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ABSTRACT

We explore a simplified model of the outcome of an early outer Solar System gravitational upheaval during which objects were
captured into Neptune’s 3:2 mean-motion resonance via scattering rather than smooth planetary migration. We use N-body
simulations containing the sun, the four giant planets, and test particles in the 3:2 resonance to determine whether long-term
stability sculpting over 4.5 Gyr can reproduce the observed 3:2 resonant population from an initially randomly scattered 3:2
population. After passing our simulated 3:2 resonant objects through a survey simulator, we find that the semimajor axis (a) and
eccentricity (e) distributions are consistent with the observational data (assuming an absolute magnitude distribution constrained
by prior studies), suggesting that these could be a result of stability sculpting. However, the inclination (7) distribution cannot
be produced by stability sculpting and thus must result from a distinct process that excited the inclinations. Our simulations
modestly under-predict the number of objects with high-libration amplitudes (A4 ), possibly because we do not model transient
sticking. Finally, our model under-populates the Kozai subresonance compared to both observations and to smooth migration
models. Future work is needed to determine whether smooth migration occurring as Neptune’s eccentricity damped to its current

value can resolve this discrepancy.
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1 INTRODUCTION

The dynamical structure of small bodies in the Solar System’s
trans-Neptunian region indicates that the system’s ice giants formed
closer to the sun than they orbit today. In particular, the large
population of trans-Neptunian objects (TNOs) detected in mean-
motion resonances (MMRs) with Neptune suggests that early in its
lifetime, Neptune either migrated outward from a closer-in orbit due
to angular momentum transfer with nearby planetesimal debris or
was dynamically scattered due to interactions with the other giant
planets (or both; for reviews see, e.g. Morbidelli, Levison & Gomes
2008; Gomes et al. 2018; Nesvorny 2018; Morbidelli & Nesvorny
2020). Recent results from well-characterized surveys of the trans-
Neptunian region have enabled direct comparisons between these
models and the distribution of observed resonant orbits. In this paper,
we investigate whether the observed orbital distribution of TNOs in
the 3:2 MMR with Neptune is consistent with the class of models in
which Neptune is dynamically scattered. To do so, we test whether
this population can be produced by an initially scattered population
of TNOs for which no preferential resonance capture has occurred,
which is then sculpted over the age of the Solar System as unstable
objects are lost. We refer to this process as ‘stability sculpting.’
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The nature of the Solar System’s early dynamical evolution is
still uncertain, but two end-member models are often discussed:
gravitational upheaval and smooth migration. Both have a similar
pre-evolution state, with all of the giant planets on nearly circular,
co-planar orbits with semimajor axes interior to Neptune’s current
orbit and an initial massive planetesimal disc extending from the giant
planet region to roughly 34 au (see, e.g. Levison et al. 2008; though at
least some low-mass portion of the disc also extended out to include
the current cold classical population at ~45 au as discussed in, e.g.
McKinnon et al. 2020; Gladman & Volk 2021). The two models
differ in their implications for how Neptune’s exterior MMRs are
filled. In the most violent upheaval models, the giant planets have
direct gravitational interactions that scatter Neptune nearly directly
to its current location (see, e.g. Gomes et al. 2005; Tsiganis et al.
2005; de Sousa et al. 2020; see also reviews by Morbidelli et al.
2008; Nesvorny 2018; Morbidelli & Nesvorny 2020). In this type of
scenario, most of the planetesimals are strongly scattered with some
landing at random in the final locations of Neptune’s MMRs (e.g.
Levison et al. 2008; Pike et al. 2017). Smooth migration models are
characterized by a slower, gradual outward migration of the planets,
during which planetesimals are captured into resonant orbits as the
locations of the resonances sweep past them (e.g. Malhotra 1993;
Malhotra 1995; Hahn & Malhotra 2005).

In gravitational upheaval models, the ice giants exhibit chaotic
orbital evolution, meaning that their final orbits are not easily con-
trolled in N-body simulations. It is thus computationally challenging
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to perform pure upheaval simulations suitable for high fidelity
comparisons with observations of resonant TNOs. Our aim in this
paper is to sidestep this challenge by testing a generalized model of
the outcome of a gravitational upheaval scenario, including long-term
sculpting by dynamical instabilities. We assume a simplified scenario
where gravitational perturbations in the early Solar System scattered
or ‘kicked’ trans-Neptunian planetesimals onto various orbits beyond
Neptune’s current semimajor axis. The giant planets simultaneously
undergo strong mutual perturbations, including scattering events, that
cause them to spread out. Once the giant planets arrive at and settle
into their current, stable orbits, some of those scattered planetesimals
will remain in stable/meta-stable orbits. These remaining TNOs
are categorized into different dynamical sub-populations (see, e.g.
Gladman, Marsden & Vanlaerhoven 2008).

To test a simplified model of a giant planet dynamical upheaval,
here we focus on the dynamical evolution of the 3:2 MMR popula-
tion, which is located at a semimajor axis a = 39.4 au. Our reason
for focusing on this population stems from two key points:

I. there is a significant characterized observational sample of
the 3:2 MMR population from multiple well-characterized surveys
(Petit et al. 2011; Alexandersen et al. 2016; Bannister et al. 2016,
2018). The Outer Solar System Origins Survey ensemble (OSSOS+-)
is a compilation of these surveys that contains field pointings,
field depths, and tracking fractions at different magnitudes and
on-sky rates of motion that can be combined with the OSSOS
survey simulator to provide robust comparisons between models and
observations (see, e.g. Lawler et al. 2018a).

II. The 3:2 MMR population is also an ideal population to
study long-term stability due to the fact that it is a strong first-
order resonance. The resonance hosts enough stable phase space
that different emplacement mechanisms may have populated the
resonance in observationally distinguishable ways.

Our work uses a simplified model of the outcome of a planetary
upheaval scenario rather than direct simulations of the giant planets’
early evolution to avoid the numerical complications presented by
including the strong planet—planet interactions that occur during
the actual epoch of planetary migration/upheaval. Volk & Malhotra
2019 highlights the difficulty in producing reasonable statistics
for the final distributions of outwardly scattered planetesimals in
smooth migration simulations. Even without planet-planet close
encounters, the interactions between planets during migration in-
troduce significant randomness to the planet outcomes; coupled
with the very low efficiency at which test particles land on even
meta-stable orbits in regions of interest such as the present-day
3:2 resonance, it becomes computationally challenging to produce
statistically meaningful resonant populations. When even stronger
planet—planet interactions are introduced, the numerical challenges
in finding simulation initial conditions that result in well-behaved
final giant planet orbits and then integrating them with enough test
particles to result in a sufficiently large final 3:2 population are
dramatically magnified. We discuss this further in Section 2.2.

No two simulations of giant planet instabilities are exactly alike,
and the precise distribution of scattered planetesimals that remain at
the end of the scattering epoch may be affected by mean motion and
secular resonances. However, scattered planetesimals are typically
roughly evenly distributed along trajectories with pericentres in the
scattering region. We therefore consider a population of objects that
“fills phase space’ for different ranges of perihelion distances in
the 3:2 MMR with Neptune as an approximation of the outcome
of an epoch of scattering (see Section 2.3). We perform N-body
simulations on a 4.5 Gyr time-scale to allow the resonant phase
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space to be sculpted by long-term stability. We can then test this
modelled population against the observed 3:2 resonant population by
subjecting our model to the OSSOS+-ensemble biases and comparing
the simulated detections to the real ones across a variety of parameters
(e.g. eccentricity e, inclination 7, and resonant libration parameters).

Section 2 presents our model and simulation setup along with
the resulting distribution of resonant objects over time. Section 3
provides a description of how the simulation is passed into the
OSSOS survey simulator to produce simulated detected objects. We
discuss the validity and accuracy of our model in Section 4 and
summarize in Section 5.

2 SIMULATIONS

We conduct an N-Body simulation using the Python package RE-
BOUND (Rein & Liu 2012) with the WHFast integrator (Rein &
Tamayo 2015) to mimic the evolution of the 3:2 MMR population.
The Solar System’s four giant planets are initialized with their current
orbital elements and the TNOs are treated as massless test particles.
We verify that TNOs that undergo close encounters with the giant
planets are quickly lost from our region of interest, justifying our
choice of integrator.

