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Abstract

Sensory inputs in nervous systems are often encoded at the millisecond scale in a pre-
cise spike timing code. There is now growing evidence in behaviors ranging from slow
breathing to rapid flight for the prevalence of precise timing encoding in motor systems.
Despite this, we largely do not know at what scale timing matters in these circuits due to
the difficulty of recording a complete set of spike-resolved motor signals and assessing
spike timing precision for encoding continuous motor signals. We also do not know if the
precision scale varies depending on the functional role of different motor units. We intro-
duce a method to estimate spike timing precision in motor circuits using continuous Ml
estimation at increasing levels of added uniform noise. This method can assess spike
timing precision at fine scales for encoding rich motor output variation. We demonstrate
the advantages of this approach compared to a previously established discrete informa-
tion theoretic method of assessing spike timing precision. We use this method to analyze
the precision in a nearly complete, spike resolved recording of the 10 primary wing mus-
cles control flight in an agile hawk moth, Manduca sexta. Tethered moths visually tracked
a robotic flower producing a range of turning (yaw) torques. We know that all 10 muscles
in this motor program encode the majority of information about yaw torque in spike tim-
ings, but we do not know whether individual muscles encode motor information at differ-
ent levels of precision. We demonstrate that the scale of temporal precision in all motor
units in this insect flight circuit is at the sub-millisecond or millisecond-scale, with varia-
tion in precision scale present between muscle types. This method can be applied
broadly to estimate spike timing precision in sensory and motor circuits in both inverte-
brates and vertebrates.
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Author summary

Neurons use discrete spikes of activity to encode information related to sensing and
movement. The precision of the timing of these spikes is crucial for encoding this infor-
mation, but how can we measure this precision? In this study, we introduce a new method
for assessing timing precision by estimating the mutual information between continuous
data and spike times. We do this by gradually introducing noise to the data and analyzing
its impact. This approach is an improvement over previous methods that required data
discretization. To test the precision, we applied this method to a comprehensive motor
program that involved recording almost every spike in the primary muscles controlling
the wings of an agile flying insect, a hawk moth, Manduca sexta. Although there were
slight differences in precision among the muscles, we discovered that each muscle
encoded movement information at the millisecond to sub-millisecond scale. This method
can be employed to evaluate timing precision in both sensory and motor circuits across a
range of animals, including insects and vertebrates.

Introduction

Neurons in both sensory and motor systems perform temporal encoding, where information
on signals is carried in the precise timing of spikes, on a faster timescale than the characteris-
tic timescale of the signals themselves [1]. Although precise spike timing encoding in sensory
systems has been found in many organisms [2, 3], the role of such temporal encoding in
motor systems has been underappreciated. While strong correlations between spike rate and
muscle force production exist [4-6], the precise timing of spikes in motor neurons also mat-
ters due to nonlinearities in muscle force production and mechanical interactions of muscu-
loskeletal systems within themselves and with the environment [7]. Motor circuits in cortex
[8], cerebellum [9], descending interneurons [10], and the motor periphery [11-13] carry
information in neural and muscle spike timings. This information can be encoded in the dif-
ference between timings in two spike trains [11], the inter-spike interval [8], or temporal pat-
terning [12], providing motor control systems the potential for a rich, layered code with high
capacity. Neurons are capable of generating spikes with incredible precision due to biophysi-
cal properties that reduce jitter [14], yet this precision may not be consistent with the actual
timescale used by the neuromuscular system for encoding and controlling movement. How
precisely must the nervous system specify the timing of spikes in the motor periphery to pre-
serve meaningful information about visual stimuli or to control the activation of muscles for
movement? Knowing the scale of spike timing precision would inform our understanding of
the biophysical properties of muscle and the performance constraints necessary to preserve
this precision in the motor periphery, especially in motor circuits actuating different
functions.

However, we have few methods to assess at what timescale information about motor output
is encoded in motor circuits, and how much of the potential bandwidth of temporal codes is
utilized. Previous methods for estimating precision include stimulus-response variability and
reconstructions [3, 15], spike time jitter analysis in experimental and computational data [16,
17], and information theoretic methods using discrete representations of motor output and/or
sensory stimuli [8, 18]. Using these methods, the firing precision of single neurons in some
sensory systems has been estimated to occur on the millisecond or sub-millisecond scale (3,
16, 17, 19]. Some methods used in sensory systems do not translate well to motor systems
since sensory systems can be studied using repeated or controlled stimuli, as even in well-
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defined tasks like target reaching, variation exists in how a motor task is realized [20, 21]. Here
information theoretic methods show promise as they do not require repeated stimuli or white
noise assumptions [22, 23]. In cortical motor circuits, spike timing precision has been esti-
mated to be at the millisecond-scale in a songbird vocalization area using a discrete informa-
tion theoretic method [8]. These discrete methods, however, have drawbacks such as a limited
representation of motor output.

To assess spike timing precision in motor systems, we require a method that is robust to
the inherent variability in motor outputs even in response to the same sensory inputs, con-
tinuously samples this rich variability, and measures how much spiking activity in motor
units encodes these outputs. To do this, we must also overcome the difficulty of obtaining
spike-resolved motor unit data in a comprehensive motor circuit. Most electromyography
(EMG) recordings in vertebrates either sample from too many motor units to discriminate
spikes (but see [24]) or only sample single motor units with spike resolution instead of the
entire motor pool, and the calcium dynamics in most imaging techniques occur over greater
time-scales than the width of neural spikes. Therefore, it is difficult to compare spike timing
precision in different neural circuits or muscles. Methods that both capture the features nec-
essary to assess spike timing precision and do so in a comprehensive peripheral motor cir-
cuit would further our understanding of how the brain structures information for
movement.

Hawk moths provide a compelling test-bed for questions of precision due to their fast, com-
plex, and agile motor behaviors that are enabled by a relatively small set of muscles. One hawk
moth, Manduca sexta, uses a set of only 10 muscles as the primary actuators of their wings [13,
25-29] and each of these muscles is innervated by one or very few motor neurons, so that each
muscle is often considered a single effective motor unit [30, 31]. Therefore, we can record
these 10 muscles simultaneously to obtain a nearly complete, or comprehensive, spike-resolved
motor program, enabling investigation of precision over a nearly complete circuit that encodes
and controls flight [13]. We know that spike timing encodes information about motor output
in all muscles of this comprehensive, spike-resolved motor program [13], but do not know the
scale of precision utilized for encoding and whether this scale of precision differs in different
muscle types. The hawk moth motor circuit, due to its few muscles and spike resolution,
enables us not only to estimate timing precision, but discover whether this precision changes
depending on the specific function of each muscle. Being able to estimate precision could
point to whether the nervous system encodes movement on a consistent or changing precision
scale for different types of muscles.

