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Introduction: Integrated water management (IWM) involves a range of policies,
actions, and organizational processes that go beyond traditional hydrology to
consider multifaceted aspects of complex water resource systems. Due to its
transdisciplinary nature, IWM comprises input from diverse stakeholders, each with
unique perceptions, values, and experiences. However, stakeholders from differing
backgrounds may disagree on best practices and collective paths forward. As such,
successful IWM must address key governance principles (e.g., information flow,
collective decision-making, and power relations) across social and institutional
scales. Here, we sought to demonstrate how network structure impacts shared
decision-making within WM.

Methods: We explored a case study in Houston, Texas, USA, where decision-
making stakeholders from various sectors and levels of governance engaged
in a participatory modeling workshop to improve adoption of nature-based
solutions (NBS) through IWM. The stakeholders used fuzzy cognitive mapping
(FCM) to define an IWM model comprising multifaceted elements and their
interrelationships, which influenced the adoption of NBS in Houston. We applied
grounded theory and inductive reasoning to categorize tacit belief schemas
regarding how stakeholders viewed themselves within the management system.
We then used FCM-based modeling to explore how unique NBS policies would
translate into more (or less) NBS adoption. Finally, we calculated specific network
metrics (e.g., density, hierarchy, and centrality indices) to better understand
the structure of human-water relations embedded within the IWM model.
We compared the tacit assumptions about stakeholder roles in IWM against
the quantitative degrees of influence and collectivism embedded within the
stakeholder-defined model.

Results and discussion: Our findings revealed a mismatch between stakeholders’
external belief statements about IWM and their internal assumptions through
cognitive mapping and participatory modeling. The case study network was
characterized by a limited degree of internal coordination (low density index),
high democratic potential (low hierarchy index), and high-efficiency management
opportunities (high centrality index), which transcended across socio-institutional
scales. These findings contrasted with several of the belief schemas described by
stakeholders during the group workshop. We describe how ongoing partnership
with the stakeholders resulted in an opportunity for adaptive learning, where the
NBS planning paradigm began to shift toward trans-scale collaboration aimed at
high-leverage management opportunities. We emphasize how network analytics
allowed us to better understand the extent to which key governance principles
drove the behavior of the IWM model, which we leveraged to form deeper
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stakeholder partnerships by identifying hidden opportunities for governance

transformation.
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Introduction

Integrated water management involves a range of policies,
actions, and organizational processes that go beyond traditional
hydrology to consider multifaceted aspects of complex water
resource systems. Within this context, water governance provides
the overarching framework that guides the management of water
resources. As Bakker and Morinville (2013) described, water
governance is the vehicle “through which community interests
are articulated, their input is incorporated, decisions are made
and implemented, and decision-makers are held accountable in
managing water resources.” As such, successful management must
address key governance principles, including collective decision-
making, information sharing, consensus building, and power
relations (Pahl-Wostl et al., 2013; Al-Saidi, 2017).

Due to its transdisciplinary nature, integrated water
management comprises input from diverse governmental and
non-governmental stakeholders, each with unique perceptions,
values, and experiences. Hence, collaboration across multiple
sectors, levels of governance, and authority levels is necessary to
facilitate information and resource flows and to effectively integrate
aspects such as economic prosperity, environmental/ecosystem
health, and social well-being into water resource management.
However, the inequitable representation of stakeholders can hinder
the success of integrated water initiatives (e.g., Green et al., 2013;
Bradford et al., 2017; Wamsler et al, 2020). The governance
of such systems is challenging due to the many tradeoffs that
must be negotiated, which can trigger conflict, stall progress, or
deplete resources. Indeed, top-down, centralized management
is poorly suited for overcoming such tradeoffs (Pahl-Wostl
et al., 2013). Instead, opportunities for joint action can improve
governance potential by facilitating the diffusion of knowledge
and resources in decision-making spaces (Bodin and Crona,
2009). Moreover, collaborative governance has been shown to
improve communication, reciprocity, and trust among different
stakeholder types (Olsson et al., 2004; Hahn et al.,, 2006), thereby
balancing some of the complex tradeoffs associated with integrated
water management.

Despite the potential advantages, collaborative decision-
making may fail and, conversely, hinder the desired policy
objective(s) due to disproportionate levels of influence embedded
within the management system (e.g., Licberman, 2011; McGinnis,
2013; Baldwin et al.,, 2018). To address this challenge, principles
of the complex adaptive system (CAS) theory can be applied to
integrated water management (e.g., Geldof, 1995; Rammel et al.,
2007; Giacomoni et al., 2013). CAS theory provides a framework
for understanding how natural, social, and infrastructural elements
interact in a nonlinear fashion. In CAS, the outcome of any
one variable depends on the actions and dynamic behaviors
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of all other variables linked within the system. This creates a
highly decentralized control structure, resulting in asymmetries
in the ability of stakeholders to influence systemic change.
These asymmetries may, thus, either promote or hinder effective
problem-solving, depending on the structure of the integrated
management system (da Silveira and Richards, 2013; Turnhout
et al., 2020).

Different governance approaches can have varying impacts on
integrated water management. For example, top-down governance
may result in a mismatch between the collective wishes of the group
and the chosen policy initiative(s), leading to potential conflict.
The extent of this mismatch depends on the power dynamics
within the system and the willingness of influential stakeholders
to accommodate dissenting opinions (Licberman, 2011; Ricart
and Rico-Amoros, 2022). Conversely, top-down approaches may
be beneficial for managing common-pool resources. In this case,
strong governance can be used to disperse resources among
disparate parties, thereby reducing potential overuse and/or
depletion (e.g., Dinar et al., 1997; Schliiter and Pahl-Wostl, 2007).
Thus, it is important to consider not only the collaborative
potential but also the distribution of power (i.e., influence) within
complex management systems, as this can impact the intended
policy objective(s).

Within the growing literature on natural resource governance,
network analysis is emerging as a useful technique for mapping sets
of decision-making stakeholders and identifying their connections
with each other and with the systems they seek to shape (Bodin
and Crona, 2009). For instance, network analysis has been
used to identify the capacity of water managers to overcome
coordination challenges through strategic interventions and
improved collaboration across multiple decision-making scales,
social sectors, and levels of governance (Stein et al., 2011; Pahl-
Wostl et al., 2020). By using statistical tools to measure linkages
between a plurality of system variables (e.g., Knoke et al., 1996),
network analysis can provide insights regarding the levels of
influence contained within network elements and how such
influence spreads among key variables. These insights can help
define responsibility in complex decision-making processes and
develop a set of common rules regarding how to shape the system
through strategic policy intervention, thereby limiting conflict and
promoting democratic collectivism.