To generate a sample for comparison with observational data,
we fill phase space in the vicinity of the 3:2 MMR with randomly
generated test particles with uniformly drawn pericentre distances,
g, and semimajor axes, a, and then integrate for 4.5 Gyr. The non-
resonant and thus less stable particles are ‘shaved’ away over time,
just leaving the stable 3:2 resonant particles. This is similar to, for
example, the work of Tiscareno & Malhotra (2009) who used long-
term integrations to show how the 3:2 resonant population evolves
over time for a different initial population.

Scattering outcomes show that over the limited semimajor axis
range we consider, particles are distributed roughly evenly in a and
q. The particles lay along lines of constant pericentre corresponding
to the region in which scattering occurs (similar assumptions were
made in, e.g. the Levison et al. 2008 model for the post-instability
populations), thus influencing our initial conditions. Dynamical
upheaval simulations typically end with at least a brief phase of low-
eccentricity, residual migration of Neptune (e.g. Levison et al. 2008),
which may generate additional features in the 3:2 MMR population.
We comment on this possibility in Sections 4.1.1 and 4.1.2.

2.1 Model overview

To construct the initial state of our simulations, we assume planetes-
imals are scattered outward at some early epoch and then Neptune
itself is scattered outward and then damped to its current orbit on a
time-scale fast enough such that it can be treated (from the perspective
of the previously scattered planetesimals in what is now the region of
the 3:2 resonance) as ‘appearing’ at its current orbit with a semimajor
axis of a = 30.1 au. Thus, at the end of the planetary upheaval, the
3:2 resonances is essentially laid on top of a previously scattered
population of planetesimals whose perihelia are at random phases
relative to Neptune; this has the effect of more or less randomly
filling the libration phase space of the resonance over a range of
eccentricities set by the earlier scattering processes. See Fig. 1 for a
schematic describing the assumed initial scattering.

Present-day Neptune can scatter objects with perihelia < 38 au
(see, e.g. discussion in Gladman & Volk 2021), and non-resonant
objects with q < 33 au are scattered on very short time-scales (see,
e.g. Tiscareno & Malhotra 2003). During a scattering scenario, Nep-
tune’s semimajor axis and eccentricity are unknown. For example,
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Figure 1. A schematic representation of a scattering origin for the 3:2 resonant population, providing the motivation for our simulation initial conditions. The
giant planets and the objects that make up today’s 3:2 resonant population were initially closer to the sun before the giant planets migrated to their current orbits.
The initial disc of TNOs was dynamically cold (dense green dots) but scattered stochastically onto dynamically excited orbits (blue dots) due to a gravitational
upheaval amongst the giant planets. Some of these TNOs randomly land in the area of phase space (red diamond) where the 3:2 resonance is currently located.
The radial extent of the initial cold disc of TNOs that experiences scattering is a free parameter in our model, manifesting as a maximum initial perihelion
distance of 36 au (discussed in Section 4 As the TNOs scatter, Neptune does a random walk to get to its current position, shown by the large circles from 15 au to
30 au. We assume Neptune’s displacement happens fast enough such that it’appears’ at its current position, thus allowing for the particles to be at any libration

amplitude at the start of the N-body simulation.

if Neptune had a semimajor axis of 28 au and an eccentricity of 0.2
at some point in its evolution, its apocenter was at 33.6au, and it
could scatter objects with pericentres a few au more distant on short
time-scales. To encompass this uncertainty within our model, we
consider initial populations for which particle pericentres extend to
maximum values between 33 and 38 au. Rather than running multiple
simulations, we analyse different subsets of our initial particle
distribution, with each subset representing a different outcome of
the epoch of planet scattering. Fig. 1 illustrates this choice through
a free parameter in perihelion distance (initial population limit),
which we vary until we match observations. By finding the initial
perihelion distance that provides a best fit with the data, we find a
potential limit to the disc region Neptune was able to scatter during
any high-eccentricity phases it might have experienced.

2.2 Approach validation

As a proof of concept that the simplified distribution illustrated
in Fig. 1 is reasonable, we performed a very limited-scope direct
simulation of a planetary upheaval scenario using the MERCURIUS
integrator within REBOUND. Similar in philosophy to the hybrid
orbital integrator used by Mercury (Chambers 1999), MERCURIUS
combines the WHFAST and I1AS15 (Rein & Spiegel 2015) integrators
in order to follow massive bodies through mutual close-encounters.
We used planetary initial conditions similar to those in Tsiganis
et al. (2005) and allowed the giant planets to perturb each other
and a disc of massless test particles. We tracked the system for
10 Myr until Neptune was scattered outward to nearly its present-day
semimajor axis and the planets’ orbits stabilized. We then examined
the distribution of outwardly scattered test particles in the vicinity
of the simulated Neptune’s 3:2 MMR, which is shown in Fig. 2. We
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Figure 2. 10 million yr snapshot of a limited-scope planetary upheaval
simulation as a proof of concept for filling eccentricity and semimajor axis
phase space in the 3:2 MMR. One might worry that large scattering due to the
giant planets would exclude particles from the 3:2 resonance (red diamond)
because resonant particles typically avoid encountering Neptune at pericentre,
but this does not happen since Neptune jumps around substantially. The 3:2
resonant region is filled with test particles at various pericentres. The initial
conditions of Jupiter, Saturn, Uranus, and Neptune (pink x) were motivated by
Tsiganis et al. (2005), where Jupiter and Saturn start near their 2:1 resonance
and then undergo divergent migration. The test particles (green points) are
initialized uniformly in a and e and i from 10 to 30 au, O to 0.01, and O to
1°, respectively. The final positions of the giant planets (pink circles) do not
match today’s positions, so we show the objects’ semimajor axis as a ratio with
Neptune’s final semimajor position in the simulation (ay = 25.6 au). The final
position of the test particles (blue points) are scattered by Neptune and Uranus,
and they occupy a large amount of pericentre phase space. Three curves of
constant pericentre are shown for reference, where Neptune’s final apocenter
is 1.3ay (33.4 au), consistent with scattering particles a few au beyond.
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Table 1. Simulated particle initial orbital parameters. Particles are uniformly
distributed in the given ranges, save for inclination which follows a modified
Gaussian distribution.

Semimajor axis, a (au) 38.81-40.0
Pericentre, q (au) 15.54-40.0
Longitude of ascending node, 2 0—2m
Argument of perihelion, w 0—2m

Mean anomaly, M 0—2m
Inclination, i (°) % o« sin(i)exp (%)
Inclination width, o; 14°

find that the test particles are distributed reasonably similarly to our
assumed distribution described earlier. We note that even this short,
simplified simulation (we have ignored, for example, the effects of
the massive planetesimal disc) required a significant amount of trial
and error and hand-tuning to produce. It would require significantly
more fine-tuning to produce a final Neptune orbit that acceptably
matches present-day Neptune, and simulating enough test particles to
fill the 3:2 resonant region is beyond our computational capabilities;
this highlights why we strongly prefer our simplified approach to
studying a reasonable post-upheaval distribution.

2.3 Initial conditions and resonances

Our model consists of the sun, the four giant planets (Jupiter,
Saturn, Uranus, and Neptune) and 10 270 test particles that represent
TNOs. The giant planets are given their initial spatial parameters
from NASA’s JPL Horizons Ephemeris site (Giorgini et al. 1996).!
The test particles’ longitudes of ascending node (£2), arguments of
pericentre (w), and mean anomalies (M) were randomly chosen from
their full possible range, while the ranges for semimajor axis (a),
pericentre distance (g), and inclination (i) were determined through
pilot simulations (See Table 1).

We chose the initial range of semimajor axes to be centered around
the exact resonant orbit with a wide enough range to yield a small
padding of non-resonant particles on either side (see Fig. 3). In
a series of pilot simulations with the initial eccentricity range set
from 0-1, we found no resonant particles with eccentricity above 0.6
on a 1 Gyr time-scale. We therefore restrict our eccentricity range
for our long simulations to e < 0.6 for computational efficiency.
Upon running simulations for 1 billion yr with both a uniform e and
uniform pericentre distance, ¢ = a(l — e), distribution, there was no
notable difference between their respective time-evolved distribution
in semimajor axis-eccentricity space which is most likely due to the
limited a range (plots not shown). Therefore, we use a uniform
q distribution to generate the initial eccentricity range, given our
assumption that Neptune (and possibly other giant planets) kicked the
planetesimals outward prior to the start of our simulations, suggesting
that the objects’ pericentres should be in the scattering region.

