic field (this is correct to a very good approximation at small 
η, with ∼ 20 per cent deviations for η ∼ 1). The magenta dashed line uses 
the growth rate from equation ( 53 ), which assumes small η and does not take 
into account background gradients (which decrease the growth rate in our 
local analysis, see discussion at the end of Section 4.2 ). The black lines use 
growth rates computed numerically from equations ( 27 ) to ( 33 ). It is worth 
noting that for parameters which yield N e � 1 (here η � 0.05) the CRBI 
does not result in significant amplification o v er one scale-height-crossing 
time. The local WKB method we use to study the CRBI is most reliable for 
N e 	 1. 
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Figure 6. CRBI growth rates as a function of propagation direction for η = 

0.1, β = 100, H = 100 l mfp , and fixed kH = 20. The angles θ k and φk are 
defined such that k x = k sin θ k cos φk , k y = k sin θ k sin φk , and k z = k cos θ k (all 
the other figures in this paper use φk = 0). The three panels show growth 
rates for different orientations of the background magnetic field relative to 
gravity, which is in the −ˆ z direction. The growth rates have a qualitatively 
different angular dependence for the different field geometries (see equations 
( 53 )–( 55 )). 
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i.e. we assume an approximately linear CR pressure profile, κd 2 p c / dz 2 ≈ 0. 
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 52 )). Our WKB results are most reliable for parameters which yield
 e 	 1. 
We show growth rates as a function of propagation direction at 

xed kH = 20 in Fig. 6 for different orientations of the background
agnetic field. The growth rates in the three panels have a qualita-

i vely dif ferent angular dependence, consistent with equations ( 54 )
nd ( 55 ). For horizontal magnetic fields growth rates are larger than
or vertical magnetic fields, but growth occurs in a smaller region of
 -space. 
In Section 4.2 , we noted that significant CR diffusion suppresses
he CRBI at short wavelengths. We now show this explicitly in
ig. 7 for different values of � , which quantifies the strength of CR
iffusion (equation ( 21 )). 3 As predicted by equation ( 57 ), diffusion
uppresses the instability at high k . 
MNRAS 524, 1893–1908 (2023) 



1902 P. Kempski, E. Quataert, and J. Squire 

M

Figure 7. CRBI growth rates as a function of wavenumber and the CR 

dif fusion coef ficient (quantified using the parameter � defined in equation 
( 21 )). We assume η = 0.1, β = 100, H = 100 l mfp , and the isothermal 
background described in Section 5 . CR diffusion suppresses growth at high k 
(equation ( 57 )) and can completely shut off the instability if sufficiently large 
(equation ( 59 )). 
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Figure 8. CRBI versus buoyancy instabilities driven by background strati- 
fication and anisotropic heat conduction, the HBI (top) and MTI (bottom). 
We use β = 100, H = 100 l mfp , and different η. Long-wavelength modes are 
destabilized by thermal conduction, as in the MTI/HBI. Short-wavelength 
modes are stable to the HBI/MTI due to the stabilizing effect of magnetic 
tension. Short-wavelength modes are, ho we ver, destabilized by the compress- 
ibility induced by CR streaming. The CRBI therefore operates alongside the 
long-wavelength HBI and MTI. For η = 0.4, the CRBI and the MTI are 
destabilizing the same mode (also true for the HBI at higher β). 
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Given that the CRBI typically becomes important on scales kH 	 1
nd that at longer wavelengths buoyancy instabilities such as the HBI
nd MTI are generally more important (see Section 6.1 and Fig. 8 ),
e can rephrase equation ( 57 ) in terms of a rough o v erall criterion

or the suppression of the CRBI by CR diffusion (however, we note
hat for large thermal mean free paths, as in cluster outskirts, the CR-
riven instability is important on scales kH ∼ 1, see Fig. 10 ). Setting
 min H as the largest scale on which the CRBI operates and using
quation ( 57 ), we find that CR diffusion suppresses the instability if, 

 � 0 . 01 ηβ1 / 2 H 

l mfp 

(
k min H 

10 

)−2 

. (59) 

or η = 0.1, β = 100, k min H = 10, and H = 100 l mfp , CR diffusion
uppresses the instability for � � 1, roughly consistent with Fig. 7 . 

 DISCUSSION  

.1 CRBI versus HBI/MTI 

e now consider the relationship between the CRBI and previously
dentified buoyancy instabilities driven by background temperature
radients and heat fluxes, i.e. the MTI (Balbus 2000 ) and the HBI
Quataert 2008 ). How CRs may affect these buoyancy instabilities
as been considered in previous work (e.g. Chandran & Dennis 2006 ;
ennis & Chandran 2009 ; Sharma et al. 2009 ). Ho we v er, the y did
ot use streaming CR transport and so the CRBI was not included in
heir calculation. 