Network analysis is an application of graph theory (Euler, 1953)
used to define and analyze network structures and the interactions
of their components (Newman, 2003; Majeed and Rauf, 2020).
Using graphs (or networks), researchers can deduce insights about
complex systems from a topological perspective by examining the
proximity of network components to one another. In contrast to
system dynamics, which is used to model the evolution of a system
over time, network analysis focuses on mapping the complexity
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of a system’s internal structure (Oliva, 2004). Networks represent
system components as a structural pattern of nodes (vertices)
and edges (links) to depict critical relationships between disparate
elements (Omidshafiei et al., 2020). Nodes can represent attributes
of biophysical processes or systems, as well as human or social
features, such as institutions, policies, or individual perceptions.
Edges represent the interdependence between each pair of network
nodes and can be defined by binary or weighted values describing
the strength of their connection.

Networks have been used extensively across the physical and
social sciences (Barabdsi, 2013). In ecology, network analysis has
been used to investigate habitat connectivity (Minor and Urban,
2008; Zetterberg et al., 2010; Dilts et al., 2016) and to explore
the collective experiences of decision-making stakeholders (Tan
and Ozesmi, 2006; Kontogianni et al., 2012; Misthos et al., 2017).
Network analysis has been used in water resources engineering
to optimize water distribution and sewer systems (Pagano et al,
2019; Meijer et al., 2021) and to map the evolution of water trade
networks (Oliva, 2004; Suweis et al., 2011; Dalin et al., 2012).
Networks have also been used to understand connectivity among
physical components of the hydrologic cycle (Sivakumar, 2015). In
the social and political sciences, connective structure has been used
to better understand conflict resolution (Hamouda et al., 2006; He,
2019; Amini et al., 2021) and social interactions in decision-making
spaces (McAllister et al., 2014; Turnbull et al., 2018; Blacketer et al.,
2022). In natural resources governance, network analysis has been
used to examine power dynamics (Stein et al., 2011; Suweis et al.,
2011; Nabiafjadi et al., 2021) and collaborative capacity (Ogada
et al.,, 2017; Pahl-Wostl et al., 2020) across social and institutional
scales. Within socio-hydrology, network analysis is gaining traction
as a promising tool for mapping human-water systems through
the lens of node-node connectivity (Bertassello et al., 2021; Frota
et al., 2021; Eshaghi et al., 2022). Such studies underscore the
importance of network analysis as a tool for understanding
complex systems, whereby researchers may collaborate with diverse
stakeholders to capture the interdependence between the humans
making the decisions and the physical processes they seek
to shape.

In this study, we demonstrate how network analysis can be
used to gain insights into the structure of complex decision-making
systems. More specifically, we investigate the network structure
encoded within the collective mental map of relevant stakeholders
involved in integrated water management to understand group
power dynamics and identify opportunities for effective water
governance. We employ metrics such as network density
and centralization to uncover valuable information about the
behavior of human-nature systems and how understanding
network structure can reveal opportunities for effective water
governance. Our work builds on Castro (2022a) study, where
fuzzy cognitive modeling (FCM) was used to construct mental
models that depicted tradeoffs between competing objectives
in managing nature-based solutions (NBS). Here, we illustrate
how the management structure impacts key water governance
principles, including collective decision-making, information
sharing, consensus building, and power relations. We conclude
by discussing how network analytics can support integrated water
management by assessing levels of collaboration and influence
embedded within the decision-making system.
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[llustrative case study

Here, we build upon an existing study by Castro (2022a)
regarding the complexities of integrated water management, where
a participatory modeling workshop was used to elicit an FCM
model of interacting factors associated with the adoption of NBS
in Houston, Texas, USA. Causal thinking was used to capture
how the local socio-institutional context influences NBS decisions.
The workshop resulted in a graphical representation of system
variables and feedbacks (i.e., fuzzy cognitive map) according to
the shared experiences of the stakeholder group. This exercise
promoted dialogue across varying sectors and levels of governance
to develop a robust, shared understanding of how integrated water
management is structured in Houston.

In this section, we provide a brief background to the case study
workshop and summarize how the FCM was derived in Castro
(2022a). We extend the aforementioned study by highlighting
general stakeholder beliefs about how the management system
functions within the local context. We use FCM-based scenarios
to explore how unique NBS policies would translate into more
(or less) NBS adoption, according to the underlying dynamics of
the management system. Next, we discuss how network analytics
can be used to identify levels of collaboration and influence in
integrated water management. Here, we detail the primary network
metrics used in the case study (e.g., density, hierarchy, centrality).
Finally, we convert the FCM into a node-link network and assess
the structure of human-water relations embedded within the
graph. In the Discussion section, we consider how these unique
case study characteristics (stakeholder beliefs, policy efficacy,
network structure) combine to reveal important perceptions and
opportunities in NBS planning.

Case study background

As climate change and urbanization have challenged traditional
stormwater management, communities are increasingly using
NBS within water resource planning (Slater and Villarini, 2016;
Hettiarachchi et al., 2018; Marsooli et al., 2019). NBS approaches
utilize natural design characteristics to slow the movement of runoft
and increase infiltration capacitance for stormwater abatement and
pollution control. By increasing the amount of green space in
an urban environment, NBS have been associated with multiple
co-benefits, including improved air quality, urban heat island
abatement, recreational opportunities, social capital, physical
health, and biodiversity (Cohen-Shacham et al., 2016; Nesshover
et al., 2017). Despite these benefits, NBS uptake has been limited
in many communities (Slater and Villarini, 2016). This is due,
in part, to complex social and institutional barriers (e.g., public
education, financial incentives, institutional fragmentation, land
acquisition/planning) which hinder the translation of NBS interest
into mainstream practice (Frantzeskaki et al., 2019; Ragka et al,
2022).

Houston was selected as an ideal case study due to its
long-standing challenges related to NBS and socio-environmental
challenges, including urban flooding, poor air and water quality,
communal health, and heat island effects (Hopkins et al., 2022).
Despite increasing public interest in green space, Houston remains
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FIGURE 1

Cohort of stakeholders engaged in the case study workshop,
categorized into three primary scales: local (e.g.,
neighborhood-scale activists), municipal (city-scale planners), and
regional (e.g., county-scale managers). The “*" symbol indicates
decision-making stakeholders (i.e., actors) with authority to act
decisively within the system to influence NBS development.

one of the most impervious cities in the United States (Nowak
and Greenfield, 2012), with a low uptake of urban greening
initiatives (Young, 2011). Local governance is driven by socio-
political forces that promote rapid urban growth (e.g., powerful
business elites, pro-development economics, lack of zoning) while
limiting public regulation and city-wide planning. Consequently,
Houston development has been characterized by a laissez-faire
philosophy that has arguably exacerbated socio-environmental
stresses, particularly in marginalized communities (Vojnovic,
2003).