Our pilot simulations also demonstrated that the inclination dis-
tribution of TNOs in the 3:2 MMR evolve only modestly over the
lifetime of the simulation for inclinations ranging from i = 0° to 90°
(consistent with Tiscareno & Malhotra 2009’s finding that stability
in the 3:2 resonance is not strongly affected by orbital inclination).
We thus assume that the emplacement mechanism, or evolution prior
to emplacement, must set the current inclination distribution of the
3:2 resonance and that our initial conditions for i must be similar

IPlanet initial conditions were downloaded with Julian date 2458970.5 from
https://ssd.jpl.nasa.gov/horizons.cgi
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to the current distribution (see Li, Zhou & Sun 2014a for an in-
depth discussion). The initial inclination values for our test particles
are randomly sampled from the differential inclination distribution
modelled as sini times a Gaussian (e.g. Brown 2001). When our
modelled inclination distribution is compared to the observed one,
the best match was a Gaussian width o; = 14° which is the best-fit
value found for the 3:2 MMR in Volk et al. (2016).

To identify particles in the 3:2 MMR, we examine the time
evolution of the particles’ resonant argument, ¢, which is given by

¢ = 3)‘4110 - 2)‘N — Wtno» (1)

where A, and Ay are the mean longitudes of the TNO and Neptune,
and @, is the TNO’s longitude of pericentre. The ¢ value of a
particle in the 3:2 resonance librates around a central value of & with
a half-amplitude less than 7. For particles that librate within the 3:2
resonance, we also check if they are in the Kozai subresonance
(sometimes also referred to as the Kozai-Lidov resonance; see,
e.g. Morbidelli, Thomas & Moons 1995 for a discussion of this
subresonance within the 3:2 MMR). The Kozai resonance within
the 3:2 resonance refers to the libration of an object’s argument
of pericentre, w; this corresponds physically to the location of
pericentre librating around a fixed point relative to where the orbit
intersects the ecliptic plane. For the 3:2 resonant particles in Kozai,
o typically librates around a central value of either about % or
about 37”

2.4 Simulation setup

Our integration has a total of 10270 test particles integrated for
4.5 Gyr along with the four giant planets. In an effort to be more
time-efficient, we ran 158 separate simulations, each with the sun,
the giant planets, and 65 test particles. We confirmed that the giant
planets evolved identically in each simulation. Resonance libration in
the 3:2 MMR occurs on 10*~10°-yr time-scales, and Kozai libration
occurs on 10°-~107-yr time-scales. Running a 4.5 Gyr integration with
thousands of test particles with frequent enough outputs to identify
resonance libration generates too much data to be feasible.

To make our simulations as time and resource efficient as possible,
we split the integration into 3 parts: first is a 4.5 Gyr integration that
saves snapshots at times of interest, secondly, a 10° yr integration
used for determining which particles are in the 3:2 MMR at each
snapshot in time, and third, a 50 Myr integration used for determining
membership in the Kozai subresonance. We set REBOUND’s internal
timestep to 0.2 yr, which is small enough to ensure accuracy for our
simulation. We use the symplectic integrator whfast, which pro-
vides a necessary increase in accuracy by averaging the total energy
error at the end of the simulation and minimizes the propagation of
error (Rein & Tamayo 2015).

The first integration runs for 4.5 Gyr and takes ‘snapshots’ of
the state of the simulation at Oyr, 1 Myr, 10 Myr, 0.1 Gyr, 1 Gyr,
and 4.5 Gyr. Starting from each snapshot, we use a second high-
resolution 10°-yr integration to identify resonant particles as those
whose resonant argument, ¢, is confined to remain within the range
¢ =5-355° over the typical resonant time-scale. We can also measure
the‘tightness’ of the resonance by finding the object’s libration
amplitude (A4) which is defined as the half-width of the range
of ¢. Operationally, Ay is found by taking the difference between
the maximum and minimum values of ¢ over 103 yr and dividing
by 2. Since the libration time-scale for the Kozai subresonance is
significantly longer, we run a third set of integrations starting from
the 0.1 Gyr, 1 Gyr, and 4.5 Gyr snapshots that run for 50 Myr and
output at sufficient resolution to check for Kozai resonance. We
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Figure 3. Over the age of the Solar System, particles in Neptune’s exterior 3:2 resonance (blue dots) are more dynamically stable than nearby non-resonant
particles (green dots).We show eccentricity (e) versus semimajor axis (a) for these particles at six snapshots during our simulation; the particles are initialized
uniformly in @ and pericentre distance (g) near the resonance (top left panel at # = 0; see Section 2.3) and evolved under the influence of the sun and four giant
planets. At each of the six displayed snapshots in time, an object is considered to be in resonance if its resonant argument (¢) librates over a 10°-yr integration
started at the snapshot time. Since scattering models typically fill phase space along lines of constant pericentre, these lines (dashed) are provided for reference.
At 4.5 Gyr, remaining resonant objects have ¢ < 0.4 and ¢ = 24 au and remaining non-resonant objects have ¢ < 0.15 and g 2 34 au.

consider a 3:2 resonant particle to also be in the Kozai resonance if
the object’s w librates within either w =5°-175° or w =185°-355°.
Kozai objects can librate outside of these ranges but the above cut
provide a simplified, uniform check that identifies most of the Kozai
particles (see Section 4.1.2 for more details).

2.5 Simulation results

The simulation effectively ‘sculpts’ the 3:2 resonant population over
a4.5 Gyr period. Fig. 3 shows the eccentricity versus semimajor axis
evolution of our simulated particles; the less stable particles scatter
away over time, while the most stable favour lower eccentricities
and are tightly packed at the center of the resonance. Most of the
non-resonant particles are lost on relatively short time-scales, and on
longer time-scales resonant particles with perihelia near Uranus, (g
~19 au) are lost as well because they are not phase protected from
that planet. At 4.5 Gyr, a small, non-resonant classical population
remains on either side of the 3:2 MMR; this population is further
discussed in Section 4.1.3.

The distribution of particles in semimajor axis/inclination space
is displayed in Fig. 4. As expected, particles at the edge of the
resonance are shaved over time, but the distribution of inclinations
remains similar. As in our pilot simulations, we find no substantial
correlation between the inclination and the stability of the particles in
the resonance. A more in-depth discussion on the Plutino inclination
distribution can be found in Li et al. (2014a), Li, Zhou & Sun (2014b),
and Gomes (2003). The diagonal gaps apparent in the non-resonant
particles on either side of the 3:2 MMR in Fig. 4 likely result from a

secular resonance that destabilizes particles at particular inclinations,
as detailed in Knezevic et al. 1991.

Within the resonant population we are also interested in analysing
how the Kozai subresonance evolves over time. At 0.1, 1, and
4.5 Gyr, the numbers of Kozai/resonant particles were 73/1698,
76/870, 64/556, respectively. While the number of resonant particles
decreases significantly over time, the number of Kozai particles
remains more constant. The stable Kozai particles have eccentricities
e ~ (.25 and their inclinations are distributed up to i ~ 45°. Fig. 5
shows the libration amplitude versus eccentricity for the Kozai and
non-Kozai particles.

In general, resonant particles with higher libration amplitudes are
preferentially lost over time. These objects are less stable because
their resonant argument, ¢, deviates more from the central value r,
allowing them to approach more closely to Neptune when they come
to perihelion. As illustrated in Fig. 5, Kozai particles tend to have
moderate-to-low-libration amplitudes in the 3:2 MMR. The lower
3:2 resonant libration amplitudes of Kozai objects likely contribute
to their stability in addition to the libration of w keeping the Kozai
particles’ perihelia locations away from the plane of the planets.

