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Abstract

Emerging new-generation geostationary satellites have opened up new opportunities to investigate
the diurnal cycle of ecosystem functions. Here we exploit observations from the Geostationary
Operational Environmental Satellite (GOES)-R series to examine the effect of a severe U.S.
heatwave in 2020 on the diurnal variations of ecosystem photosynthesis. We find divergent
responses of photosynthesis to the heatwave across vegetation types and aridity gradients, with
drylands exhibiting widespread midday and afternoon depression in photosynthesis. The diurnal
centroid and peak time of dryland gross primary production (GPP) substantially shift towards
earlier morning times, reflecting significant water and heat stress. Importantly, our geostationary
satellite-based method outperforms traditional radiation-based upscaling methods from polar-
orbiting satellite snapshots in estimating daily GPP and GPP loss during heatwaves. These findings
underscore the potential of geostationary satellites for diurnal photosynthesis monitoring and
highlight the necessity to consider the increased diurnal asymmetry in GPP under stress when

evaluating carbon—climate interactions.
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Introduction
Over recent decades, our Earth has experienced a notable increase in record-breaking high

temperatures 1.2

, with the western United States (henceforth “U.S.”) emerging as a climatic
“hotspot”. This region has endured recurring drought and heatwave events since the mid-2010s >~
3, resulting in dire consequences for both natural and human systems, including unprecedented
water shortages, increased wildfires, significant agricultural losses, and heightened human
mortality %’. Dominated by water-limited dryland ecosystems ®, the western U.S.—particularly the
Southwest—faces exacerbated water stress due to more frequent and protracted droughts and
heatwaves. Such conditions can significantly impair or even suppress ecosystem photosynthesis
and carbon uptake, ultimately influencing the global carbon cycle's interannual variability *-!°.
Investigating vegetation photosynthesis at various temporal scales offers valuable insights
into vegetation growth, carbon uptake, and environmental interactions. While longer time scales
(e.g., monthly, seasonal, annual) reveal variations in photosynthesis influenced by vegetation
phenology, weather/climate, and nutrient availability, photosynthesis at shorter scales (i.e., sub-
daily) is mainly affected by solar radiation and other environmental factors such as temperature,
soil moisture, and vapor pressure deficit (VPD) that modulate plant function, particularly stomatal
conductance 712, Over the past thirty years, ecosystem-level vegetation photosynthesis (i.e., gross
primary production, GPP) has been inferred from polar-orbiting satellite observations, such as
Landsat, the Moderate Resolution Imaging Spectroradiometer (MODIS), and the Orbiting
Carbon Observatory 2 (OCO-2) '8, However, these satellites, with their daily to multi-day
observation intervals, are adept at monitoring GPP at longer scales but limited in capturing diurnal

variations !> %, Consequently, direct interactions between photosynthesis and environmental

factors at sub-daily scales (e.g., "midday depression") can be obscured or averaged out when
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aggregating instantaneous variables to daily or longer time scales?!. Fortunately, in recent years,
emerging sub-daily Earth observations have been available from several satellites and instruments
21 including new-generation geostationary satellites 2> and the ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station (ECOSTRESS) !*%} and the OCO-3 %* on board the
International Space Station (ISS). These innovative satellite observations present unparalleled
opportunities to study diurnal variations in vegetation photosynthesis and their response to the
environmental conditions over the course of a day at large spatial scales 212326,

In contrast to ECOSTRESS and OCO-3 observations, which are spatially and temporally

sparse and not continuous throughout the day 3728

, new-generation geostationary satellites such
as the Geostationary Operational Environmental Satellite-R (GOES-R), Geostationary Korea
Multi-Purpose Satellite-2A (GK-2A) offer high-frequency observations (ranging from several
minutes to hourly) of radiance, surface reflectance, and land surface temperature (LST) at
moderate spatial resolutions (1-3 km). This has facilitated groundbreaking research that transcends
traditional applications of polar-orbiting satellites, including enhanced monitoring of vegetation
seasonality in the cloud-covered Amazon », investigation of diurnal behavior of urban heat island
3% and wildfires *!, and mapping of photosynthesis at various times of day 2'*. However, no studies
have yet harnessed geostationary satellite observations to monitor diurnal variations in vegetation
photosynthesis in relation to droughts or heatwaves on a broad spatial scale.