Stakeholder workshop

To better understand the role of local governance on
integrated water management, our case study approached NBS
planning as a complex system involving social constructs
interlinked with hydro-environmental considerations across a
variety of social, institutional, and governmental scales. Many
management systems are multi-scalar in nature, from grassroots
organizations to regional decision-makers, which necessitate
democratic collaboration and knowledge-sharing for effective
governance (Leck and Simon, 2013). As such, the stakeholders
selected for this study encompassed the cross-scale nature
of integrated water management, extending beyond traditional
administrative and geographical boundaries (Gerlak, 2014). As
shown in Figure 1, a total of 11 stakeholders from various social
and institutional sectors participated in the workshop, representing
entities commonly impacted by (and involved in) Houston-area
urban greening.
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Deriving a fuzzy cognitive map

The workshop in Castro (2022a) was designed to reveal
key perceptions of NBS challenges, management opportunities,
and their inter-relationships, including how stakeholders view
themselves as agents of change. The workshop was used to derive a
model of social and physical variables describing NBS management
through the lens of FCM (i.e.,, fuzzy cognitive modeling). FCM
is a common approach for mapping complex governance systems
and projecting their future response to policy interventions (e.g.,
Giordano et al., 2005; Kafetzis et al., 2010; Kaleeswari et al., 2018;
Schramm et al, 2020). In FCM, decision-making stakeholders
elicit a composite illustration of the system they seek to shape
using cognitive maps, which are schematic representations of the
world as perceived by humans (Ahmad and Azman Ali, 2003).
Cognitive maps provide a means for capturing the subjective
knowledge of individuals, which fosters an awareness of internal
assumptions regarding how the system operates. In FCM, variables
are interconnected by causal feedbacks, where a change in one
variable triggers a similar magnitude of change in all causally
interrelated variables (Axelrod, 1976; Puccia and Levins, 1991;
Kontogianni et al., 2012; Gray et al., 2014). In directed fuzzy maps,
causal feedbacks are defined by polarity, where a positive (“+”) sign
indicates causality between variables moving in the same direction,
and a negative (“-”) sign indicates causality between variables
moving in opposing directions.

In integrated water management, cognitive maps often
combine abstract elements (e.g., human agency, cultural norms
and values) and physical constructs (e.g., landscape characteristics,
ecosystem processes) with feedbacks derived from tacit (rather than
empirical) knowledge. In such instances, FCM provides a useful
means for defining the structure of mental maps where detailed
scientific datasets are not available, but where we have the local
knowledge of people who have co-evolved and adapted with the
systems they seek to shape (Ozesmi and Ozesmi, 2004). In seeking
to utilize stakeholder knowledge, we must be able to represent
varying levels of experience through some common construct.
In FCM, imprecise relationships are identified using linguistic
statements of relational strength (e.g., low, medium, high) and
translated into semi-quantitative values according to fuzzy logic
(e.g., low = 0, high = 1) (Kosko, 1986; Gray et al., 2014).

The FCM case study workshop was facilitated by guiding the
stakeholder group through a series of interactive scripts (e.g.,
Hovmand et al., 2011) to help participants identify and understand
causality within the local NBS management system. Stakeholders
were asked to discuss various challenges, opportunities, and
exogenous factors associated with NBS uptake throughout greater-
Houston. Key themes from this discussion were documented
in real-time and used to guide the development of cause-
effect relationships within regional NBS management. During the
workshop, the stakeholders were asked to identify a comprehensive
set of variables involved in NBS adoption according to the group’s
collective experiences. The stakeholders were then asked to identify
all causal connections between the variables and to define their
general strengths, which triggered a series of discussions regarding
the underlying dynamics of the management system. As the
stakeholders communicated, the workshop facilitator drew system
variables (nodes) and their weighted relationships (links) on a
shared virtual whiteboard, which was refined in real-time to capture
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FIGURE 2

Composite fuzzy cognitive mapping (FCM) model, derived from the stakeholder workshop session. The model describes key variables which can
influence the adoption of NBS in Houston and their interrelationships. Source: adapted from Castro (2022a)

the group consensus. Areas of uncertainty and conflict were also
noted by the facilitator. The feedbacks were weighted using fuzzy
logic: low strength (£0.25), medium strength (£0.50), and high
strength (£0.75).

The diagram was reviewed for accuracy by local NBS
policymakers who were not involved in the workshop, and
minor modifications were suggested. The map was optimized
accordingly and shared with all workshop participants for final
input and validation. The resulting FCM model contained 19
causal variables connected by 37 causal links, as shown in
Figure 2. Of the 19 nodes in the network, the stakeholders
identified 9 as management opportunities (i.e., within the scope of
stakeholder influence) for increasing the adoption of NBS. Other
dimensions represented within the map included social challenges
and exogenous system variables, which were outside the scope of
direct stakeholder influence.

Identifying embedded belief schemas

During the case study workshop, we observed that stakeholders
had unique belief schemas about their role within the NBS
management system. Belief schemas are used here to describe
general ways of thinking about the universe and the nature of “self”
within it. Such analogical thinking reveals tacit ideas about culture,
context, and values, which may be difficult to characterize through
formal logic. In this study, we categorized these belief schemas
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using grounded theory and an inductive approach. Later, in Table 1,
we summarize some of the group-thinking nuances which were
observed during the workshop. We noticed a general tendency
for “more powerful” stakeholders (as perceived by rank/title) to
drive formal topics of discussion (i.e., jurisdictional authority,
institutional collaboration), while “less powerful” stakeholders
tended to emphasize socio-environmental factors (i.e., climate
change, social welfare). Throughout the workshop, we observed
a mixture of silo mentality (individualism) and eagerness to
collaborate (collectivism) during different periods of the exercise.
In the Discussion section, we compare these tacit assumptions
about stakeholder roles within the system against quantitative
degrees of influence and collectivism, as revealed by network
analysis and FCM modeling.

FCM-based scenario analysis

To date, participatory FCMs have been used for “what-if”
scenario building to estimate many possible futures of the system
by altering one (or more) constituent variables (e.g., Jetter and
Schweinfort, 2011; Mourhir et al., 2015; Singh and Chudasama,
2020). In this study, FCM-based scenario analysis was used to
better understand how a change in local policy would impact
NBS adoption. The FCM model in Figure 2 was simulated by
“activating” unique management nodes and assessing the amount
of relative change in all system components. FCM-based scenarios
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quantify dynamic interactions between system components using
neural processing and formalized activation rules, which iterate
over discrete steps until the system converges to equilibrium
(Népoles et al., 2017). The activation rule used here is based on
Kosko (1986), defined by

ST=r | s 5w (1)
j#i

(t41
i

) is the value of variable vj at step (t + 1), St(t) is the

value of variable v; at step f, S is the value of variable vj at step

where S

t, wjj is the weight of the edge relationship between variable v; and
causally-connected variable v;, and f is a threshold function used to
normalize values at each time-step (Gray et al., 2015).