We develop a method to assess precision down to the sub-millisecond scale in this com-
prehensive, spike-resolved motor program with a continuous representation of motor output
in a yaw turning behavior. Our method utilizes continuous Kraskov k-nearest neighbors
mutual information (MI) estimation [12, 13, 32, 33] with additions of uniform noise to cor-
rupt spike timing over progressively larger time windows. We compare this method to a pre-
viously established method of estimating spike timing precision using the NSB discrete
entropy estimator [8, 34, 35]. Given prior assessments of precision in motor systems and the
hawk moth motor program in particular, we predict millisecond-scale precision. We test two
alternative hypotheses for the precision scale across the motor program—muscles all have
consistent precision scale, due to encoding a consistent amount of mutual information
between spiking and the motor output [13], or they vary in precision scale. In the case where
precision scale is observed to vary in different muscle types, we predict that spike timing pre-
cision may be higher in muscles with fewer spikes per wingstroke, such as the flight power
muscles that have a large capacity for mechanical power modulation with small changes in
phase [11].
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Materials and methods
Comprehensive, spike-resolved motor program data set

The previously published data set used in this analysis recorded the comprehensive, spike-
resolved motor program of the hawk moth, Manduca sexta (n = 7), and its motor output in a
tethered flight preparation [13, 36] (Fig 1). Briefly, EMG signals from the 10 primary muscles
actuating each moth’s wings were recorded with spike-level resolution using implanted silver
wire electrodes (Fig 1A and 1C). The moths were tethered using cyanoacrylate glue to a 3D-
printed ABS plastic rod attached to a custom six-axis force/torque (F/T) transducer (ATI
Nanol17Ti, FT20157; calibrated ranges: F,, F,=+1.00 N; F, = +1.80 N; 7, 7, 7, = #6250 mN-
mm). After tethering, the moths were given thirty minutes to recover from the surgery and
adapt to dark conditions, since these are crepuscular moths that typically fly at dusk and dawn.
The moths were then presented with a 3D-printed plastic flower oscillating horizontally in a 1
Hz sinusoidal trajectory; these flowers have been used to elicit flight maneuvers previously and
sample a wide diversity of turns (Fig 1B) [37]. The EMG recordings were sampled at 10 kHz,
amplified using a 16 channel amplifier (AM Systems Inc., Model 3500), and acquired using a
data acquisition board (National Instruments USB-6529 DAQ) and custom MATLAB soft-
ware. The same model of DAQ board was used to acquire the strain gauge voltages from the F/
T transducer used to calculate the forces and torques, also sampling at 10000 Hz.

The data set reports spike counts and spike timings in segmented wing strokes as represen-
tations of the spiking activity along with the scores of the first 2 principal components (PCs) of
the within-wing stroke yaw torque (7,) produced in wing strokes in each individual moth (Fig
1D and 1E). The first 2 PCs captured most of the variation in the original, fully dimensional
representation of the within-wing stroke yaw torque; reducing dimensionality of the motor
output representation makes information theoretic methods more tenable [13]. The wing
strokes were segmented using a previously described method [38]. The force in the z-axis (F,)
was filtered with an 8-th order Butterworth bandpass filter between 5 and 35 Hz, capturing the
wing beat frequency of the moth. A Hilbert transform was used to identify a common instanta-
neous phase, approximately at the peak downward F, in each wing stroke to serve as the zero
time point, t = 0. The timing of spikes in each muscle within each wing stroke were aligned to
these zero time points, such that the spiking activity were represented as continuous times in
ms within each wing stroke as a matrix S (Fig 1D and S1 Fig). The within-wing stroke yaw tor-
que was also segmented into wing strokes using the identified zero time points, and a principal
components analysis of the continuous yaw torque signal from t = 0 to the maximum length L
in samples of the shortest wing stroke of each individual moth was conducted (Fig 1E). The
scores—the projections of each wing stroke onto the first two principal components—were
used as a motor output representation M of the within-wing stroke yaw torque, 7,. For full
details on the wing stroke segmentation and PCA of the yaw torque, see the original paper [13].

Discrete method: MI estimation using NSB

We first attempted to estimate spike timing precision using a previously described NSB
entropy estimation method [8, 34, 35, 39]. As with other discrete estimators of information
theoretic quantities [40], spiking activity was used to create probability distributions, S;, with
discrete states of spike “words” by binning the spikes in each wing stroke using different num-
bers of bins, b, (Fig 2A). The number of spikes that occur in each bin sets the value of that bin,
and each unique sequence of bin values across all wing strokes is a spike “word”, w;. The preva-
lence of each spike word provides a discrete probability distribution, S; = P(w), that describes
the spiking activity in each individual muscle. The spike timing precision, r4, of each
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Fig 1. Representing the spiking activity and motor output of a moth’s comprehensive, spike-resolved motor program. (A) A 3D schematic showing approximate
positions and attachments of the 5 muscle types recorded in the motor program: the dorsolongitudinal muscle (DLM, blue), the dorsoventral muscle (DVM, green),
the third axillary muscle (3AX, orange), the basalar muscle (BA, yellow), and the subalar muscle (SA, pink). (B) Tethered preparation used to record EMG signals
from the 10 muscles in the motor program and the forces and torques produced as the moth responded to a flower stimulus. (C) Example data from 0.5 seconds of
tethered flight in a moth. The bandpass-filtered F, signal is used to segment wing strokes, with t = 0 of every wing stroke corresponding to the peak downward force in
F, (gray circle and line). Spike timings in each muscle and the yaw torque 7, are aligned to t = 0 within each wing stroke. (D) The spiking activity S for each muscle
and each moth can be represented as a N x J,,,,, matrix where N is the number of wing strokes sampled in that moth and J,,,, is the maximum spike count observed in
that muscle. Where there are fewer than J,,,,, spikes in a wing stroke, entries with no spikes are represented as NaN. (E) The yaw torque 7, after wing stroke
segmentation can be represented as a N x L matrix where N is the number of wing strokes sampled in that moth (range in our data: N = 999-2954) and L is the length
in samples of the shortest wing stroke in the data set, meaning that some wing strokes are shortened to length L (range in our data: L = 534-668). The matrix 7, can be
reduced to a N x 2 matrix using principal components analysis (PCA). The motor output M is represented as the projection of each wing stroke onto the first two
principal component (PC) loadings that explain the variance of the fully dimensional 7,. Data shown and panels A-B taken and adapted from Putney et al. 2019 [13,
36].
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Discrete Method: MI Estimation using NSB
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Fig 2. Discrete Method: MI Estimation using NSB. (A) Each spike train within a wing stroke is represented by the
spike times represented to the sampling rate (blue). The spiking activity representation, S, is transformed into discrete
probability distributions, S, constructed using a certain number of bins, b, whose entropy can be estimated using the
NSB method. Each spike train in a wing stroke is binned into spike words, w;, with b bins. The probability distribution
of occurrences of each spike word, w;, is our representation of the spiking activity as a discrete probability distribution.
(B) The motor output representation, M, is transformed into a discrete probability distribution, M. The scores of the
first two principal components can be divided into b,, partitions of equal size. In the example of this figure, b,, = 2
partitions produce m;_;_, motor output states categorized by low and high groups separated by the median score for
each component. Visualization of the four motor output states, m;, as a scatter plot of the scores of the first two
principal components, with each unique color specifying a motor output state. (C) The NSB entropy estimator is used
to estimate the entropies of the spiking activity H(S,) and the conditional entropies H(S,|M,) at different numbers of
bins b to determine the mutual information, MI, between the spiking activity S, and the motor output M,,.