Instead of an isothermal atmosphere as in Section 5 , we here
onsider a background temperature that increases with height, as is
he case in cluster cores: 

d 

dz 
( p g + p c ) = −ρg, p c ∝ ρ2 / 3 , 

d ln T 

dz 
= H 

−1 , (60) 

here H = c 2 s /g = c s /ω ff . This equilibrium with vertical magnetic
eld and T increasing with height is unstable to the HBI at high β
driven by the background anisotropic heat flux). We also consider a
ackground with dT / dz < 0 and a horizontal magnetic field, B = B ̂  x ,
hich is unstable to the MTI. To study the MTI we consider the
NRAS 524, 1893–1908 (2023) 
ollowing background, 

dp g 

dz 
= −ρg, ρ = const , 

d ln T 

dz 
= −H 

−1 = −ω ff 

c s 
. (61) 

or the MTI, we assume that | ̂  b · ∇ p c | /p c � H 
−1 , so that the CRs

re coupled but their background gradient is sufficiently small to
e ignored (which is consistent with our choice of ρ ≈ const). We
tress that this choice is made for the sake of simplicity and is not
ecessarily representative of cluster conditions. 
We sho w gro wth rates for the backgrounds described by equations

 60 ) and ( 61 ) in Fig. 8 , for β = 100, H / l mfp = 100, and different
alues of η. We include kH ∼ 1 in Fig. 8 to show HBI/MTI
rowth rates, although we note that our WKB approach is not
igorous in this wavelength regime. At small k , growth rates are
ominated by the HBI/MTI. At high k , the HBI is partially stabilized
y anisotropic viscosity (Kunz 2011 ), and the MTI and HBI are
ompletely suppressed by magnetic tension. The HBI is also partially
uppressed by the CR pressure gradient at long wavelengths (for large
), where CRs are approximately adiabatic, ω A < ω ff (Sharma et al.
009 ). Short-wavelength modes are destabilized by compressibility
nduced by CR streaming. We note that in the top panel there is a
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ange of wavelengths where our calculation does not predict unstable 
rowth at small η, which is not the case in the bottom panel. This
s due to the effect of the background CR pressure gradient on the
rowth rate, explained in Section 4.2 , which is not present in the
quilibrium used to study the MTI (equation ( 61 )). Finally, we note
hat for η = 0.4 the CRBI and the MTI are in fact driving the same

ode (this is also true for the HBI for β slightly larger than used in
ig. 8 ). 
The CRBI considered in this work therefore operates alongside 

tandard buoyancy instabilities driven by background gradients, 
uch as the HBI/MTI. Both types of instabilities are driven by 
ravity acting on density fluctuations. At long wavelengths, for 
hich the HBI/MTI operate, the density fluctuations that intro- 
uce unstable buoyancy are due to a combination of background 
ensity stratification, rapid heat conduction and pressure balance. 
t short wavelengths, the unstable density fluctuations are due to 
R streaming and pressure balance, independent of the background 

tratification. 
The transition from heat-flux-driven growth to CR-driven growth 

n Fig. 8 occurs around kH ∼ 5. The exact value is sensitive to our
hoice of parameters, such as η or β. It also depends strongly on the
hermal mean free path, more specifically the ratio H / l mfp , which sets
he range of k for which CR streaming drives the mode away from
ncompressibility. In particular, for H ∼ l mfp the CRBI can have faster
rowth rates than the HBI/MTI at long wavelengths (see Fig. 10 ) for
lausible parameters. We discuss the dependence of the CRBI on 
he value of the thermal particle mean free path in more detail in
ection 6.3 . 

.2 Impact of cooling 

e have ignored cooling throughout this work. Given that the un- 
table short-w avelength CR entrop y modes have significant density 
uctuations due to CR streaming, cooling could in principle have an 

mpact on the instability. Ho we ver, because the unstable wavelengths 
re characterized by thermal-conduction times that are much shorter 
han the cooling time, the dominant response of the gas is simply
hat it is isothermal, even in the presence of cooling and large CR-
riven density fluctuations. The perturbed cooling therefore has no 
ignificant effect on the CRBI even when the cooling rate ω c is
omparable to the growth rate, as we show in Fig. 9 . 

