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Abstract 22 

Emerging new-generation geostationary satellites have opened up new opportunities to investigate 23 

the diurnal cycle of ecosystem functions. Here we exploit observations from the Geostationary 24 

Operational Environmental Satellite (GOES)-R series to examine the effect of a severe U.S. 25 

heatwave in 2020 on the diurnal variations of ecosystem photosynthesis. We find divergent 26 

responses of photosynthesis to the heatwave across vegetation types and aridity gradients, with 27 

drylands exhibiting widespread midday and afternoon depression in photosynthesis. The diurnal 28 

centroid and peak time of dryland gross primary production (GPP) substantially shift towards 29 

earlier morning times, reflecting significant water and heat stress. Importantly, our geostationary 30 

satellite-based method outperforms traditional radiation-based upscaling methods from polar-31 

orbiting satellite snapshots in estimating daily GPP and GPP loss during heatwaves. These findings 32 

underscore the potential of geostationary satellites for diurnal photosynthesis monitoring and 33 

highlight the necessity to consider the increased diurnal asymmetry in GPP under stress when 34 

evaluating carbon–climate interactions.   35 

  36 
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Introduction  37 

         Over recent decades, our Earth has experienced a notable increase in record-breaking high 38 

temperatures 1,2, with the western United States (henceforth “U.S.”) emerging as a climatic 39 

“hotspot”.  This region has endured recurring drought and heatwave events since the mid-2010s 3–40 

5, resulting in dire consequences for both natural and human systems, including unprecedented 41 

water shortages, increased wildfires, significant agricultural  losses, and heightened human 42 

mortality 6,7. Dominated by water-limited dryland ecosystems 8, the western U.S.—particularly the 43 

Southwest—faces exacerbated water stress due to more frequent and protracted droughts and 44 

heatwaves. Such conditions can significantly impair or even suppress ecosystem photosynthesis 45 

and carbon uptake, ultimately influencing the global carbon cycle's interannual variability 9,10. 46 

         Investigating vegetation photosynthesis at various temporal scales offers valuable insights 47 

into vegetation growth, carbon uptake, and environmental interactions. While longer time scales 48 

(e.g., monthly, seasonal, annual) reveal variations in photosynthesis influenced by vegetation 49 

phenology, weather/climate, and nutrient availability, photosynthesis at shorter scales (i.e., sub-50 

daily) is mainly affected by solar radiation and other environmental factors such as temperature, 51 

soil moisture, and vapor pressure deficit (VPD) that modulate plant function, particularly stomatal 52 

conductance 11–13. Over the past thirty years, ecosystem-level vegetation photosynthesis (i.e., gross 53 

primary production, GPP) has been inferred from polar-orbiting satellite observations, such as 54 

Landsat,  the Moderate Resolution Imaging Spectroradiometer (MODIS) , and the Orbiting 55 

Carbon Observatory 2 (OCO-2) 14–18. However, these satellites, with their daily to multi-day 56 

observation intervals, are adept at monitoring GPP at longer scales but limited in capturing diurnal 57 

variations 19, 20. Consequently, direct interactions between photosynthesis and environmental 58 

factors at sub-daily scales (e.g., "midday depression") can be obscured or averaged out when 59 
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aggregating instantaneous variables to daily or longer time scales21. Fortunately, in recent years, 60 

emerging sub-daily Earth observations have been available from several satellites and instruments 61 

21, including new-generation geostationary satellites 22 and the ECOsystem Spaceborne Thermal 62 

Radiometer Experiment on Space Station (ECOSTRESS) 13,23 and the OCO-3 24 on board the 63 

International Space Station (ISS). These innovative satellite observations present unparalleled 64 

opportunities to study diurnal variations in vegetation photosynthesis and their response to the 65 

environmental conditions over the course of a day at large spatial scales 21,25,26.  66 

        In contrast to ECOSTRESS and OCO-3 observations, which are spatially and temporally 67 

sparse and not continuous throughout the day 13,27,28, new-generation geostationary satellites such 68 

as the Geostationary Operational Environmental Satellite-R (GOES-R), Geostationary Korea 69 

Multi-Purpose Satellite-2A (GK-2A) offer high-frequency observations (ranging from several 70 

minutes to hourly) of radiance, surface reflectance, and land surface temperature (LST) at 71 

moderate spatial resolutions (1–3 km). This has facilitated groundbreaking research that transcends 72 

traditional applications of polar-orbiting satellites, including enhanced monitoring of vegetation 73 

seasonality in the cloud-covered Amazon 29, investigation of diurnal behavior of urban heat island 74 

30 and wildfires 31, and mapping of photosynthesis at various times of day 21,26. However, no studies 75 

have yet harnessed geostationary satellite observations to monitor diurnal variations in vegetation 76 

photosynthesis in relation to droughts or heatwaves on a broad spatial scale. 77 

         Here we estimate hourly GPP across the Conterminous U.S. (CONUS) based on GOES-R 78 

observations along with other ancillary inputs and then investigate how the diurnal cycle of 79 

photosynthesis responds to the severe late-summer heatwave of 2020 (Fig. S1). This heatwave 80 

affected nearly the entire western U.S., encompassing both water-sensitive dryland ecosystems 81 

(Fig. S2) and more drought-resilient ecosystems, offering a valuable opportunity to examine their 82 
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potentially divergent responses. To the best of our knowledge, this study represents the first 83 

exploration of how heatwaves impact the diurnal dynamics of photosynthesis at a continental scale. 84 

Our findings reveal a widespread midday and afternoon depression of photosynthesis in dryland 85 

ecosystems during the heatwave, a phenomenon not discernible through polar-orbiting satellite 86 

observations. We investigate the environmental regulation of diurnal photosynthesis dynamics 87 

across diverse ecosystems and elucidate how current methods for upscaling polar-orbiting satellite 88 

snapshots to daily means may under- or overestimate daily GPP. 89 

 90 

Results 91 

Widespread midday and afternoon depression in ecosystem photosynthesis during the 92 

heatwave 93 

       We first estimate hourly GPP across the CONUS using a machine learning method driven by 94 

GOES-R observations and other gridded variables including LST, shortwave incoming radiation 95 

(SW), VPD, normalized difference vegetation index (NDVI), and land cover type. From this, we 96 

derive three diurnal metrics: the diurnal centroid of GPP (CGPP), GPP peak hour (Hourpeak), and 97 

the ratio of afternoon GPP to morning GPP (RatioA/M) (Materials and Methods). We then calculate 98 

the difference between the heatwave year 2020 and two preceding more regular years (2018 and 99 

2019) and refer to this difference as “anomaly”.  100 

         The 2020 anomaly maps of the three diurnal metrics reveal a widespread midday and 101 

afternoon depression in ecosystem photosynthesis during the heatwave in the western U.S. (Fig. 102 