https://doi.org/10.1371/journal.pcbi.1011170.g002
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representation changes with the number of bins b,
rd — _max min (1)

where t,,,, is the highest spike time recorded in that muscle and t,,,;, is the lowest. This is the
maximum range within a wing stroke where spikes occur. When this range is split into b, bins
the size of each bin is r; in milliseconds.

To create a discrete probability distribution for the motor output, each column of the
motor output, M, was partitioned into b,, groups of equal size (the same number of wing
strokes in each group). The case of b,,, = 2 groups is depicted in Fig 2B; two groups for each PC
score leads to a total of four discrete motor output states. For the case of b,,, = 2, then, the
motor output representation M, is the discrete probability distribution P(m;) where m; are
each of the four motor output states (i = 1-4). In a previous implementation of this method to
songbird motor cortex data, the motor output was divided into only 2 potential states using
the method above [8]. Here, we use 9 total motor output states (b,, = 3), defining high,
medium, and low values on the first two principal component axes that capture variation in
the full motor output waveforms. Using 9 total states allows us to draw closer comparison with
the continuous method described below, while still balancing the evident trade-off between
number of motor output states and bias at high numbers of bins (54 Fig).

Using the two discrete probability distributions of S; = P(w) and M, = P(m), we estimated
the mutual information (I,;) between the spike “words” (represented by S,;) and the motor out-
put states (represented by M) for each muscle in each moth (Fig 2C):

Iy = I(Sda Md) = H(Sd> - H(Sd|Md)’ (2)

where I is the discrete estimate of the MI, H(S,) is the entropy of the spike word probability
distribution, and H(S,|M,) is the conditional entropy of the spike words given the state of the
motor output. This conditional entropy is the sum of the entropy of the spiking activity for
wing strokes in each motor state, m;, weighted by the probability of that motor state, p(m;):

H(SIM,) = ip<mi>H<sd|Md —m), 3)

Since all entropy estimates with finite data have bias, we used the NSB entropy estimation
for the entropy of the full spike word distribution, H(S,), and the conditional entropy, H(S,|
M,), in this equation [8, 34, 35, 39], which can estimate these entropies with less bias even
when severely undersampled as opposed to the more traditional direct method, or maximum
likelihood, estimation [2]. The NSB method uses Bayesian estimation of the underlying proba-
bility distributions given observed events, and then estimates the first and second posterior
moments of the entropies. The reported mean and standard deviation of these entropy esti-
mates was calculated using the first and second posterior moment of the entropy, respectively
[34]. Estimates of I(S; M) were done for spike word distributions, S, defined with increasing
numbers of bins b; = 1 — 70, with b, = 70 being within the sub-millisecond range in all muscles.
With this method, if a plateau in MI can be identified as b, increases, a breakpoint analysis or
other algorithm can be used to determine the threshold value of spike timing precision, r,, as
the point where MI begins to fall with decreasing numbers of bins b.

While the NSB entropy estimator typically performs much better than traditional maxi-
mum likelihood estimation at reducing systematic bias in undersampled regimes, it is not a
bias-free estimator. As the dimensionality in the motor space (number of motor output states

b *in M,) and the spike word distributions (number of bins b, in S,) is increased, the

m
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estimated MI will increase (S4 Fig). A consequence of this is that often MI estimated at higher
numbers of bins b, will continually increase due to bias, never reaching a plateau and thus pre-
venting identification of critical value for spike timing precision. To counteract this, we used a
simple shuffling bias correction similar to [41, 42], where an estimate of bias, I, was calculated
as the mean of many repeated conditional entropies H,(S,|M,,s,) with motor output states
randomly shuffled relative to the spike word distributions. The mean MI from many repeated
shufflings I, was then subtracted from the original MI estimation I, giving a shuffling bias-
corrected MI

Ligw=1,— 1, = (H(S,) — H(S;/M,)) — (H(S,) — niih:Hsh(SzAMd.sh)) (4)

sh j=1

where ng, is the number of repeated shufflings performed (typically ng, > 10) and My, are the
motor output states randomly permuted relative to associated spike words. With this shuffling
bias-corrected MI, the threshold value of spike timing precision is estimated as the number of
bins b, where MI I , peaks before falling as bias begins to increase, rather than where MI pla-
teaus. Identifying the precision of spike timing is easier as a peak-finding rather than plateau-
breakpoint problem. It also allows more fine-grained discretization of motor output, which
typically leads to runaway bias at high numbers of bins to not prevent estimation of spike tim-
ing precision.

Continuous method: MI estimation using KSG and added noise

Our second method of estimating the spike timing precision used a continuous Kraskov k-
nearest neighbors MI estimation (KSG) [32] (Fig 3). This method improves on the discrete
method outlined above by using a MI estimator which operates on a continuous representa-
tion of both the spiking activity and motor output, estimating entropies from statistics of the
k-nearest neighbor distance distributions of the data. Using a continuous estimator allows for
testing of spike timing precision by addition of uniform noise, which grants finer control then
when limited to specific bin sizes.

