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Perturbing the muscle work loop paradigm to unravel
the neuromechanics of unsteady locomotion
Simon Sponberg1,2,*, Emily Abbott2 and Gregory S. Sawicki2,3,*

ABSTRACT
Muscle function during movement is more than a simple, linear
transformation of neural activity into force. The classic work loop
technique has pioneered our understanding of muscle, but typically
only characterizes function during unperturbed movement cycles,
such as those experienced during steady walking, running, swimming
and flying. Yet perturbations away from steady movement often place
greater demands on muscle structure and function and offer a unique
window into muscle’s broader capacity. Recently, studies in diverse
organisms from cockroaches to humans have started to grapple with
muscle function in unsteady (perturbed, transient and fluctuating)
conditions, but the vast range of possible parameters and the
challenge of connecting in vitro to in vivo experiments are daunting.
Here, we review and organize these studies into two broad
approaches that extend the classic work loop paradigm. First, in the
top-down approach, researchers record length and activation
patterns of natural locomotion under perturbed conditions, replay
these conditions in isolated muscle work loop experiments to reveal
the mechanism by which muscle mediates a change in body
dynamics and, finally, generalize across conditions and scale.
Second, in the bottom-up approach, researchers start with an
isolated muscle work loop and then add structural complexity,
simulated loads and neural feedback to ultimately emulate the
muscle’s neuromechanical context during perturbed movement. In
isolation, each of these approaches has several limitations, but new
models and experimental methods coupled with the formal language
of control theory give several avenues for synthesizing an
understanding of muscle function under unsteady conditions.

KEYWORDS: Unsteady locomotion, Neuromechanics, Muscle force
production, Tendon elasticity, Closed loop feedback control,
Perturbation

Introduction
Muscles enable locomotion, a complex and highly dynamic
behavior that is critically important to survival. Indeed, to move
around in the natural world, animals must continuously alter speed,
maneuver and negotiate changing environmental features (e.g.
currents, rough terrain, wind). As such, under realistic conditions,
muscles operate at steady-state (see Glossary) only briefly, if at all.
Instead, muscles must constantly change length, contraction velocity
and activation (see Glossary) to meet the demands of dynamic

external loads. This insight has sparked a shift in locomotion
neuromechanics research over the last decade decidedly toward
unsteady (see Glossary) conditions (Biewener and Daley, 2007).
Indeed, in addition to being relevant to natural locomotion behavior,
perturbations (see Glossary), transients, maneuvers and other
unsteady conditions are likely to place the greatest demands on
locomotor systems and could help reveal the factors that enable or
limit extreme performance (Dickinson et al., 2000; Rome, 2006;
Syme and Josephson, 2002; Wilson et al., 2018). Ultimately,
elucidating mechanisms that facilitate locomotion stability and
maneuverability demands investigation into how muscles
contribute when an organism’s movement must change with the
environment and sensory input (Cowan et al., 2014).

Despite its diverse roles in movement, muscle is composed of
elements that are common and often well characterized across
species. Skeletal muscle is composed of hierarchically structured
and well-ordered active matter (in the physics sense), producing
internal stress within a regular lattice of proteins (Millman, 1998;
Sponberg, 2017). Within this lattice are regularly spaced thick and
thin filaments, which contain myosin and actin, respectively. When
activated, the motile heads of myosin bind to actin, creating
‘crossbridges’ that span the filaments and ratchet along to produce
force and contraction. However, there is much more to muscle’s
myofilament lattice than just actin and myosin, and there is a
growing appreciation of the contributions of other proteins, most
notably titin and similar molecules (kettin, projectin, sallimus;
Glasheen et al., 2017; Herzog et al., 2015; Hessel et al., 2021;
Hooper and Thuma, 2005; Lindstedt and Nishikawa, 2017; Powers
et al., 2021; Yuan et al., 2015). The proteins are organized into
1–10 µm contractile units, called sarcomeres, which themselves are
organized in series and parallel within a large muscle cell, or fiber.
Despite a large diversity of molecular variation in both structure and
kinetics (there are more than 30 classes and 2000 variants of myosin
alone), the sarcomere is highly conserved throughout vertebrates
and invertebrates (Hooper and Thuma, 2005; Huxley and Simmons,
1971; Kawai and Brandt, 1980; Odronitz and Kollmar, 2007;
Powers et al., 2021). For an excellent modern review of the
molecular structure and cellular basis for contraction in muscle, see
Powers et al. (2021).

Approaches to measuring muscle performance have changed as
the questions explored have moved from testing the biophysical
basis of contraction to understanding the function of muscle during
locomotion (see Box 1). Physiological function is often still defined
in the context of a muscle that is static in length (isometric) or load
(isotonic). However, the work loop paradigm (Josephson, 1985a;
Ahn, 2012) is a now classic approach to characterizing the function
of muscle when it undergoes periodic changes in length and force,
as during most types of steady locomotion involving the cyclical
movement of limbs. During periodic movement, muscles serve
versatile functions from brakes and motors to struts and springs
(Dickinson et al., 2000).
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This versatility underlies the role of muscle in steady movement
of diverse species including guinea fowl (Daley and Biewener,
2003; Higham and Biewener, 2008), fish (Rome et al., 1993;
Shadwick et al., 1999; Young and Rome, 2001), flies (Tu and
Dickinson, 1994), frogs (Richards and Biewener, 2007), turkeys
(Gabaldón et al., 2004; Roberts et al., 1997), cockroaches (Ahn and
Full, 2002; Ahn et al., 2006; Full et al., 1998), mice (James et al.,
1995), rats (Ettema, 1996), katydids (Josephson, 1985a), scallops
(Cheng and DeMont, 1997; Marsh and Olson, 1994), songbirds
(Elemans et al., 2008), moths (George and Daniel, 2011; Sponberg
and Daniel, 2012; Tu and Daniel, 2004), humans (Ishikawa and
Komi, 2008) and many others. The same muscle can even adopt
different functions (Box 1) depending on the strain cycle (see
Glossary), phase of activation and other parameters (Ahn et al.,
2003; Hedrick et al., 2003; Higham and Biewener, 2008;
Josephson, 1985b; Roberts et al., 1997). Work loops capture the
diverse functions of muscle, and this energetic versatility far
exceeds the flexibility of our best-engineered actuators even if

muscle is not singularly the best at efficiency, energy density, power
or speed (Carpi et al., 2011; Kornbluh et al., 2004; Madden et al.,
2004; Mirvakili and Hunter, 2018).