1a, S3). CGPP and Hourpeak shift towards earlier morning for the majority of the western regions, 103 

and the RatioA/M also shows a marked decline. For example, for dryland regions experiencing a 104 

standardized normalized air temperature anomaly (henceforth “Ta_ano”) larger than 1 (Fig. S2), 105 
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66.9% exhibit morning-shifted CGPP. In some dryland regions where the diurnal cycle of GPP was 106 

asymmetrical in the normal years (Fig. S4), the heatwave further suppresses photosynthesis from 107 

noon onwards and leads to increased diurnal asymmetry in GPP. The shift in diurnal metrics 108 

positively correlates to the daily GPP change, implying that the morning-shift in diurnal metrics 109 

generally results in a decrease in daily total GPP (Fig. S5). 110 

        The diurnal metrics exhibit divergent responses to the heatwave across vegetation types and 111 

along aridity gradients (Fig. 1b, S3). Overall, shrubland and grassland are more sensitive to the 112 

heatwave than the other vegetation types (e.g., forest, savanna, and cropland). Among forests, only 113 

the evergreen needleleaf forest (ENF) sees a systematic shift in CGPP and Hourpeak, while the other 114 

forests are more resistant to the heatwave, maintaining relatively stable diurnal cycles. The impact 115 

of the heatwave on the diurnal cycle of photosynthesis is predominantly observed in arid and semi-116 

arid regions with an aridity index (AI) below 0.6, and the shift becomes weaker as the AI increases 117 

(towards more humid conditions). The findings related to the widespread midday and afternoon 118 

reduction in ecosystem photosynthesis, along with the differing diurnal metric responses to 119 

heatwaves across various vegetation types and aridity gradients, remain almost unchanged when 120 

the baseline period for calculating the mean of variables under normal conditions is expanded to 121 

2018-2022 (Materials and Methods; Fig. S6). 122 

       The regional-mean diurnal course of environmental variables and GPP (Fig. 1c) shows that, 123 

as expected, both LST and VPD are significantly elevated during the heatwave compared to normal 124 

years. For drylands, the intensified heat condition leads to a GPP peak time occurring 2 hours 125 

earlier, and correspondingly morning-shifted CGPP and RatioA/M. In contrast, the diurnal metrics of 126 

non-dryland regions exhibit only minor changes. The higher morning-time GPP of drylands and 127 

the resistance of non-dryland ecosystems to the heat condition are further confirmed by eddy-128 
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covariance (EC) data from flux towers (Fig. S7, S8) and using the original GOES LST without 129 

gap-filling (Fig. S9). Fig. S10 provides a representative example of the diurnal course of 130 

environmental and vegetation variables at four sites with different vegetation types, based on EC 131 

observations. More dryland sites with earlier occurrence of GPP peak hour during heatwaves are 132 

provided in Fig. S11.  These site-level observations are consistent with our regional-level findings 133 

derived from gridded GPP estimates. 134 
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 135 

Fig. 1. Changes in environmental variables, GPP and diurnal metrics during the heatwave from August 14 136 

to 19, 2020 relative to 2018 and 2019 across the CONUS. a. Standardized normalized anomalies of air 137 

temperature (Ta_ano, unitless) from MERRA-2 and diurnal centroid changes (units: hour) from August 14 138 

to 19, 2020 relative to the multiyear average. b. Different responses of diurnal metrics to the heatwave 139 

across vegetation types and along aridity gradients (smaller AI values indicate more arid conditions), 140 

respectively. ENF, NENF (or Non-ENF), SHR, SAV, GRA, and CRO represent evergreen needleleaf forest, 141 

other forests except for ENF, shrubland, savanna, grassland, and cropland, respectively.  142 
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Boxplots illustrate the distribution of diurnal change: the box represents the interquartile range (IQR), 143 

containing data from the 25th percentile (Q1) to the 75th percentile (Q3); the horizontal line inside the box 144 

indicates the median (50th percentile); the whiskers extend to the minimum and maximum values within 145 

1.5 times the IQR from Q1 and Q3, respectively; the outliers beyond this range are plotted as individual red 146 

plus symbols. c. Regional-mean hourly LST, VPD, SW, and GPP for drylands and non-drylands in normal 147 

(black) and heatwave (red) years. C-heat, P-heat, and R-heat represent the diurnal centroid of GPP (CGPP), 148 

GPP peak hour (Hourpeak), and the ratio of afternoon GPP to morning GPP (RatioA/M) during the heatwave, 149 

while C-nor, P-nor, and R-nor represent these metrics in the normal years. The hours mentioned here 150 

correspond to local time.  151 

         In the event that the impact of a heatwave on ecosystem photosynthesis was consistent and 152 

uniform across hours throughout the day, the largest loss of GPP during the heatwave would be 153 

expected at the time when vegetation had maximum productivity. However, our findings reveal a 154 

substantial downregulation of photosynthesis from noon onwards, leading to the largest GPP loss 155 

at noon or during the afternoon for the majority of western regions. Notably, this timing occurs 156 

later than the GPP peak hour during the heatwave year for 72.6% of dryland regions (Fig. S12), 157 

further substantiating the asymmetric influence of heatwaves on diurnal photosynthesis 158 

fluctuations. 159 

Environmental controls on diurnal behavior of ecosystem photosynthesis  160 

        We examine the controls of different environmental factors on diurnal variations of 161 

ecosystem photosynthesis at both regional and pixel levels (Materials and Methods). The regional-162 

mean daily VPD and LST show strong negative relationships with regional-mean CGPP (R
2=0.91 163 

and 0.77, p<0.0001), suggesting that the increase of heat and water stress contributes to an earlier 164 

coming of CGPP (Fig. 2a). At the pixel level, the negative relationships are still observed despite 165 

the weaker correlations (R2=0.36 and 0.24, p<0.0001). The pixel-level relationships for different 166 

vegetation types (Fig. 2c, S13) show that shrubland has the strongest negative relationships and 167 

largest negative slopes between CGPP and VPD (R2=0.55, slope= -0.04 hour per hPa) or LST 168 
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(R2=0.44, slope= -0.1 hour per ℃) among all the vegetation types, followed by ENF and grassland. 169 

A 1-hPa increase in VPD leads to a 0.04-hour morning-shift in shrubland CGPP, and a 1-℃ increase 170 

in LST advances CGPP by 0.1 hour. Overall, the CGPP of drylands exhibits twice the sensitivity 171 

(slope) to VPD variations and five times the sensitivity to LST variations compared to non-dryland 172 

regions (VPD: -0.027 vs. -0.014 hour per hPa; LST: -0.039 vs. -0.008 hour per ℃) (Fig. 2c, S14). 173 

The relationships between regional-mean Hourpeak (or RatioA/M) and daily VPD (or LST) (Fig. S15) 174 

are similar to those observed between CGPP and VPD (or LST). Fig. S16 further substantiates the 175 

consistency of the responses of the CGPP to VPD and LST across the two baseline periods. Notably, 176 

the slope of the CGPP to changes in VPD and LST is almost identical the two baseline periods. The 177 

environmental controls on diurnal photosynthesis dynamics are further confirmed by EC flux 178 

tower observations (Fig. S17), which indicates that diurnal metrics are more strongly regulated by 179 