A total of nine management scenarios (i.e., policy options)
were examined. For each scenario, the edge relationships (w;;) were
weighted as previously defined [i.e., low strength (£0.25, 25%),
medium strength (£0.50, 50%), high strength (£0.75, 75%)]. The
activated node was “clamped” to a maximum strength of +1.00 (i.e.,
100%), which represents a continually high state throughout the
simulation (Gray et al., 2015). All other nodes within the system had
an initial value of 0 (i.e., no change at the start of the simulation).
After each model stabilized at step t = T, the changes in end-state
values for all system variables were graphed as relative percentages
(e, S; =
a standard application of Mental Modeler (mentalmodeler.org), a

SiT - S?). The end-state values were obtained using

web-based, entry-level platform for graphing and simulating FCMs
(Gray et al., 2013).

The importance of network structure

To understand how well the network facilitates transmission of
stakeholders’ collective ideas and resources throughout the system
and their propensity for shared decision-making, we analyzed the
network structure of the FCM in Figure 2 using properties of
density and centralization.

Network density

Density describes the activity level among network nodes
according to the richness of internal coordination. The extent of
node-node communication between network links is defined as
the proportion of overall connective potential (Sandstrom, 2008).
A high density value means the network exhibits strong levels
of integration, where the activity of each node depends mainly
upon the joint activities of all other nodes within the system.
In management networks, a large degree of density may lead to
greater opportunities for group communication and adaptation
through democratic pathways. When considering the application
to water management, density helps us understand how well the
network facilitates transmission of stakeholders’ collective ideas
and resources throughout the system and their propensity for
shared decision-making. As demonstrated in Figure 3A, a low
density network has few ties between nodes, thereby limiting
the possibilities for collective action and communication among
disparate stakeholders. Conversely, a high density network contains
many connections between nodal elements (Figure 3B), thereby
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FIGURE 3

Schematic of network topologies representing: (A) low density of
relations (low density index); (B) high density of relations (high
density index); (C) low levels of cohesiveness (high hierarchy index);
(D) high levels of cohesiveness (low hierarchy index); (E) degree of
centrality, where the blue (central) node exhibits the strongest level
of influence (high centrality index).

increasing collaborative opportunities and facilitating the potential
for pooled resource governance.

Network centralization

Network centralization describes the extent to which activity
levels (i.e., management processes) are dominated by a small
number of nodes (i.e., decision-makers and/or physical system
variables) (Sandstrom, 2008). Assessing network centralization
helps us better understand the proportion and types of nodes
with causal influence in the system (Ozesmi and Ozesmi, 2004).
Centralization may be described in two ways: (1) globally, by
the degree of cohesion within the network (aka hierarchy index),
or (2) locally, by the level of influence within individual nodes
(aka centrality index). Overall cohesiveness describes the extent to
which the network “groups together” rather than being divided into
distinguishable subgroups (Bodin and Crona, 2009). Cohesion can
also be portrayed by the magnitude of stakeholders who, if removed
from the network, would disconnect the overall group (Moody and
White, 2003). As demonstrated in Figure 3C, removal of the single
top node would divide the network into two separate subgroups
with no connective pathways between them. Many governance
structures contain a low degree of cohesion (and thus, a high
degree of hierarchy), where system behavior is governed primarily
by top-down influences. Such networks limit the potential for
collective action, particularly when dominant system stakeholders
are unable (or unwilling) to engage with stakeholders at lower
levels. Conversely, a bottom-up network, as shown in Figure 3D,
presents more opportunity for collaboration between nodes,
thereby facilitating a high degree of information exchange among
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Schematic of (A) composite fuzzy cognitive map describing causality of NBS management; (B) topology of nodes and links describing connective

multiple stakeholder types (i.e., levels of governance, industry
sectors, or social scales).

Local centrality is used to rank the influence of individual nodes
on all other variables and, thus, on the overall network structure.
Dominant nodes influence the processes and patterns observed in
group decision-making, which is particularly important when the
group comprises agents from disparate backgrounds and different,
potentially conflicting, views of effective management decisions.
Therefore, it is important to identify local centrality to understand
how units are ranked in relation to one another. As shown in
Figure 3E, the most central node (in blue) is positioned with
the ability to influence all other nodes within the network and
thus contains a high level of influence on the overall system
behavior. Management nodes with high centrality tend to influence
flows of information (and resources) more so than others, thereby
serving as high-leverage points for systemic change and providing
a bridge between otherwise disconnected stakeholders and/or
physical system variables (Bodin and Crona, 2009).

The concepts of density and local/global centralization
are complementary measurements that refer to different but
related components of the network’s connective structure. This
connectivity underpins the function (and effectiveness) of different
management processes within the decision-making system. By
analyzing the relationship between structure and process, we
can better understand management complexities and identify
interactions that may enhance (or inhibit) governance outcomes.
The specific structural metrics used in this study (density
index, hierarchy index, and centrality index) are defined in the
following sections.

Key structural metrics
Density index

The density index (aka clustering coefficient) describes how
connected or fragmented variables are within a node-link network.
Through a topological lens, this metric describes the closeness
of specific nodes and edges relative to the whole network
(Heckmann et al., 2015). It is defined as the number of direct

Frontiersin Water

(actual) connections between nodes divided by the total number
of possible connections within the network. When applying the
density index to integrated water management, this metric elicits
stakeholder perceptions of overall collaborative potential. A high
density index suggests that the network contains many pathways
for communication and collective action. The density index is
defined by

C
D=—"—+ (2)
N(N-1)

where D is the density index, C denotes the total number of
connections within the system, and N denotes the total number
of variables (Koskoff et al., 1986). [Note: In systems where all
variables can have a causal effect on themselves, the denominator in
Equation 2 is represented by N2.] A completely linked graph would
have D = 1, where all points are connected to all other possible
points. A completely unlinked graph would be described by D = 0
(Ozesmi and Ozesmi, 2004).

Hierarchy index

The hierarchy index describes the tendency of network nodes
to fall within well-defined levels connected in a centralized
fashion. This index reveals how systematic pathways are
organized for change according to inherent variable strengths
and their connectivity with other network nodes. Like the density
index, hierarchy can help identify the potential for stakeholder
collaboration in a management network (Mourhir, 2021). A
low hierarchy index suggests the network is democratic, with
strong pathways for integrated participatory management. A
high hierarchy index suggests the network is hierarchical, where
systematic change is only possible through top-down solutions.
The hierarchy index is expressed by

12 5 |:0d ) — (X od (v1)) T .

h:(N—I)N(N+1) N

i
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where h is the hierarchy index, N defines the total number
of system variables, and od (v;) is the outdegree strength of each
variable, 7, in influencing other system variables in an outward
direction (Weir and MacDonald, 1984). The outdegree is calculated
as the cumulative strength of all connections (wj;) exiting each
variable, such that od (v;) = Z]]L wij. A fully hierarchical network
is depicted when h = 1, and a completely democratic network
corresponds to h = 0 (Ozesmi and Ozesmi, 2004). A network can
exhibit a high level of hierarchy despite few central connections, so

long as the connections carry relatively large weights (Kosko, 1986).

Centrality index

The centrality index describes how connected a variable is to
other variables in the network. This index is calculated for all
variables in the network and used to rank the comparative influence
of nodal elements on system behavior. Centrality is characterized
according to the cumulative strengths of all connections entering
and exiting a variable. The centrality index is defined by

ci= od (v;) +id (v;) (4)

where ¢; is the centrality index for variable i, od (v;) and
id (v;) define the outdegree and indegree strength of each variable
(i.e., the cumulative strength of connections pointing outward or

inward from each variable node), such that od (v;) = ZJIL Wi,

id (v;) = 2]111 Wi, and wj; is the absolute value of all connection
weights exiting variable i and connecting to variable j (Ozesmi and
Ozesmi, 2004).

The centrality index was calculated for each node to better
understand the influence of individual variables within the overall
network. The connective strengths associated with each node (v;)
were defined by indegree [cumulative strength of connections
pointing toward a node, id (v;)] and outdegree [cumulative strength
of connections pointing away from a node, od (v; )].

Converting the FCM to a network

of the stakeholder-defined
management system, we mapped a simple node-link graph
(network) from the composite FCM model. Each FCM variable
was converted into a single network node, and each FCM

To analyze the structure

connection was converted into a weighted network link. As
shown in Figure 4, the network represents collective knowledge
about NBS management in Houston by providing a visual
illustration of how the network concepts (nodes) are connected
via directed feedbacks (links). From Figure 4B, we computed
key network metrics (i.e., density index, hierarchy index, and
centrality index; Equations 2-4) and validated them using the
Mental Modeler FCM software (Gray et al., 2013). The Mental
Modeler platform contains a set of built-in algorithms for
identifying fundamental characteristics of the network structure
(e.g., node-link connectivity, in/outdegree strength, variable
type), which were used to estimate the density, hierarchy, and
centrality indices.
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Results
Embedded stakeholder beliefs

When a diverse group of actors engage in cognitive mapping,
the results may vary widely depending on embedded stakeholder
beliefs of system complexity and how variables interact (Levy et al.,
2018). In Table 1, we summarize the stakeholder beliefs observed
during the case study workshop, which we use to identify dominant
schemas that may be leveraged and transitioned toward a more
effective management structure.

Effectiveness of management strategies

We demonstrate in Figure 5 how different management
strategies rank in comparison to one another for shifting the end-
goal variable (i.e., NBS adoption) in a positive direction. The
relative magnitudes in Figure 5 reveal the efficacy of unique policy
actions in the case study model. Since the model is dynamic,
rather than linear, a shift in one variable does not necessarily
trigger a proportional shift in all other variables throughout the
system. For example, management nodes for “Local Funding” (LF)
and “Advocacy and Leadership” (AL) are located similar graphical
distances from the NBS node in Figure 2 (i.e., both LF and AL
pass through EG with a positive relationship strength of +0.25,
and EG connects directly to NBS with a positive relational strength
of +0.75). However, we can expect a much stronger state shift
toward NBS when activating node LF (S; 1r =64%) in comparison
to AL (S; ar, =39%) due to their respective locations within the
overall management system and the behaviors of all causally-
connected variables throughout the FCM simulation. Similarly, we
may note a weaker propensity for “Educational Outreach” (EO) to
achieve the intended management goal (S; o = 8%), due likely
to the inability of EO to trigger a strong state shift in any of
the other system variables which influence NBS (i.e., short blue
bars within the positive region of Figure 5, top-left graph). The
visualization provided by Figure 5 can be used to quickly assess the
effectiveness of management strategies toward the intended end-
goal using semi-quantitative metrics of connectivity, as defined
by the stakeholders themselves. These results allow us identify
paradoxes between the stakeholders’ internal assumptions (as
defined by the FCM model) and their external belief statements (as
summarized in Table 1).

Primary network characteristics

The primary network composition is defined by the index
characteristics in Equations 2-4, which are summarized in
Table 2. The case study network was characterized by limited
internal coordination (low density), high democratic potential
(low hierarchy) and high-efficiency management nodes (high
centrality index) which transcended across socio-institutional
scales. In applying Equation 2 to the management network
map, the case study group described a largely unconnected
network with a low density index (D = 0.102). This indicates
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TABLE 1 Summary of belief schemas observed during the case study workshop.

Variable

Educational Outreach

Definition
Outreach programs targeted at improving community
perception and understanding of NBS functionality.

Includes media reporting and citizen involvement in the
selection, planning, funding, and maintenance of local NBS.

10.3389/frwa.2023.1011952

Belief schema

While stakeholders recognized the importance of educational outreach
to promote investment in NBS, they also believed that NBS are
insufficient in addressing stormwater issues in their local context,
which is characterized by flat topography and high-intensity storms.
The group maintained that the primary function of NBS is to reduce
stormwater peak volume, while socio-environmental benefits are less
important.

Incentives Programs

Strategic incentives for improving local NBS development.
In recent years, a voluntary incentives program was
developed for local green infrastructure. The program
included integrated development rules, property tax
abatements, awards and recognitions, and increased speed of
project permitting.

Several participants expressed concern that local parties viewed the
local incentives negatively due to the program’s voluntary nature (i.e.,
not mandated) and a lack of direct financial gain for land developers.

Advocacy and Leadership

Staffing for NBS outreach and trans-institutional
partnerships. Designated champions with resources to
implement change. A central NBS department that is
integrated across socio-institutional levels.

Participants acknowledged the need for improved advocacy and
leadership. However, there was a tendency to assign responsibility to
other entities (i.e., silo mentality), rather than acknowledging an
opportunity to improve cross-scale support among the entities
represented within the workshop.

Social Equity

Clear frameworks developed to build capacity in vulnerable
and marginalized communities.

While the stakeholders agreed that social equity was an important goal
in NBS adoption, the group ultimately struggled to understand how
(and to what extent) NBS improves social equity. Some stakeholders
worried about the potential for ‘green’ gentrification, while others
insisted that community resilience would be improved with enhanced
urban greening.