.3 Dilute cluster outskirts and the collisionless regime 

n Figs 3 –9 , we used a fixed H / l mfp = 100. While H / l mfp 	 1 is
epresentative of the conditions in the inner regions of galaxy clusters, 
 / l mfp is likely smaller in the outskirts, where the ICM plasma
ensity is significantly reduced. A larger mean free path implies that 
R-streaming-induced compressibility effects become important on 

arger scales; the growth rates of long-wavelength modes will thus 
e enhanced relative to the results from Figs 3 –9 . 
Considering a larger mean free path runs into the issue that the

ange of scales for which both the Braginskii MHD model and the
KB approximation are valid ( kl mfp � 1 and kH 	 1, respectively) 

ecomes very limited. To alleviate this issue, we here consider a 
ifferent model for the low-collisionality thermal plasma. We use 
he kinetic MHD equations (Chew, Goldberger & Low 1956 ) with a
Landau-fluid’ prescription for the heat fluxes, i.e. the heat fluxes are 
onstrained by the requirement that the fluid equations approximately 
atch the linear response of the kinetic thermal plasma (Snyder, 
ammett & Dorland 1997 ). We use the heat fluxes from Snyder

t al. ( 1997 ) that depend on the collision rate, allowing for a smooth
ransition between the weakly collisional (Braginskii MHD) and 
ollisionless regimes. The equations of the Landau-fluid model are 
rovided in Appendix A . For simplicity, we ignore electron physics
nd only consider the thermal ions, which dominate the pressure 
nisotropy because the ion collision rate is much smaller than the
lectron collision rate. Ignoring the effect of the electron heat flux
n the ions is generally not rigorous (in our Braginskii calculation
he heat flux was due to electrons, hence Pr = 0.02). Ho we ver, as
iscussed in Section 2.3.1 , the electron-ion thermal equilibration rate 
s τ−1 

eq ∼ ( m e /m i ) 1 / 2 νii ∼ νii / 40, i.e. ions and electrons are thermally
ecoupled for ω ∼ω A modes if kl mfp 	β1/2 /40. For β ∼ 100 and kl mfp 

 1 electrons and ions are then approximately thermally decoupled. 
t is therefore reasonable to neglect the electron heat flux in the
ollisionless regime, which is of primary interest in this section. 

We show growth rates of the CRBI, calculated using the Landau-
uid model (black lines), in Fig. 10 for η = 0.1, β = 100, and
ifferent H / l mfp . As expected, for larger l mfp the growth rates of long-
avelength modes are enhanced, as CR streaming leads to larger 
ensity fluctuations on large scales. The asymptotic growth rate at 
igh k is independent of the mean free path (absent CR diffusion).
e also compare the Landau-fluid results to the Braginskii MHD 

alculation for the fiducial case H / l mfp = 100 (solid line and magenta
rosses in Fig. 10 ). There is good agreement between the two models
n the collisional regime, which shows that instability growth rates 
re not very sensitive to the thermal Prandtl number, as the Braginskii
HD model has Pr = 0.02 while the Landau-fluid model has Pr ∼

 (this is consistent with our finding that Pr = 0.02 and Pr ∼ 1 yield
imilar results in Braginskii MHD). The asymptotic high- k growth 
ates in the two models are also remarkably similar. This is because
he qualitative physical picture of the instability does not change 
etween the collisional and collisionless regimes (although the exact 
elationship satisfied by k � v � and k ⊥ v ⊥ at high k is different in the
wo models, and in the Landau-fluid model k � v � 	 k ⊥ v ⊥ ). 

.4 Diffusi v e correction to CR streaming 

ig. 7 shows that significant CR diffusion can suppress the CRBI.
he magnitude of the dif fusi ve correction to Alfv ́enic streaming is

herefore critical. The dif fusi ve correction depends on the damping
MNRAS 524, 1893–1908 (2023) 
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Figure 10. Growth rates of the CRBI, calculated using the Landau-fluid 
model (black lines), for η = 0.1, β = 100, and different H / l mfp . The Landau- 
fluid model allows us to compute approximate growth rates for both the 
collisional and collisionless re gimes. F or larger l mfp , as is likely the case 
in dilute cluster outskirts, the growth rates of long-wavelength modes are 
enhanced, as CR streaming leads to significant density fluctuations on large 
scales. There is good agreement between Landau-fluid and Braginskii MHD 

(magenta crosses) predictions in the collisional regime, as expected. 
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Figure 11. The dif fusi ve correction to Alfv ́enic streaming calculated from 

equation ( B2 ) as a function of the CR pressure gradient, for different 
magnitudes of the linear damping of Alfv ́en wav es e xcited by the CR 

streaming instability. The horizontal dotted line is the anisotropic viscosity 
of the thermal gas for l mfp ∼ 0.2 kpc and T = 3 × 10 7 K. Thus, � < 1 
(see equation ( 21 )) is plausible in cluster cores and the CRBI is likely only 
partially suppressed by CR diffusion (Fig. 7 ). 
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f the Alfv ́en waves excited by the CR streaming instability. In
he ICM, the dominant damping mechanisms are non-linear Landau
amping ∼k v th ( δB / B ) 2 (Lee & V ̈olk 1973 ; Kulsrud 2005 ) and linear
andau damping of Alfv ́en waves in a turbulent background (W iener ,
weibel & Oh 2018 ). For turbulence injected on ∼10 kpc (a common
cale for the radio bubbles) with perturbations comparable to the
lfv ́en speed, the linear-Landau damping rate of k ∼ r −1 