VPD (R2=0.47–0.60, p<0.001) and LST (R2=0.46–0.58, p<0.001) than by Ta (R2=0.33–0.35, 180 

p<0.001). 181 

 182 

 183 
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 184 

Fig. 2. Relationship between diurnal centroid (CGPP) and daily VPD (or LST). a. Regional-mean (first row) 185 

and pixel-level (second row) relationships between CGPP and VPD (or LST). Filled circles represent the 186 

heatwave year, and hollow circles represent normal years with error bars indicating the standard deviation 187 

of CGPP. The solid line represents the best-fit line derived from linear regression analysis, and two dashed 188 

lines represent the 95% confidence interval for the regression estimate. There are 18 circles in the first row 189 

(three years multiplied by six vegetation types). b. Illustrates the slope of VPD (or LST)-CGPP linear 190 

relationship for different vegetation types and for drylands or non-drylands. NENF (or Non-ENF) 191 

represents other forests, excluding ENF. The units of slope are hour per hPa and hour per ℃, respectively. 192 

      Since light use efficiency (LUE) reflects the impact of changes in the environment on plant 193 

photosynthesis without the strongly dominant solar radiation signal present in GPP, we calculate 194 
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hourly LUE to examine how it varies over the course of a day during the heatwave (Materials and 195 

Methods, Fig. S18). The spatial patterns of hourly LUE anomaly coincide with those of the GPP 196 

diurnal metrics (Fig. 3a), with widespread negative anomalies in the western U.S. This indicates 197 

that the LUE changes contribute to the observed shifts in diurnal GPP metrics during the heatwave. 198 

As LUE decreases, 69.2% of drylands exhibit a morning shift in CGPP, with this proportion 199 

increasing to 76.5% and 84.2% for regions experiencing larger LUE reductions (<20% and <50%). 200 

In contrast, LUE decreases lead to less pronounced changes in CGPP for non-dryland regions (Fig. 201 

3b). Figure 3c illustrates that, in non-drylands, the LUE only decreases by 0–12% over the course 202 

of a day, while in drylands, the hourly reduction in LUE is around 20% and intensifies as the heat 203 

stress increases (Ta_ano from 1 to 2). For both ecosystems, the most substantial LUE decline 204 

occurs in the early afternoon.  205 

 206 

 207 
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 208 

Fig. 3. LUE variations during the heatwave. a. Hourly change in LUE (expressed as a percentage) during 209 

the heatwave compared to normal years. b. Probability distribution of diurnal centroid change in response 210 

to daily LUE decrease for three different situations: daily decrease of LUE <= 0%, 20% and 50%, 211 

respectively. c. Hourly LUE change over the course of the day for three different situations: drylands with 212 

Ta_ano >= 1 (red circles); drylands with Ta_ano >= 2 (red squares), and non-drylands with Ta_ano >= 1 213 

(pink circles). 214 

Geostationary satellite-based method better estimates daily GPP and GPP loss during the 215 

heatwave 216 

      We first compare the daily GPP upscaled from a single hour (GPPupscaling) based solely on 217 

radiation, which emulates polar-orbiting satellites, with daily GPP aggregated from our hourly 218 

GPP derived from GOES-R (GPPGOES) (Materials and Methods). Fig. 4 shows the spatial 219 

difference maps between daily GPPupscaling upscaling from GPP at either 8 am, 10 am, 12 pm, 2 220 

pm, or 4 pm and daily GPPGOES for both normal and heatwave years. The results clearly 221 



14 

 

demonstrate that, for both years, using a snapshot from the earlier part of the morning (e.g., 8 am) 222 

and solely considering radiation variations for daily upscaling 19 lead to an overestimation of daily 223 

GPP across the majority of the U.S. Conversely, utilizing an afternoon observation for daily 224 

upscaling (e.g., 2 pm) results in an underestimation of daily GPP. The upscaling method relies 225 

only on radiation and does not account for changes induced by varying environmental stresses and 226 

LUE throughout the day. Similar results are observed when using fixed hourly LUE to estimate 227 

daily GPP (Fig. S19). Notably, these errors are also widespread in the normal year but become 228 

even more pronounced during the heatwave year.  229 

 230 
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Fig. 4. Difference of daily GPP based on upscaling from single hours: 8 am to 4 pm and aggregated from 231 

hourly GPP based on GOES-R during August 14–19 in both normal and heatwave years. Difference is 232 

calculated as (GPPupscaling-GPPGOES)/GPPGOES. The red/blue pixels indicate over/underestimation of daily 233 

GPP based on the upscaling method compared to GPPGOES. Third column shows probability distribution of 234 

GPP over/underestimations for drylands and non-drylands in both years. The hours mentioned here 235 

correspond to local time. 236 

       Biases stemming from the radiation-based upscaling method can also affect the calculation of 237 

GPP difference between normal and heatwave years (Fig. 5). The upscaling-based regional-238 

averaged GPP (here, using 2 pm as an example) exhibits highly symmetric diurnal cycles, and 239 

underestimates GPPGOES with asymmetrical diurnal cycle in both years, primarily during morning 240 

hours (Fig. 5a). The underestimation is more pronounced in the heatwave year, resulting in an 241 

overestimation of heat-induced GPP loss duing morning hours and consequently an overestimation 242 

of daily GPP (Fig. 5b). As heat conditions and diurnal asymmetry in GPP intensify, the 243 

underestimation of GPPupscaling relative to GPPGOES and the overestimation of heat-induced GPP 244 

loss using GPPupscaling both largely increase (Fig. S20). We further calculate the regional total daily 245 

GPP for drylands from August 14 to 19 for normal and heatwave years. Both daily GPPupscaling 246 

from all single hours and GPPGOES capture the decline of dryland productivity during the heatwave 247 

(Fig. 5d). The estimated GPP loss for the entire region during the heatwave period based on 248 

geostationary GOES-R is approximately 0.4 Tg C per day, while GPP loss based on upscaling 249 

from different hours ranges from 0.25 to 0.6 Tg C per day.  250 

  251 
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 252 

Fig. 5. Difference in estimating regional-mean hourly GPP and daily GPP loss using the upscaling-based 253 

method (GPPupscaling) and the GOES-based method (GPPGOES). a. Shows regional-mean hourly GPP based 254 

on the two methods during August 14–19 in both normal and heatwave years under Ta_ano >= 1. The 255 

difference between  two GPPs is larger in 2020 (longer vertical black line) than that in 2018 (shorter vertical 256 

black line). b. Shows difference between GPPupscaling and GPPGOES calculated as (GPPupscaling - 257 

GPPGOES)/GPPGOES in both years for each hour (upper) and the resulting biases propagated to the calculation 258 

of GPP loss during the heatwave (lower) under Ta_ano >= 1. For example, at 8 am, GPPupscaling 259 

underestimates GPPGOES by 24% in the normal year, but by 39% in the heatwave year. When calculating 260 