3 OSSOS+AND SURVEY SIMULATOR

To accurately compare our simulated 3:2 resonant population to
the current observed population, we must account for observational
biases. Such biases are discussed extensively elsewhere (see, e.g.
Jones et al. 2010; Lawler et al. 2018a), but we review them briefly
here. TNOs are detected by reflected sunlight, so detections are
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Figure 4. The inclination distribution of resonant particles does not evolve
substantially over time. We display inclinations for resonant (blue dots) and
non-resonant (green dots) particles at four times for the same simulation
shown in Fig. 3. Initial inclinations are drawn from a modified Gaussian
distribution (see Table 1). The simulation produces gaps in the non-resonant
population on either side of the 3:2 resonance which we believe to be a
secular resonance (For more details see Knezevic et al. 1991). In preliminary
simulations (not shown), we found that resonant objects with inclinations
spanning from i =0°-90° remain stable over 4.5 Gyr, indicating that stability
sculpting does not appreciably alter the inclination distribution in the
resonance. We thus chose an initial inclination distribution width of o; =
14° which is consistent with the observed population (Volk et al. 2016).

strongly biased against smaller objects and objects farther from the
sun; TNOs at perihelion are much more likely to be detected than
those at aphelion, and large TNOs are more likely to be detected than
small ones. For objects in MMRs, the resonant dynamics controls
where objects come to perihelion relative to Neptune’s position:
KBOs in the 3:2 resonance come to perihelion preferentially +90°
from Neptune. This means that where observations occurred relative
to Neptune will strongly influence the detectability of resonant
objects (see Gladman et al. 2012 for a thorough discussion of
this). Thus, accounting for observational biases in any given survey
requires knowledge of the pointing history and well-determined
limiting magnitudes for those pointings.

We compare our simulated 3:2 resonant population to the well-
characterized sample of observed 3:2 resonant TNOs from several
well-characterized surveys. We include 3:2 resonant objects from
the A, E, L, and H observational blocks of the Outer Solar System
Origins Survey (OSSOS) (Bannister et al. 2016, 2018), as well as
the 3:2 resonant objects from the Canada France Ecliptic Plane
Survey (CFEPS) described by Petit et al. (2011), Gladman et al.
(2012);together these surveys comprise the OSSOS+-3:2 resonance
sample. The use of these detections to model TNO populations are
described in, e.g. Alexandersen et al. (2016) and Mufioz-Gutiérrez
et al. 2019 among other works. In this section we describe how
we use the OSSOS+survey simulator (described in Section 3.1) to
subject our simulated 3:2 resonant population to the same biases
as the OSSOS+-observed 3:2 resonant population. In Section 3.2
we describe how we select and transform the orbital elements from
our simulations to match them to a specific epoch near those of
the OSSOS+observations. In Section 3.3, we describe how we then

MNRAS 524, 3039-3051 (2023)

assign an H, magnitude to each set of orbital parameters (as all objects
in our simulation are test particles, this part of the distribution is set
based on prior studies).

3.1 Survey simulator

The OSSOS survey simulator software? is described in detail by Petit
etal. (2011) and Lawler et al. (2018a). It is designed to take as input
a TNO population model and output a list of simulated detections
by subjecting that model to the observational biases of OSSOS and
associated surveys (the OSSOS+-sample). These biases include the
surveys’ on-sky pointing histories, detection efficiency as a function
of brightness and rate of motion, and the tracking/recovery efficiency
for detected objects.

We feed the survey simulator a list of model TNOs, including their
orbital elements at a specific epoch and their absolute magnitudes
in r-band (H,). These parameters fully describe the position and
velocity of the model TNOs at a specific epoch from which the survey
simulator can propagate them to all of the included observational
epochs and, with H,, determine their apparent magnitudes at these
times. This full model of the 3:2 resonant population is run through
the survey simulator to produce a large set of synthetic detections,
that is, what OSSOS+would have observed if our model was
representative of the true current 3:2 resonant population.

3.2 Rotation

The final locations of the giant planets in the simulations will not
exactly match the locations of the planets at the epochs of the
observations, so we must account for this when comparing to the
observations.

This mismatch is not a problem during the orbital integrations
because long-term dynamical stability depends on the average
behaviour of the planets over time rather than the specifics of the
current epoch. However, we must correct for this difference when
simulating detections because resonant objects are most detectable
on-sky at specific longitudes relative to Neptune; it is thus necessary
to rotate our simulation results to place the simulated Neptune
near Neptune’s current position to ensure that simulated resonant
populations are oriented appropriately.

To do this, we calculate the polar angle of Neptune’s final location
projected into the ecliptic plane, & = tan ~'(y/x), where x and y are
Cartesian coordinates in the ecliptic plane and % is the reference
direction. We then rotate every test particle’s longitude of ascending
node, €2, at the final timestep by the difference in Neptune’s 6 at the
end of the integration and its 6 from JPL Horizons at a reference
epoch near the present.’ This results in solid-body rotation of the
entire system about the vertical (z) axis located at the barycentre of
the Solar System.

3.3 Cloning, colour distribution, and H-magnitudes

The number of 3:2 resonant particles in our simulation at any single
snapshot in time is far fewer than the number needed for the survey
simulator to produce a large enough sample of synthetic detections
to robustly compare with OSSOS+-data. After 4.5 Gyr, 556 particles
remain in the 3:2 resonance in our simulation. While this number is
sufficient to map the phase space of the resonance well if all particles

Zhttps://github.com/OSSOS/SurveySimulator
3We chose JD 2458970.5
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Figure 5. From 0.1 to 4.5 Gyr, the non-Kozai 3:2 resonant particles (blue dots) at higher libration amplitudes are not dynamically stable, whereas the Kozai 3:2
resonant particles (red crosses) remain stable at lower amplitudes with eccentricities e ~ 0.25. We see the largest decrease of high-libration amplitude particles
from 0.1 to 1 Gyr. At 0.1 Gyr (left panel), 1 Gyr (middle panel), and 4.5 Gyr (right panel), 4.3 per cent, 8.7 per cent, and 11.5 per cent of the 3:2 resonant particles
are also in the Kozai subresonance. However, due to the relatively small sample size, the difference in the Kozai fraction from 1 Gyr to 4.5 Gyr is not statistically

significant.

are considered, at any given snapshot in time, many particles will be
unobservable. A typical 3:2 resonant object is small and only visible
near the pericentre of its orbit — near apocenter, it is too distant from
the sun and thus too faint to be seen. We thus ‘clone’ each test particle
to sample a large range of phases along its orbit.

We take the orbital parameters of each particle at each timestep in
the short 10°-yr integration (started at either 1 or 4.5 Gyr, depending
on the comparison being made) and treat it as a new particle,
essentially ‘cloning’ the actual test particle into 1000 pseudo-
particles. Having 1000 clones of each resonant particle ensures
that we have enough simulated detections from the OSSOS Survey
Simulator to have reliable statistics when we compare our models to
the OSSOS+-observations.

To forward-bias our models with the OSSOS Survey Simulator,
several things are required: positional information for each object in
the model, an H, magnitude for each object in the model, a colour
distribution, and an epoch. Our REBOUND simulations give us the
positional information we need in the form of the six orbital elements:
a, e, i, 2, w,and M. We add an H, magnitude to each object, a colour
distribution (to account for the fact that some of the OSSOS+3:2
objects were discovered in different filters), and an epoch to the
output of the simulation before running the particles through the
OSSOS Survey Simulator.

For the H, magnitude, we use a broken power-law size distribution
derived from a modified version of Equation 4 from Volk et al.
(2016). A broken power law in size corresponds to two exponentials
in absolute magnitude H, affixed at a specified break magnitude.
Our choice of distribution is displayed in Fig. 6. The distribution
is normalized by specifying the cumulative fraction of objects over
the full modelled H, range that are below the break magnitude. We
choose a bright-end slope of 0.9 based on previous modelling of
the OSSOS 3:2 resonant population (Volk et al. 2016). We tested
a range of values drawn from literature constraints (e.g. Shankman
etal. 2013; Fraser et al. 2014; Alexandersen et al. 2016; Lawler et al.
2018b) for the break magnitude and faint-end slope. We choose a
break magnitude of H, = 8.5, a break fraction of 0.2, and a faint
end slope of 0.4, which provide a good match for the observed
eccentricity distribution (see Fig. 7 in Section 4.) Each object in
the simulation output is attributed a random H, sampled from this
distribution.