Despite remarkable progress in understanding the versatility of
muscle function under steady and periodic conditions (reviewed in
Biewener and Daley, 2007; Dickinson et al., 2000; Nishikawa et al.,
2018; Ting and Chiel, 2017), the muscle-level mechanisms that
determine unsteady locomotion performance remain unclear. In
freely moving animals, perturbations are the norm, not the
exception, and muscle force production is strongly shaped by
neural and mechanical feedback (see Glossary) (Dickinson et al.,
2000; Holmes et al., 2006; Koditschek et al., 2004; Revzen et al.,
2009). Neuromuscular activation can change during a perturbation,
but the force a muscle produces on the body also depends on its
mechanical state – its strain and strain rate – and also its strain
history and loading (Josephson, 1999). The already large parameter
space of muscle strain and activation explodes when we consider the
range of possible perturbation conditions. These issues make it very

Box 1. Approaches to assessing muscle function
Even today, physiological characterizations of muscle performance typically begin with measurements that hold most properties constant (A,B) – the
isometric, twitch and tetanus and length–tension curves (i.e. force–length curve), and isotonic, force–velocity curves (see Glossary for all terms). These
cover both the active lengthening (ecc., eccentric) and shortening (conc., concentric) regimes. Such measures typically do not reflect physiologically
realized conditions, especially during locomotion, but are useful for parameterizing models, especially the nearly ubiquitous Hill-type model (see Glossary;
Hill, 1938; Zajac, 1989). They also were part of original experiments establishing the sliding filament model, which shows that thick and thin filaments slide
axially, changing the overlap of crossbridge forming regions (Gordon et al., 1966).

Even before this, Machin and Pringle (1959, 1960) appreciated the dynamic nature of muscle, and characterized very fast insect flight muscle under
oscillatory conditions. Low amplitude sinusoidal analysis under constant activation fits an energy storage modulus (slope, E′) and loss modulus (area within
the curve, E′) to elliptical stress–strain curves (C, a Lissajous figure). Plotting these moduli over a range of frequencies (D, a Nyquist plot) shows how the
linear material behavior of muscle changes but does not necessarily scale to large strains (but see Nguyen and Venkadesan, 2021 preprint for a modern
extension). Such approaches helped to test biophysical models of molecular function, explicitly fitting the frequency dependence of the small sinusoidal
oscillation to the underlying rate equations of myosin binding (Iorga et al., 2012; Kawai and Brandt, 1980; Kawai and Schachat, 1984).

In his landmark paper, Josephson (1985a) connected sinusoidal inputs to whole-muscle function and introduced the classical work loop method (Box 2).
Originally, work loops aimed to find the strain and activation conditions (E) that generated maximum work or power (F; i–iv show corresponding points in
time). More recently, work loops have explored a large range of strain and stimulation conditions (G) (Dickinson et al., 2000; Nishikawa et al., 2018). These in
vivo and isolated muscle studies revealed that muscles can act to increase mechanical energy (a motor, circle), dissipate energy (a brake, star), store and
return energy (a spring, square) or transmit energy to other structures like tendons (a strut) (H; Pmax indicates maximum mechanical power).

Quasi-static Sinusoidal analysis Maximal workloop Diverse in vivo/in situ workloops
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difficult to link an individual muscle’s performance during unsteady
conditions to the kinematics and kinetics of the animal’s whole-
body movement. Assessing the function of muscle under unsteady
conditions and attributing changes in function to specific neural,
mechanical or molecular determinants of muscle force production
requires consideration of the interplay of these factors across
timescales and through feedback loops. But this complexity is not
intractable.
Perturbations such as rapid stretches and quick releases have been

used to probe muscle’s molecular and biophysical mechanisms,

including in the classic experiments that established the basic
molecular mechanism of force generation in muscle (Huxley and
Simmons, 1971). In some static or slowly varying conditions,
knowledge of a muscle’s instantaneous length, velocity and
activation (i.e. Hill-type model – see Glossary) can yield
reasonable predictions of its force and work output (Biewener
et al., 2014; Dick et al., 2017; Lichtwark and Wilson, 2005;
Sandercock and Heckman, 1997), but this predictability does not
extend to many dynamic conditions (e.g. Ahn et al., 2006; Perreault
et al., 2003; Ross et al., 2018) because of the complex interaction of