GPP loss, GPPGOES only detects about a 5% decrease in GPP at 8 am, while GPPupscaling overestimates the 261 

GPP loss (~12% decrease). c. Shows the regional total daily GPP loss from August 14 to 19 during the 262 

heatwave year based on two methods. Light green bars denote GPP loss based on GPPupscaling from different 263 

hours: 8 am to 4 pm, respectively, and dark green bar denotes GPP loss based on GPPGOES. The hours 264 

mentioned here correspond to local time. 265 

Discussion and conclusions 266 

        With the recent launch of new-generation satellites capable of diurnal sampling, several 267 

pioneering studies have explored their potential for monitoring the diurnal cycle of photosynthesis 268 
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13,21,26,32,33. Our hourly GPP estimates, based on GOES-R satellite observations, effectively capture 269 

the diurnal dynamics of ecosystem photosynthesis in response to heatwaves at the regional scale. 270 

For the first time, we present observational evidence of an earlier occurrence of dryland GPP peak 271 

hour during the heatwave due to widespread midday and afternoon depression in photosynthesis. 272 

Numerous studies based on polar-orbiting satellites have extensively investigated the effects of 273 

droughts and heatwaves on seasonal and interannual variations of photosynthesis 34–36. Yet, 274 

diagnosing the interactions between photosynthesis and environmental factors at the sub-daily 275 

scale was previously limited to site-level investigations based on flux towers or proximal remote 276 

sensing observations 11,37–39. One earlier study attempted to generate global monthly-averaged 277 

half-hourly GPP by upscaling site-level half-hourly GPP data using machine learning methods 40, 278 

but this approach could not track the diurnal dynamics of photosynthesis for each day. A recent 279 

study used OCO-3 solar-induced chlorophyll fluorescence (SIF) data based on the Snapshot Area 280 

Mode (SAM) for the first time to demonstrate that a heatwave in Australia led to a decline in plant 281 

photosynthesis in the afternoon. OCO-3 SAM data, however, are only available in a very limited 282 

number of areas across the globe, and thereby do not allow for studies over broad spatial domains 283 

like the CONUS. Another recent study also revealed the afternoon depression of dryland 284 

photosynthesis based on SIF from OCO-3 during the drought, but the real change in diurnal 285 

photosynthesis dynamics could not be quantified due to the sparse and discontinuous OCO-3 286 

measurements 41.  With the high frequency of GOES-R observations, we generate hourly GPP 287 

maps for all days during the heatwave across the CONUS at a high spatial resolution (~0.025°). 288 

We reveal an asymmetrical diurnal response of GPP to environmental stresses across a wide range 289 

of dryland ecosystems in the western U.S., and the peak time of GPP shifts further towards earlier 290 

morning times during the severe heatwave. In contrast, OCO-3 SIF data particularly in nadir/glint 291 
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mode are extremely sparse both spatially and temporally, and only relying on averaged morning 292 

or afternoon observations over large space and long time windows (e.g., 1° and monthly) ignores 293 

the spatial and day-to-day variations within those windows 41. GOES-R observations further enable 294 

us to quantify how much morning-shift in GPP diurnal metrics and subsequently heatwave-295 

induced loss of GPP the increase of VPD and LST led to, which is not possible using current OCO-296 

3 SIF data. 297 

 298 

        The midday or afternoon depression in dryland photosynthesis has been reported at the site 299 

level using GOES-R or ECOSTRESS data 13,32 and at the regional scale using satellite SIF 33,41,42. 300 

This depression has a crucial effect on integrated daily photosynthesis and ultimately the 301 

accumulated vegetative biomass of drylands 43. Although drylands are considered better adapted 302 

to high temperatures and water-deficit conditions, heatwave events with increasing persistence and 303 

severity are pushing these ecosystems beyond their historical regimes. The frequent and 304 

widespread earlier depression of carbon uptake could result in a higher risk of hydraulic failure 12. 305 

The way in which the ongoing global warming alters the climatic responses of dryland 306 

photosynthesis across time scales requires further investigation 44,45. To that end, emerging efforts 307 

have been made recently by using new techniques, observational platforms, and datasets to better 308 

understand the water–carbon coupling in drylands from sub-daily to interannual scales 21,33,40,41,46,47. 309 

Our study further reveals the increased diurnal asymmetry of dryland photosynthesis during 310 

heatwaves and the contrasting diurnal responses of non-dryland ecosystems to heat stress. By 311 

quantifying the ecosystem-specific sensitivity of diurnal photosynthesis to environmental factors, 312 

such as LST and VPD, our study can contribute to the benchmarking of land surface models at the 313 
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sub-daily scale. Additionally, it may help predict how the diurnal cycle of GPP will respond to 314 

climate change in the near future.  315 

         The widespread depression of dryland GPP from noon onwards highlights the importance of 316 

considering the asymmetrical diurnal cycle when upscaling photosynthesis from the hourly to daily 317 

scale. Neglecting this asymmetry can lead to substantial biases in daily total GPP estimates 40. This 318 

underscores the value of geostationary satellites, while also raising concerns about studies that 319 

examine the response of dryland photosynthesis to climate based on snapshots from polar-orbiting 320 

satellites. Currently, there are generally two ways for generating daily estimation of photosynthesis 321 

(such as GPP and SIF): using daily-averaged environmental drivers 14,15 or upscaling instantaneous 322 

photosynthesis observations from polar-orbiting satellites by assuming an ideal symmetrical 323 

radiation pattern (with a peak at solar noon) over the course of the day 17,19,48,49. Both approaches 324 

may introduce additional biases. For GPP models driven by daily-mean meteorology, the 325 

averaging effect can lead to a misinterpretation of environmental regulation on photosynthesis. For 326 

instance, if high temperatures only reduce midday GPP rather than daily mean GPP, using daily-327 

mean GPP and temperature may not reveal the true interaction between climate and ecosystems. 328 

For daily photosynthesis estimates based on upscaling methods, biases can be largely offset by 329 

using both morning and afternoon observations as did in BESS model 19 which utilized the average 330 

of GPP derived from both Terra (10:30 am) and Aqua (1:30 pm), but are inevitable for current 331 

satellite SIF data since the daily SIF is converted from snapshots either in the morning (GOME-2) 332 

or at midday (GOSAT, OCO-2, TROPOMI) 17,48. Therefore, when using satellite SIF data to 333 

explore the environmental responses of photosynthesis, weakened or enhanced responses should 334 

not be directly interpreted as the internal response of ecosystems.  335 
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          Our study demonstrates the potential of incorporating sub-daily environmental information 336 

from geostationary satellites to monitor diurnal photosynthesis dynamics under stress. Our 337 

methods can be extended to different regions globally as more and more observations from new-338 

generation geostationary satellites or global continuous products become available, such as 339 