For the spike timings in each wing stroke, we generated added noise from a uniform distri-
bution, U, between values of 0 and r,, where r, set the width of the noise window (Fig 3A). This
shifts spike timings in S by U(0, ). Our spike timing representation, then, is a matrix of cor-
rupted spike timings §' = S + U(0, r.) of size N X S,,.ax where N is the number of wing strokes
and S .4, is the maximum number of spikes observed in a wing stroke for that muscle in each
moth (Fig 3B). Our continuous estimate of MI, I, is then estimated between these two quanti-
ties §' and M using the KSG estimator, which uses the Euclidean distances between each sam-
pled wing stroke and its k"™ nearest neighbor in a space defined by the variables ' and M to
estimate the joint entropy of the two variables H(S', M) and the mutual information between
the two variables I(S’, M). The continuous KSG estimation of the mutual information I, = I(S,
M) across values of r, takes the form:

s

c,max

IL=1(S; M)+ Y p(S. = i)I(S; M[S, = i) (5)
i=1

where §; is the set of spike times in §', S/ is the spike count, and S .., is the max count of spikes
in a single wing stroke observed for each muscle. MI between spike timings with added noise
S; and motor output M are calculated separately for each possible number of spikes i =

1,....8

c,max

that many spikes, p(S. = i). Calculation of I in this manner separates spike count MI I(S/; M)

in a wing stroke and summed weighted by the probability of a wing stroke having
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Continuous Method: MI Estimation using KSG and Added Noise
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Fig 3. Continuous Method: MI Estimation using KSG and Added Noise. (A) Uniform noise, U(0, r,), is added to the
precise spike timings. At small r, the noise corruption does not change the spike train representation much over 10
iterations. At large r,, significant variation between the representation of the same spike train appears over 10
iterations. (B) The representation of the spiking activity, S, has a uniform window of noise defined by width, r,, added
to it to create representations, §, at varying levels of added noise. (C) The motor representation for the continuous

method, a N x 2 matrix of the scores of the first two principal components for each wing stroke. (D) Visualization of M
as a scatter plot of the scores of the first two principal components, where each point is a wing stroke.

https://doi.org/10.1371/journal.pcbi.1011170.9003

from spike timing MI by conditioning spike timing on spike count [12, 13]. The mutual infor-
mation between the spike timings with added noise §' and the scores of the first 2 PCs in each
wing stroke M was estimated 150 times with different random noise samples for each value of
r. tested, reducing the effect any individual estimation run has on the final mutual information
value. Therefore, we report the mean and standard deviation of these 150 estimates of I.. MI
estimates with no added noise were previously assessed to be stable on this dataset by using
data fractioning and by varying values of k [13]. The KSG estimator was used with k = 4
throughout this work, though estimated precision was found to not be sensitive to the choice
of k up to k =7 (S7 Fig).

To determine a precision value for each individual muscle, we used the error estimate of
the MI at r. = 0 to set a range of expected values. We then defined the precision for a muscle as
the point where the mean MI for all 150 estimates falls below the lower bound on the estimate
of the MI (the mean minus the standard deviation) at . = 0.0 ms (i.e. the original data) based
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on variance in data fractions [13, 33]. We determined the standard deviation of our MI esti-
mates at 7. = 0 by subsampling the data sets in non-overlapping data fractions. The variance in
these fractions was used to estimate the standard deviation or uncertainty of the estimate at the
full data size, as previously [33]. To test for statistically significant differences between the
spike timing precision r, of different muscles, we used one-way and two-way ANOVA tests, as
well as the non-parametric Kruskal-Wallis tests.

We also tested two alternate methods for choosing the spike timing precision r. (S5 Fig).
The first of these, a derivative method, estimated spike timing precision r, as the noise level
where the 2™ derivative of I. with respect to the noise level 7. peaks. The second method, a line
fitting intersection approach, treats the I, vs. r. curve similar to a phase transition, fitting two
lines to the approximately linear low-noise and high-noise regions at either end of the curve
and estimating spike timing precision as the noise level where these two lines intersect. All
three algorithms produced similar results on real and simulated data with precision fixed to
known levels (see S5 Fig), with the standard deviation method used throughout this work cho-
sen for its reduced systematic bias and simplicity. While the three methods did give slightly dif-
ferent precision estimates and displayed different bias characteristics, all three estimated
precision within the range of 0.5-3 milliseconds on the hawk moth comprehensive motor pro-
gram data, indicating relative robustness to the specific procedure used to choose the noise
level at which MI falls.

Results and discussion

The continuous method gives an improved estimate of millisecond-scale
timing precision

Here, we present an extension of a continuous MI estimation method [33] to obtain reliable
estimates of millisecond-scale timing precision (Fig 4) across the hawk moth’s comprehensive
motor program. The discrete method, which has been previously used to show spike timing
precision in motor systems [8, 34], is able to estimate spike timing precision and demonstrate
that each muscle from each moth exhibits higher precision than a spike count code.

One of the advantages of the NSB estimator over other discrete estimators is that it can esti-
mate probability distributions from very sparse sampling, though in our data set strong under-
sampling bias at high numbers of bins necessitated shuffing bias correction to produce spike
timing precision estimates (Fig 4A-4C and 54 Fig). Even with bias correction and more fine-
grained motor output states, estimates are not smooth with r,, with large jumps in I; between
adjacent values of r; which make determining a specific peak MI more difficult. Across all
muscles except the dorsolongitudinal muscles (DLMs), the discrete method found significantly
lower precision than the continuous method, indicating that the continuous method is more
capable of detecting associations between spike timing and motor output on smaller time-
scales. Similar to comparisons between continuous and discrete estimators of transfer entropy
on spike data [40], the continuous method with additive noise allowed determination of preci-
sion at a finer resolution than the discrete method, with greater accuracy and reduced bias (Fig
4A-4C).

Precision estimation with the continuous method is still limited; precision not only cannot
be smaller than the minimum time representation of 0.1ms defined by the 10kHz sampling
rate, but also the Kraskov estimator operates at a resolution determined by the k™ nearest
neighbor distance, bounding the resolution of entropy estimation by the size of the dataset
used. With more wing strokes, the space of data would be denser and thus typically have a
lower k'™ nearest neighbor distance. These limitations, however, merely indicate that the true
value of precision may be lower than that identified by the continuous method. For this
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Fig 4. Comparing the two methods used to estimate spike timing precision. (A-C) MI I, (solid line, mean + STD) and shuffling bias corrected MI I, (dotted line)
from the discrete NSB method for three example moth, muscle pairs as bin size r, is varied. Markers and text denote estimated spike timing precision. (D-F) ML, I,
(mean + STD of 150 tests of adding uniform noise) from the continuous method for the same three example moth, muscle pairs as uniform noise amplitude r, is varied.
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main text results. (G) Mean + STD of estimated spike timing precision for continuous method (blue circles) and discrete method (red triangles) for all muscles. Black
asterisks indicate when spike timing precision estimates for a muscle are significantly different between the two methods according to a two-sample t-test (p < 0.05).

https://doi.org/10.1371/journal.pchi.1011170.g004

dataset, too, the introduction of uniform noise does not dramatically affect the scale at which
entropy is estimated by changing the max-norm k™ nearest neighbor distance distributions
(S2 Text, S6 Fig), nor does changing the operating scale by changing k significantly alter
observed precision values (S7 Fig).