Glossary
Activation
Intensity of activity of the actin–myosin contractile machinery, i.e. crossbridge cycling. Activation occurs owing to release of calcium from the sarcoplasmic
reticulum after stimulation of neuromuscular synapses or, in some experiments, direct electrical stimulation of the muscle. Activation may depend on more
than just stimulation owing to history effects within the sarcomere (e.g. delayed-stretch activation, shortening deactivation). Contrast with stimulation.
Closed loop
The presence of feedback. A dynamic system has feedback if the output affects the input. This can be natural (neural reflexes, force affecting strain) or can
be artificially produced in an experiment, e.g. an interactive virtual-reality game. In the context of muscle experiments, ‘closed loop’ usually refers to the fact
that the force (output) of the muscle affects the strain (input), such as when the muscle is behaving against a real or virtual load.
Force–length (or length–tension) curve
A fundamental property of skeletal muscle characterized by several isometric contractions where steady force is measured at constant lengths. At
intermediate lengths, active force development is highest and corresponds to the maximal overlap between myosin and actin. At long lengths, active force
declines owing to reduced overlap. At short lengths, active force declines owing to disruption of myosin–actin spacing.
Force–velocity curve
A fundamental property of skeletal muscle characterized by several isotonic contractions. At light loads, muscle shortening velocity is fast, and at heavy
loadsmuscle shortening velocity is slow. If a load is applied that is greater than the peak force amuscle can produce, then themuscle actively lengthens, i.e.
there is negative shortening velocity.
Hill-type muscle model
Based on the early work by Hill (1938) and later by others (Wilkie, 1956; Zajac, 1989), a Hill-type model of muscle includes a contractile element that
captures the active force production of muscle. It also includes a passive parallel spring and a series spring element. In terms of amathematical function, the
force from a Hill-type muscle typically depends only on the activation, length and velocity of the muscle at that particular point in time (no history
dependence).
Linear material
A material (e.g. linear elastic) with outputs (e.g. stress) that can be defined as a linear function of its inputs (e.g. strain).
Linear system
A systemwhose outputs scale and superimposewith the inputs. If input A alone produces output Y and input B produces output Z, then in a linear system an
input of 2A will produce 2Y and an input of A+B will produce an output of Y+Z.
Mechanical feedback
Changes in muscle force not mediated by changes in neural activation. Changes in muscle force output that come from the force directly alter the strain that
the muscle uses. Can also include effects from a changing environment on the mechanical states of a muscle (e.g. slipping, deformation).
Muscle–tendon unit (MTU)
A tissue complex that encompasses the contractile cells (i.e. muscle fibers) that convert chemical energy into force and mechanical energy, and the elastic
connective tissue, i.e. tendon and aponeuroses, that transmit mechanical energy to an animal’s body.
Neural feedback
Changes in muscle force owing to altered neural activation mediated through reflex or central nervous system pathways (e.g. proprioception, vision,
vestibular).
Open-loop
A dynamic system that does not use feedback to determine the output, e.g. watching a pre-recordedmovie. In the context of muscle experiments, open-loop
usually refers to cases where the strain is fully prescribed and the muscle produces a force depending on its instantaneous length, velocity, activation and
history.
Perturbation
Any disturbance to the state that moves the system away from its current position. In biomechanics, this is typically a mechanical force or displacement that
moves the animal, limb, joint or muscle away from its steady-state operating condition.
Steady-state
In biomechanics, conditions in which states of the system are held constant (static) or allowed to vary in a regular periodic pattern (steady-periodic). These
include isometric, isotonic and steady work loop conditions.
Stimulation
Electrical impulses that are applied to elicit muscle contraction; may be delivered via peripheral nerves or directly to the muscle. Electrical stimulation
typically results in calcium activation of the contractile proteins with muscle. Contrast with activation.
Strain
The relative change in length normalized to the length of the muscle (ΔL/L0). Strain rate or strain velocity refers to the rate at which the muscle’s length is
changing.
Unsteady
Conditions under which the state of the system moves away from constant or steady-periodic conditions. These include perturbations, transients and
fluctuations. Unsteady conditions usually arise from influences external to the muscle and frequently produce more extreme physiological demands (e.g.
rates of strain, energy requirements, forces) than steady conditions.
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strain and activation (Hessel et al., 2021; Lindstedt and Nishikawa,
2017). In one of the most careful and systematic analyses to date,
Lee et al. (2013) examined the efficacy of a Hill-type model in
predicting limb muscle force profiles during walking, trotting and
running in pygmy goats, Capra hircus. A simple Hill-type model
was unable to predict even steady, periodic force. Although better
fits were achieved with an innovative two-element elaborated Hill
model designed to capture the role of fast and slowmotor units, even
this model struggled to predict maximum force (up to 32% errors) or
the proper phasing of force during the locomotor cycle; it could still
only explain 51% of variation in in vivo conditions. Given the need
to characterize muscle function under unsteady conditions, many
investigations have now started to perturb the classic work loop
paradigm to measure muscle function directly (Box 2).
Broadly, we see two paths along which investigations into unsteady

muscle function havemade significant progress (Fig. 1). The top-down
approach (Fig. 1A) starts with the whole animal freely moving under
conditions that produce unsteady variation, and then explores how this
variation changes muscle performance by perturbing isolated muscle
work loop conditions or performing in vivo measurements during
perturbations. The bottom-up approach (Fig. 1B) starts with classic
steady-state work loops and builds up unsteady function by allowing
the output force and work to affect the input strain and activation

parameters, by systematically adding structural and environmental
feedback pathways. Here, we explore the strengths and limitations of
each approach and how they are likely to integratewith complementary
tools in the future. We end with a more synthetic view of how the two
approaches could converge onto a more systematic framework.

A top-down approach: explore, reveal, generalize
The top-down research approach starts by understanding what
conditions the muscle experiences during locomotion in an
unsteady environment and how it influences the body. It then
zooms in to understand how muscle achieves these changes.
Broadly, the three stages of the top-down approach are to: (1)
explore function of a muscle in terms of how it affects body
dynamics during perturbations, (2) reveal mechanisms for this
function shift by examining how the mechanical work output of
muscle changes and (3) generalize conditions by systematically
perturbing isolated or partially intact muscle preparations beyond
the specific conditions realized during movement.

Step 1: Exploring muscle function under unsteady conditions with
perturbations
Many studies have examined how muscle activation and body
mechanics change from one steady behavior to another. For example,

Box 2. Steady versus unsteady work loops
A steady work loop measures the work done by the muscle or muscle–tendon unit (MTU, see Glossary) during periodically stimulated loops of length change
(Box 1E,F; Josephson, 1985a, overviewed by Ahn, 2012). Work is the dot product of force and length change, so the area enclosed (integral) by a ‘loop’
trajectory in a force versus length plot is the net mechanical work. I and II indicate comparable points on the steady time series and work loop. Instantaneous
work isW=F·δL, where the instantaneous length change, δL, is often approximated by a small discrete difference in length (ΔL). Force is conventionally positive
in the shortening direction, so length change should be as well. If a muscle is actively lengthened by an external load while producing force in the shortening
direction, F is positive, ΔL is negative (lengthening) and work is negative. This makes sense, because negativework will resist themotion and dissipate energy.
Mass-specific work (J kg−1) is calculated by replacing force and length by stress (force per cross-sectional area, Nm−2) and strain (change in length normalized
to rest length, unitless) and assuming a density (Box 1E,F). Dividing by the cycle period (or multiplying by frequency) gives mass-specific power (W kg−1).

Unsteady conditions are deviations from steady-state (static or periodic, see Glossary) conditions and occur during perturbations. ii, iii and iv show
equivalent points on the unsteady plots. The resulting work loop is no longer a simple loop in the force–length plot. The example here is a perturbation to a
cockroach limbmusclewhere themuscle is suddenly pulled eccentrically (actively lengthened) and returned in themiddle of the lengthening (grey region on
left; data from Libby et al., 2020). Under steady conditions, this muscle has a net negative work loop (brake, solid line). Under the perturbed conditions, the
muscle has multiple regimes (dashed lines). Nonetheless, net work is still the integral under the force–length curve. The difference in net work done during
the perturbed and unperturbed work loop gives one measure of the change in function, but the within-cycle dynamics can be analyzed for more detailed
interpretations. If the perturbation does not resolve within a single gait cycle, then the work ‘loop’ may not form a closed loop at all (e.g. Fig. 3D).
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in turkeys (Meleagris gallopavo), the lateral gastrocnemius usually
operates as an active strut, meaning it produces little net work and
mostly transmits force to support body weight without changing
length (Roberts et al., 1997). However, during inclined running, it can
switch to dissipating energy on a decline or acting as a motor on an
incline (Gabaldón et al., 2004). Cockatiels change the neural activity
of their pectoralis muscles to modulate power across flight speeds
without large changes to muscle strain patterns (Hedrick et al., 2003).
However, fewer studies have examined the behavior of muscle

under transient perturbed conditions. One of the pioneering studies
in this area showed how guinea fowl negotiate an unexpected drop
when they step into a hole covered by tissue paper (Daley and
Biewener, 2006; Daley et al., 2006). Muscle activation in vivo is
frequently measured using electromyography (EMG) – recordings
of the electrical potentials in a muscle – although calcium imaging is
an alternative in small animals, especially those for which precise
genetic techniques exist, such asDrosophila melanogaster (Lindsay
et al., 2017), Caenorhabditis elegans (Butler et al., 2015) and Mus
musculus (Rogers et al., 2007). In the guinea fowl studies,
recordings from the gastrocnemius muscle showed that EMG
patterns barely change when the bird hits the hole, but the muscle
experiences a large change in length corresponding to changes in
the kinetic energy of the body (Fig. 2A). This contrasts with the
digital flexor (a more distal muscle), which does show significant
changes in EMG activity and less change in strain (Fig. 2B). These

differences in responses of specific muscles are likely to be due to
different tendon architecture (Daley and Biewener, 2011).

Recording from many muscles simultaneously can show the
coordinated patterns of correlated change that occur throughout the
neuromechanical system. Gordon et al. (2015) extended the above
studies by recording eight limb muscles spanning all leg joints in
guinea fowl running along an obstacle treadmill. They found that
when the birds visually anticipate obstacles, they use more
anticipatory neural adjustments. In contrast, the birds’ responses
to very sudden obstacles are mediated by changes in muscle
function that are more intrinsically mechanical, even if some neural
modulation remains. In frogs, cats, moths and humans, the same
groupings of muscle (‘muscle synergies’; Bizzi et al., 2008; Ting,
2007), even as animals shift from swimming to hopping to walking
(d’Avella and Bizzi, 2005; d’Avella et al., 2003), change stance
(Torres-Oviedo et al., 2006; Torres-Oviedo and Ting, 2010),
coordinate different flight turns (Putney et al., 2021 preprint) or
experience disease (Cheung et al., 2009; Rodriguez et al., 2013;
Ting et al., 2015). However, in most of these studies that consider
many muscles, strain information is absent, making it hard to later
interpret the mechanical work and power done by the muscle.

Another challenge with the approach of just recording muscle
activation and strain is that these measures are only correlated with
how the animal responds to the perturbation. Many different
muscles could be involved in mediating the animal’s response, so it
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typical strides. Graded control potentials during standing (orange lines) give way to non-linear control of vertical acceleration during running (green lines).
However, changing the timing (phase) of the added spikes (purple lines) eliminates the vertical control and introduces non-linear lateral plane control, but in
the opposite direction of standing. (E) Summary of the control potential in each context. ΔJz, change in vertical impulse; ΔJy, change in lateral impulse; Δω,
change in yaw angular velocity, all relative to unperturbed stride. Data from Sponberg et al. (2011a).
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is tricky to infer how each muscle is causally involved. This
limitation can be overcome by identifying a muscle’s specific
control potential through a set of stimulation (see Glossary)
experiments (Sponberg and Daniel, 2012; Sponberg et al., 2011a;
Srivastava et al., 2017). Control potential is the specific mapping of
a change in neuromuscular activation (e.g. number of action
potentials or firing rate) to the animal’s response. Amuscle’s control
potential frequently depends on biomechanical or behavioral
context, just as neural encoding in sensory systems and the brain
does. As an example, consider the ventral femoral extensor muscle
of a cockroach, Blaberus discoidalis, which normally dissipates
energy (Ahn and Full, 2002; Full et al., 1998). This muscle is a
single motor unit (only one innervating motor neuron) and the
number, but not the timing, of muscle action potentials to this
muscle increases when the animal traverses very large obstacles
(Sponberg and Full, 2008). But how does this muscle contribute to
how the cockroach accomplishes this traversal?
To determine the muscle’s control potential (Fig. 2C–E),

Sponberg et al. (2011a) took an unperturbed cockroach and
precisely altered the patterns of neuromuscular stimulation to this
limb muscle by adding individual muscle potentials (‘spikes’) to
mimic the pattern during a perturbation (Fig. 1A). When adding
spikes while the animal is stationary, the muscle acts like a linear
motor. It gradually accelerates the animal vertically (the vertical
impulse, Fig. 2C) and produces a rotation (Fig. 2D) around the
cockroach’s center of mass. However, adding one to three spikes to
the muscle in a running cockroach does not produce any significant
response in body dynamics. But, as soon as one adds a fifth spike,
there is a large burst of acceleration greater than any that occurs in
the stationary animal (Fig. 2C), but the animal still does not turn
(Fig. 2D). When the authors changed the timing of the spikes, but
kept the pattern the same, they could switch the effect, causing the
animal to turn, but not accelerate vertically. This turn was in the
opposite direction to the animal’s rotation when stationary. This
means that the muscle response is highly non-linear during
perturbed running, and the muscle’s function – even with the
same pattern of motor commands – depends on the behavior and
biomechanical context (Fig. 2E).

Step 2: Perturbed work loops reveal mechanisms for a single
muscle’s diverse function
The first stage of the top-down approach establishes the effect of the
muscle on body dynamics either correlationally or causally, and
records the length change and activation amuscle experiences during
a perturbation. The next stage examines the mechanical work output
of the muscle itself by replaying the strain and stimulation conditions
recorded from the perturbed locomotor conditions into a work loop.
Muscle (or muscle tendon unit – MTU, see Glossary) forces and
length change can be measured in vivo with surgically implanted
tendon buckles and sonomicrometry crystals, respectively (Biewener
and Gillis, 1999; Biewener et al., 1988, 1998a,b; Roberts et al.,
1997). One of the first applications of this combination of recordings
was performed in some of the guinea fowl experiments over
unexpected drops. Large variations in the work output of the
gastrocnemius during step-downs and step-ups were largely
accounted for by changes in muscle strain owing to different leg
lengths (measured as hip height, Fig. 3A) (Daley et al., 2009).
Alternatively, mechanical work is also sometimes measured at

the scale of the whole joint. Even though joint work arises from
multiple muscles and may obscure effects such as antagonistic co-
activation of two muscles, it can show important patterns of function
(Fig. 3B). For example, in the perturbed running guinea fowl, there is a

proximal-to-distal gradient of control. The proximal muscles around
the hip joint are largely invariant to perturbations, but the more distal
joints, such as the tarsometatarso-phalangeal (TMP), shift from
positive to negative net work (dissipation) depending on
biomechanical context (Daley et al., 2007).

Finally, muscle function can also be examined in a reduced or
partially intact experimental preparation, such as unsteady work loops
(Box 2) on isolated muscle. In a study complementary to Sponberg
et al. (2011a), the experimenters extracted the limb kinematics, inferred
muscle strain patterns under the perturbed conditions and replayed the
feedback into unsteady work loop experiments (Sponberg et al.,
2011b) (Fig. 3C). Muscle function under these perturbed conditions
was highly dependent on the locomotor behavior.When the cockroach
considered above is stationary, the muscle studied acts like a simple
linear motor, consistent with its graded acceleration of the body
(Fig. 2C,E). In running, adding one or three spikes does not change the
muscle strain pattern significantly, but at five spikes and above, the
duty factor (the portion of the stride that the muscle shortens)
increases non-linearly (Fig. 3C). This causes a positive mechanical
feedback loop (see Glossary) that amplifies positive work in the
muscle. The increased force further increases duty factor, allowing
more time for evenmore force to develop. It is not until the antagonistic
muscles (flexors) produce sufficient force that the swing period
commences. Even then, the extensor muscle still has high stress
when the leg begins to swing back, and this causes it to dissipate
energy (negative work), pushing the leg back into stance and letting it
do more positive work at the beginning of the next stride (Fig. 3D).
Unsteady work loops could also explain the turning that was produced
when themusclewas stimulated at different times (Fig. 2D,E), because
the muscle produces positive work at a different phase in the stride
cycle when the limb is positioned to turn the body (Sponberg et al.,
2011b).

Step 3: Systematically generalizing the conditions of perturbed work
loops
In the third stage of the top-down approach, the perspective is
broadened to understand awider range of muscle function than what
is realized in the specific experiments of earlier stages. Doing so, we
can systematically explore how muscle responds to carefully
designed perturbations. Even if Hill-type muscle models cannot
predict force over full gait cycles, they might be able to predict
short-term perturbation response properties. Libby and colleagues
used the perturbed work loops based on the earlier cockroach
studies cited above to test whether Hill-type muscle parameters were
sufficient to predict the immediate response of muscle to rapid
changes in length during periodic contractions (Libby et al., 2020).
They designed perturbations that were exactly the same under all
Hill-muscle contractile conditions (length, velocity and activation),
but differed only in the history (the strain trajectory) leading up to
the perturbation. Despite identical perturbations, the different
histories produce up to four-fold differences in the amount of
energy that the muscle dissipates during the perturbation. The
enhancement of dissipation is potent; a single muscle in the leg of a
cockroach can dissipate energy equivalent to the entire kinetic
energy of the running animal during a 5 ms perturbation response.

Whereas the work loops in the previous section explicitly tested
how muscle performed mechanical work under conditions that
mimic those in vivo, these perturbed work loops were designed to
test a particular hypothesis of muscle biophysical function.
Perturbations can also include changes in muscle function owing
to injury, aging or disease. In a clever translational study, Bukovec
et al. (2020) examined the potential effects of Duchenne muscular
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dystrophy on human soleus muscle function, by mimicking the
human gait in neuromechanical simulation, scaling the results to a
mouse model, and performing work loops with these parameters in
an ex vivo mouse muscle prep containing a genetic knockout of
dystrophin.
Others have suggested using systematic perturbations of muscle

as a system identification tool (Kiemel et al., 2016 preprint; Roth
et al., 2014). A system identification approach attempts to describe
the input (stimulation and strain) to output (force) relationship with
a systematic set of perturbations, usually such that the relationship
can be generalized to other conditions. This is challenging in
periodic systems because the perturbation response can depend on
the phase or time in the cycle. The first case study of this used

harmonic transfer functions (HTFs – a linear, but time-periodic
system identification method) to show that body muscles in a
lamprey, Ichthyomyzon unicuspis, are highly non-linear with
activation-dependent stiffness and damping consistent with the
importance of history effects (Tytell et al., 2018). As a result, no one
HTF can describe the response of the muscles, at least in this system.
This might be frustrating from the standpoint of having one simple
predictive relationship, but it illustrates the inescapable
interdependence of length, activation and force even for small
deviations from steady conditions. Interestingly, when multiple
antagonistic muscles act together, the identification of a linear
system (see Glossary) improves, and the response of the whole
lamprey body is better captured by the HTFs.
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Fig. 3. Perturbed work loops reveal mechanisms of context dependence. (A) Work output from the gastrocnemius of guinea fowl undergoing unexpected
perturbations is largely determined by the muscle strain. The longer the limb extension (measured as hip height at touchdown normalized to control), the
more negative the net mechanical work (W) produced by the muscle compared with the control stride (Wc). Figure redigitized with webplotdigitizer and
reproduced from Daley et al. (2009), with permission. (B) Net mechanical work analyzed at the joint level rather than muscle level shows that there is a
proximal–distal gradient in control, because the work output of the more distal joints (ankle and TMP) vary more during unexpected perturbations. C, control
stride; U, invisible drop perturbed stride; V, visible perturbation stride. Figure reproduced from Daley et al. (2007) with permission; only one strategy shown.
(C) During running, a cockroach leg muscle that is normally a brake (Full et al., 1998) transitions to being a non-linear motor. A steady, linear increase in
neural stimulation (orange) causes a non-linear increase in muscle work and, ultimately, vertical acceleration (positive z impulse, Impz). This transformation
arises because of a positive feedback loop between muscle force and limb kinematics (duty factor and limb extension, green) that amplifies work when
activation exceeds three added spikes. (D) This feedback can be dissected using corresponding unsteady work loops. Black ticks denote timing of typical
spikes during a steady stride; orange ticks denote added spikes during the perturbed stride, triggered on the first spike. During a typical running stride, the
muscle normally dissipates a small amount of energy (first work loop; negative instantaneous work, blue; positive, red). When perturbed, the extended
stance phase enables some positive work. However, the high negative force during the second half of the perturbed strides also reduces the duration of the
swing phase. This causes a second region of positive work at the onset of stance in the recovery stride. Dashed grey lines connect one stride to the next
(perturbed work loops are not necessarily closed trajectories). Data from Sponberg et al. (2011b).
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A bottom-up approach: incorporate, close the loop,
contextualize
The bottom-up research approach starts with understanding how an
isolated muscle’s activation and strain pattern influences its force
and work output (e.g. through the classical work loop approach).
Then, in three stages, the bottom-up approach systematically layers on
additional elements to (re)create the conditions that a muscle would
experience in vivo during real-world movement. These are to: (1)
incorporate structure that realizes the physical connections through
which muscle forces are applied in vivo to create or modify motion of
the limb or body, (2) ‘close the loop’ around the biological actuator/
transmission system by incorporating the mechanical and neural
feedback loops that alter muscle’s force dynamically as its strain
changes with limb or body configuration and (3) emulate context by
(re)creating the physical conditions consistent with ongoing
perturbations characteristic of a real-world, unsteady environment
(Fig. 1B). Regarding point 2, in the term ‘work loop,’ ‘loop’ refers to
the closed trajectory of force and length whose area indicates net
mechanical work. ‘Loop’ is also used in the context of feedback loops
where the output of a system affects its input. When we discuss
‘closing’ or ‘opening’ loops we mean it in this latter context.

Incorporating structures around muscle into the work loop paradigm
Most muscles attach to the skeleton through elastic tissues that are,
in some cases, quite compliant. When under load, spring-like

tendons and aponeuroses (sheet-like connective tissue) deform
within the whole MTU and alter the state of the muscle itself
(Griffiths, 1991). When interacting with an external load or strain, a
muscle’s force output must act through these elastic tissues
(Fig. 4A). This phenomenon introduces the possibility that active
muscle fascicles (bundles of muscle cells) can change length and
experience force very differently than the MTU in which they
reside.

There is a large catalog of examples showing how elastic
connective tissue in series with muscle can enhance mechanical
performance of muscle during steady movement on land (Arellano
et al., 2019; Daley et al., 2009; Holt, 2020; Konow et al., 2012;
McGowan et al., 2007; Roberts and Azizi, 2011), in air (Konow
et al., 2015) and – to a lesser degree – in water (Richards and
Sawicki, 2012). The most straightforward example of the
importance of series elasticity is that classical work loop
experiments do not explain how strut-like muscle (i.e. isometric)
behavior emerges within an MTU, because these experiments are
performed in the absence of series elastic tissues (Roberts et al.,
1997). However, very little is known about MTU interactions under
unsteady conditions, especially with concomitant changes in neural
stimulation.

To extend our understanding of MTU function to unsteady
conditions, we can add the series elastic elements (or other structural
elements) directly into the work loop preparation. For example,
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Sawicki et al. (2015b) used a novel in vitroMTUwork loop setup to
directly investigate how stimulation onset timing (i.e. phase)
influences MTU interaction dynamics during cyclical contractions
(Fig. 4B). The main difference is that the strain is prescribed at the
tendon, so that the muscle itself experiences a strain that is mediated
by the series elasticity of the tendon and not set a priori. In addition,
sonomicrometry crystals measure the length change of the muscle
independently of the combined MTU, and forces are assumed to
propagate through the combined structure.
Using this approach, it becomes evident that series elastic

structures make it difficult for animals to directly control the
trajectory of an MTU, joint or even the limb as a whole. However,
what seems on the surface to be a motor control challenge may
actually offer performance benefits. Similar to classical work loop
experiments on muscle only, the function of the whole MTU can
shift from net negative (Fig. 4C) through zero (Fig. 4D) to net
positive (Fig. 4E) by advancing the stimulation phase from 0%
(lengthening onset) to 50% (shortening onset). More importantly, if
the timing of muscle stimulation is such that the peak force in the
muscle coincides with peak stretch in theMTU, then the muscle and
MTU will be nearly completely uncoupled (Fig. 4D). In this case,
the muscle acts like an isometric strut (i.e. a biological clutch),
enabling external energy to cycle directly into and out of the series
elastic tissues. As a result, the MTU work loop behavior becomes
nearly spring-like, with stiffness that matches that of its series elastic
components (Fig. 4D).

Closing the feedback loop with biorobotic tools and simulations
The approach to build up the classical work loop paradigm by
including series elastic tissues still lacks the closed-loop (see
Glossary) interaction of a contracting MTU and the dynamic load it
acts upon (Fig. 5A). During normal muscle function, the length (or
strain) of a muscle is not prescribed, but results from the muscle
producing force against some finite load. For example, during
walking or running, the length of muscle or MTU comes from the
work the muscle is doing to move the mass of the body relative to
the contact point of the limb on the ground. Flight muscles act
through the wing to do work against both inertial and aerodynamic
loads. Dynamic loads mechanically feed back through the tendon to
alter a muscle’s work loop.
To accomplish closed-loop control of muscle–tendon length in a

work loop experiment, experimenters can switch to using
simulations of the mechanics or actual mechanical systems that
take the muscle’s force as an input and calculate the resulting length
change (Fig. 5). The advantage of this approach is that the
mechanics can be modeled but the experiment can utilize an actual
muscle. This hybrid approach has advantages over pure simulations
because current muscle models are not adequate, especially for
unsteady conditions.
In a series of papers, Richards and Clemente pioneered this

approach by coupling an isolated muscle work loop preparation to a
robotic model of a frog foot moving through water (Fig. 5B;
Richards, 2011; Richards and Clemente, 2012). Fluid loads will
often scale with the square of the velocity and area of the actuator, so
swimming frogs (as well as fliers) need to move their smaller limbs
more quickly to increase propulsive forces compared with large
organisms. When starting at longer muscle lengths, Richards and
Clemente found that muscles acting against real hydrodynamic
loads run up against limits imposed by the force–velocity curve (see
Glossary) as opposed to those resulting from the force–length curve
(see Glossary; Clemente and Richards, 2012). The real advantage of
the robotic component of the system is that experimenters can easily

and systematically vary system parameters to ask questions such as:
how do speed and the performance of muscle change within species
as an animal grows or across species of different size? By
systematically varying the parameters of the speed, foot size and
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gear ratio of their hybrid biorobotic system with either in vitro or in
silico plantaris longus muscle preparation, they found that different
combinations of morphology could all converge on successful
swimming strategies (Richards and Clemente, 2013). Instead of
being locked into a single optimal set of parameters, which would
be untenable as the animal changes sizes or conditions, the
combination of morphology and speed allows the muscle to be
broadly tuned for high-power output.
In a second example, Robertson and Sawicki extended the MTU

work loop setup that incorporated series elastic structures (Fig. 4)
into a ‘smart’ biorobotic interface that could emulate the mechanical
feedback between a muscle, its body and environmental dynamics
during unsteady locomotion over ground (Fig. 5A). They started
with a previously developed simple hopping model comprising a
body mass attached to a foot through a single joint (ankle) and
driven by a single Hill-type compliant MTU (calf–Achilles tendon)
(Robertson and Sawicki, 2014). They embedded the rest of the
model (i.e. pulley+mass+gravity) in the software used to control an
ergometer interacting with a living frog plantaris MTU in vitro
(Fig. 5C). This model hops vertically when excited with a rhythmic
neural input at a set frequency and captures most of the notable
features observed during actual human hopping at steady-state
(Robertson and Sawicki, 2014). The resulting biorobotic
platform reads force from the MTU, applies it to a simple model
of vertical hopping, computes the resulting change in MTU length
and sends it back out to the MTU. This extends the work loop
framework to include mechanical feedback by closing the loop
between MTU force and MTU displacement in real time (Fig. 5A;
Robertson and Sawicki, 2015; Robertson et al., 2017; Sawicki et al.,
2015a).
In this biorobotic system, when a periodic force interacts with a

mechanical system and a load, the work loop behavior depends on
the relationship of the stimulation frequency, ωdrive, and the
resonance frequency of the system. When activated with a set
ωdrive, the system eventually settles into a steady cycle exhibiting net
zero work by the MTU (i.e. total system energy is conserved;
Fig. 5C). In a linear system without significant damping, the
resonance frequency is the natural frequency at which the system
passively oscillates. One important feature that emerges from the
coupled dynamics between the MTU and the inertial/gravitational
load is that matching the driving frequency, ωdrive, to the natural
frequency of passive oscillation, ωo, of a compliant MTU generates
mechanical resonance and yields the largest spring-like behavior in
cyclic contractions (Fig. 5C; Robertson and Sawicki, 2015). This
work suggests that animals may choose a locomotor frequency that
resonates with passive mechanical structures, but these structures
have to consider the load, elasticity and muscle (Gau et al., 2021;
Jankauski, 2020; Liao, 2004; Lynch et al., 2021; Robertson and
Sawicki, 2015; Weis-Fogh, 1973).

Emulating the context in which a muscle acts by incorporating neural
feedback or hybrid robotic systems
So far, we have demonstrated bottom-up techniques to take work
loop experiments from isolated muscles operating in open loop (see
Glossary) to isolated MTUs (Fig. 4) operating in closed loop (see
Glossary) with dynamic loads representative of terrestrial and
aquatic locomotion (Fig. 5). In this way, we get closer to recreating
the in vivo loading conditions that anMTUwould experience during
real-world locomotion (Fig. 5A). The final step of the bottom-up
approach is to further embody the muscle or MTU by incorporating
realistic neural feedback and the dynamics of actual locomotion.
The experimental capabilities for this step are in their infancy, but

would involve taking the MTU embedded in a hybrid biorobotic
system and coupling this to a locomoting animal or directly
incorporating neural feedback through paired sensory neuron
recordings and manipulations. Human biomechanics is only
beginning to address muscle-level responses to explicit
perturbations (e.g. falling in holes or pushes to the body) and the
role of sensory feedback pathways in altering ongoing motor
commands during perturbed movements (Dick et al., 2021; Golyski
and Sawicki, 2022). These gaps between the current state of the
bottom-up work loop paradigm and freely moving animals
navigating unsteady environments motivate the next steps for
integration toward systems with both biological and artificial parts
(e.g. wearable robotic systems; Fig. 1B).

From an applied standpoint, the ultimate endgame for the bottom-
up approach is to help inform fundamental principles for optimal
design of legged machines, including wearable robotic systems that
can augment human locomotion in variable environments (Fig. 1B).
For example, recent closed-loop experiments using isolated muscle
tendons on the benchtop have incorporated models of exoskeleton
dynamics in parallel with body and environmental dynamics
running in a virtual environment (Robertson et al., 2017). This
approach enables detailed examination of how devices can interact
with and augment biological muscle function. Indeed, incorporating
dynamic properties of biological muscle–tendon systems into
actuation systems on legged machines (e.g. autonomous robots
and lower-limb joint prostheses and exoskeletons) could help speed
the transition from tethered devices operating in stereotypical lab
environments to autonomous devices operating in unstructured,
natural environments with continuous perturbations (Badri-
Spröwitz et al., 2022; Nishikawa and Huck, 2021; Rubenson and
Sawicki, 2022; Shafer et al., 2021; Tahir et al., 2018).

Trade-offs of top-down and bottom-up approaches
The top-down and bottom-up articulation poses a heuristic
dichotomy in the study of how muscle dynamics underpin
unsteady movement. The top-down approach necessarily begins
with informing the relevant parameter ranges of strain and activation
and then prescribing these as open-loop, unsteady trajectories or
recording them in vivo (Fig. 1A). This means that in vivo strain and
activation are reproduced as open-loop replays of these trajectories
in situ or using invasive means to measure force, work and other
properties in vivo. Therefore, even though the top-down
approach can systematically explore a diversity of conditions in a
highly repeatable and tractable manner, it is limited either to the
conditions recorded or requires the muscle to be removed from the
natural feedback loops between force and length present in the
organism.

In contrast, the bottom-up approach maintains, at least in part, the
active coupling of force and length by preserving functional
feedback loops. It gives unprecedented control for exploring the
context for muscle’s dynamic behavior on the benchtop (Fig. 1B).
By explicitly placing muscles within physiologically realistic
mechanical and neural feedback loops, the bottom-up approach
opens the door to studies that can systematically layer environmental
dynamics, body morphology and sensory feedback on top of actual
muscle dynamics. However, the bottom-up approach removes the
ability to exactly match unsteady conditions to those experienced in
free locomotion, making it difficult to synthesize findings back into
the context of biologically relevant locomotion. Overall, both top-
down and bottom-up approaches seek to untangle the causal
determinants of muscle function in addition to characterizing the
unsteady properties of nature’s most versatile actuator.
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Conclusions and opportunities for synthesis
The challenge with the top-down and bottom-up approaches going
forward lies in synthesizing results across experiments and scales. In
a few systems outlined here, researchers have performed
experiments across scales that allow for the interpretation of
unsteady locomotor function and mechanisms, but this is still the
exception rather than the rule. It also remains challenging to
generalize the results beyond these systems, and no system has
leveraged the strengths of both approaches. We need frameworks to
facilitate systematic experimentation from top-down and bottom-up
approaches, and to allow the results of these experiments to be
related quantitatively to one another. Although the approaches
outlined above provide two avenues for designing experiments, they
could be enhanced in three ways: (1) connecting experiments to
emerging models of muscle function at multiple scales, (2)
leveraging new techniques that allow for simultaneous
measurements across scales, and (3) utilizing the formalism of
control theory and system identification to allow quantitative
predictions from one experimental context to another based on
opening and closing feedback loops.
Muscle modeling is rapidly moving beyond simple rate kinetics,

Hill-type parameters, static material models and neuromechanical
simulations with many highly simplified parameters.
Computational power and our understanding of
mechanochemistry are now sufficient to run detailed biophysical
models of a half-sarcomere (Campbell et al., 2011a,b) and spatially
explicit models of muscle that integrate myosin binding and three-
dimensional myofilament lattice strain with other important
molecular constituents such as titin (Powers et al., 2018; Tanner
et al., 2008; Williams et al., 2010). These multiscale models have
already shown some success in predicting physiological properties
at least in steady-state regimes (Williams et al., 2013). Going
forward, they may be able to predict muscle behavior under
unsteady conditions because they capture the details of coupling
between strain and activation. At the larger scales, rheological (the
physics of deformation) models of muscle based on combining
multiple linear material characterizations (see Glossary) have shown
some recent success in modeling work loop conditions (Nguyen and
Venkadesan, 2021 preprint; Nguyen et al., 2018). Detailed
neuromechanical models that embody muscles in the connective
elements and biomechanics of the organism are moving beyond
Hill-type muscle models of their elements. These models become
especially powerful when an optimality function can be defined and
the model parameters are selected to minimize some cost validated
by experiment (Knaus et al., 2022; Koelewijn et al., 2019; Pena
et al., 2021; Van Wouwe et al., 2021). These new approaches
provide some hope that we will be able to predict muscle function
under unsteady conditions across the experimental steps in each of
the top-down and bottom-up methodologies, but the models
themselves currently are not integrated across scales.
Complementary to unsteady work loop experiments, there is a

corresponding proliferation of new methods that provide
unprecedented opportunities for capturing details of muscle
function. For example, X-ray videography of lead markers,
magnetic resonant imaging or sonomicrometry crystals embedded
throughout a muscle can reveal important properties such as spatial
heterogeneity in muscle strain (Ahn et al., 2003; Arellano et al.,
2019; Azizi and Roberts, 2009; Camp et al., 2016; Kirkpatrick et al.,
2022; Pappas et al., 2002). High-resolution optical techniques can
resolve individual sarcomere dynamics (Rassier et al., 2003).
Calcium imaging can monitor the in vivo activation of many
muscles simultaneously (Lindsay et al., 2017). Optogenetic

manipulation can stimulate muscles even in free flight, albeit not
yet at the level of individual action potentials (Whitehead et al.,
2022). X-ray microtomography can reveal the strain trajectories of
many muscles during periodic contractions (Walker et al., 2014).
Finally, X-ray diffraction through living muscle can give highly
time-resolved (up to 5000 frames s−1) information about structural
interactions between molecules (Irving, 2007; Iwamoto, 2018).
Many of these techniques could potentially be performed
simultaneously or in parallel with physiological measurements
from a work loop experiment, and such approaches may allow us to
query multiple scales of muscle function at the same time. Doing so
may facilitate achieving the three steps of each approach in more
systems and might link unsteady function to underlying cellular and
molecular mechanisms.

Although new modeling and experimental tools help, designing
and quantitatively comparing experiments across different steps in
the two approaches remains challenging. This is because the
different steps have different mechanical and neural feedback
pathways. In each of the approaches, some of these pathways are
removed during the experiment (termed ‘opening’ the feedback
loop). For example, an ex vivo muscle work loop preparation does
not have intact neural feedback or mechanical feedback from a
dynamic load. Other times, feedback loops are artificially ‘closed’
around the muscle, such as when a simulation measures muscle
force and plays back a modeled change in length to the muscle
preparation. See Roth et al. (2014) and Cowan et al. (2014) for more
detail on opening and closing feedback loops in biological systems.

In experiments with different mechanical and neural feedback
loops intact or artificially closed, the inputs (e.g. force, length
change) and output (force) that the muscle or MTU experiences
change. System identification and control theory provide a natural
language and quantitative framework for combining experiments on
the same muscle with different opened or closed feedback loops,
because they provide mathematical tools to predict and relate the
inputs and outputs from one such experiment to the next (Cowan
et al., 2014; Madhav and Cowan, 2020; Roth et al., 2014; Sponberg,
2017; Thomas et al., 2019). These approaches are especially
powerful when the input–output relationship is linear. Muscle force
or work (output) is unlikely to have a linear relationship with
activation, strain or velocity (inputs), except in small perturbation
regimes. Hence, linear control theoretic approaches may face some
limitations (Kawai and Brandt, 1980; Libby et al., 2020; Tytell et al.,
2018). However, even if non-linearities are experimentally
inescapable or indispensable, there are still tools and methods that
can be used to qualitatively and quantitatively relate experiments
with different opened and closed loops to one another, estimate the
non-linear input–output relationship, and indicate how non-
linearities are manifest in the organism (e.g. Roth et al., 2011,
2014; Tytell et al., 2018). Finally, control theoretic approaches are
already becoming prevalent in the motor control and computational
neuroscience communities (Cowan and Fortune, 2007; Cowan et al.,
2014; Dahake et al., 2018; Frye and Dickinson, 2004; Kiemel et al.,
2016 preprint; Roth et al., 2014; Stöckl et al., 2017; Ting and Chiel,
2017; Tytell et al., 2018). Similar approaches applied directly to
characterizing muscle function promise to facilitate synthesis across
experiments and models.

We still cannot predict, much less emulate, the versatility of
muscle. Tackling this challenge will require us to move toward a
synthesis of top-down and bottom-up approaches with the help of
multiscale modeling and new experimental techniques in parallel
with unsteady work loops. We can also embrace the systematic
formalism of controls and dynamic systems theory not just to
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interpret but to guide experiments. Together, these approaches can
help disentangle the complicated feedback pathways that shape
muscle’s function, especially under unsteady conditions. They
provide a roadmap to help us understand, predict and potentially
even improve upon nature’s most dynamic actuator.
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