GeoNEX—a collaborative effort from global geostationary satellite sensors 26,50,51. Furthermore, 340 

our approach for estimating hourly GPP can also be applied to estimating hourly ET and water use 341 

efficiency (WUE) 21,52. This would help gain insight into changes in plants use water at the sub-342 

diurnal time scales and its response to environmental factors. Addressing these critical scientific 343 

questions will become increasingly valuable as global warming intensifies. In the near future, the 344 

possibly distinct influences of heatwaves on the diurnal dynamics of photosynthesis at different 345 

phenological stages of vegetation (e.g., green-up, senescence) can be further explored. In addition, 346 

as heatwaves will continue to occur, it is essential to evaluate whether the morning shift of the 347 

diurnal cycle of dryland photosynthesis will become more pronounced and whether an irreversible 348 

shift poses a risk of vegetation mortality. Upcoming missions (e.g., TEMPO 53, Sentinel-4 54) that 349 

may provide temporally frequent and continuous observations of photosynthesis proxies (e.g., SIF) 350 

will offer new opportunities to further advance dryland photosynthesis research and understanding 351 

at the sub-daily scale.   352 

 353 
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 521 

Materials and methods  522 

Severe U.S. heatwave in August 2020 523 

        The western part of the U.S., especially the Southwest, has frequently been hit by heatwaves 524 

and droughts in recent years 3. In mid-August 2020, a severe heatwave occurred over the majority 525 

of the U.S. states, with standardized normalized anomaly of daily temperature approaching a value 526 

of 5 in California (Fig. S1, S2). This heatwave coincided with a record-high precipitation deficit, 527 

and it mainly affected the western U.S., with southwestern states including Arizona, Nevada, Utah, 528 

Colorado and New Mexico experiencing the hottest conditions. According to one recent study, this 529 

exceptional heat and atmospheric dryness led to a significant loss of local ecosystem productivity 530 

54. Here, we selected August 14 to 19, 2020, as the heatwave period (Fig. S1, S2) to examine how 531 

the heatwave affected the diurnal dynamics of ecosystem photosynthesis. Notably, in fact, the hot 532 

conditions started as early as June for many regions in the Southwest. The heatwave in the selected 533 

period spread to more widespread regions including California with extreme heat conditions 534 

Model training and evaluation 535 

        We used a Cubist regression tree model 55 to predict half-hourly or hourly GPP. The Cubist 536 

model creates a series of rules between the target variable GPP and the explanatory variables, 537 

https://cds.climate.copernicus.eu/
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where their relations are explicitly expressed in multivariate linear models. Cubist helps to find 538 

the corresponding rules that explanatory variables match, and generates predictions based on these 539 

rules. Sometimes, Cubist creates multiple predictions when more than one rule matches, and the 540 

average value of these predictions is used to determine the final prediction. The Cubist model has 541 

been successfully used in previous studies to predict carbon-related variables including net 542 

ecosystem carbon exchange (NEE), GPP, and SIF 13,18,56. More details on the Cubist model can be 543 

found in these studies. 544 

       Three types of explanatory variables were considered for predicting GPP in this study, 545 

including three environmental variables (LST, SW and VPD), one vegetation variable (vegetation 546 

indices such as NDVI, the enhanced vegetation index (EVI) or the near-infrared reflectance of 547 

vegetation (NIRv)), and one categorical variable (land cover type) (Table S1). The five selected 548 

variables were considered to have close relationships with GPP, and the roles of environmental 549 

variables in regulating the diurnal variations of EC GPP has been demonstrated in one of our 550 

previous studies 13.  551 

          Half-hourly or hourly VPD and SW were obtained from EC flux towers from 77 AmeriFlux 552 

sites (Table S2). The sites were selected based on their data availability covering August 2020 and 553 

their homogeneity, which was determined by the consistency between the land cover type of the 554 

site and the dominant land cover of the 0.05° grid cell. The land cover type was determined based 555 

on the site description. The REddyProc software 57 was used to fill the gaps in the EC data. In this 556 

study, to partition NEE into GPP, we used both daytime 58 and nighttime partitioning methods 59. 557 

The samples with differences of the GPP estimates based on the two methods over 10 µmol CO2 558 

m-2 s-1 were excluded from the training. The LST was obtained from GOES-16 60 which is the first 559 

mission of the GOES-R series and was launched by the National Oceanic and Atmospheric 560 
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Administration (NOAA) in November, 2016. The hourly GOES-16 LST was then extracted for 561 

each site at the grid cell where the site was located.  562 

       We extracted and calculated three vegetation indices (NDVI, EVI and NIRv) for each site 563 

from the daily MODIS bidirectional reflectance distribution function (BRDF)-corrected 564 

reflectance product MCD43A4 (Collection 6, 500 m) through MODIS and VIIRS Land Products 565 

Global Subsetting and Visualization Tool (ORNL, 2018). This was performed differently from a 566 

recent study 39 that converted the top-of-atmosphere radiances from GOES-16 to top-of-567 

atmosphere reflectance and derived the BRDF-corrected surface reflectance using the radiative 568 

transfer model and BRDF model for two reasons. First, the heatwave in August 2020 mainly hit 569 

the dryland ecosystems. During the heatwave, the diurnal variations of GPP are mainly controlled 570 

by solar radiation and environmental factors (such as VPD and air temperature). The contribution 571 

of the canopy structure to the diurnal GPP during short time scales is assumed to be much smaller 572 

than that of physiological changes 61. Second, MODIS provides operational BRDF-corrected 573 

reflectance products that have been validated across temporal and spatial scales and different 574 

ecosystems 62, while GOES-R requires further efforts to produce and comprehensively validate its 575 

BRDF products, which is beyond the scope of the current study.  576 

          In total, we obtained more than 500, 000 half-hourly or hourly samples from May 2017 to 577 

December 2020 for 77 AmeriFlux sites (Table S2). Only flux data (GPP, VPD, SW) with a good 578 

quality-flag equal to 0 or 1 (0 = original, 1 = most reliable) were used for model development, and 579 

for MODIS vegetation indices, only the observations with a quality flag equal to 0 indicating good 580 

quality and full BRDF inversion were used. For training, we first sorted the samples based on the 581 

LST values and then divided them into 14 bins ranging from -10 ℃ to 60 ℃ with 5 ℃ interval. In 582 

each bin, we randomly selected two-thirds of the data as training samples, and the remaining one-583 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/bidirectional-reflectance
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/viirs
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third as testing data. Compared with the completely random selection method, this processing 584 

ensured that both the low and high values of LST could be uniformly sampled, and that the LST 585 

distribution in the training and testing datasets was consistent. We also tested the performance of 586 

GPP predictions in each LST bin by increasing the proportion of samples with higher LST (e.g., >= 587 

30 ℃). In addition, we further assessed the model performance using the leave-one-out validation 588 

method to provide a more objectively evaluation of our model. For each land cover type, we 589 

randomly selected data from one site as test data, and used data from the remaining sites as training 590 

samples. We randomly repeated the training and validation process 200 times and calculated the 591 

mean and standard deviation of the model's performance metrics (R2 and RMSE).  592 