For the colour distribution, we use the same approach as in the
CFEPS L7 model (Petit et al. 2011), with a few modifications. The

1.0~

0.4

0.2 «— Hp, =85

cumulative distribution

0.0~

\ \ \ \ \ \
5 6 7 8 9 10

absolute magnitude (H,)

Figure 6. The absolute magnitude (H,) distribution we adopt for our
simulated 3:2 MMR population. When passed to the survey simulator, each
resonant particle in our model is assigned a value of H, randomly drawn from
this distribution. H,- is modelled as a broken power law with a break magnitude
(Hp) of H, = 8.5. For H, < Hj, the distribution has an exponential slope of
0.9, referred to as the bright end slope («}). For H, > H), the distribution
has an exponential slope of 0.4, referred to as the faint end slope (o). In our
distribution, the transition from ay to ay occurs at a break fraction of 0.2,
meaning roughly 20 per cent of the objects will have H, < Hp, and roughly
80 per cent of the objects will have H, > H,.

colour distribution used by Petit et al. (2011) works by assigning the
H, magnitude as the magnitude in a specified colour band to be used
as a reference. For their distribution, Petit et al. (2011) chose the
g-band to be the colour used when specifying the H, magnitude. The
magnitudes in other bands were calculated from shifting up or down
from the g-band. We use this same distribution for our models, but we
use the r-band as the reference band since the OSSOS observations
were done in the r-band and dominate the sample we are comparing
to (Bannister et al. 2018). We define the g-r colour to be 0.65 based on
recent observations (Schwamb et al. 2019). We do not change any of
the other conversions from Petit et al. (2011), as the g-band and r-band
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Figure 7. When comparing our synthetic detections from the OSSOS Survey Simulator at both 1 Gyr (grey lines) and 4.5 Gyr (blue lines) against the
OSSOS+-observed sample (red dots), we see a strong agreement between model and observations with the exception of our libration amplitude (A) distribution
(bottom right panel). At 1 Gyr (grey, none of our six compared parameters are rejectable through the two-sample KS test or AD test: semimajor axis (top left),
eccentricity (top middle), inclination (top right), absolute magnitude (bottom left), ¢ (bottom middle), and libration amplitude (bottom right); see Table 2.
However, at 4.5 Gyr we only see acceptable fits for semimajor axis, eccentricity, inclination, absolute magnitude, and ¢. Although the CDFs for ¢ appear to
deviate significantly compared to the observed ¢ values at both 1 Gyr and 4.5 Gyr, we do not reject it since the Kuiper KS test accounts for the cyclical angular
nature of ¢ and produces acceptable values at both time steps; see Table 3. When looking at libration amplitude, we see that despite the 1 Gyr model deviating
from observations at the tails of the distributions, there is a close match in the middle of the distribution which allows it to produce acceptable statistics. However
the libration amplitude distribution at 4.5 Gyr only matches well at low-libration amplitudes (< 50) which results in rejectable statistics.

were the only two filters used for discovery in the OSSOS+ensemble
(Petit et al. 2011; Alexandersen et al. 2016; Bannister et al. 2018).

4 STATISTICAL COMPARISONS

To test the rejectability of our models, we compare our forward biased
models to the OSSOS+detections by performing the two sample
Kolmogorov—Smirnov (KS) test and Anderson—Darling (AD) on the
distributions of a, e, i, H,, ¢, and A,. We also utilize the Kuiper
variant of the KS test specifically when looking at ¢, it being a
better test to use when comparing distributions of cyclical angular
quantities. The null hypothesis, Hy, of each test is the same: the two
distributions being compared could have been drawn from the same
parent distribution. Though the KS, AD, and Kuiper-KS tests are
simple 1D statistics that can only test for rejectability, not goodness
of fit, they are frequently used for comparisons of populations in the
trans-Neptunian region because the complicated phase space of orbits
renders more detailed statistical analysis computationally prohibitive
unless one is restricted to a small region of phase space (see, e.g. Volk
et al. 2016, Appendix A). While we compare the distributions of the
six mentioned values, we are not aiming to explain the origin of the
inclination or magnitude distributions. We assume the inclination
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distribution is formed before Neptune reaches its final semimajor
axis of ¢ = 30.1 au and the magnitude distribution is set by formation
processes not discussed in this paper.

We begin by calculating a test statistic unique to the each of
the three tests. The KS test statistic, Dgg, is defined to be the
maximum vertical distance between the cumulative distribution
functions (CDFs) of the two distributions being compared; for the
Kuiper variant*, Dxiper 1s defined to be the sum of the maximum
and minimum vertical distances between the CDFs. The AD test
statistic, D,p is similar to Dgg, but gives more weight to differences
towards the tails of the distribution, while the KS test is dominated
by differences in the middle of the distribution (because the CDFs
for each distribution are forced to be 0 and 1 at either end of the
distribution). For both Dgg and D,p, we use the functions built into
the SCIPY's Python package to calculate the test statistics.

After calculating the test statistic, we use a Monte Carlo sampling
method to calculate a p-value for the result; our p-value is defined
as the fraction of N synthetic test statistics generated by comparing
the model to itself that were greater than the calculated test statistic

4Based on NIST handbook: https://www.itl.nist.gov/div898/handbook/eda/s
ection3/eda35e.htm
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Table 2. Statistics results for OSSOS+detections versus simulated detec-
tions at 1 Gyr. Results at 1 Gyr are non-rejectable because all p-values lie
above 0.05, indicating that we are within 95 per cent confidence for all p-
values.

Dgs PKs Pap DKuiper PKuiper
a 0.107 0.252 1.584 0.07 - -
e 0.087 0463 —0.258 0473 - -
i 0.099 0.352 —-0.079 0.389 - -
H, 0.081 0.577 —0.174  0.428 - -
¢ 0.118 0.172 1.29 0.09 0.136 0.415
Ay 0.084 0.519 0.299 0.25 - -

when comparing the model to the observations. The rejectability of
Hpis 1 — p. We place a 95 per cent confidence limit on our p-values,
meaning we reject Hy if p < 0.05.

There are 85 observed 3:2 resonant objects in the OSSOS+-survey.
As such, we randomly select 85 objects from our forward biased 3:2
resonant model and calculate the test statistic between this random
sample and the full forward biased 3:2 resonant model. This process
is repeated N times to yield N test statistics. To obtain consistent
p-values using this method, we find that at least 100000 random
draws are needed.

4.1 Our model versus OSSOS+

Recalling that the null hypothesis we are testing for is that the
OSSOS+sample and our forward-biased 3:2 MMR model could
have come from the same distribution, we perform the analysis
described earlier for the parameters a, e, i, H,, ¢, and Ay, at both
1 Gyr and 4.5 Gyr (see Fig. 7). When we feed our full model of the
3:2 population through the survey simulator, we find that we cannot
match the OSSOS eccentricity distribution because too many low-
eccentricity objects are detected. We therefore consider the likely
possibility that objects were not scattered from pericentre distances
extending all the way out to the current location of the resonance at
40 au.

To investigate the potential that the 3:2 resonance was populated
with particles scattered outward from a more limited rage of initial
heliocentric distances, we apply a cut in our initial test particle
distribution to remove particles with initial pericentre distances larger
than values ranging from 33-38 au in 1au increments. These six
resulting models (which are subsets of our total simulation data) are
fed through the survey simulator, and we find good agreement with
the observed eccentricity distribution for pericentre cuts between 35
and 37 au, while cuts at ¢ = 33, 38, and 39 au are rejected by the
KS-test and cuts at ¢ = 33, 34, 38, and 39 au are rejected by the
AD test. The best fit arises when objects having initial pericentres
greater than 36 au are removed. All further results presented here
include a 36 au pericentre cut, corresponding to an initial scattering
region ending at 36 au.

With this pericentre cut, at 1 Gyr, we do not reject the null
hypothesis for any parameters, whereas at 4.5 Gyr, Ay and ¢ produce
rejectable p-values below 0.05. The angle ¢ is cyclical however, so
we perform a Kuiper KS test which is designed for cyclic angles.
The p-value for this test is above 0.05, so we conclude ¢ falls in line
with the null hypothesis (see Tables 2 and 3).