Technical Training

Design and maintenance guidelines for engineering,
environmental consulting, and planning. Includes
supporting local NBS expertise through certifications (e.g.,
LEED), workshops, trainings, and staff retention programs.

We observed varying perspectives on the adequacy of current NBS
technical training and local guidelines. While some stakeholders
demonstrated a silo mentality and claimed proficiency in NBS
technical training, others argued that local guidelines lacked coherency
and emphasized traditional stormwater drainage (gray infrastructure)
over hybrid (green-gray) approaches.

Visualization of Co-benefits

Demonstrating how NBS benefits extend beyond stormwater
quantity and quality to include socio-environmental health
and well-being components. Highlights the integrated nature
of NBS to impact the observer’s life and/or neighborhood.

The beliefs embedded within this system variable are characterized by
a general tendency to devalue all NBS co-benefits, except for flood
reduction. Some stakeholders emphasized that improving visualization
of co-benefits would naturally improve community buy-in. Others
believed that local residents are primarily interested in protecting their
homes from flooding and would not acknowledge other co-benefits,
such as crime reduction, social capital, recreation, air quality, meeting
space, mental/physical health, noise pollution, tourism, jobs, food, etc.

Population Growth
Local Development

Increase in local population, resulting in changes in land-use
type and impervious coverage through local development
Reduced land space and ‘building-up’ through new land
development. Increases tax revenue while reducing natural
pervious coverage.

‘While the stakeholders realized the need to increase the local tax base,
the group preferred converting open space into new development
rather than assigning large swaths of land for NBS improvement. The
group struggled to identify opportunities for integrating small-scale
NBS within new development (i.e., green roofs, bioswales, raingardens)
and insisted that large-scale NBS (e.g., detention/retention ponds)
reduces viable land for economic growth. These beliefs highlight the
pro-growth mindset and lack of land-use zoning which is prevalent in
the local society.

External Laws and
Regulations

State and federal level requirements to implement NBS
within development practices. Includes funding and/or
regulatory mandates to prove multiple co-benefits of NBS
beyond stormwater mitigation.

There was significant discussion regarding how strong external laws
and regulations were essential to the success of NBS management. The
stakeholders believed that top-down mandates would trigger a positive
response in all other system variables. The group highlighted that other
metropolitan areas saw an increase in NBS due to federal regulations
for ‘combined sewer overflows’ (CSO), which may be improved with
NBS. However, combined sewers (sanitary + stormwater) are not
common design elements within the local context. The stakeholders
assumed that a top-down governance scheme would produce similar
effects at the local level, despite a unique physical and
socio-institutional setting.

Climate Change

Intensification of extreme climate effects, including urban
heat islands, air pollution (ozone), greenhouse gas emissions,
and rainfall patterns (leading to flooding).

When discussing the reduction of greenhouse gasses, air pollution, and
urban heat islands, the stakeholders believed that such topics are not a
primary concern for local residents, despite Houston being one of the
hottest and most polluted cities in the USA. While the stakeholders
agreed there exists a direct relationship between vegetation levels and
climate effects, they believed that local NBS adoption is primarily
driven by a desire to reduce flood risk.
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TABLE 1 (Continued)

Variable

Habitat Growth

Maintenance Programs

Definition

Vegetation overgrowth from unmaintained NBS projects,
triggering swamp-like conditions.

Improved oversight and implementation of NBS
maintenance on a regular schedule. Includes designated
maintenance funding and defined responsibility for each
NBS project. Requires partnership between developers,
contractors, and public residents for long-term stewardship
of NBS systems.

10.3389/frwa.2023.1011952

Belief sch

: |

The group maintained that local residents view habitat growth as a
nuisance due to ongoing complaints of unmaintained NBS projects
that festered mosquitoes, rodents, invasive species, and unsightly
aesthetics. This contrasts the general NBS literature, where urban
greening improves habitat connectivity and ecological health, which is
generally viewed as a positive co-benefit.

There was some debate regarding how much increased maintenance
would improve NBS potential. Some stakeholders insisted that local
NBS maintenance was satisfactory, and yet the general public remained
disinterested; others believed that local maintenance could be
improved to reduce propensity for vegetative overgrowth, reducing
NBS functionality and increasing the risk of unwanted

habitat intrusion.

Community
Buy-in
Political Will

Improved acceptance by local neighborhood advocates and
developers to implement NBS projects voluntarily.
Partnerships and dialogue between civil groups and
institutional taskforces to promote widespread NBS.
Transition from reliance on traditional engineering (gray
systems) to hybrid (green-gray) approaches. Increase of
institutional urgency and inter-agency cohesion for

NBS projects.

The group maintained that local community buy-in would not
improve due to negative NBS perceptions (e.g., inability to mitigate
high-intensity rainfall, and habitat overgrowth nuisance). The
stakeholders struggled to believe that community buy-in levels could
improve through soft management approaches alone (i.e., advocacy,
outreach, visualization).

The stakeholders also believed that local constituents directly impact
political will and that policy urgency for NBS initiatives will not
improve without the general public’s clear acceptance and
championship of urban greening.

System variables were defined by the stakeholder group as summarized in Castro (2022a), Supplementary Table S3. [Note, only those variables which contained elements of uncertainty or
disagreement by the stakeholder group are included in this table].
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FIGURE 5
FCM-based scenario outputs, where unique management variables (shown in each chart title) were activated, and changes in the end-state value for
all system variables were graphed as a relative percentage (AS;). The shifts in magnitude for nature-based solutions (i.e., the goal variable for this
system) are shaded in green (AS;_ngs). ID, Increased Development; ELR, External Laws and Regulations; PG, Population Growth; CC, Climate Change;
EO, Educational Outreach; NBS, Nature-based Solutions; TT, Technical Training; PP, Pilot Projects; EG, External Grants; IP, Incentives Programs; AL,
Advocacy and Leadership; HG, Habitat Growth; CB, Community Buy-in; SE, Social Equity; PW, Political Will; VC, Visualization of Co-benefits; MP,
Maintenance Programs; LF, Local Funding; LLR, Local Laws and Regulations.
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TABLE 2 Summary of key characteristics in the network structure.

Total
components (N)

Total
connections (C) component

(C/N)

1.842

Connections per

10.3389/frwa.2023.1011952

Density index (D) Centrality index

()

Hierarchy index
(h)

0.102 0.019 See Table 3

that stakeholders observed only 10.2% of all potential network
connections in NBS management practice. Since density describes
the proportion of all possible connections present within the
map, the causal relationships between stakeholders and the
social/physical constructs of the system were described with a thin
level of interconnectivity. This low density index suggests that the
stakeholder group perceived limited pathways for collaboration and
a system with many functions outside their control. While the
density index reflects the overall proportion of ties (connections)
present within the network, the hierarchy index extends a step
further to consider the actual weights of connectivity exiting
each network node. Per Equation 3, the low hierarchy index
(H = 0.019) suggests that the stakeholders described a largely
decentralized network with many collaborative pathways across
socio-institutional scales.

The centrality index for each node is summarized in Table 3.
The management nodes were further defined by their scale(s)
of socio-institutional influence (L—local, M—municipal, R—
regional), as perceived by the stakeholder group, in order to
explore the balance of power (i.e., influence) and collaborative
potential within the management network. For reference, the
relative efficiencies of all management nodes (per the FCM-based
scenario analysis) are also noted in the table.

Discussion

Collaborative potential

Cohesion within the network, as described by network density,
may influence the willingness and ability of stakeholders to share
knowledge and work with one another. The density of relations
provides insight into the extent of possible joint actions available
between differing managing stakeholders and across related sectors.
When a greater number of ties exist, the potential for collaborative
engagements is improved, which could aid in reducing resource
conflicts by facilitating common pool opportunities. Indeed, the
literature on natural resources governance supports a positive
relationship between network density and joint action when
integrated management teams work together to foster an increase
in relations (links) among multi-disciplinary elements (nodes)
(Bodin and Crona, 2009). Here, we observed a low density
index, which suggests the stakeholder group perceived limited
pathways for collaboration and a system with many functions
outside their control. For the participatory researcher, this insight
allows continued engagement with the group to elicit deeper
levels of trans-scale collaboration. Such engagement aids adaptive
governance, which applies collaborative and iterative learning to
foster self-organization around common goals (Huitema et al,
2009) and is the most common approach for capacitance building
in the water literature (Jiménez et al., 2020).
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Indeed, through ongoing engagement with this stakeholder
group, Castro (2022b) demonstrated a shift in NBS management
toward improved collective action. Through a series of informal
discussions with local policymakers, the FCM models were
simulated to demonstrate how the system performed in terms of
NBS policy effectiveness. During these engagements, our partners
noticed how the NBS system was largely driven by properties
of social equity, which was not originally identified as a feasible
management opportunity. Some of the stakeholders decided to
shift their planning paradigm to include properties of social
equity within NBS planning, which requires robust collaboration
among neighborhood groups, regional decision-makers, municipal
planners, and multi-scale engineers, sustainability experts, etc.
Local leaders requested assistance in developing a multifunctional
optimization scheme that sites NBS features according to spatial
properties of social deprivation, as demonstrated in Castro (2022b).
These results demonstrate that while some stakeholders may have
displayed an “us-vs.-them” attitude during the workshop (i.e., tacit
beliefs), the group indeed described a network where joint action
was possible by collaborating across multiple sectors and levels
of governance (i.e., embedded beliefs). In other words, the group
beliefs at the individual scale were not consistent with the network
relationships derived at the composite scale.

During the workshop, the stakeholders perceived themselves
as participatory observers with a limited role in influencing the
overall system. However, through adaptive learning, several key
stakeholders shifted to become leading agents of change. We
believe this shift was possible due to the underlying structure of
the management network. While the density index described a
network with limited connections, the hierarchy index described
a bottom-up governance scheme with many pathways for trans-
scale collaboration. A low degree of hierarchy emphasizes the
stakeholders™ willingness and capacity to work toward a common
goal by bridging network ties through strong outdegree relations
among multi-scale nodes (Bodin and Crona, 2009). As such,
the hierarchy index may provide a more accurate depiction of
collaborative potential within the network structure by considering
connective weighting, emphasizing the need to explore various
graph theory statistics when attempting to understand network
structure. Thus, we may deduce that the group’s perception of
the network at a high topographical level (i.e., density of links
and nodes) was deepened through the group’s characterization
of causal strength between elements (i.e., outdegree properties of
Equation 3).

Moreover, in comparing Table 3 and Figure 5, we observe
how the management opportunities with the greatest potential
for increasing NBS (i.e., T S; nps) transposed many socio-
institutional scales (e.g., Local Funding, Political Will, Advocacy
and Leadership). Conversely, several nodes with high levels of
overall network influence (ie., 1 ¢;) were limited to a single
scale (e.g., Maintenance Programs, Local Laws and Regulations).
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TABLE 3 Centrality characteristics for 19 nodes identified within the case study network.

Network Indegree strength Outdegree strength ~ Centrality index (c;) Management Socio-institutional % NBS efficiency
node/variable (v;) [id (vp)] [od (vj)] opportunity (yes/no) scale(s) (AS;_NBS)
Educational Outreach 0.25 0.25 0.50 Yes L-M-R 8%
Incentives Programs 0.25 0.50 0.75 Yes M-R 12%
Advocacy and Leadership 0.00 0.75 0.75 Yes L-M-R 39%
Social Equity 0.50 0.25 0.75 No - -
Technical Training 0.25 0.75 1.00 Yes M 23%
Visualization of Co-benefits 0.50 0.50 1.00 No - -
Population Growth 0.25 0.75 1.00 No - -
External Laws and 0.50 0.75 1.25 No - -
Regulations

Climate Change 0.75 0.75 1.50 No - -
Habitat Growth 1.25 0.25 1.50 No - -
Local Funding 1.00 0.75 1.75 Yes M-R 64%
Community Buy-in 1.25 0.50 1.75 No - -
Increased Development 0.75 1.00 1.75 No - -
External Grants 0.50 1.50 2.00 No - -
Pilot Projects 1.00 1.25 225 Yes M-R 51%
Maintenance Programs 1.00 1.25 2.25 Yes M 44%
Local Laws and Regulations 1.50 0.75 2.25 Yes M 18%
Political Will 1.00 1.75 2.75 Yes L-M-R 59%
Nature-based Solutions 2.50 0.75 3.25 No - -

Nodes identified as management opportunities are categorized by their scale(s) of socio-institutional influence (L, local; M, municipal; R, regional).

Note: In this study, influence describes the extent to which activation of a specific node results in high (or low) activity levels throughout the rest of the network, while efficiency describes the degree to which nodal activation achieves the goal. For example, per this

Table, increasing local advocacy and leadership (¢; ar = 0.75) would trigger less response from the overall network vs. implementing more local laws and regulations (¢; ;g = 2.25); however, advocacy is much more efficient at triggering high activity in the NBS node

over time (Sj_ar > Si_ LLRr)-
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As such, the ideal behavior of the management system (revealed
by dynamic FCM modeling) may not align with its underlying
structure (defined by stakeholders and revealed by network
analysis). This disconnect suggests that stakeholders’ intuition of
trans-scale system behavior may be biased toward the institutional
context within which management is embedded. Stakeholders must
identify all democratic opportunities (i.e., trans-scale partnerships)
and weigh them accordingly to shift the system toward an idealized
outcome. Conversely, identifying potential misconceptions in the
system can stabilize the system and translate disparate collectives of
trans-scale institutional participants into robust decision-making
agents. By anticipating such structural elements, and identifying
where asymmetries exist, we may form deeper partnerships with
stakeholder groups toward ongoing adaptive governance schemes.
In other words, by elucidating several structural elements of
the collective mental map, we could reveal paradoxes within
stakeholder thinking (i.e., limiting beliefs) that, when addressed,
served to build the momentum needed to shift the system trajectory
toward a successful outcome.

Spread of influence

While this study resulted in a positive opportunity to
improve NBS planning, we observed many paradoxes between
the stakeholders’ internal perceptions and their external belief
statements, particularly regarding the spread of influence
(i.e, power dynamics) throughout the system. For example,
as previously discussed, the management nodes with highest
efficiency transposed many socio-institutional scales. However,
the stakeholders maintained throughout the workshop that
NBS adoption would only improve with additional “Laws and
Regulations” (LLR) for urban greening. In other words, the
stakeholders believed (internally) that the system was most
effective through top-down governance. Yet the actual dynamics
of the system, as defined (externally) by the stakeholders
themselves, revealed optimal efficiency through bottom-up
initiatives. Similarly, the stakeholders believed that locals were
not interested in the social and environmental benefits provided
by NBS. Rather, due to the long history of flooding in Houston,
the stakeholders asserted that community outreach efforts should
focus on the stormwater abatement qualities of NBS. However, per
the FCM-based scenario analysis, policy initiatives which increased
“Visualization of Co-benefits” (VC) scored the highest degrees of
NBS efficiency.

We were curious to understand how the dominant leverage
points within the system (defined by network centrality) compared
with the most efficient management nodes (defined by policy
scenarios). In continuing the above example, we noticed how
the level of influence contained within the VC node (¢; v¢ =
1.00) was significantly less than the centrality of the LLR node
(cizzr = 2.25), although VC was more efficient than LLR.
The assumption that dominant nodal elements may lead the
overall system behavior is seemingly persuasive. This is because
the centrality index does not tell us how well a node might
influence a specific variable of interest (i.e., S; yps) but rather
its overall degree of influence in triggering flows of information
throughout the entire network. Understanding the impact of nodal
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activation on a specific node requires scenario-based modeling.
Instead, we can use this information to quickly assess the
dominance properties of nodes across multiple institutional scales
and identify hidden power dynamics which may be hindering
system efficacy.

In applying this to integrated water management, central
actors must use their positioning within the network in a way
that has a favorable impact on the overall governance outcome.
For example, in our case study, local lawmakers and regulators
must be willing (and able) to engage in democratic concessions
and promote collective action initiatives throughout all scales of
NBS management to realize favorable policy outcomes, which is
theoretically possible due to the low hierarchy index described
by the group. As demonstrated in this study, collective hierarchy
(described in terms of overall influence via the hierarchy index)
is not necessarily related to the individual hierarchy (described
in terms of connective strengths via the centrality index). Rather,
extremes along these spectrums may coexist within the same group.
By exploring both the local and global centrality of the network,
we were able to aid in a mental shift away from traditional, top-
down governance structures toward a collective planning paradigm
comprising multi-scale opportunities.

When navigating through complex researcher-stakeholder
partnerships, network tools may be used as a first step
toward better understanding the structure of the stakeholder-
defined management system before engaging in governance
transformation. By understanding the network structure, we can
explore (and potentially address) paradoxes within management
systems which may be stuck and/or inefficient, despite well-
intended efforts. In our case study, the stakeholders expressed
tacit beliefs which appeared to conflict with the nature of the
collective model they had derived. However, the high heterogeneity
of governance actors engaged in the workshop led to robust
representation of causal influences, and the overall network
structure presented numerous democratic opportunities for trans-
scale cooperation.

Conclusions

Everything is, in some sense, intricately connected to
everything else, but it is clear that some things are more connected
than others (Tobler, 1970). Understanding how and why this
happens in complex systems, and what are the implications,
is central to addressing integrated water management across
socio-institutional scales. Participatory research and cognitive
mapping have become commonplace within water research for
defining complex dynamics from embedded human knowledge.
Cognitive maps offer two primary frameworks for assessing
collective knowledge: (1) Exploring the structure of the map to
capture types of information and their connective properties, and
(2) Investigating the dynamics of the map through cause-effect
relationships to construct rules of system behavior (Glykas, 2010).
To date, the latter paradigm has governed water resources case
studies; however, as we are transitioning beyond understanding
human-water phenomena to engaging deeply with stakeholders
for actionable change, we must be able to assess the structure
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of cognitive maps prior to using them for dynamic prediction
and/or management.

The premise of this study was that a small extension
of FCM-based scenario building (via network analysis) can
substantially improve our understanding of stakeholder perception
and cognitive structures. Network science allowed us to make
testable predictions about the properties of real-world networks
once their structures were specified. By examining the role
of knowledge and power within the management system, we
could reveal paradoxes within stakeholder thinking (i.e., limiting
beliefs) that, when addressed, served to build the momentum
needed to shift the system trajectory toward a successful
outcome. In essence, by identifying the stakeholders’ perception
of the system, per network topology, this exercise served as
a foundation for promoting flexibility (collaborative potential)
and catalyzing change (influential management) across socio-
institutional scales.

Water sector reforms have been criticized for not considering
the
management) and instead applying universal remedies which

local context regarding policy implementation (i.e.,
can lead to resistance, conflict, and ultimate failure (Al-Saidi,
2017). When a diverse group of stakeholders engage in integrated
management, the results may vary widely depending on embedded
stakeholder beliefs and how variables interact. As such, the
performance of integrated water management depends on
complex relational dynamics embedded within the stakeholders’
collective experiences. This paper examined how such properties
can be identified prior to policy reform by conceptualizing key
interactions involved in water management through the lens of
network analysis. This research highlighted how we cannot impact
water governance without first describing and understanding its
structure. Network theory aided in identifying unseen phenomena
by emphasizing the normative role of stakeholder interactions in a
complex system and revealing underlying properties behind how
social decision-makers interact with, define, and influence a two-
way human-nature system. In other words, networks helped us to
understand, through their web of interconnected features, the core
relationships between disparate elements, thereby revealing key
organizational principles underlying a complex, integrated water
management system. We thus advocate a deeper incorporation of
management structure within participatory water research toward

achieving the principles of good governance.
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