        Table S4 shows the statistical measures for model evaluation with GPP derived from daytime-593 

based method (GPPday). We found that the model including vegetation index, land cover, and three 594 

environmental variables (LST, SW and VPD) performed the best in estimating the hourly GPP 595 

(R2=0.88, RMSE=2.51 μmol CO2 m
−2 s−1). When the data from same sites were not used for 596 

training, the model still performed well, with an R2 of 0.82 ± 0.06 and an RMSE=2.59 ± 0.63 597 

µmol CO2 m
-2 s-1) (Fig. S21). Among the five variables, vegetation index and SW were two of the 598 

most important variables for GPP predictions, and excluding either of them significantly reduced 599 

the accuracy of model prediction. Including either/both of GOES LST or/and ERA5 VPD could 600 

only slightly improve the GPP predictions (for all the samples) compared to the model solely based 601 

on SW. However, the model with either/both the VPD or/and LST included performed much better 602 

for the samples with higher LST (Fig. S22). For example, for samples with LST >= 40 ℃, 603 

compared with the model including both VPD and LST, the models without either/both showed a 604 

decrease in R2 by 0.05 to 0.18 and increase in rRMSE by 0.08 to 0.15. The model solely based on 605 

radiation was unable to account for the effects of water and heat stress on photosynthesis. The 606 
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three vegetation indices (NDVI, EVI, and NIRv) showed comparable performance for estimating 607 

GPP. In the following analyses, we only provide the results from NDVI because it is a simple and 608 

most widely used vegetation index, and previous studies also showed its smaller diurnal variations 609 

and lower sensitivity to BRDF effects compared to EVI or NIRv 63,64.   610 

        The model performance based GPP on derived from nighttime-based method (GPPnight) is 611 

provided in Table S5. The findings regarding the variable importance were similar to those based 612 

on GPPday but with lower prediction performance. For example, the RMSE of the same model 613 

consisting of VPD, SW, NDVI, LST, and land cover increased by 12% based on GPPnight. 614 

Therefore, we used the model based on GPPday to predict regional-level hourly GPP. The results 615 

also showed that changing the proportion of samples with higher LST had little effect on the GPP 616 

predictions (Table S5), and only negligibly improved the prediction for samples with higher LST 617 

(not shown). The scatterplots of predicted GPP against EC GPP (GPPday) are shown in Fig. S23 618 

separately for different vegetation types.  619 

Regional mapping of hourly GPP  620 

         Once the predictive hourly GPP model was established at the site level, we then applied it to 621 

the regional scale to estimate hourly GPP across the CONUS driven by explanatory variables from 622 

gridded products (Table S3). We generated hourly GPP maps in August from 2018 to 2020 623 

(missing data of SW across our study region in 2017) at a spatial resolution of 0.025°.  624 

         The hourly SW (ABI-L2-DSRC product, 0.25°) and LST (ABI-L2-LSTC product, ~ 2 km) 625 

were obtained from GOES-16. Information on the algorithms for generating these data from 626 

geostationary satellites, as well as the validation and uncertainty analysis, can be found in 25 and 627 

60. The vegetation indices were derived and calculated from 0.05°, daily MODIS BRDF-corrected 628 

reflectance products (MCD43C4). The land cover map in 2020 was obtained from 0.05° MODIS 629 
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land cover products (MCD12C1) with the International Geosphere–Biosphere Programme (IGBP) 630 

classification scheme. Due to the short study period (2018–2020), we did not consider the land 631 

cover change. The hourly VPD was obtained from the ERA5-land reanalysis dataset (0.1°) 65. We 632 

compared the GOES SW and ERA5 VPD against EC observations for each site (Fig. S24) and 633 

found that the GOES SW and ERA5 VPD were highly correlated with EC SW and VPD (median 634 

R2=0.83, RMSE= 115 W/m2 for SW; median R2=0.80, RMSE= 4.7 hPa for VPD). The errors 635 

between gridded products and site observations were slightly larger than those in our previous 636 

study 13 because we only used samples in August in this study, including more samples throughout 637 

the year with strong seasonal variations could improve the R2. The coarser resolution of GOES 638 

SW and ERA5 VPD relative to the footprint of EC flux towers could also have increased their 639 

inconsistency. We resampled SW, VPD and vegetation indices to 0.025° by bilinear interpolation 640 

and land cover map to 0.025° by nearest neighbor interpolation to match the spatial resolution of 641 

GOES-16 LST. 642 

          Although GOES-16 provided many more LST observations per day compared to polar-643 

orbiting satellites such as MODIS, the existing cloud cover still affected the data availability of 644 

LST 27. Therefore, we used LST from ERA5-land products (0.1°) 65 to fill the gaps in GOES-16 645 

LST data. We extracted both LST observations for the 77 sites and established the linear 646 

relationships between the two LST observations per hour for each land cover type (Fig. S25). 647 

When there were valid GOES-16 LST observations, we used them for regional GPP predictions, 648 

while when they were missing due to clouds, we then used filled LST based on ERA5 for GPP 649 

predictions. Finally, we generated spatially and temporally continuous hourly GPP. To examine 650 

the diurnal variations of GPP during the heatwave, we relied on the gap-filled GPP, and we also 651 

compared the results generated from the original GOES LST without gap-filling. We hypothesize 652 
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that we can also reveal the impact of the heatwave on diurnal GPP using the original GOES LST 653 

data, but its use will be limited due to the spatial discontinuity. Auxiliary data from other sources 654 

(e.g., ERA5) can help to overcome its limitation and enable more flexible applications.    655 

        Fig. S26 shows an example of predicted hourly GPP from 6 am to 5 pm on August 1, 2018 656 

(Pacific Daylight Time) across the CONUS. The ecosystems start photosynthesizing at about 6-7 657 

am (local time) when sunlight is available; GPP increases from early morning to noon with the 658 

increase of radiation and favorable environmental conditions (such as sufficient moisture); and 659 

then keeps decreasing in the afternoon until sunset. It also reveals contrasting productivity between 660 

the western part of the U.S. dominated by drylands and mesic ecosystems in the eastern part 661 

throughout the day. In the western U.S., except for some forests along the coast, most arid and 662 

semi-arid ecosystems which are less productive exhibited lower GPP over the course of a day, 663 

while in the eastern part, some ecosystems such as forests in the Appalachian Mountains 664 

maintained high photosynthetic activity from early morning to late afternoon. The most productive 665 

crops in the Corn Belt of the central U.S. were also captured by the hourly GPP maps.  666 

Impact of heatwave on diurnal cycles of GPP 667 

        First, we averaged hourly GPP during the six days of the heatwave period (August 14–19) for 668 

each year from 2018 to 2020. Based on the hourly GPP, we then derived three diurnal metrics for 669 

each pixel: the diurnal centroid, GPP peak hour, and the ratio of afternoon GPP to morning GPP. 670 

The diurnal centroid is often used to quantify the diurnal shifts in EC flux variables (NEE, GPP or 671 