L Alfv ́en
av es e xcited by GeV CRs (where r L is the GeV CR gyroradius) is 

 L ∼ 0 . 4v th 
( r L L turb ) 1 / 2 

∼ 10 −10 s −1 v th 
10 8 cm s −1 

(
L turb 

10 kpc 

)−1 / 2 (
B 

1 μG 

)1 / 2 

. (62) 

e compute the correction to Alfv ́enic streaming for a combination
f linear and non-linear damping mechanisms in Appendix B . The
esulting dif fusion coef ficient is a function of the background CR
ressure gradient. We split the total diffusion coefficient κ into two
omponents, κ( ∇p c ) = κdiff ( ∇p c ) + κ st ( ∇p c ), where κ st is the part
f the diffusion coefficient that scales as κ st ∝ ( ∇p c ) −1 and therefore
oes not result in real dif fusi ve behaviour (as needed to suppress the
RBI). For purely linear damping mechanisms, κ = κ st (Skilling
971 ). Dif fusi ve behaviour in the form of a finite κdiff comes from
on-zero non-linear damping. 
κdiff is plotted for different linear damping strengths in Fig. 11 as a

unction of the CR pressure gradient, normalized using p c = 10 −12 erg
m 

−3 and a scale height H c = 10 kpc. In addition to linear damping,
he waves excited by the streaming instability are damped by non-
inear Landau damping. We plot κdiff rather than the total κ = κdiff +
st because κdiff is the component that acts as a diffusion term (see
ppendix B ). The non-dif fusi ve correction to Alfv ́enic streaming
st likely does not suppress the CRBI and is a small correction to
lfv ́enic streaming for the GeV CRs in a steady state (Kempski &
uataert 2022 ). 
The horizontal dotted line in Fig. 11 shows the Braginskii viscosity

f the thermal plasma for l mfp = 0.2kpc and T = 3 × 10 7 K, and
s larger than κdiff in most of the parameter space. Fig. 11 therefore
hows that � < 1 is plausible in the ICM, and so the CRBI is not
ompletely suppressed by CR diffusion. 
NRAS 524, 1893–1908 (2023) 
 C O N C L U S I O N S  

n Kempski et al. ( 2020 ), we showed that streaming CRs destabilize
ound waves in the low-collisionality ICM. The instability arises
ecause the Alfv ́en speed in low-collisionality plasmas depends on
he pressure anisotropy of the thermal gas (equation ( 10 )). This
ntroduces a new unstable form of coupling between CRs and the
hermal plasma. In this work, we showed that Alfv ́enically streaming
Rs in a gravitationally stratified medium also destabilize a pressure-
alanced mode, more specifically the CR entropy mode. We term
his the CRBI because it is the combined action of CR streaming
nd gravity (buoyancy) that drives the instability. CR entropy modes
re highly compressible on small scales (Fig. 3 ), which drives them
nstable in a gravitational field. In the limit of pure CR streaming (no
iffusion), there likely is no threshold for the CRBI (see discussion
n Sections 4.2 and 5 ). Ho we ver, we stress that a global calculation,
ather than our local WKB approach, is necessary to check this
rediction, especially for parameters that result in slow amplification
Fig. 5 ). The fastest growth occurs at short wavelengths, where the
ode is highly compressible, with growth rates of order ηβ1/2 ω ff 

equation ( 53 )) where η = p c / p g , β = 8 πp g / B 
2 , and ω ff is the free-fall

requency. Our results show that CR streaming in cluster plasmas is
 dramatically unstable process and that CR physics is important for
nderstanding wave propagation in the ICM, even for subdominant
R pressures. 
We gave a physical o v erview of the CRBI in Section 3 . Instability

rises due to gravity acting on the mode’s density fluctuations. In
tandard buoyancy instabilities, such as thermal convection in stars
r the MTI (Balbus 2000 ) and the HBI (Quataert 2008 ) in clusters,
he density fluctuations are due to the background stratification of
he plasma. Notably, in the CRBI the density fluctuations at short
avelengths are due to the combined action of CR streaming and
ressure balance, independent of the background stratification. We
omplemented the qualitative physical picture from Section 3 with a
uantitative dispersion-relation calculation in Section 4 , and showed
rowth rates and mode properties for a wide range of physical
arameters in Figs 3 –10 . 
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Figure 12. Overview of instabilities in dilute ICM plasmas as a function of 
η = p c / p g . For small η, the HBI/MTI have the highest growth rates. For η � 