Validation on simulated data

To better understand the performance difference between the two methods and validate their
ability to accurately identify precision, we created data with known precision (Fig 5).

Both estimators were repeatedly run on either the real data from the comprehensive hawk
moth motor program or on a synthetic dataset with spike timing precision a priori fixed to
known resolution. By rounding spike times to the nearest multiple of a desired resolution (Fig
5A), we observed the error and biases in each method at estimating spike timing precision.

The continuous noise addition method outperformed the discrete method at accurately
and consistently estimating the precision of both datasets (Fig 5E and 5G). For all hawk moth
data and synthetic data, the continuous method produces a smooth monotonic decrease in MI
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https://doi.org/10.1371/journal.pcbhi.1011170.g005

with increasing noise (Fig 4D-4F and S2 Fig), as compared to the relatively jagged and unsta-
ble estimates from even the bias-corrected NSB method (Fig 4C and S3 Fig). The continuous
method had lower uncertainty than the discrete method and demonstrated little systematic
tendency away from the true precision value, other than a tendency to estimate less spike
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timing precision at low actual values of precision around 1 millisecond or less (Fig 5G). This
indicates that at sub-millisecond scales, the continuous estimator is consistently conservative,
with actual values potentially more precise than reported. The discrete method, meanwhile,
has larger error and variation in precision estimates, particularly for the higher dimensional
real data (Fig 5D and 5F). While the discrete method rarely estimated precision to be lower
than its actual value, meaning it can potentially be used to at least bound the true precision, it
had high variance in its estimates which makes it less reliable for estimating spike timing
precision.

Part of what hinders the discrete method may be the required discretization of motor out-
put states. Our implementation of the discrete method estimated mutual information for a
motor output probability distribution M, that included more motor output states m; (9 total
states) than its previous implementation [8]. We were only able to achieve this more fine-
grained resolution in motor output by implementing shuffling bias correction, as more motor
output states leads to greater undersampling bias (S4 Fig). A previous implementation of NSB
was able to robustly identify spike timing precision down to 1 ms in a songbird motor cortex
analog by averaging mutual information estimates across all neurons sampled [8], but was
unable to assess the precision of individual neurons and if there were differences in precision
scale across the population recorded. Our introduction of shuffling bias correction to NSB
does allow for more fine-grained resolution in motor output by counteracting the greater
undersampling bias seen with more motor output states (S4 Fig). But even with bias correction
it is clear the discrete method fails to capture smaller resolution features of the data at the avail-
able sample sizes.

With the continuous method, the KSG estimator operates at a scale which varies with the
sample size and distribution of the data [32], producing a much richer representation of the
spike and motor output spaces without having to trade off for significant bias. Additionally,
the continuous method has the advantage of being able to more finely represent different levels
of spike timing precision, especially at small values of ., by relying on uniform noise rather
than binning spike trains. For data with a large range of spike counts, the number of bins
required by the discrete method to represent spike timing precision of 1ms or less can become
too large for the method at the available sample sizes, leading to undersampling bias which
makes discrimination of the actual information limit difficult. With the continuous method,
we do not have the problem of balancing between more bins and greater bias, as the input
spike time data is always approximately the same, only with values which are corrupted by
noise. This enables us to determine a specific estimate of spike timing precision at far finer
scales with the continuous method.

In both the KSG and NSB estimates presented here, we have reduced the motor output
state representation from the fully dimensional torque waveforms in each wing stroke. In the
motor output representation utilized in the NSB method, we have discretized to nine distinct
motor output states. Even in the KSG method, we only represent the motor output as the
scores on those first two principal component axes. It is possible that variation captured in
other principal component axes would affect our precision values, but by increasing the
dimensionality of our motor output, we would also sacrifice stability and introduce bias into
our mutual information estimates for both methods. Previously, we demonstrated that the
KSG MI estimates with no noise added were robust to changing the number of principal com-
ponents included [13], and we used two principal components here to keep our results consis-
tent with our previous work.

Finally, it is important to note that both methods find spike timing precision from the
shape, not magnitude, of MI against bin size r,; or noise amplitude .. Here, we are able to dis-
tinctly consider information that is temporally encoded, without also including information
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that might be preserved in a rate (count per wing stroke) code [1]. One important consider-
ation when using KSG MI estimation is to ensure that estimates are stable in smaller data frac-
tions and robust to the choice of the free parameter, k [33]. This also extends to the estimation
of spike timing precision using KSG; while we used k = 4, the choice of k within a reasonable
range should not affect precision estimates. This data set has already been checked for stability
and robustness to choice of k and smaller data fractions [13], as well as the robustness of preci-
sion estimates to choice of k up to k =7 (S7 Fig).

Other methods besides those presented here have been used to estimate spike timing preci-
sion. For example, many experimental studies in sensory systems have investigated the statis-
tics of spike timing jitter as a proxy for how precise the neural system must be to encode
information about a repeated stimulus [15, 18, 43-45]. Computational studies have also used
spike timing jitter to measure the reliability of neural coding under repeated presentations of
the same sensory stimulus [16, 46]. In motor systems, however, we cannot obtain many reali-
zations of the same motor output to investigate jitter in spike timings because it is difficult to
constrain motor behavior. Even in well-defined tasks like target reaching, variation exists in
how a motor task is realized [20, 21], so any spike timing jitter may be encoding this variation
and not representative of the true precision of the spiking activity. Another method of estimat-
ing spike timing precision used added Gaussian noise windows in data from model LGN neu-
rons to estimate mutual information between spike trains and visual stimulus movies [17].
Here, instead of Gaussian noise, our method uses uniform noise which corrupts information
evenly across the window, 7, which we use to define the spike timing precision. Our method
of noise addition preserves less information about when the spike occurred, whereas adding a
Gaussian window of noise will still preserve that information because the distribution of jit-
tered spike times will peak at the original spike timing. The continuous method developed
here can be used for both sensory and motor systems to determine the scale of spike timing
precision at fine resolution in data sets with rich variation either in sensory inputs or motor
outputs.