ET) induced by environmental conditions 66,67. For a given pixel, the diurnal centroid of GPP (CGPP) 672 

was defined as follows: 673 

𝐶𝐺𝑃𝑃 =
∑(𝐺𝑃𝑃𝑡  × 𝑡)

∑𝐺𝑃𝑃𝑡 
  674 
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where t is the local time in decimal hours from 7–17 (7 am to 5 pm) and GPPt is the GPP at hour 675 

t. The resulting CGPP is the weighted mean hour of the diurnal cycle of GPP. For example, if CGPP 676 

is greater than 12, it indicates a shift of GPP towards afternoon, while if CGPP is less than 12, it 677 

indicates a shift towards morning 39. The GPP peak hour (Hourpeak) was defined as the local time 678 

at which GPP reached the maximum from 7 am to 5 pm. The ratio of afternoon GPP to morning 679 

GPP (RatioA/M) indicated the difference between the averaged GPP in the afternoon (1 pm to 5 pm) 680 

relative to that in the morning (7 am to 11 am). For pixels, if the GPP at 7 am or 5 pm was missing, 681 

the GPP in the afternoon and morning was then averaged from shorter times (1 pm to 4 pm and 8 682 

am to 11 am, respectively). These three diurnal metrics adequately describe the diurnal pattern 683 

(symmetry or asymmetry) of GPP during the heatwave. Since we aimed to examine the effect of 684 

water and heat stress on diurnal GPP, we had to isolate any shift or variations of these diurnal 685 

metrics caused by solar radiation or cloud. For example, if both GPP and SW peaked at 12 pm 686 

under normal conditions, and both of them peaked at 11 am during the heatwave, we could not 687 

conclude that there was a shift in the GPP diurnal cycle during the heatwave since it was simply 688 

caused by the changed time of solar radiation. Therefore, we first determined the peak hour of 689 

solar radiation as local noon, and then used it as a reference to calculate CGPP, Hourpeak, and 690 

RatioA/M. As a result, all the diurnal metrics were aligned with the peak time of solar radiation. 691 

Another way to eliminate the effect from radiation is to use their difference (CGPP - CSW) for 692 

analyses 39.  693 

        Fig. S4 shows an example of the spatial patterns of CGPP, Hourpeak, and RatioA/M. The three 694 

metrics consistently reveal contrasting diurnal patterns of GPP between the western and eastern 695 

U.S. The arid and semi-arid regions in the Southwest had higher photosynthesis in the morning, in 696 

contrast to the forest and cropland in the eastern U.S. We compared the diurnal metrics derived 697 
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from the gridded GPP and the EC flux data and found that the predicted diurnal metrics were 698 

strongly correlated with those based on EC flux data (R2=0.42 to 0.67, p<0.0001, Fig. S27), 699 

supporting its application at the larger scale regarding the analyzes of the impact of the heatwave 700 

on the diurnal cycle of GPP. The model better predicted CGPP and RatioA/M than Hourpeak since 701 

CGPP and RatioA/M were more stable, as they were calculated from multiple hours and less affected 702 

by outliers. Interestingly, the model solely based on SW effectively predicted the diurnal metrics 703 

for non-drylands but were unable to predict them for drylands. 704 

        To examine the effect of heatwaves on the diurnal variations of GPP, we calculated the 705 

difference (referred to “anomaly” henceforth) of these diurnal metrics in the 2020 heatwave period 706 

relative to the average in the same period in 2018 and 2019. This approach provided insights into 707 

the magnitude of the shift in diurnal GPP metrics attributable to the 2020 heatwave. We recognize, 708 

however, that establishing a baseline using mean values from just two years may introduce 709 

uncertainty. To address this concern and verify the reliability of our findings, we have also 710 

incorporated data from 2021 and 2022, thereby extending the baseline period. This additional 711 

analysis aids in assessing the consistency and robustness of our results. We then examined how 712 

these metrics changed for different vegetation types and aridity conditions with different heat 713 

stresses. The vegetation types were determined by the MODIS land cover map, including 714 

evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous broadleaf forest 715 

(DBF), mixed forest (MF), shrubland, savanna, grassland, and cropland. Since we found that ENF 716 

showed shifted diurnal metrics during the heatwave, as did shrubland, savanna, and grassland, 717 

while EBF, DBF, MF and cropland were more resistant to the heat condition, we then discussed 718 

them separately as two types based on their responses and combined the three other forest types as 719 

non-ENF. The heat stress was quantified by the standardized normalized anomaly of air 720 
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temperature (Ta_ano) and VPD (VPD_ano) in the 2020 heatwave period relative to the multiyear 721 

average during 2000– 2019. Daily air temperature and VPD in August from 2000 to 2020 were 722 

obtained from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2). 723 

The global aridity map was obtained from the Global Aridity Index (Global-Aridity) and the 724 

Global Potential Evapo-Transpiration (Global-PET) Geospatial Database 68. The aridity index (AI) 725 

defined as the ratio of mean annual precipitation to mean annual potential ET ranged from 0 to 726 

more than 2 with a higher value indicating a more humid condition. The aridity conditions were 727 

grouped by six AI bins (0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, 0.8–1, and > 1) to explore their responses 728 

to the heatwave. The AI threshold of 0.65 was used to separate the drylands (AI <= 0.65; Fig. S2) 729 

and non-drylands (AI > 0.65) in our analyses 44. We also examined the relationship between CGPP 730 

and the corresponding change in daily GPP to understand how the shift in diurnal metrics affected 731 

the daily aggregated GPP. We further explored at which hour ecosystems had the largest loss of 732 

GPP during the heatwave compared to the normal years. This question further sheds light on the 733 

symmetrical or asymmetrical diurnal variations of GPP in the heatwave. If the heatwave only 734 

inhibits photosynthesis without altering its diurnal shape (i.e., uniformly), the largest loss of GPP 735 

should occur at the time when the vegetation is most productive, such as near noon; otherwise, it 736 

should occur at other times.  737 

        Finally, we further aimed to confirm the robustness of the observed shift in diurnal metrics 738 

revealed by gridded GPP estimations using EC flux site data. The site-level validation was twofold: 739 

solely based on the EC flux site data and based on modelled GPP data driven by site explanatory 740 

variables. During the examined heatwave period (August 14–19), not all the sites experienced a 741 

severe heatwave, and thus we extended the heatwave period throughout August. If the site had a 742 

positive Ta_ano larger than 1.5 for at least five consecutive days, then it was used to explore the 743 
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effect of the heatwave. The used sites are listed in Table S2. We also selected four sites with 744 

different vegetation types to demonstrate how the environmental factors (Ta, VPD, SW) and GPP 745 

varied over the course of a day under normal and heatwave conditions. The four sites included 746 

woody savanna (Tonzi Ranch, US-Ton), grassland (Walnut Gulch Kendall Grasslands, US-Wkg), 747 

ENF (Valles Caldera Ponderosa Pine, US-Vcp), and cropland (Rosemount I18_South, US-Ro5). 748 