4.1.1 Libration Amplitude, A,

An alternate view of the A, distributions is shown in Fig. 8 to show
the discrepancy between the synthetically detected objects from the
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Table 3. Statistics results for OSSOS+detections versus simulated detec-
tions at 4.5 Gyr. Results at 4.5 Gyr are non-rejectable for all quantities except
Ay as the p-values for both tests performed on it fall below our limit of 0.05.
Although the p-values for the KS test and AD test fall below 0.05 for ¢, we
do not reject it because the p-value for the Kuiper variant of the KS test lies
above our limit of 0.05.

Dgs PKs Dyp Pap DKm'per PKuiper
a 0.108 0.241 1.525 0.073 - -
e 0.09 0429 —-0.051 0.372 - -
i 0.114 0.197 0.222 0.276 - -
H, 0.087 0479 —-0.219 0.448 - -
¢ 0.159 0.023 3.855 0.009 0.176 0.08
Ay 0.143 0.046 3.831 0.009 - -
0.016 1 Gyr
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Figure 8. An alternative view of the bottom right panel from Fig. 7 which
further highlights the differences in libration amplitude (A ) distributions be-
tween the simulated detections from our model and the OSSOS observations.
The 1 Gyr (grey), 4.5 Gyr (blue), and OSSOS (red) samples contain 10632,
7927, and 85 objects, respectively. We see that the 4.5 Gyr model distribution
is weighted slightly more toward low-libration amplitudes compared to the
1 Gyr model distribution (as expected due to loss of high-amplitude 3:2
objects over time) and compared to the OSSOS sample. Note that we offset
each of the histogram curves by 1° for clarity in distinguishing them.

simulation and the OSSOS+-observations in more detail. Alternative
pericentre cuts did not improve agreement.

The discrepancy at the current Solar System age of 4.5 Gyr is sig-
nificant but modest. Within the context of the model considered here,
two possibilities for resolving it immediately present themselves.
First, transient sticking (e.g. Lykawka & Mukai 2007; Yu, Murray-
Clay & Volk 2018) adds a pseudo-stable population of particles to
the resonance at preferentially high-libration amplitudes. OSSOS
objects are identified with million-year integrations and their longer-
term resonance stability time is not currently available. The objects
in our sample are stable over billion year time-scales. In other words,
the observations should contain high-libration-amplitude transient
objects which our model does not. Whether the transient sticking
population adds sufficiently many high-libration-amplitude objects
to resolve the discrepancy merits future work. We consider this
possibility promising.

Alternatively, planetary upheaval models require that Neptune’s
eccentricity ultimately be damped to its current low value. This
damping is thought to result from dynamical friction with plan-
etesimals, a process which also results in smooth migration. While
dynamical friction in a symmetric sea of particles normally results
in the planet’s inward migration from angular momentum transfer,
in the case of the outer Solar System, the ice giants migrate outward.
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This is due to an asymmetry between the number of planetesimals
from which Neptune takes angular momentum and the number that
give angular momentum to Neptune. This global asymmetry results
from the presence of the other giant planets (see Fernandez & Ip
1984 and Tsiganis et al. 2005 for more details.)

Since smooth migration pushes objects more deeply into reso-
nance, such a late-stage epoch of migration has the potential to
modify the distribution found here, either in the direction of better
or worse agreement. We investigate the impact of post-upheaval
smooth migration on libration amplitudes with 4 independent smooth
migration simulations including the giant planets and 8000 test
particles. In the simulations, Jupiter, Saturn, and Uranus begin at
their current locations and Neptune at ~ 29, 28.5, 28, and 27 au,
respectively. Neptune migrates for 10 million yr up to its barycentre
value of ~ 30.06 au for all simulations, and we continue to integrate
up to 1 billion yr to compare with the 1 billion yr simulation in this
paper. The test particles are initialized with similar distributions as
those in our main simulation, but with a broader range of semimajor
axes. For each value of Neptune’s initial semimajor axis, we fill
the phase space with test particles from the interior edge of the 3:2
resonance before migration to the exterior edge after migration.

We find that the libration amplitude distribution for 3:2 resonant
objects does not differ from our non-migrating simulation when the
migration distance is S2 au and the eccentricity distribution does not
differ for migration distances <1 au, as illustrated in Fig. 9. Thus
a brief epoch of smooth migration neither improves nor worsens
the match between our model and the OSSOS libration amplitude
distribution. We note that exploration of larger migration distances
would necessitate adjusting our pericentre cut, running separate
4.5 Gyr simulations for each migration scenario, and running these
through the OSSOS survey simulator, which we reserve for future
work.

4.1.2 Kozai population

We compare the expected Kozai subpopulation of the 3:2 resonance
from our simulations to the observations to further examine the
accuracy of our model. We use a Monte Carlo sampling method
for this comparison. Taking the 3:2 resonant particles with initial
pericentres below 36 au from our model that are detected by the
survey simulator, we randomly draw samples of 85 3:2 objects and
then count how many of those 85 simulated detections are of Kozai
particles. We repeat this process 103 times for both the 1 and 4.5 Gyr
simulation snapshots to produce the distribution of expected observed
Kozai particles shown in Fig. 10.

Interestingly, the Kozai fraction in our raw simulation (i.e. without
going through the survey simulator) increased from 11.1 per cent of
3:2 resonant objects at 1 Gyr to 14 percent at 4.5 Gyr, but Fig. 10
shows that the expected number of detected Kozai objects is nearly
identical at both simulation times. While this apparent contradiction
could possibly be related to the very complex observational biases in
the Kozai population (see, e.g. Lawler & Gladman 2013), it is also
possible thatitis due to the relatively small number statistics of Kozai
objects in our simulations; using simple Poisson error estimates, the
Kozai fractions in our simulations at 1 and 4.5 Gyr are marginally
consistent with each other (though we note that because Kozai 3:2
resonant particles are more stable than non-Kozai, an increase in
Kozai fraction over time is expected!).

As mentioned earlier in Section 1, we identify the Kozai objects
in the simulation by checking if their w librates between 5° and 175°
or 185° and 355°. In the OSSOS data set considered here, there are
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Figure 9. The 3:2 resonant population’s libration amplitude distribution (top
panel) after a 10 Myr migration of 2 au or less (dashed blue and green lines)
does not differ from the ‘post-instability’ initial resonant population (grey
dashed line). At 1 billion yr, the libration amplitude distribution between the
three models also does not differ significantly (solid lines). The eccentricity
distribution does not differ for migration distances of 1 au or less at 1 billion
yr (bottom panel). Intrinsic distributions resulting from the simulations are
shown (unlike in Fig. 7, these populations were not passed through the OSSOS
survey simulator). We find that a brief epoch of smooth migration does not
materially change our results.

18 3:2 objects that are in the Kozai subresonance. However, we find
that if we restrict the libration of the observed objects to the same
ranges, our check for Kozai fails to catch 3 real observed objects
with libration centers other than 90° and 270° (these are classified as
Kozai largely based on visual examination of their orbital histories).
We thus compare our simulation results to the 15 real observed Kozai
3:2 objects that librate in the same way as our simulated ones. Fig.
10 shows that at both simulation snapshots, the number of simulated
observed Kozai 3:2 objects is significantly smaller than the number
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Figure 10. Our model produces significantly fewer detected Kozai librators
in the 3:2 MMR than observed in the OSSOS+sample. We use a Monte Carlo
sampling method (see Section 4.1.2) to generate the expected distribution of
how many 3:2 TNOs in the Kozai resonance would be included in a total
sample of 85 detected 3:2 objects. There are 15 observed Kozai librators (see
Section 4.1.2) in the OSSOS+sample (using the same w libration cut as in
our simulated sample) which is larger than the expected number of synthetic
detections at both 4.5 Gyr (blue) and 1 Gyr (grey). The histogram for 4.5 Gyr
is shifted by 0.2 to the left for clarity.

observed by OSSOS. Out of 100000 total draws, 95.1 percent of
draws contained <15 Kozai objects.