While we have known that computational models of noisy neurons in Kilinc et al. can dem-
onstrate precisely timed spikes [46] and neural networks can learn precisely timed sequences
of spikes [47], we can now assess the degree of spike precision across the entire comprehensive
motor program in individual motor units. Methods like spike distance metrics have been used
to assess spike timing precision in populations of neurons and neurons [48, 49], but with our
method we can compare the scale of spike timing precision in individual units in a population.
We can now construct a picture of how individual neurons in a comprehensive motor circuit
use precise spike timing to control movement.

Every muscle in the hawk moth flight motor system uses millisecond-scale
spike timing precision

Using the continuous method, we can reasonably assess the spike timing precision across a
comprehensive motor program and probe whether motor units filling different functional
roles encode information on the same or different precision scales. We found spike timing pre-
cision to the millisecond or sub-millisecond scale across all ten muscles in the motor system as
well as statistically significant differences in the spike timing precision of functionally distinct
muscle types (Fig 6A). When left and right muscles are considered separately, there are mar-
ginally statistically significant differences across the muscle groups, likely due to asymmetries
in tethering. However, all mean values across individuals and muscles range from 0.8 to 2.0
ms. We combine left and right muscles of each type to determine whether different muscles
have statistically different spike timing precision values (Fig 6B).
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Fig 6. Spike timing precision estimates from the Continuous Method using the lower bound choice of precision value, r.. (A) Spike timing
precision values (r,) for all moths reported as boxplots (middle black line: median; boxes: 25th and 75th percentiles; whiskers: all data except outliers;
white circles: r, values for individual moths; red circles: 7. values considered statistical outliers). Marginally statistically significant differences were
found across muscle types (one-way ANOVA, p = 0.0115; Kruskal-Wallis, p = 0.0481). (B) Spike timing precision values (r.) for all moths with left and
right side muscles combined (same data as A). The asterisk denotes groups with statistically different means in a Kruskal-Wallis non-parametric test.
The precision values of the 3AX muscle were significantly different from the SA and DVM in a multi-comparison Kruskal-Wallis test at significance
level p < 0.05. (C) Mean spike counts for all moths with left and right muscles combined as in B. The asterisk denotes groups with statistically different
means in a Kruskal-Wallis non-parametric test. The spike count means of the DLM was significantly different from all other muscles in a multi-
comparison Kruskal-Wallis test at the same significance criteria as in B (p < 107°). The 3AX muscle is significantly different from all other muscles and
the DLM is significantly different from the SA muscle in a multi-comparison two-way ANOVA with the same significance criterion (two-way ANOVA
for muscle type, p < 1075 and left/right sides of the moth, p = 0.62; with a test for interaction, p = 0.93).

https://doi.org/10.1371/journal.pcbi.1011170.9006

Each of the five left-right muscle pairs in the hawk moth motor program—the dorsolongi-
tudinal (DLM), dorsoventral (DVM), third axillary (3AX), basalar (BA), and subalar (SA) mus-
cles (Fig 1A and 1C)—have different sizes, different attachment points, different activation
patterns, and different biomechanical roles. The DLM and DVM indirectly actuate the
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downstroke and upstroke of the wing, respectively, by deforming the thorax. The 3AX, BA,
and SA muscles directly attach to the base of the wing to fine-tune the motion of the wing dur-
ing flight. The DLM and DVM have been traditionally thought of as flight power muscles,
while the 3AX, BA, and SA have been called flight steering muscles [26]. These two functional
roles could require different spike timing precision scales. Most of these muscles spike several
times per wing stroke, but the DLMs only spike once, meaning that any encoded information
must be present in spike timings [11], perhaps indicating that they require higher precision.

However, in all muscles, not just the DLMs, spike timing is important for motor output
[13]. Sub-millisecond scale timing in the DLM is linked to power output during flight [11, 50].
Additionally, changes in the spike timing of the DVM and 3AX in a sister species of hawk
moth to the one we investigate here have been shown to correlate with wing kinematic changes
at wing stroke reversal [51]. In Manduca sexta, changes in timing of the BA is correlated with
turning behavior and changes in the timing of the SA is correlated with wing depression, pro-
motion, and remotion [26, 27]. Because each of these muscles is functionally distinct, we inves-
tigated whether the scale of spike timing precision differed by muscle type.

We estimated the highest spike timing precision (r,) in the subalar (SA) and dorsoventral
(DVM) muscles, with mean precision values of 0.92 ms and 0.85 ms for the SA and DVMs,
respectively, across all moths, making them on average sub-millisecond precise. We also found
the DLM muscles to be sub-millisecond precise on average. Previously, bilateral timing differ-
ences between the left and right DLMs were shown causally to have sub-millisecond precision
for producing yaw torque [11]. Even in an asynchronous flier, which flies at high wing beat fre-
quencies where motor neurons innervating the DLMs do not fire within every wing stroke,
bilateral calcium modulation in the DLMs from these motor neurons plays a role in control-
ling the mechanical power produced in turning flight [52]. We can now demonstrate that both
sets of flight power muscles, the DLMs and DVMs, encode information on the sub-millisecond
scale as individual muscles, not just in relation to each other. The ability to fine tune power
production during agile flight is driven by sub-millisecond changes in these power muscles,
and sub-millisecond differences in their timings relative to each other. Evidence of sub-milli-
second scale encoding in the SA muscles points to a precise control role for these muscles, per-
haps in controlling wing depression and remotion at specific wing stroke phases [26].

The 3rd axillary (3AX) muscles have the lowest estimated spike timing precision at 1.78 ms
(mean across all moths) and are statistically different from the SA and DVM muscles. Since
these muscles have previously been shown to encode about the same amount of spike timing
information [13], this suggest that there is no relationship between the precision of spike tim-
ing and the amount of encoded information. While all these muscles encode approximately
the same amount of spike timing information, they have different overall amounts of variation
in spike timing during a wing stroke (S1 Fig). The 3AX muscle is able to encode the same
amount of information with less spike timing precision than other muscles. While not statisti-
cally significant in all statistical tests, the mean spike count of the 3AX muscle in each wing
stroke is higher than all other muscle types in the motor program (Fig 6C). It could be that
having multiple spikes to carry motor information decreases precision requirements for each
spike. The DLM, for instance, is one of the most precise muscles in the motor program, which
may be driven by the constraint of having only one spike with which to encode information.
One confound to this observation is that muscles with more spikes per wingstroke provide
higher dimensionality to the MI estimator, which leads to greater max-norm nearest neighbor
distances (and thus potentially lower precision) for the same sample size. However, for the
sample sizes and spike counts explored in this paper, we found that this is not a major con-
found to the estimated precision levels (52 Text, S6 Fig). In the simulated data, precision is esti-
mated within £0.5 ms of ground-truth precision level even for muscles of high dimensionality
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such as the 3AX and BA (Fig 5). Similarly, for the same data, intentionally increasing nearest
neighbor distances by choosing k > 4 does not alter precision estimates (52 Text, S7 Fig).

We also used two alternate methods to estimate spike timing precision for each muscle,
which involved either peak derivatives or the intersection of two lines fit to approximately lin-
ear regions of the I, vs r, curve. Our findings about the precision of these muscles is robust to
changing the method of choosing a precision value (S1 Text, S5 Fig). With all methods, all
muscles are found to be precise on the same <2 millisecond time scale, and the 3AX and SA
are still found to be the least and most precise muscles, respectively. The derivative method
tended to estimate more muscles as sub-millisecond precise, but simulated data indicated a
tendency to estimate lower than actual precision and it only significantly differed from the
main method of this paper on the 3AX and BA muscles. The line intersection method gave sig-
nificantly different estimates for the SA, DVM, and DLM as precise to a 1-1.5 millisecond
time scale, but even this only differed from the other methods by on average 0.5 ms. All meth-
ods of choosing the spike timing precision are viable, but we report more substantively on the
method that explicitly incorporates the lower bound of our MI estimate at r. = 0, since it
accounts for uncertainty in our information estimation, has favorable accuracy, and is the sim-
plest to implement.

The spike timing precision of individual muscles may also enable coordination between
muscles. The studies cited above that demonstrate the importance of timing throughout the
hawk moth motor program all reported spike timings of muscles relative to the DLM [26, 27,
50, 51], and the study on the DLM timing investigated the relative timing between the left and
right DLMs [11]. Here, we demonstrate that all individual muscles have precision on the sub-
millisecond to millisecond-scale, which could provide the precision necessary for this type of
coordination across muscles.

Spike timing must be essential for sensorimotor integration

Because millisecond-level spike timing precision is present across the entire motor program,
not just in specialized muscles, encoding of this precision must either 1) be preserved through-
out the nervous system from sensory inputs to interneurons then out to the periphery, or 2) be
accomplished in the periphery through local sensory inputs to motor neurons and transforma-
tion of descending commands to a more precise timescale. Many sensory systems are millisec-
ond-scale precise [3], much like the flight motor program investigated here, so it is possible
that millisecond precise spike timing could be preserved in transformations of activity
throughout the central nervous system to muscles. In the hawk moth investigated here, M.
sexta, it is known that visual-responsive dopaminergic interneurons heavily innervate the pter-
othoracic ganglion with axon branches where the motor neurons controlling the five muscles
studied here originate [53, 54]. These interneurons could preserve temporally precise informa-
tion about the visual scene that is passed through synapses to produce precise spiking. Dopa-
minergic interneurons that synapse directly with the motor neuron for the basalar muscle (b1)
in flies enable wing coordination during onset and termination of flight by integrating bilateral
sensory inputs [55]. Additionally, precise timing in a GF interneuron helps determine action
selection in a Drosophila escape response [10]. This demonstrates the importance of precise
timing in the central nervous system for action selection and may point to the preservation of
precision throughout a sensorimotor circuit since these GF interneurons receive input from
the optic lobes.

An alternative possibility is that precision arises not from precise visual encoding pre-
served through descending interneurons, but from sensorimotor connections in the
periphery from mechanosensors. In flies, activation of haltere steering motor neurons is
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known to modulate the spike timing of a basalar muscle on the millisecond-scale [56], facil-
itated by a direct, electrotonic connection between haltere afferents and the motor neuron
of that muscle [57]. Haltere mechanosensors are typically campaniform sensilla, which
have been shown to encode lateral displacements using precise spike timing [58]. While
moths do not have halteres, they do have campaniform sensilla on their wings that respond
within milliseconds to mechanical stimulation [59]. These temporally precise sensors could
dictate temporally precise responses in muscles [60, 61]. Flight posture reflexes have been
activated by stimulating these wing mechanosensors [62], which may indicate the presence
of analogous direct monosynaptic connections between wing mechanosensors and motor
neurons in the hawk moth. It is also possible that both these peripheral sensorimotor con-
nections as well as descending inputs carrying visual information play a role in preserving
spike timing precision in the motor periphery that is necessary for the robust, agile execu-
tion of flight.

The presence of highly temporally precise encoding is not a special case reserved for certain
functionalities, but rather a pervasive encoding strategy used by the nervous system. While
previously sub-millisecond precision had only been demonstrated in a bilateral pair of muscles
in the hawk moth flight motor program, we now have shown at least millisecond-level encod-
ing precision in each individual muscle that the moth uses to control its wings during flight.
Precision is likely necessary due to large changes in power output driven by millisecond-scale
changes, which belies the assumption that muscle can be treated merely as a low pass filter on
motor neuron activity, where spike rate is proportional to force produced. Millisecond changes
in spike triplets in motor units of song bird breathing muscles causally change pressure pro-
duction in their lungs [12]. The biomechanical and molecular properties of muscle change
throughout their cycle of activation, and the millisecond scale timing of activation during
these state changes could cause muscle to produce different forces [7]. For example, identical
spike triplets in vertebrate muscle can produce different force outputs depending on whether
they occur at the onset of or during tetanus [63].

Therefore, spike timing precision is likely not a special case for invertebrates or for fast
behaviors like insect flight, and should be investigated in vertebrates and other motor behav-
iors. Hawk moth flight is only intermediately fast, with wing strokes elapsing 40 to 50 millisec-
onds, temporal encoding should not be assumed to only occur in insects or other animals with
fast frequency behaviors. Walking or running can be a much lower frequency behavior, but
bipedal foot strikes—which occurs on a similar timescale to a moth wingstroke—may use pre-
cisely timed motor signals [64]. Slower time scale behaviors, like breathing in songbirds, have
also been shown to encode on the millisecond scale [12]. Other motor behaviors in vertebrates
also can occur on fast timescales, like eye movements, finger snapping, and typing. Addition-
ally, neural mechanisms in vertebrates could be used to encode and preserve spike timing pre-
cision across synapses. As an example, stretch reflexes use direct sensory-to-motor
connections that are analogous to monosynaptic stretch reflexes in invertebrates mediated by
chordotonal organs [65], and may serve as sources of precision in vertebrate motor units. The
spike timing precision of motor neuron activity in a variety of behaviors and species can be
assessed using the method presented here, which provides a specific estimate of the scale of
precision for encoding a motor output.

Supporting information

S1 Fig. Raster plots from five muscles along with corresponding PC scores. Timing of the
L3AX, LBA, LSA, LDVM, and LDLM muscle spikes for 200 example wing strokes in an indi-
vidual moth (scale bar = 20.0 ms). Spikes are color-coded by their order in each wing stroke.
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The corresponding values in arbitrary units of the PC scores in each wing stroke are displayed
in the far right panel.
(EPS)

S2 Fig. Estimates of I, from the continuous KSG method for all moth and muscle pairs.
Log plots of I, at different values of r, for all moths and muscle types. Markers indicate preci-
sion values for each I, curve found using the zero-noise standard deviation method as in Fig 4.
Precision values are the same as shown in Fig 6).

(EPS)

S3 Fig. Estimates of I; ;;, from the discrete NSB method with shuffling bias correction for
all moth and muscle pairs. Log plots of I ¢, at different values of r,; for all moths and muscle
types. Markers indicate precision values for each I, curve found using a peak-finding
method. Motor output states discretized to b,,, = 3 output states per PC score (9 total motor
output states).

(EPS)

$4 Fig. Examples of discrete method with and without shuffling bias correction (I; and

1, &) for different motor output discretizations. Log plots of I; (solid) and I, (dashed) at
different values of r; for one random example moth from each muscle type. Colors indicate
total number of motor output bins b, * used, and dots indicate spike timing precision estimate
observed as peak I .

(EPS)

S5 Fig. Comparison of three different methods for selecting precision from mutual infor-
mation drop-off with noise amplitude r.. (A) STD method, used throughout text, where r, is
selected as the noise level where I. drops below the lower bound on the estimate of MI (mean
minus one standard deviation) at r. = 0. (B) Derivative method, where precision is found as
the noise level where the peak of the 2" derivative of I, with respect to r., normalized to an
arbitrary scale, occurs. Peak finding is performed with a minimum amplitude requirement,
depicted as the dashed line, as well as a prominence requirement. (C) Two-line intersection
method, where lines are fit to approximately linear sections of the I, curve, defined as the 30
first and last noise levels. Precision r, is defined as the noise level where these lines intersect.
(D-F) Estimates of precision on synthetic data comprised of a 1 x N vector of “spike times”
related to a 2 x N matrix of “motor PC scores” via bivariate gaussians with fixed levels of preci-
sion (top panels) and on the main data of this paper with spike times fixed to ground-truth lev-
els of precision (bottom panel). See Fig 5 for more details. (G) Mean + one standard deviation
for precision values from each method for all moth and muscle pairs, raw data displayed with
jittered black dots. Red asterisks indicate distribution of precision estimates for a given method
is significantly different (p < 0.05) from the STD method for that muscle in a two-sample
t-test. The derivative method significantly deviates from the STD method for precision esti-
mates on the AX and SA muscles (p = 0.0363 and p = 0.0265, respectively), while the two-line
intersection method deviates from the STD method on estimates for the SA, DVM, and DLM
(p=10.0303, p = 0.0013, and p = 0.0243, respectively).

(EPS)

S6 Fig. Nearest neighbor distance distributions as noise is added. (A) Example of k-nearest
neighbor distance distributions from a single moth and muscle pair (moth 3, RSA). Each sub-
plot shows max-norm distance distributions for all data where a given number of spikes
occurred in a wing stroke, with vertical lines indicating the median for each distribution. Max-
norm distances were computed following the same algorithm of Kraskov [32] with k = 4. Note
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that all quantities are standard scored before distance comparisons are made, so the x-axes for
(A) and (B) are in units of standard deviations.

(B) Medians of k = 4" nearest neighbor distances as a function of noise added for an example
moth and muscle pair (same as in (A)).

(C) Difference between medians of k = 4" nearest neighbor distances and median distance at
zero noise, as a function of noise for all moth and muscle pairs. Stacked bar plots next to each
plot show the proportion of wing strokes observed with each spike count for that muscle. Indi-
vidual lines correspond to different observed spike counts, colored according to the legend in
panel (D) (so black, for instance, is the k-NN distances for all wingstrokes where 1 spike was
observed). Red dashed line with smaller markers indicates the mean shift in median k-NN dis-
tance weighted by the probability of each spike count. A y-axis value of zero indicates that the
median nearest-neighbor distance at a given noise level is unchanged from the zero noise case.
Error bars denote mean + 1 standard deviation to show distribution of medians across differ-
ent moths at each level of noise added for a given muscle. If an amount of spikes only occurred
in 1 moth, dashed lines and unfilled circles are drawn as no mean or standard deviation can be
calculated. Note that after distance comparisons are performed in the |z — Z/| space, standard
scoring is removed so that (C) and (D) display distances in milliseconds rather than standard
deviations.

(D) Difference between medians of k = 4™ nearest neighbor distances and median distance at
zero noise for all moth and muscle pairs. As in (C) distances are converted to milliseconds by
multiplying by standard deviations of spike times to remove standard scoring.

(EPS)

S7 Fig. Precision found by KSG estimator as k is varied. Precision found by KSG estimator
using the STD selection method (see S5 Fig) for all data (all moths included) of each muscle
type as k is varied from k = 2 through k = 7. Black jittered points show underlying data, with
blue error bars denoting mean + 1 standard deviation. No statistically significant differences
are observed at any differing values of k.

(EPS)

S1 Text. Procedure for estimation of spike timing precision using three separate algo-
rithms. Discussion of the reasoning for and underlying algorithms behind three separate
methods to estimate spike timing precision from mutual information corrupted by uniform
noise. Details on differences between methods and comparison between methods are dis-
cussed.

(PDF)

S2 Text. Effects of noise and choice of k on nearest neighbor distances and the scale under-
lying mutual information estimation. Discussion of the potential effects uniform noise could
have on the nearest neighbor distance distributions of an underlying dataset in the process of
estimating spike timing precision. Potential issues related to noise corruption and the choice
of k, and their relevance to the precision estimation method, are detailed and evaluated.

(PDF)
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