β−1/2 , the CRBI has growth rates larger than the HBI/MTI, and the CRAB 

instability of sound waves is excited. We include approximate growth rates 
of the CRBI and CRAB instability ( � ∼ ηβ1/2 ω B for the CRAB instability is 
valid abo v e the instability threshold and as long as � � ω s ; Kempski et al. 
2020 ). CRs do not significantly affect thermal-instability (TI) growth rates for 
η � 1 (Kempski & Quataert 2020 ). The CRAB instability drives the fastest 
growing mode for η � β−1/2 . However, while the CR entropy modes have 
smaller growth rates, they also have smaller group speeds and so remain in 
the region in which they are excited for longer, potentially leading to larger 
o v erall amplification. 
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.1 Relationship to other instabilities 

revious work on dilute cluster plasmas showed that anisotropic 
onduction leads to buoyancy instabilities, the MTI and HBI. 
ig. 8 shows that these instabilities dominate growth rates at long 
av elengths ev en in the presence of CRs, if the gas scale height is

ignificantly larger than the thermal mean free path, as is the case
n cluster cores. The CR-driven instability operates on small scales, 
recisely where the heat-flux-driven buoyancy instabilities are stable 
ue to magnetic tension. The MTI/HBI and the CRBI of this paper
an thus operate simultaneously in cluster plasmas. Ho we ver, we 
ote that the scale separation between the MTI/HBI and the CRBI
s not al w ays so clear: in the more dilute cluster outskirts, where
he thermal mean free path is significantly larger, the CRBI can have
ignificant growth rates (of order the free-fall frequency for plausible 
arameters) even for long-wavelength kH ∼ 1 modes (Fig. 10 ). 
In Fig. 12 , we summarize how the CRBI and the CRAB instability

rom Kempski et al. ( 2020 ) compare to previously identified insta-
ilities that may operate in ICM plasmas. We sketch representative 
rowth rates due to the different instabilities as a function of η.
or small η, the HBI/MTI are the fastest growing instabilities 
perating in the ICM (at large CR pressures we use a dashed line
or HBI/MTI because CRs may suppress the HBI, and the CRBI
nd HBI/MTI can be associated with the same mode; see Fig. 8 ).
or η � β−1/2 (recall that β 	 1 in the ICM), the growth rate 
f short-wavelength CR entropy modes driven compressible by CR 

treaming becomes comparable to or larger than ω ff . For η � β−1/2 

he CRAB instability of sound waves is also excited (Kempski et al.
020 ). The impact of CRs on thermal-instability (TI) growth rates is
odest (Kempski & Quataert 2020 ). The CRAB instability generally 

rives the fastest growing mode. This, however, does not necessarily 
ean that for large η the non-linear dynamics are dominated by the 
RAB instability, as the saturation of both CR-driven instabilities 

emains unclear and is the subject of ongoing work. In particular, 
hile the unstable CR entropy modes have smaller growth rates, 

he y also hav e smaller group speeds and so remain in the region in
hich they are excited for longer. This is especially true at high β:
aves propagating at the Alfv ́en speed with growth rates of order ω ff 

ndergo several e-foldings over the distance of one gas scale height 
Fig. 5 ). 

.2 The CRBI and CRAB instability in cluster cores 

eating by streaming CRs may balance cooling in the inner regions 
f cluster cores (Guo & Oh 2008 ; Jacob & Pfrommer 2017a , b ). For
 cooling rate ω c , this requires CR pressures of order (Kempski &
uataert 2020 ), 

∼ β1 / 2 ω c 

ω ff 
. (63) 

he CRAB instability and the CRBI become important for ηβ1/2 � 

 and therefore destabilize a CR-heated medium if, 

β1 / 2 ∼ β
ω c 

ω ff 
� 1 . (64) 

bservations suggest that ω ff / ω c � 10 in cluster cores (e.g. McDon-
ld et al. 2010 ; Hogan et al. 2017 ). A CR-heated medium is therefore
lausibly unstable to the CRAB instability and the CRBI for β � 10,
 condition that is likely satisfied in the ICM. 

We also note that the CRAB and CR buoyancy instabilities may 
ave, to some extent, similar observational appearances. In partic- 
lar, although CR entropy modes are pressure-balanced, they are 
ompressible and involve finite gas-pressure fluctuations (balanced 
y CR-pressure fluctuations). CR entropy modes may therefore 
asquerade as sound waves if only the thermal-gas fluctuations are 
easured. Moreo v er, due to their compressible nature both the CRAB

nstability and the CRBI may evolve into shock-like structures that 
esemble the weak shocks observed in the Perseus cluster (Fabian 
t al. 2003 , 2006 ). 

In the standard picture, AGN in cool cluster cores excite sound
aves and IGWs via the time dependence of the AGN jet and the
uoyant motion of radio bubbles into the ICM. Kempski et al. ( 2020 )
nd this work suggest that waves can also be excited by the CR
ressure gradient that the bubbles provide. Future simulations will 
ddress the non-linear evolution of the CR-driven instabilities. There 
re two important stages that are crucial for the non-linear evolution
nd saturation: when the amplitudes become large enough to locally 
atten the CR pressure gradient and shut off CR streaming ( δp c / p c 

1/ kH ; though this does not necessarily shut off the instability,
ee Tsung, Oh & Jiang 2022 ) and when the amplitudes become large
nough for the pressure anisotropy to excite kinetic microinstabilities 
uch as the mirror (Barnes 1966 ; Hase ga wa 1969 ) and firehose
Rosenbluth 1956 ; Chandrasekhar, Kaufman & Watson 1958 ; Parker 
958 ) instabilities (which occur when | � p | ∼ B 

2 /4 π ). Upcoming
ork will address how this additional physics, which is not part of

he linear analysis presented here, affects the evolution of the CR-
riven instabilities and their impact on the ICM. 

.3 Dependence on CR transport physics 

oth the CRBI considered in this work and the CRAB instability
n Kempski et al. ( 2020 ) are driven by CR streaming at the Alfv ́en
peed. The instabilities therefore operate only if the bulk of CRs
n the ICM are self-confined, rather than scattered by an extrinsic
urbulent cascade of magnetic fluctuations. According to current 
heoretical models of MHD turbulence, CR scattering by Alfv ́enic 
urbulence is likely negligible, due to the anisotropy of the cascade
MNRAS 524, 1893–1908 (2023) 
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Chandran 2000 ). The MHD weak cascade of fast modes may
e isotropic and more efficient at scattering CRs, and has been
roposed as an alternative to self-confinement (Yan & Lazarian
004 ). Ho we ver, because the weak cascade of fast modes is strongly
amped in dilute high- β plasmas, and may generally be suppressed
y wave steepening (Kadomtsev & Petviashvili 1973 ; Kempski &
uataert 2022 ), scattering of energetically important GeV CRs by

ast modes is likely suppressed in the high- β ICM. Self-confinement
nd streaming transport are therefore plausible. 

The finite CR mean free path in the frame moving with the
elf-e xcited Alfv ́en wav es necessarily implies a correction to the
ure Alfv ́enic streaming model. Significant CR diffusion resulting
rom this correction can suppress the CRBI (Fig. 7 ). Ho we ver, the
agnitude and nature of the correction to Alfv ́enic streaming remains

ncertain. In particular, the form of the transport correction turns
ut to be rather peculiar, as it corresponds to neither streaming nor
iffusion (Skilling 1971 ; Wiener et al. 2013 ; Kempski & Quataert
022 ). We attempted to quantify the magnitude of the diffusive part
f the transport correction, i.e. the contribution that may suppress
he CRBI, in Section 6.4 , which was based on the calculation
rom Appendix B . Fig. 11 shows that the CRBI is usually not
uppressed by CR diffusion for expected ICM conditions, although
e stress that our calculation of the transport correction is quite
ncertain. First-principle simulations of the CR streaming instability,
.g. using particle-in-cell (PIC) or MHD-PIC methods (Holcomb &
pitko vsk y 2019 ; Haggerty, Caprioli & Zweibel 2019 ; Bai et al.
019 ; Bambic, Bai & Ostriker 2021 ; Bai 2022 ), are essential for
etter understanding the physics of streaming-instability-regulated
ransport and for deriving simplified fluid models like the one used in
his paper. Interestingly, so far these simulations tend to produce CR
ransport speeds that are somewhat larger than predicted analytically
sing quasi-linear theory (e.g. Bai 2022 ). It would also be valuable
o carry out a more complete version of our calculation—based on
R kinetic theory—to test the conclusions of our simplified fluid

reatment (although it is worth noting that existing theories of CR
ransport are quite uncertain and have difficulties explaining CR
easurements in the Milky Way; e.g. Kempski & Quataert 2022 ,
opkins et al. 2022 ). 
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PPEN D IX  A :  LANDAU-FLUID  C L O S U R E  F O R  

OW- C OLLISIONALITY  PLASMAS  

ere we provide the kinetic MHD equations and the Landau-fluid 
losure for the heat fluxes used in Section 6.3 and Fig. 10 . The
inetic MHD evolution equations for the pressures perpendicular 
nd parallel to the magnetic field are (Chew et al. 1956 ), 