To check whether the rejectability of the model’s predicted Kozai
fraction and the rejectability of the predicted Ay distribution are
potentially related, we examine the libration amplitude distribution
of the Kozai and non-Kozai 3:2 particles separately; this is shown in
Fig. 11. Both the real and synthetic detected Kozai 3:2 populations
are weighted toward smaller libration amplitudes (consistent with
what we saw in our intrinsic model population; see Fig. 5). Because
the discrepancy in Fig. 11 arises from the non-Kozai objects, we
confirm two unrelated discrepancies: an under population of Kozai
objects and underpopulation of mid-high-libration amplitudes.

Upon running smooth migration simulations, introduced in Sec-
tion 4.1.1, we found that all simulations had twice as many or
more objects in Kozai resonance than before migration. When
comparing the raw smooth migration simulation and main simulation
discussed in this paper (i.e. without running them through the
OSSOS survey simulator), we found that at 1 billion yr, the 2 au
smooth migration model had 13 per cent objects in Kozai whereas
the intrinsic simulation had 11 percent in Kozai at 1 billion yr.
While 13 per cent is higher than 11 per cent, we do not believe it’s
significant enough to confidently say smooth migration will increase
Kozai objects significantly. We will explore this more rigorously in
future work.

4.1.3 Classical population

Figs 3 and 4 show that some of the non-resonant test particles in
the vicinity of the 3:2 survive our 4.5 Gyr simulations. This provides
an additional observational test for the perihelion distance cut used
to best reproduce the observed 3:2 population. Using this same
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Figure 11. The detected Kozai and non-Kozai populations have signifi-
cantly different libration amplitude distributions in both the simulated and
OSSOS+-detections. In particular, the simulated detected Kozai objects in our
model at 4.5 Gyr (blue line) and the observed OSSOS+Kozai objects (red
dots) tend towards lower libration amplitudes and follow a similar distribution.
The simulated detected non-Kozai objects in our model (green line) and the
observed OSSOS non-Kozai objects (black dots) both tend towards higher
libration amplitudes, but they do not match each other as well as their Kozai
counterparts.

perihelion distance cut at 36 au, we can examine how many classical
(non-resonant) objects OSSOS+-should have observed in the region
immediately surrounding the 3:2 resonance if the initial phase space
was filled as in our model.

We compare the expected number of observed stable non-resonant
TNOs from the simulation (see Fig. 3) at 1 Gyr and 4.5 Gyr with the
observed number in the OSSOS-+sample by considering the sample
of all test particles (resonant and non-resonant) in the restricted a
range of 38.81-40 au with initial ¢ > 36 au (the ¢ cut determined
in Section 3.3). We pass all of these test particles, resonant and
non-resonant, through the survey simulator to produce a large set of
synthetic detections, cloning them as described in Section 3.3. We
then randomly draw from this set of synthetic detections until we have
a total of 85 synthetic detected 3:2 objects (the number matching our
real observational sample). The number of non-resonant particles
drawn while building up the resonant sample is the number of
expected classical detections from a = 38.81 — 40 au for OSSOS+-.
Fig. 12 shows one such result of this random sampling procedure.
We repeat this process 10° times to build a distribution of the number
of expected detected classical objects for the 1 Gyr and 4.5 Gyr
simulation states, and the resulting distribution is shown in Fig. 13.
It is clear that the expected number of detected stable classicals near
the 3:2 resonance from the 4.5 Gyr simulation snapshot is consistent
with the real observed number of objects in the same range. This
serves as an independent verification that the ¢ = 36 au cut in our
simulated phase space is consistent with the observations.

5 SUMMARY

We investigate whether the orbital distribution of objects in Neptune’s
3:2 MMR is consistent with a history in which orbital phase space was
uniformly filled and subsequently ‘sculpted’ by dynamical stability.
We find that this simplified model, motivated by dynamical upheaval
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Figure 12. When we pass the raw simulation data (left panel) through the survey simulator and sample the resulting simulated detections (middle panel) they
reproduce the distribution of real OSSOS+detections (right panel) reasonably well. The middle panel shows a single iteration of the Monte Carlo sampling
method used to compare the number of simulated stable classicals (green triangles) for every 85 3:2 TNO’s that would be synthetically detected at 4.5 Gyr in
the region a = 38.81 — 40 au with a pericentre cut at 36 au. The expected distribution of detected stable classicals from our model in a — e space is similar to
those detected by OSSOS+in the same a range. The similarity between the observed classicals and synthetically detected classicals illustrates the validity of the

g = 36au cut.
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Figure 13. The population of stable non-resonant objects from our sim-
ulation that are synthetically detected by the survey simulator at 4.5 Gyr
is consistent with the observed number of classicals in the region a =
38.81 — 40 au. We apply the same pericentre cut at 36 au as in Fig. 7 to the
simulated data and use a Monte Carlo sampling method (see Section 4.1.3) to
find how many classicals would be detected in our simulation for every
85 3:2 objects drawn. There are 4 observed OSSOS-classicals in the
aforementioned range which is consistent with the 4.5 Gyr curve (blue). The
same sampling method was used at the 1 Gyr snapshot (grey) and is shown for
reference. The histogram for 4.5 Gyr is shifted by 0.2 to the right for clarity.

histories that scattered planetesimal debris outward early in the life of
the Solar System, is consistent with ensemble data from the OSSOS
within the uncertainties, with a few notable exceptions.

Stability sculpting does not substantially alter the inclination dis-
tribution of resonant particles, so this distribution must be determined
by a different mechanism. More subtly, it can be seen in Fig. 7 that
the simulation produces a smaller fraction of objects with mid-high-
libration amplitudes compared to those observed. We suggest that this
discrepancy could be due to not accounting for transient populations

MNRAS 524, 3039-3051 (2023)

of objects, which are known to consist of objects that are less deep
in the resonance, with higher libration amplitudes (e.g. Lykawka &
Mukai 2007; Yu et al. 2018). Finally, the fraction of resonant objects
in the Kozai subresonance is significantly underpredicted in our
simulation. We find that smooth migration over 1 au at the end of the
epoch of planetary upheaval does not alter our model’s agreement
with the data, but also is not sufficient to push objects into the Kozai
portion of the resonance. Future work is needed to determine whether
a longer-distance smooth migration may be accommodated.

We comment that Pike & Lawler (2017) analyse the distribution
of test particles throughout the trans-Neptunian region from the
Brasser & Morbidelli (2013) simulation of a specific instability
model (based on Levison et al. 2008) that included Neptune’s residual
migration from an eccentric orbit at ¢ = 27.5 au to its current low-
eccentricity orbit at 30.1 au. Pike & Lawler (2017) find a Kozai
fraction in their 3:2 population of 21 per cent, which is double the
Kozai fraction in our simulations. The libration amplitudes they
find for the 3:2 resonant population are also shifted toward slightly
higher libration amplitudes compared to our simulations, possibly
a result of the high-eccentricity phase of Neptune’s orbit, offering
an alternative potential origin for the small observed excess of high-
libration amplitude objects compared with our model.

Overall, given the simplicity of our model, we consider the match
between the observed population of 3:2 resonant TNOs and our
model to be very good, suggesting that stability sculpting likely
played a large roll in determining the current distribution of 3:2
resonant objects, particularly in semimajor axis and eccentricity. We
find strong evidence that, if a ‘phase-space filling’ scattering history
provided the initial conditions for this sculpting, the scattering region
extended to approximately 36 au.

ACKNOWLEDGEMENTS

RMC, SB, NZ, NH, AHR, JB, JG, and ZS acknowledge support
from NSF (grant CAREER AST-1411536/1663706) and NASA
(grant number NNX15AHS9G/NNX17AK64G). KV acknowledges
support from NSF (grant number AST-1824869) and NASA (grants
NNX15AH59G and 80NSSC19K0785). AHR thanks the LSSTC
Data Science Fellowship Program, which is funded by LSSTC, NSF
Cybertraining grant number 1829740, the Brinson Foundation, and

€20z Jaquiaideg g uo Jesn euozuy 10 Alsienun Aq 6/£2222/6€0E/Z/72S/2101e/seluw/wod dno olwapeoe//:sdiy Wwolj papeojumoc]



the Moore Foundation; her participation in the program has benefited
this work. We acknowledge use of the lux supercomputer at UC Santa
Cruz, funded by NSF MRI grant number AST 1828315.