Exploration of environmental regulation on diurnal cycle of GPP 749 

        To further understand the regulation of water and heat stresses on the diurnal behavior of 750 

ecosystem photosynthesis, we examined the relationships between three diurnal metrics (CGPP, 751 

Hourpeak, RatioA/M) and daily environmental variables for different vegetation types. For the diurnal 752 

shift and environmental controls, both results from the regional level based on gridded data and 753 

the site level based on EC flux data are provided. For the regional level, the diurnal metrics, VPD, 754 

and LST were averaged per year for each vegetation type, and then their correlations were 755 

examined. For the pixel level, we examined their relationship for all the pixels for three years and 756 

provided the pixel-level relationships for each vegetation type for CGPP. The slope of VPD (or LST) 757 

–CGPP relationship was used to describe the sensitivity of CGPP to the variations of VPD and LST.  758 

We also carried out analogous analyses to compare the distinct responses between drylands (AI 759 

<= 0.65) and non-drylands (AI > 0.65), and to investigate the effects of varying baseline periods, 760 

whether two or four years. In addition, we also examined the relationships between the three 761 

diurnal metrics and environmental variables based on EC flux data with air temperature included 762 

in the analyses. 763 

        Since we used MODIS NDVI to estimate the hourly GPP estimations, the diurnal asymmetry 764 

of GPP if observed was assumed to be mainly resulting from the diurnal variations in light use 765 

efficiency (LUE) considering generally the symmetrical diurnal cycle of radiation. We then 766 
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calculated hourly LUE and examined its hourly anomaly during the heatwave relative to normal 767 

years to examine how LUE accounted for the shift in diurnal metrics. The strict definition of LUE 768 

is GPP divided by the product of photosynthetically active radiation (PAR) and the fraction of 769 

absorbed PAR (fPAR). In this study, LUE was approximated by hourly GPP divided by the product 770 

of NDVI and hourly SW, considering the following: 1) we only aimed to analyze the relative 771 

change of LUE per hour during the heatwave rather than use its absolute value; 2) NDVI and 772 

hourly SW data were already processed and included in our analyses, and NDVI is often used as 773 

a proxy of fPAR and SW scales with PAR. We calculated the hourly LUE anomaly (expressed as 774 

the difference of LUE under normal and heatwave years divided by LUE in the normal years) to 775 

explore its relationship with variations of diurnal metrics. Specifically, we counted for the 776 

proportions of pixels with a negative CGPP anomaly (morning-shifted) when the decrease of LUE 777 

was smaller than 0%, 20%, and 50%, respectively, and further examined the LUE anomaly across 778 

hours for three situations: 1) drylands with Ta_ano >= 1; 2) non-drylands with Ta_ano >= 1; and 779 

3) drylands with Ta_ano >= 2. This could indicate how the LUE anomaly changed across hours 780 

for different ecosystems and under different heat conditions.  781 

Calculation of daily GPP and GPP loss during the heatwave  782 

        We calculated the daily GPP based on two methods: aggregated from hourly GPP derived 783 

from GOES-R (GPPGOES) and upscaled from the instantaneous satellite observations (GPPupscaling) 784 

by assuming an ideal cosine curve and symmetrical diurnal cycle. This temporal upscaling strategy 785 

has been widely used to convert instantaneous SIF to daily SIF 17,20. We followed the temporal 786 

upscaling method proposed by 19 to obtain daily GPP from hourly GPP. Their main assumption 787 

was that the diurnal variation of the energy-related variables (GPP, ET) scaled with that of potential 788 

solar radiation (RgPOT) and the instantaneous GPP or ET could be converted to daily using the ratio 789 



38 

 

of the instantaneous RgPOT to the daily total RgPOT. This method is expected to perform better when 790 

there is no substantial asymmetry in environmental conditions between morning and afternoon that 791 

alters the diurnal shape of targeted variables. One example of the upscaling method is shown in 792 

Fig. S28. The predicted GPP from GOES exhibited a highly asymmetrical diurnal cycle with a 793 

peak time at 9 am, while the upscaled GPP scaled with radiation showed a symmetrical diurnal 794 

cycle with a peak time at 12 pm. The upscaled GPP from GPP at 8 am overestimated the hourly 795 

GPP for most hours, leading to an overestimation of 88.2% for the daily GPP, while the upscaled 796 

GPP from GPP at 12 pm underestimated the hourly GPP for most hours, leading to an 797 

underestimation of 60.9% for the daily GPP. 798 

        We obtained multiple GPPupscaling values upscaled from five single hours (8 am, 10 am, 12 799 

pm, 2 pm and 4 pm) and then compared their difference with GPPGOES in both normal and 800 

heatwave years to provide insight into the effect of selected upscaling time and heat conditions on 801 

the resulting daily GPP. The probability distribution of biases was calculated for both drylands and 802 

non-drylands for both years. We also estimated the daily GPP based on the fixed hourly LUE 803 

upscaling scheme, which assumed LUE remains invariant over the course of a day, and compared 804 

the results with GPPupscaling. For example, if we had GPP and SW at 8 am, then the LUE at 8 am 805 

was used to infer GPP at other times with known hourly SW. In fact, the radiation-based upscaling 806 

method also implicitly used a fixed hourly LUE throughout the day.  807 

        We illustrated how the regional-averaged GPPupscaling under/overestimated the GPPGOES across 808 

hours in both normal and heatwave years and how this bias changed with increasing heat conditions 809 

using GPPupscaling derived from 2 pm as an example. The bias was calculated as the difference of 810 

GPPupscaling and GPPGOES divided by GPPGOES and then compared across hours in both years. The 811 

difference of bias between the normal and heatwave years (biasnormal – biasheatwave) was then 812 
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calculated for each hour under four conditions: 1) Ta_ano >= 1; 2) Ta_ano >= 2; 3) Ta_ano >= 2 813 

and only for shrubland and grassland; and 4) Ta_ano >= 3 and only for shrubland and grassland. 814 

The heat conditions and diurnal asymmetry in GPP increase from condition 1 to 4. We further 815 

examined how the bias was propagated to the calculation of GPP loss across hours during the 816 

heatwave. We first calculated the GPP loss in percentage based on both the GPPupscaling (the 817 

difference of GPPupscaling_heatwave and GPPupscaling_normal divided by GPPupscaling_normal) and GPPGOES 818 

(the difference of GPPGOES_heatwave and GPPGOES_normal divided by GPPGOES _normal) for each hour, 819 

and then examined how this difference by two methods varied under the four aforementioned 820 

conditions. Finally, based on the daily GPP estimates from two methods, we calculated the regional 821 

total GPP from August 14 to 19 in the normal and heatwave years, and compared their difference 822 

in quantifying the total dryland GPP loss during the heatwave across the region (Ta_ano >= 1 and 823 

AI <= 0.65). For the upscaling methods, we provided all the results based on GPPupscaling derived 824 

from 8 am to 4 pm, respectively.  825 
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