∂ p ⊥ 

∂ t 
+ ∇·( p ⊥ v ) + p ⊥ ∇·v + ∇·( q ⊥ ̂

 b ) + q ⊥ ∇ · ˆ b 

= p ⊥ ̂
 b ̂
 b : ∇ v − 1 

3 
νii �p, (A1) 

∂ p ‖ 
∂ t 

+ ∇·( p ‖ v ) + ∇·( q ‖ ̂  b ) − 2 q ⊥ ∇ · ˆ b = −2 p ‖ ̂  b ̂
 b : ∇ v + 

2 

3 
νii �p 

−3( γ − 1) v st · ∇ p c , 

(A2) 

here we made the somewhat uncertain assumption that CR heating 
s predominantly in the direction parallel to the magnetic field. This
s moti v ated by the fact that CR heating is due to the excitation of
arallel-propagating modes, although we note that this is not true 
f damping by Alfv ́enic turbulence dominates, which acts to shear 
he waves to high k ⊥ . This choice does not, ho we ver, significantly
ffect the results. The abo v e equations are not yet complete, as
he heat fluxes are still undetermined. In the Landau-fluid closure, 
he heat fluxes are set such that the linear behaviour of the fluid
odel approximately matches the linear response of the fully kinetic 

hermal plasma (Snyder et al. 1997 ). The Landau-fluid closure has 
een popular for modelling collisionless plasmas, as it reco v ers 
he fully kinetic linear damping rates (e.g. linear Landau damping 
f ion acoustic waves) and instabilities (e.g. MRI) of all MHD 

odes. A convenient form for the heat fluxes, which recovers 
raginskii MHD in the collisional limit, is given by (Snyder et al.
997 ), 

 ⊥ = − 2 c 2 s‖ √ 

2 π | k ‖ | c s‖ + νii 

[
ρ∇ ‖ 

(
p ⊥ 

ρ

)
− p ⊥ 

(
1 − p ⊥ 

p ‖ 

) ∇ ‖ B 

B 

]
, 

(A3)

 ‖ = − 8 c 2 s‖ √ 

8 π | k ‖ | c s‖ + (3 π − 8) νii 

ρ∇ ‖ 

(
p ‖ 
ρ

)
, (A4) 

here c s‖ = 

√ 

p ‖ /ρ. In Section 6.3 and Fig. 10 , we use the linearized
ersions of ( A1 )–( A4 ) instead of the linearized Braginskii MHD
quations ( 31 ) and ( 32 ). 
PPENDI X  B:  C R  DI FFUSI ON  COEFFI CIENT  

N  SELF-CONFI NEMENT  T H E O RY  

n this section, we provide a heuristic calculation of the CR diffusion
oefficient in self-confinement theory (a similar calculation can be 
ound in Hopkins et al. 2021 ). One challenge in this calculation is
hat leading-order corrections to Alfv ́enic streaming are often not 
if fusi v e. Instead the y are better described by a (super-Alfv ́enic)
treaming or sink term (this is the case when linear damping of Alfv ́en
aves dominates; Skilling 1971 ; Wiener et al. 2013 ; Kempski &
uataert 2022 ). For our linear analysis calculation, we are mainly

nterested in the leading-order diffusive correction, which is more 
ikely to suppress the instability than a streaming/sink term. 

We calculate the amplitude of wav es e xcited by the CR streaming
nstability, and the resulting CR scattering frequency, by equating 
lfv ́en-wave growth and damping. We consider a steady state with 

 � L + � NL ) 
δB 

2 

4 π
= | v A · ∇ p c | , (B1) 

here we split the wave damping into a linear and non-linear part
 ∝ δB 

2 ). � L is the sum of all linear damping contrib utions, turb ulent
Farmer & Goldreich 2004 ), linear-Landau (Wiener et al. 2018 ), ion-
eutral and dust (Squire et al. 2021 ) damping, although the latter
wo are likely not important in the hot and dilute ICM. � NL is the
on-linear Landau damping rate (Lee & V ̈olk 1973 ; Kulsrud 2005 ),
 NL = γ NL ( δB / B ) 2 , where γNL ∼ k v th , k is the wavenumber of Alfv ́en
aves resonant with ∼ GeV CRs and v th is the ion thermal speed.
quation ( B1 ) becomes a quadratic equation for the wave amplitude (
δB 

2 

B 
2 

)2 

+ 

� L 

γNL 

δB 
2 

B 
2 

− � A 

2 γNL 

p c 

εB 
= 0 , (B2) 

here � A ≡ | v A · ∇ p c | /p c is the inverse of the Alfv ́en crossing time
nd εB is the magnetic-field energy density. We first consider the 
imit � L 	 � NL . Equation ( B2 ) can then be solved perturbatively to
ield 

δB 
2 

B 
2 

≈ � A p c 

2 � L εB 

(
1 − γNL 

� L 

� A p c 

2 � L εB 

)
. (B3) 

he pitch-angle scattering rate of GeV CRs is νCR ∼ �0 δB 
2 / B 

2 ,
hich corresponds to a diffusion coefficient 

∼ c 2 

νCR 
≈ κst + κdiff , (B4) 

here, 

st = 

c 2 

�0 

2 � L εB 

� A p c 

, (B5) 

nd 

diff = 

c 2 

�0 

γNL 

� L 
∼ cv th 

� L 
. (B6) 

st ∝ | v A · ∇ p c | −1 reflects the well-known result that for purely
inear damping rates the dif fusion coef ficient is inversely proportional 
o the CR pressure gradient, so that the diffusion term ∇·( κ ˆ b ̂  b · ∇ p c )
nds up not being dif fusi ve at all and is better described as a (super-
lfv ́enic) streaming or sink term (Skilling 1971 ; Wiener et al. 2013 ;
empski & Quataert 2022 ). By contrast, κdiff is independent of the
R pressure gradient and is therefore a regular diffusion coefficient. 
Conversely, if non-linear Landau damping dominates, the CR 

if fusion coef ficient is to leading order (from equation ( B2 )): 

NL ≈ κdiff ≈ c 2 

�0 

(
2 γNL εB 

� A p c 

)1 / 2 

. (B7) 
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igure B1. κdiff as a function of the CR pressure gradient for a linear
amping rate � L = 10 −10 s −1 , where κdiff is the component of the diffusion
oefficient κ that gives rise to actually diffusive behaviour. We estimate κdiff 

rom self-confinement theory by computing the total diffusion coefficient
from equation ( B2 ) and subtracting κst (equation ( B5 )) in order to not

nclude the non-dif fusi ve correction when linear damping dominates. While
his method of computing κdiff is not exact, it correctly reco v ers the dif fusi ve
orrection in the two asymptotic limits shown by the dashed lines (equations
 B6 ) and ( B7 )). This suggests that the solid line is a reasonable approximation
f the dif fusi ve correction to Alfv ́enic streaming. 

NL ∝ | v A · ∇ p c | −1 / 2 and so we end up with a term that is again
ot dif fusi ve in the usual sense. Ho we ver, in linear theory with
 background CR pressure gradient, ∇·( κ ˆ b ̂  b · ∇ p c ) still gives a
erm ∝ κk 2 (where κ depends on the background gradient) and is
herefore linearly dif fusi ve. 

In the high- β ICM, linear Landau damping (Wiener et al. 2018 ) is
ikely the most important linear damping rate. For turbulence injected
n ∼10 kpc (common scale of the radio bubbles) with perturbations
NRAS 524, 1893–1908 (2023) 
omparable to the Alfv ́en speed, the damping rate of k ∼ r L Alfv ́en
av es e xcited by GeV CRs (where r L is the GeV CR gyroradius) is 

 L ∼ 0 . 4v th 
( r L L turb ) 1 / 2 

∼ 10 −10 s −1 v th 
10 8 cm s −1 

(
L turb 

10 kpc 

)−1 / 2 (
B 

1 μG 

)1 / 2 

. (B8) 

We plot κdiff , i.e. the component of the dif fusion coef ficient κ that
ives rise to actually diffusive behaviour, as a function of the CR
ressure gradient in Fig. B1 (see also Fig. 11 for a different version
f this plot). We calculate κdiff by computing the total diffusion
oefficient κ from equation ( B2 ) and subtracting κ st (equation ( B5 ))
n order to not include the non-dif fusi ve correction when linear
amping dominates. Simply subtracting κ st to obtain the dif fusi ve
orrection is not exact. Ho we ver, it correctly recovers the two
symptotic limits (equations ( B6 ) and ( B7 ) and the dashed lines in
ig. B1 ). This suggests that the solid line in Fig. B1 is a reasonable
pproximation of the dif fusi ve correction to Alfv ́enic streaming. 

For large CR pressure gradients, the streaming instability reaches
arge amplitudes (for a fixed linear damping rate) and non-linear
andau damping is more important than linear damping mechanisms.
he resulting dif fusion coef ficients are ∝ ( dp c / dz ) −1/2 . For small
R pressure gradients, linear damping dominates as the amplitudes

eached by the streaming instability are not large enough for non-
inear Landau damping to be important. The diffusion coefficient is
onstant and approximately given by equation ( B6 ). The horizontal
otted line in Fig. B1 is the anisotropic viscosity of the thermal gas
or l mfp ∼ 0.2 kpc and T = 3 × 10 7 K. It is therefore plausible to
xpect � < 1 in cluster cores and the CRBI remains active, though
s likely partially suppressed (Fig. 7 ). 
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