DATA AVAILABILITY

The data underlying this article are available in github, at https:
//github.com/sbalaji718/KBR.

REFERENCES

Alexandersen M., Gladman B., Kavelaars J. J., Petit J.-M., Gwyn S. D. J.,
Shankman C. J., Pike R. E., 2016, AJ, 152, 111

Bannister M. T. et al., 2016, AJ, 152, 70

Bannister M. T. et al., 2018, ApJSS, 236, 18

Brasser R., Morbidelli A., 2013, Icar, 225, 40

Brown M. E., 2001, AJ, 121, 2804

Chambers J. E., 1999, MNRAS, 304, 793

Fernandez J. A., Ip W. H., 1984, Icarus, 58, 109

Fraser W. C., Brown M. E., Morbidelli A., Parker A., Batygin K., 2014, ApJ,
782, L100

Giorgini J. D. et al., 1996, in AAS/Division for Planetary Sciences Meeting
Abstracts #28. p. 25.04

Gladman B., Volk K., 2021, ARA&A, 59, 203

Gladman B., Marsden B. G., Vanlaerhoven C., 2008, The Solar System
Beyond Neptune, p. 43

Gladman B. et al., 2012, AJ, 144, 23

Gomes R. S., 2003, Icarus, 161, 404

Gomes R., Levison H. F., Tsiganis K., Morbidelli A., 2005, Nature, 435, 466

Gomes R., Nesvorny D., Morbidelli A., Deienno R., Nogueira E., 2018,
Icarus, 306, 319

Hahn J. M., Malhotra R., 2005, AJ, 130, 2392

Jones R. L., Parker J. W., Bieryla A., Marsden B. G., Gladman B., Kavelaars
J., Petit J. M., 2010, AJ, 139, 2249

Knezevic Z., Milani A., Farinella P., Froeschle C., Froeschle C., 1991, Icarus,
93, 316

Lawler S. M., Gladman B., 2013, AJ, 146, 6

© 2023 The Author(s)
Published by Oxford University Press on behalf of Royal Astronomical Society

Neptune’s 3:2 MMR orbital distribution 3051

Lawler S. M., Kavelaars J. J., Alexandersen M., Bannister M. T., Gladman
B., Petit J.-M., Shankman C., 2018a, FrASS, 5, 14

Lawler S. M. et al., 2018b, AJ, 155, 197

Levison H. F.,, Morbidelli A., Van Laerhoven C., Gomes R., Tsiganis K.,
2008, Icarus, 196, 258

LiJ., Zhou L.-Y., Sun Y.-S., 2014a, MNRAS, 437, 215

LiJ., Zhou L.-Y., Sun Y.-S., 2014b, MNRAS, 443, 1346

Lykawka P. S., Mukai T., 2007, Icar, 192, 238

Malhotra R., 1993, Nature, 365, 819

Malhotra R., 1995, AJ, 110, 420

McKinnon W. B. et al., 2020, Sci, 367, aay6620

Morbidelli A., Nesvorny D., 2020, The Trans-Neptunian Solar System, p. 25

Morbidelli A., Thomas F., Moons M., 1995, Icar, 118, 322

Morbidelli A., Levison H. F., Gomes R., 2008, The Dynamical Structure of
the Kuiper Belt and Its Primordial Origin. p. 275

Muiioz-Gutiérrez M. A., Peimbert A., Pichardo B., Lehner M. J., Wang S. Y.,
2019, AJ, 158, 184

Nesvorny D., 2018, ARA&A, 56, 137

Petit J.-M. et al., 2011, AJ, 142, 131

Pike R. E., Lawler S. M., 2017, AJ, 154, 171

PikeR. E., Lawler S., Brasser R., Shankman C.J., Alexandersen M., Kavelaars
J.J., 2017, AJ, 153, 127

Rein H,, Liu S. F,, 2012, A&A, 537, 128

Rein H., Spiegel D. S., 2015, MNRAS, 446, 1424

Rein H., Tamayo D., 2015, MNRAS, 452, 376

Schwamb M. E. et al., 2019, ApJSS, 243, 12

Shankman C., Gladman B. J., Kaib N., Kavelaars J. J., Petit J. M., 2013,
ApJL, 764,12

de Sousa R. R., Morbidelli A., Raymond S. N., Izidoro A., Gomes R., Vieira
Neto E., 2020, Icar, 339, 113605

Tiscareno M. S., Malhotra R., 2003, AJ, 126, 3122

Tiscareno M. S., Malhotra R., 2009, AJ, 138, 827

Tsiganis K., Gomes R., Morbidelli A., Levison H. F,, 2005, Nature, 435, 459

Volk K., Malhotra R., 2019, AJ, 158, 64

Volk K. et al., 2016, AJ, 152,23

Yu T. Y. M., Murray-Clay R., Volk K., 2018, AJ, 156, 33

This paper has been typeset from a TEX/IATEX file prepared by the author.

MNRAS 524, 3039-3051 (2023)

€20z Jaquiaideg g uo Jesn euozuy 10 Alsienun Aq 6/£2222/6€0E/Z/72S/2101e/seluw/wod dno olwapeoe//:sdiy Wwolj papeojumoc]


https://github.com/sbalaji718/KBR
http://dx.doi.org/10.3847/0004-6256/152/5/111
http://dx.doi.org/10.3847/0004-6256/152/3/70
http://dx.doi.org/10.3847/1538-4365/aab77a
http://dx.doi.org/10.1016/j.icarus.2013.03.012
http://dx.doi.org/10.1086/320391
http://dx.doi.org/10.1046/j.1365-8711.1999.02379.x
http://dx.doi.org/10.1016/0019-1035(84)90101-5
http://dx.doi.org/10.1088/0004-637X/782/2/100
http://dx.doi.org/10.1146/annurev-astro-120920-010005
http://dx.doi.org/10.1088/0004-6256/144/1/23
http://dx.doi.org/10.1016/S0019-1035(02)00056-8
http://dx.doi.org/10.1038/nature03676
http://dx.doi.org/10.1016/j.icarus.2017.10.018
http://dx.doi.org/10.1086/452638
http://dx.doi.org/10.1088/0004-6256/139/6/2249
http://dx.doi.org/10.1016/0019-1035(91)90215-F
http://dx.doi.org/10.1088/0004-6256/146/1/6
http://dx.doi.org/10.3389/fspas.2018.00014
http://dx.doi.org/10.3847/1538-3881/aab8ff
http://dx.doi.org/10.1016/j.icarus.2007.11.035
http://dx.doi.org/10.1093/mnras/stt1872
http://dx.doi.org/10.1093/mnras/stu1239
http://dx.doi.org/10.1016/j.icarus.2007.06.007
http://dx.doi.org/10.1038/365819a0
http://dx.doi.org/10.1086/117532
http://dx.doi.org/10.1126/science.aay6620
http://dx.doi.org/10.1016/B978-0-12-816490-7.00002-3
http://dx.doi.org/10.1006/icar.1995.1194
http://dx.doi.org/10.3847/1538-3881/ab4399
http://dx.doi.org/10.1146/annurev-astro-081817-052028
http://dx.doi.org/10.1088/0004-6256/142/4/131
http://dx.doi.org/10.3847/1538-3881/aa8b65
http://dx.doi.org/10.3847/1538-3881/aa5be9
http://dx.doi.org/10.1051/0004-6361/201118085
http://dx.doi.org/10.1093/mnras/stu2164
http://dx.doi.org/10.1093/mnras/stv1257
http://dx.doi.org/10.3847/1538-4365/ab2194
http://dx.doi.org/10.1088/2041-8205/764/1/L2
http://dx.doi.org/10.1016/j.icarus.2019.113605
http://dx.doi.org/10.1086/379554
http://dx.doi.org/10.1088/0004-6256/138/3/827
http://dx.doi.org/10.1038/nature03539
http://dx.doi.org/10.3847/1538-3881/ab2639
http://dx.doi.org/10.3847/0004-6256/152/1/23
http://dx.doi.org/10.3847/1538-3881/aac6cd

	1 INTRODUCTION
	2 SIMULATIONS
	3 OSSOSAND SURVEY SIMULATOR
	4 STATISTICAL COMPARISONS
	5 SUMMARY
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES

