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ABSTRACT: Neuropeptides are abundant and essential signaling molecules in the
nervous system involved in modulating neural circuits and behavior. Neuropeptides
are generally released extrasynaptically and signal via volume transmission through G-
protein-coupled receptors (GPCR). Although substantive functional roles of
neuropeptides have been discovered, many questions on neuropeptide transmission
remain poorly understood, including the local diffusion and transmission properties in
the brain extracellular space. To address this challenge, intensive efforts are required to
develop advanced tools for releasing and detecting neuropeptides with high
spatiotemporal resolution. Because of the rapid development of biosensors and
materials science, emerging tools are beginning to provide a better understanding of neuropeptide transmission. In this perspective,
we summarize the fundamental advances in understanding neuropeptide transmission over the past decade, highlight the tools for
releasing neuropeptides with high spatiotemporal solution in the brain, and discuss open questions and future directions in the field.
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■ WHAT WE KNOW AND DO NOT KNOW ABOUT
NEUROPEPTIDE VOLUME TRANSMISSION

Neuropeptides are a diverse class of endogenous molecules
that are synthesized, stored, and secreted by neurons in the
central and peripheral nervous systems.1 They have attracted
great interest over the years because of their unique structure
and function in a wide range of physiological processes.2

Neuropeptides are usually packaged into dense-core vesicles
and can be released in nonspecialized synaptic sites.3 In
contrast to small molecule transmitters, such as glutamate or
GABA, neuropeptides can diffuse over a long distance to act far
from the release site. This widespread mode of intercellular
communication is referred to as volume transmission.1,4

Although over 100 neuropeptides have been discovered, and
probably more would be identified from genomic data,5 many
fundamental questions remain. For example, what is the release
pattern, and how far does a particular neuropeptide act relative
to its release site? What constraints limit the spread of
neuropeptides?
In a pioneering work nearly ten years ago, Banghart and

Sabatini measured the spatial profile of enkephalinergic volume
transmission in acute brain slices.6 They found that enkephalin
(LE) could diffuse as far as 150 μm to activate the opioid
receptor in rat locus coeruleus of acute slices. In other words,
the enkephalin signal spread rapidly through approximately
70 000 μm2 of tissue, which is approximately 200-fold larger
than the area of release. Recently, Xiong et al. used new optical

tools and cell-based sensors to determine the spatiotemporal
scale of somatostatin-14 (SST) volume transmission in the
mouse cortex in vivo.7 They revealed reduced but
synchronized SST transmission within 130 μm, and delayed,
reduced transmission at longer distances. The maximal
diffusion distance of SST to activate the receptor was
approximately 220 μm. Note that similar diffusion distance
constraints were observed for LE and SST; however, the onset
(0.25−1 s for 0−150 μm) of the evoked currents for LE
diffusion is much shorter than the time of peak response (5−
20 s for 0−150 μm) of cell-based sensors for SST diffusion.
This difference in kinetics could be due to the different
detection methods (electrophysiology vs downstream Ca2+
imaging) and the different preparations (slices vs in vivo).
These measurements provide new insights into neuropeptide
volume transmission in the brain of living animals.
Unlike primary neurotransmitters that are actively recycled,

neuropeptides are released and signal until they are degraded.
What are the factors that limit the diffusion of neuropeptides in
the brain extracellular space? First, it is well known that
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neuropeptides are subject to degradation by peptidases.
However, the degradation rate of neuropeptides in the brain
extracellular space is largely unknown. To date, on the basis of
radioimmunoassays, the half-lives of oxytocin and vasopressin
in cerebrospinal fluid is around 20 min.8 Banghart and Sabatini
measured somatic currents evoked by uncaging LE in acute
slices of rat locus coeruleus and found that peptidases limit the
peptide signaling released in large volumes (>70 μm), while
diffusion is dominant in limiting the spread in smaller release
sites.6 Xiong et al. compared the distance-dependent SST
signaling measurements in mouse cortex with a theoretical
point source diffusion model and estimated the loss rate of
SST because of peptide degradation and binding in the range
of 0.023−0.048 s−1. Although some progress has been made,
additional studies are needed to better elucidate the effect of
peptidase degradation on neuropeptide transmission. Second,
the extracellular space (ECS) and extracellular matrix (ECM)
can hinder extrasynaptic molecular diffusion9,10 and play an
important role in neuropeptide transmission. For example,
brain tissue with a chemically degraded extracellular matrix
provides less hindrance to peptide transmission.7 However,
there are many factors including the charge and size of the
peptide that can lead to very different transmission profiles.

■ TOOLS FOR CONTROLLED RELEASE OF
NEUROPEPTIDES IN VIVO

Despite its importance in brain function, very few measure-
ments of peptide release are available because of the lack of

tools. Rough estimates suggest that each dense core vesicle
contains ∼104 peptides, and hundreds of vesicles are released
per neuron over seconds (103 vesicles per second in
hypothalamic neurons).5,11 This suggests that a neuron
releases ∼106 peptide molecules per second upon stimulus,
possibly higher in the hypothalamic neurons (107 molecules
per second).
Tools to control the timing and spatial release of

neuropeptides in vivo are needed to investigate the trans-
mission and function of neuropeptides. The optogenetic
approach is an elegant method to control the neurotransmitter
release, such as acetylcholine,12 serotonin,13 and dopa-
mine,14,15 with millisecond precision and cell type-specific
resolution. Dao et al. successfully induced and inhibited the
SST release from SST-positive neurons in acute slices using
optogenetics, as validated by an enzyme-linked immunosorb-
ent assay.16 Interestingly and importantly, Al-Hasani et al.
measured the endogenous opioid peptide release (absolute
concentration in dialysate: 0.13−8.69 pM) in freely moving
rodents with a customized optogenetic microdialysis probe.17

They controlled cell-type selective opioid release in different
brain regions and detected several opioids such as dynorphin
A1−8 and LE (leu- and met-). The new approach moves the
field forward; however, one complication to optogenetic-driven
neuropeptide release is the corelease of other small molecule
transmitters (such as dopamine, GABA, and glutamate),18,19

which requires more specific detection of neuropeptides in real
time to measure the diffusion.

Figure 1. (A) Change in chemical structures of caged peptides after UV light irradiation. CYLE, carboxynitrobenzyl-modified [Leu5]-enkephalin;
N-MNVOC-LE, N-(α-methyl-6-nitroveratryloxycarbonyl)-modified [Leu5]-enkephalin. The caging groups are indicated in red. (B) Schematic of
preparation of somatostatin-encapsulated photosensitive nanovesicles (Au-nV-SST) and photorelease by the near-infrared laser pulses. Adapted
with permission from ref 7. Copyright 2022 Wiley-VCH GmbH.
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A controlled release or uncaging of exogenously supplied
neuropeptide has the advantage of releasing a certain amount
of a specific neuropeptide. A widely utilized method of using
light to release specific neurotransmitters is to “cage” the
neurotransmitter with a photocleavable group. Caged com-
pounds, such as caged glutamate or GABA,20,21 have been used
to study cell signaling or physiology under one-photon or two-
photon stimulation. Banghart and Sabatini measured the LE
transmission using the caged-LE (CYLE) modified with
carboxynitrobenzyl (CNB) chromophore, which responds to
UV light illumination (Figure 1A).6 The binding affinity of
CYLE to the delta and mu receptors was decreased by 100- to
500-fold with respect to LE, while CYLE enabled rapid (onset
of response: ∼350 ms) and robust delivery of LE under
photolysis. The photoactivatable opioid peptide provides a
useful tool to investigate the spatiotemporal dynamics of
peptidergic signaling by taking advantage of the high spatial
resolution (2 μm light spot). Later, the same group synthesized
a new caged analogue of LE (N-MNVOC-LE) to reduce the
residual activity and demonstrated the feasibility in brain slices
of rat locus coeruleus.22 Caged compounds can be extended to
other caged peptides, including dynorphin,6 gastrin-releasing
peptide, oxytocin,23 cholecystokinin, and substance P.
However, caged peptides have some limitations. First, each
caged compound requires a separate optimization process to
ensure biological inertness, solubility at physiological pH,
resistance to aqueous hydrolysis, fast uncaging speed, and high
uncaging efficiency.21 For example, it is difficult to control the
position and number of protecting groups since peptides may
contain multiple reactive groups.24 Second, caged compounds
offer good spatial and temporal control but may be limited by
one-photon uncaging of ortho-nitrobenzyl photolabile protect-
ing groups with UV or blue light.25 Furthermore, caged
peptides are also subject to peptidase degradation, which can
limit their in vivo application.6 Thus, other approaches to
uncage or photorelease neuropeptides are needed to better
understand their transient and localized effects in the nervous
system.
An alternative approach to chemical caging is to encapsulate

neuropeptides in the photosensitive nanovesicles (Au-nV,
Figure 1B). These are 100−200 nm structures that consist of a

natural phospholipid membrane that surrounds an aqueous
core. The release of neuropeptides is controlled by coating the
nanovesicles with small gold particles (3−5 nm),26 which
enables near-infrared light-triggered photorelease. Ultrashort
laser pulses (picosecond or femtosecond) can activate gold
nanoparticles to generate nanoscale cavitation bubbles that are
effective to burst the vesicle, thereby releasing the encapsulated
neuropeptides.26,27 Physiological concentrations of SST (∼100
nM, 1.2 × 108) could be photoreleased from nanovesicles at a
depth of 200 μm in the mouse cortex,7 which is close to the
level of endogenous released peptides from ∼104 dense core
vesicles or 10 neurons per second (∼104 peptides per vesicle,
∼103 vesicles per neuron).5 The photosensitive nanovesicles
(Au-nV) have several features that are complementary to
current methodologies for neuropeptide release. First, nano-
vesicles allow in vivo measurement by protecting peptides from
rapid enzymatic degradation. Second, the in vivo optical
stimulation provides a high spatial (μm or fL volume) and
temporal (subsecond) resolution to control neuropeptide
release by the laser power and duration using a two-photon
microscope. Furthermore, our recent work on photoswtichable
nanovesicles demonstrated that it is possible to switch on and
off the photorelease, thereby providing the opportunity to
consecutively release the molecules over several cycles.28

Third, photostimulation of nanovesicles releases a bolus of a
specific neuropeptide instead of a mixture with coreleased
transmitters. Furthermore, near-infrared light is more acces-
sible for in vivo studies because of the deep tissue penetration
and reduced photodamage,29 and the photosensitive liposomes
are suitable to package a wide range of neuropeptides.30

However, since the Au-nV are much larger than the narrow
width of the brain extracellular space (40−60 nm),31 large Au-
nV have limited penetration or diffusion in the brain. The
development of small and brain-penetrating nanovesicles could
allow investigation of neuropeptide transmission across a large
brain region with a single minimally invasive injection.32

Figure 2. Integrating neuropeptide release and sensing to probe neuropeptide transmission. (A) Schematic of cell-based neurotransmitter
fluorescent engineered reporter (CNiFERs) for neuropeptide detection. (B) Schematic of genetically encoded GPCR-based sensors for
neuropeptide detection.
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■ INTEGRATION OF NEUROPEPTIDE RELEASE WITH
NEUROPEPTIDE SENSING

The integration of neuropeptide release with neuropeptide
monitoring would provide a powerful set of tools to study
neuropeptide transmission. Monitoring of the neurotransmit-
ters or neuropeptides by optical approaches is appealing to
neuroscientists because of the high spatiotemporal resolution
compared with analytic chemical methods, such as fast
scanning cyclic voltammetry and microdialysis.33,34 Cell-
based fluorescent sensors can detect nM concentrations of
neuropeptides in vivo by the coexpression of specific G-
protein-coupled receptors (GPCR) and Ca2+ indicators

(Figure 2A).7,35−38 With a new SST2 CNiFER (cell-based
neurotransmitter fluorescent engineered reporter) to detect
SST in vivo in real time,7 Xiong et al. integrated the SST-
encapsulated plasmonic nanovesicles and CNiFER (PACE)
and probed the neuropeptide transmission in vivo by the
synchronization of NIR stimulation and two-photon imaging.
Since SST2 CNiFERs provide a proxy for G protein activation
via increases in intracellular Ca2+, PACE provides new insights
into neuropeptide extrasynaptic volume transmission, as it
includes neuropeptide release, extracellular diffusion, GPCR
binding, and intracellular downstream signaling. PACE is an
excellent example of integrating neuropeptide release with

Figure 3. Diverse physicochemical properties of neuropeptides. (A) Pair plot comparing the molecular weight (kDa), theoretical net charge at a
physiologic pH of 7.4, and the potential protein interaction index (PPI-Index), a predictor of a polypeptide’s propensity to bind other proteins/
receptors,49 for all 283 human neuropeptides in the NeuroPep database.48 The properties were estimated from the peptide sequences using the
peptides.py package (https://github.com/althonos/peptides.py).50 Note that the diagonal edge of the pair plot shows the distributions of each
property. (B) A selection of human neuropeptide structures collected from the RCSB Protein Data Bank51 and AlphaFold Protein Structure
Database52,53 to highlight the diversity of neuropeptide structure and physicochemical properties, including the 38 amino acid variant (blue) of
pituitary adenylate cyclase-activating peptide (PACAP), neuropeptide Y (red), glucagon (green), the 27 amino acid variant of PACAP (orange),
somatostatin 14 (light blue), and dynorphin A (1−13) (yellow). The neuropeptide structures were rendered using the Visual Molecular Dynamics
(VMD) software.54
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neuropeptide monitoring to map neuropeptide transmission.
The development of genetically encoded GPCR-based
fluorescent sensors for neuropeptides provides another new
tool for probing neuropeptide signaling and diffusion.
Recently, several groups have reported new genetically
encoded sensors to monitor the release and dynamics of
dynorphin,39 orexin,40 and oxytocin41,42 in living animals. Li’s
group reported a toolkit of G-protein-coupled receptor
activation−based (GRAB) sensors for several neuropeptides,
including SST, cholecystokinin, corticotropin-releasing factor,
neuropeptide Y, neurotensin, and vasoactive intestinal
peptide.43 CNiFERs with FRET-based Ca2+ indicators have a
high signal-to-noise ratio in vivo but require multiple
implantations at different distances for the diffusion measure-
ment. Genetically encoded GPCR-based fluorescent sensors
are simpler to implement and may have a higher spatial
resolution for measuring neuropeptide diffusion. Since
genetically encoded sensors are more widely used, GPCR-
based sensors for neuropeptides are under rapid development
and will likely play a more important role in future diffusion
measurements. With the photorelease technique and brighter
and more sensitive genetically encoded GPCR-based sensors
for neuropeptides (Figure 2B), the integrated approach will
allow for a better understanding of the neuropeptide volume
transmission in the brain at a cellular resolution.

■ OPEN QUESTIONS ABOUT NEUROPEPTIDE
TRANSMISSION AND FUTURE DIRECTIONS

There are several important unanswered questions about
neuropeptide transmission. First, how do the diverse
physicochemical properties of neuropeptides impact their
transmission in the brain? Factors such as molecule size or
weight,31,44,45 the strength of transient binding interactions,46

and charge47 can also affect diffusion in the brain extracellular
space. As such, it is likely that neuropeptides’ physicochemical
properties could affect how they diffuse through brain
extracellular spaces. There are nearly 300 unique human
neuropeptides recorded in the NeuroPep database that exhibit
a broad range of physicochemical properties (Figure 3A).48

Coupled with differences in peptide structure and folding
(Figure 3B), such differences in neuropeptide physicochemical
properties could potentially contribute to differential diffusion
and volume transmission in the brain. Currently, there are very
limited data on the diffusion and transmission properties, and
thus, future work is required in this direction. We will likely
need high-throughput methods to investigate these important
questions.
Second, how different is the transmission across the brain

regions? Both electron microscopy of chemically fixed tissue
and the super-resolution imaging of living brain slices
demonstrate that ECS is diverse and heterogeneous.55−57

The measurements from cation tetramethylammonium
(TMA+) diffusion directly revealed that the tortuosity of
ECS is heterogeneous in different brains.9 For example, the
cerebellum exhibits significant heterogeneity between the
molecular layer and granule cell layer, and both the tortuosity
and volume fraction are different in the two layers.58 There is
also increasing evidence that diffusion is anisotropic in several
regions. For instance, TMA+ diffuses more readily along an
axon bundle than across it, as observed in the myelinated
corpus callosum.59 The anisotropic diffusion in the brain has
also been confirmed by magnetic resonance imaging
(MRI).60,61 Furthermore, the neuropeptide GPCR expression

levels are anticipated to differ significantly across brain
regions.62,63 Therefore, neuropeptide transmission across
different brain regions is expected to be heterogeneous but
has yet to be experimentally confirmed. Future work could
explore this aspect of neuropeptide transmission and
determine how it impacts the function of different brain
regions.
Lastly, how is neuropeptide transmission altered under

different brain states? It has been reported that sleep induces
an increase of ECS volume fraction and drives metabolite
clearance in mice and humans.64−66 MRI of healthy adult
brains also provides evidence for the reduction in ECS volume
of large parts of human white matter after wakefulness.67

Therefore, it is reasonable to hypothesize that the sleep/
wakefulness state modulates the extracellular diffusion of
neuropeptides and their actions in brain circuits. The diffusion
properties in pathological brain states are also of high interest
since they can serve as an indicator of pathological processes
and perhaps offer insights into their underlying mechanisms.
Several studies have shown that the diffusion coefficients of
TMA+ vary in brain diseases, such as ischemia, spreading
depression, and Alzheimer’s disease.9 Changes in the ECM and
ECS in these diseased states might affect neuropeptide
transmission.68−70

To address these questions, we need to build a database for
the parameters of neuropeptide transmission in the brain. First
and foremost, the toolkit to control the timing and spatial
release of neuropeptides and in vivo sensors to monitor
neuropeptides in real time needs to be expanded. With the
rapid development of optogenetics, the photostimulation of
the endogenous genetically encoded neurons is more widely
used by neuroscientists to investigate the release and dynamics
of neuropeptides. However, cotransmission has been inescap-
able until now. The caged compound or photosensitive
nanovesicles focus on the transient release of neuropeptides
(subsecond), while endogenous neuropeptide release in the
physiological conditions could last longer. The photoswitch-
able release from liposomes with azobenzene-containing
phosphatidylcholine shows promise for controlling the neuro-
peptide release in seconds.28 We anticipate that integration of
these new opto-chemical tools with newly developed
genetically encoded neuropeptide sensors (e.g., light, GRAB)
will significantly advance our understanding of neuropeptide
signaling in the brain.
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