Here we estimate hourly GPP across the Conterminous U.S. (CONUS) based on GOES-R
observations along with other ancillary inputs and then investigate how the diurnal cycle of
photosynthesis responds to the severe late-summer heatwave of 2020 (Fig. S1). This heatwave

affected nearly the entire western U.S., encompassing both water-sensitive dryland ecosystems

(Fig. S2) and more drought-resilient ecosystems, offering a valuable opportunity to examine their
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potentially divergent responses. To the best of our knowledge, this study represents the first
exploration of how heatwaves impact the diurnal dynamics of photosynthesis at a continental scale.
Our findings reveal a widespread midday and afternoon depression of photosynthesis in dryland
ecosystems during the heatwave, a phenomenon not discernible through polar-orbiting satellite
observations. We investigate the environmental regulation of diurnal photosynthesis dynamics
across diverse ecosystems and elucidate how current methods for upscaling polar-orbiting satellite

snapshots to daily means may under- or overestimate daily GPP.

Results
Widespread midday and afternoon depression in ecosystem photosynthesis during the
heatwave

We first estimate hourly GPP across the CONUS using a machine learning method driven by
GOES-R observations and other gridded variables including LST, shortwave incoming radiation
(SW), VPD, normalized difference vegetation index (NDVI), and land cover type. From this, we
derive three diurnal metrics: the diurnal centroid of GPP (Cgpp), GPP peak hour (Hourpeax), and
the ratio of afternoon GPP to morning GPP (Ratioa/v) (Materials and Methods). We then calculate
the difference between the heatwave year 2020 and two preceding more regular years (2018 and
2019) and refer to this difference as “anomaly”.

The 2020 anomaly maps of the three diurnal metrics reveal a widespread midday and
afternoon depression in ecosystem photosynthesis during the heatwave in the western U.S. (Fig.
la, S3). Capp and Hourpeak shift towards earlier morning for the majority of the western regions,
and the Ratioa/wm also shows a marked decline. For example, for dryland regions experiencing a

standardized normalized air temperature anomaly (henceforth “Ta_ano”) larger than 1 (Fig. S2),
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66.9% exhibit morning-shifted Cgpp. In some dryland regions where the diurnal cycle of GPP was
asymmetrical in the normal years (Fig. S4), the heatwave further suppresses photosynthesis from
noon onwards and leads to increased diurnal asymmetry in GPP. The shift in diurnal metrics
positively correlates to the daily GPP change, implying that the morning-shift in diurnal metrics
generally results in a decrease in daily total GPP (Fig. S5).

The diurnal metrics exhibit divergent responses to the heatwave across vegetation types and
along aridity gradients (Fig. 1b, S3). Overall, shrubland and grassland are more sensitive to the
heatwave than the other vegetation types (e.g., forest, savanna, and cropland). Among forests, only
the evergreen needleleaf forest (ENF) sees a systematic shift in Copp and Hourpeak, while the other
forests are more resistant to the heatwave, maintaining relatively stable diurnal cycles. The impact
of the heatwave on the diurnal cycle of photosynthesis is predominantly observed in arid and semi-
arid regions with an aridity index (AI) below 0.6, and the shift becomes weaker as the Al increases
(towards more humid conditions). The findings related to the widespread midday and afternoon
reduction in ecosystem photosynthesis, along with the differing diurnal metric responses to
heatwaves across various vegetation types and aridity gradients, remain almost unchanged when
the baseline period for calculating the mean of variables under normal conditions is expanded to
2018-2022 (Materials and Methods; Fig. S6).

The regional-mean diurnal course of environmental variables and GPP (Fig. 1c) shows that,
as expected, both LST and VPD are significantly elevated during the heatwave compared to normal
years. For drylands, the intensified heat condition leads to a GPP peak time occurring 2 hours
earlier, and correspondingly morning-shifted Cepp and Ratioan. In contrast, the diurnal metrics of
non-dryland regions exhibit only minor changes. The higher morning-time GPP of drylands and

the resistance of non-dryland ecosystems to the heat condition are further confirmed by eddy-
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covariance (EC) data from flux towers (Fig. S7, S8) and using the original GOES LST without
gap-filling (Fig. S9). Fig. S10 provides a representative example of the diurnal course of
environmental and vegetation variables at four sites with different vegetation types, based on EC
observations. More dryland sites with earlier occurrence of GPP peak hour during heatwaves are
provided in Fig. S11. These site-level observations are consistent with our regional-level findings

derived from gridded GPP estimates.
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Fig. 1. Changes in environmental variables, GPP and diurnal metrics during the heatwave from August 14
to 19, 2020 relative to 2018 and 2019 across the CONUS. a. Standardized normalized anomalies of air
temperature (Ta_ano, unitless) from MERRA-2 and diurnal centroid changes (units: hour) from August 14
to 19, 2020 relative to the multiyear average. b. Different responses of diurnal metrics to the heatwave
across vegetation types and along aridity gradients (smaller Al values indicate more arid conditions),

respectively. ENF, NENF (or Non-ENF), SHR, SAV, GRA, and CRO represent evergreen needleleaf forest,

other forests except for ENF, shrubland, savanna, grassland, and cropland, respectively.



143
144
145
146
147
148
149
150
151
152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

Boxplots illustrate the distribution of diurnal change: the box represents the interquartile range (IQR),
containing data from the 25th percentile (Q1) to the 75th percentile (Q3); the horizontal line inside the box
indicates the median (50th percentile); the whiskers extend to the minimum and maximum values within
1.5 times the IQR from Q1 and Q3, respectively; the outliers beyond this range are plotted as individual red
plus symbols. ¢. Regional-mean hourly LST, VPD, SW, and GPP for drylands and non-drylands in normal
(black) and heatwave (red) years. C-heat, P-heat, and R-heat represent the diurnal centroid of GPP (Cgpp),
GPP peak hour (Hourpeak), and the ratio of afternoon GPP to morning GPP (Ratioam) during the heatwave,
while C-nor, P-nor, and R-nor represent these metrics in the normal years. The hours mentioned here
correspond to local time.

In the event that the impact of a heatwave on ecosystem photosynthesis was consistent and
uniform across hours throughout the day, the largest loss of GPP during the heatwave would be
expected at the time when vegetation had maximum productivity. However, our findings reveal a
substantial downregulation of photosynthesis from noon onwards, leading to the largest GPP loss
at noon or during the afternoon for the majority of western regions. Notably, this timing occurs
later than the GPP peak hour during the heatwave year for 72.6% of dryland regions (Fig. S12),
further substantiating the asymmetric influence of heatwaves on diurnal photosynthesis
fluctuations.

Environmental controls on diurnal behavior of ecosystem photosynthesis

We examine the controls of different environmental factors on diurnal variations of
ecosystem photosynthesis at both regional and pixel levels (Materials and Methods). The regional-
mean daily VPD and LST show strong negative relationships with regional-mean Cgpp (R?=0.91
and 0.77, p<0.0001), suggesting that the increase of heat and water stress contributes to an earlier
coming of Cgpp (Fig. 2a). At the pixel level, the negative relationships are still observed despite
the weaker correlations (R*=0.36 and 0.24, p<0.0001). The pixel-level relationships for different
vegetation types (Fig. 2¢, S13) show that shrubland has the strongest negative relationships and

largest negative slopes between Cgpp and VPD (R?=0.55, slope= -0.04 hour per hPa) or LST
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(R?=0.44, slope=-0.1 hour per °C) among all the vegetation types, followed by ENF and grassland.
A 1-hPaincrease in VPD leads to a 0.04-hour morning-shift in shrubland Cgpp, and a 1-°C increase
in LST advances Cgpp by 0.1 hour. Overall, the Cgpp of drylands exhibits twice the sensitivity
(slope) to VPD variations and five times the sensitivity to LST variations compared to non-dryland
regions (VPD: -0.027 vs. -0.014 hour per hPa; LST: -0.039 vs. -0.008 hour per °C) (Fig. 2c, S14).
The relationships between regional-mean Hourpeax (or Ratioanm) and daily VPD (or LST) (Fig. S15)
are similar to those observed between Cgpp and VPD (or LST). Fig. S16 further substantiates the
consistency of the responses of the Copp to VPD and LST across the two baseline periods. Notably,
the slope of the Cgpp to changes in VPD and LST is almost identical the two baseline periods. The
environmental controls on diurnal photosynthesis dynamics are further confirmed by EC flux
tower observations (Fig. S17), which indicates that diurnal metrics are more strongly regulated by
VPD (R?=0.47-0.60, p<0.001) and LST (R?=0.46-0.58, p<0.001) than by Ta (R*=0.33-0.35,

p<0.001).

10
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Fig. 2. Relationship between diurnal centroid (Cgpp) and daily VPD (or LST). a. Regional-mean (first row)
and pixel-level (second row) relationships between Cgpp and VPD (or LST). Filled circles represent the
heatwave year, and hollow circles represent normal years with error bars indicating the standard deviation
of Cgpp. The solid line represents the best-fit line derived from linear regression analysis, and two dashed
lines represent the 95% confidence interval for the regression estimate. There are 18 circles in the first row
(three years multiplied by six vegetation types). b. Illustrates the slope of VPD (or LST)-Cgpp linear
relationship for different vegetation types and for drylands or non-drylands. NENF (or Non-ENF)

represents other forests, excluding ENF. The units of slope are hour per hPa and hour per °C, respectively.

Since light use efficiency (LUE) reflects the impact of changes in the environment on plant

photosynthesis without the strongly dominant solar radiation signal present in GPP, we calculate

11
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hourly LUE to examine how it varies over the course of a day during the heatwave (Materials and
Methods, Fig. S18). The spatial patterns of hourly LUE anomaly coincide with those of the GPP
diurnal metrics (Fig. 3a), with widespread negative anomalies in the western U.S. This indicates
that the LUE changes contribute to the observed shifts in diurnal GPP metrics during the heatwave.
As LUE decreases, 69.2% of drylands exhibit a morning shift in Cgpp, with this proportion
increasing to 76.5% and 84.2% for regions experiencing larger LUE reductions (<20% and <50%).
In contrast, LUE decreases lead to less pronounced changes in Cgpp for non-dryland regions (Fig.
3b). Figure 3c illustrates that, in non-drylands, the LUE only decreases by 0—12% over the course
of a day, while in drylands, the hourly reduction in LUE is around 20% and intensifies as the heat
stress increases (Ta ano from 1 to 2). For both ecosystems, the most substantial LUE decline

occurs in the early afternoon.

12
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Fig. 3. LUE variations during the heatwave. a. Hourly change in LUE (expressed as a percentage) during
the heatwave compared to normal years. b. Probability distribution of diurnal centroid change in response
to daily LUE decrease for three different situations: daily decrease of LUE <= 0%, 20% and 50%,
respectively. c. Hourly LUE change over the course of the day for three different situations: drylands with
Ta_ano >=1 (red circles); drylands with Ta_ano >= 2 (red squares), and non-drylands with Ta_ano >=1

(pink circles).

Geostationary satellite-based method better estimates daily GPP and GPP loss during the
heatwave

We first compare the daily GPP upscaled from a single hour (GPPypscaiing) based solely on
radiation, which emulates polar-orbiting satellites, with daily GPP aggregated from our hourly
GPP derived from GOES-R (GPPgors) (Materials and Methods). Fig. 4 shows the spatial
difference maps between daily GPPupscaling upscaling from GPP at either 8 am, 10 am, 12 pm, 2

pm, or 4 pm and daily GPPgors for both normal and heatwave years. The results clearly

13
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demonstrate that, for both years, using a snapshot from the earlier part of the morning (e.g., 8 am)
and solely considering radiation variations for daily upscaling !° lead to an overestimation of daily
GPP across the majority of the U.S. Conversely, utilizing an afternoon observation for daily
upscaling (e.g., 2 pm) results in an underestimation of daily GPP. The upscaling method relies
only on radiation and does not account for changes induced by varying environmental stresses and
LUE throughout the day. Similar results are observed when using fixed hourly LUE to estimate
daily GPP (Fig. S19). Notably, these errors are also widespread in the normal year but become

even more pronounced during the heatwave year.
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Fig. 4. Difference of daily GPP based on upscaling from single hours: 8 am to 4 pm and aggregated from
hourly GPP based on GOES-R during August 14-19 in both normal and heatwave years. Difference is
calculated as (GPPypscating-GPPgors)/GPPsoes. The red/blue pixels indicate over/underestimation of daily
GPP based on the upscaling method compared to GPPgogs. Third column shows probability distribution of
GPP over/underestimations for drylands and non-drylands in both years. The hours mentioned here
correspond to local time.

Biases stemming from the radiation-based upscaling method can also affect the calculation of
GPP difference between normal and heatwave years (Fig. 5). The upscaling-based regional-
averaged GPP (here, using 2 pm as an example) exhibits highly symmetric diurnal cycles, and
underestimates GPPgogs with asymmetrical diurnal cycle in both years, primarily during morning
hours (Fig. 5a). The underestimation is more pronounced in the heatwave year, resulting in an
overestimation of heat-induced GPP loss duing morning hours and consequently an overestimation
of daily GPP (Fig. 5b). As heat conditions and diurnal asymmetry in GPP intensify, the
underestimation of GPPupscaling relative to GPPgoes and the overestimation of heat-induced GPP
loss using GPPypscaling both largely increase (Fig. S20). We further calculate the regional total daily
GPP for drylands from August 14 to 19 for normal and heatwave years. Both daily GPPupscaling
from all single hours and GPPgoks capture the decline of dryland productivity during the heatwave
(Fig. 5d). The estimated GPP loss for the entire region during the heatwave period based on
geostationary GOES-R is approximately 0.4 Tg C per day, while GPP loss based on upscaling

from different hours ranges from 0.25 to 0.6 Tg C per day.
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Fig. 5. Difference in estimating regional-mean hourly GPP and daily GPP loss using the upscaling-based
method (GPPupscating) and the GOES-based method (GPPgogs). a. Shows regional-mean hourly GPP based
on the two methods during August 14—-19 in both normal and heatwave years under Ta_ano >= 1. The
difference between two GPPs is larger in 2020 (longer vertical black line) than that in 2018 (shorter vertical
black line). b. Shows difference between GPPuypscaiing and GPPgors calculated as (GPPupscating -
GPPgogs)/GPPgoks in both years for each hour (upper) and the resulting biases propagated to the calculation
of GPP loss during the heatwave (lower) under Ta ano >= 1. For example, at 8 am, GPPypscaiing
underestimates GPPgors by 24% in the normal year, but by 39% in the heatwave year. When calculating
GPP loss, GPPgogs only detects about a 5% decrease in GPP at 8 am, while GPPypscaiing Overestimates the
GPP loss (~12% decrease). c. Shows the regional total daily GPP loss from August 14 to 19 during the
heatwave year based on two methods. Light green bars denote GPP loss based on GPPypscaiing from different
hours: 8 am to 4 pm, respectively, and dark green bar denotes GPP loss based on GPPgors. The hours

mentioned here correspond to local time.

Discussion and conclusions
With the recent launch of new-generation satellites capable of diurnal sampling, several

pioneering studies have explored their potential for monitoring the diurnal cycle of photosynthesis
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1321.263233 _Our hourly GPP estimates, based on GOES-R satellite observations, effectively capture
the diurnal dynamics of ecosystem photosynthesis in response to heatwaves at the regional scale.
For the first time, we present observational evidence of an earlier occurrence of dryland GPP peak
hour during the heatwave due to widespread midday and afternoon depression in photosynthesis.
Numerous studies based on polar-orbiting satellites have extensively investigated the effects of
droughts and heatwaves on seasonal and interannual variations of photosynthesis **2°. Yet,
diagnosing the interactions between photosynthesis and environmental factors at the sub-daily
scale was previously limited to site-level investigations based on flux towers or proximal remote
sensing observations ''¥73°, One earlier study attempted to generate global monthly-averaged
half-hourly GPP by upscaling site-level half-hourly GPP data using machine learning methods *°,
but this approach could not track the diurnal dynamics of photosynthesis for each day. A recent
study used OCO-3 solar-induced chlorophyll fluorescence (SIF) data based on the Snapshot Area
Mode (SAM) for the first time to demonstrate that a heatwave in Australia led to a decline in plant
photosynthesis in the afternoon. OCO-3 SAM data, however, are only available in a very limited
number of areas across the globe, and thereby do not allow for studies over broad spatial domains
like the CONUS. Another recent study also revealed the afternoon depression of dryland
photosynthesis based on SIF from OCO-3 during the drought, but the real change in diurnal
photosynthesis dynamics could not be quantified due to the sparse and discontinuous OCO-3
measurements 4!, With the high frequency of GOES-R observations, we generate hourly GPP
maps for all days during the heatwave across the CONUS at a high spatial resolution (~0.025°).
We reveal an asymmetrical diurnal response of GPP to environmental stresses across a wide range
of dryland ecosystems in the western U.S., and the peak time of GPP shifts further towards earlier

morning times during the severe heatwave. In contrast, OCO-3 SIF data particularly in nadir/glint
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mode are extremely sparse both spatially and temporally, and only relying on averaged morning
or afternoon observations over large space and long time windows (e.g., 1° and monthly) ignores
the spatial and day-to-day variations within those windows *!. GOES-R observations further enable
us to quantify how much morning-shift in GPP diurnal metrics and subsequently heatwave-
induced loss of GPP the increase of VPD and LST led to, which is not possible using current OCO-

3 SIF data.

The midday or afternoon depression in dryland photosynthesis has been reported at the site
level using GOES-R or ECOSTRESS data '**? and at the regional scale using satellite SIF 334142,
This depression has a crucial effect on integrated daily photosynthesis and ultimately the
accumulated vegetative biomass of drylands **. Although drylands are considered better adapted
to high temperatures and water-deficit conditions, heatwave events with increasing persistence and
severity are pushing these ecosystems beyond their historical regimes. The frequent and
widespread earlier depression of carbon uptake could result in a higher risk of hydraulic failure '*.
The way in which the ongoing global warming alters the climatic responses of dryland
photosynthesis across time scales requires further investigation ***°. To that end, emerging efforts
have been made recently by using new techniques, observational platforms, and datasets to better
understand the water—carbon coupling in drylands from sub-daily to interannual scales 2!-3340:41:46.47,
Our study further reveals the increased diurnal asymmetry of dryland photosynthesis during
heatwaves and the contrasting diurnal responses of non-dryland ecosystems to heat stress. By

quantifying the ecosystem-specific sensitivity of diurnal photosynthesis to environmental factors,

such as LST and VPD, our study can contribute to the benchmarking of land surface models at the
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sub-daily scale. Additionally, it may help predict how the diurnal cycle of GPP will respond to
climate change in the near future.

The widespread depression of dryland GPP from noon onwards highlights the importance of
considering the asymmetrical diurnal cycle when upscaling photosynthesis from the hourly to daily
scale. Neglecting this asymmetry can lead to substantial biases in daily total GPP estimates *°. This
underscores the value of geostationary satellites, while also raising concerns about studies that
examine the response of dryland photosynthesis to climate based on snapshots from polar-orbiting
satellites. Currently, there are generally two ways for generating daily estimation of photosynthesis

1415 or upscaling instantaneous

(such as GPP and SIF): using daily-averaged environmental drivers
photosynthesis observations from polar-orbiting satellites by assuming an ideal symmetrical
radiation pattern (with a peak at solar noon) over the course of the day '7!1°4%4° Both approaches
may introduce additional biases. For GPP models driven by daily-mean meteorology, the
averaging effect can lead to a misinterpretation of environmental regulation on photosynthesis. For
instance, if high temperatures only reduce midday GPP rather than daily mean GPP, using daily-
mean GPP and temperature may not reveal the true interaction between climate and ecosystems.
For daily photosynthesis estimates based on upscaling methods, biases can be largely offset by
using both morning and afternoon observations as did in BESS model '° which utilized the average
of GPP derived from both Terra (10:30 am) and Aqua (1:30 pm), but are inevitable for current
satellite SIF data since the daily SIF is converted from snapshots either in the morning (GOME-2)
or at midday (GOSAT, OCO-2, TROPOMI) "8 Therefore, when using satellite SIF data to

explore the environmental responses of photosynthesis, weakened or enhanced responses should

not be directly interpreted as the internal response of ecosystems.
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Our study demonstrates the potential of incorporating sub-daily environmental information
from geostationary satellites to monitor diurnal photosynthesis dynamics under stress. Our
methods can be extended to different regions globally as more and more observations from new-
generation geostationary satellites or global continuous products become available, such as
GeoNEX—a collaborative effort from global geostationary satellite sensors 2%°%!, Furthermore,
our approach for estimating hourly GPP can also be applied to estimating hourly ET and water use
efficiency (WUE) 2!°2. This would help gain insight into changes in plants use water at the sub-
diurnal time scales and its response to environmental factors. Addressing these critical scientific
questions will become increasingly valuable as global warming intensifies. In the near future, the
possibly distinct influences of heatwaves on the diurnal dynamics of photosynthesis at different
phenological stages of vegetation (e.g., green-up, senescence) can be further explored. In addition,
as heatwaves will continue to occur, it is essential to evaluate whether the morning shift of the
diurnal cycle of dryland photosynthesis will become more pronounced and whether an irreversible
shift poses a risk of vegetation mortality. Upcoming missions (e.g., TEMPO %3, Sentinel-4 >%) that
may provide temporally frequent and continuous observations of photosynthesis proxies (e.g., SIF)
will offer new opportunities to further advance dryland photosynthesis research and understanding

at the sub-daily scale.
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Materials and methods
Severe U.S. heatwave in August 2020

The western part of the U.S., especially the Southwest, has frequently been hit by heatwaves
and droughts in recent years >. In mid-August 2020, a severe heatwave occurred over the majority
of the U.S. states, with standardized normalized anomaly of daily temperature approaching a value
of 5 in California (Fig. S1, S2). This heatwave coincided with a record-high precipitation deficit,
and it mainly affected the western U.S., with southwestern states including Arizona, Nevada, Utah,
Colorado and New Mexico experiencing the hottest conditions. According to one recent study, this
exceptional heat and atmospheric dryness led to a significant loss of local ecosystem productivity
54 Here, we selected August 14 to 19, 2020, as the heatwave period (Fig. S1, S2) to examine how
the heatwave affected the diurnal dynamics of ecosystem photosynthesis. Notably, in fact, the hot
conditions started as early as June for many regions in the Southwest. The heatwave in the selected
period spread to more widespread regions including California with extreme heat conditions
Model training and evaluation

We used a Cubist regression tree model > to predict half-hourly or hourly GPP. The Cubist

model creates a series of rules between the target variable GPP and the explanatory variables,
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where their relations are explicitly expressed in multivariate linear models. Cubist helps to find
the corresponding rules that explanatory variables match, and generates predictions based on these
rules. Sometimes, Cubist creates multiple predictions when more than one rule matches, and the
average value of these predictions is used to determine the final prediction. The Cubist model has
been successfully used in previous studies to predict carbon-related variables including net
ecosystem carbon exchange (NEE), GPP, and SIF >3 More details on the Cubist model can be
found in these studies.

Three types of explanatory variables were considered for predicting GPP in this study,
including three environmental variables (LST, SW and VPD), one vegetation variable (vegetation
indices such as NDVI, the enhanced vegetation index (EVI) or the near-infrared reflectance of
vegetation (NIRv)), and one categorical variable (land cover type) (Table S1). The five selected
variables were considered to have close relationships with GPP, and the roles of environmental
variables in regulating the diurnal variations of EC GPP has been demonstrated in one of our
previous studies 3.

Half-hourly or hourly VPD and SW were obtained from EC flux towers from 77 AmeriFlux
sites (Table S2). The sites were selected based on their data availability covering August 2020 and
their homogeneity, which was determined by the consistency between the land cover type of the
site and the dominant land cover of the 0.05° grid cell. The land cover type was determined based
on the site description. The REddyProc software °7 was used to fill the gaps in the EC data. In this
study, to partition NEE into GPP, we used both daytime °® and nighttime partitioning methods *.
The samples with differences of the GPP estimates based on the two methods over 10 umol CO»
m s”! were excluded from the training. The LST was obtained from GOES-16 % which is the first

mission of the GOES-R series and was launched by the National Oceanic and Atmospheric
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Administration (NOAA) in November, 2016. The hourly GOES-16 LST was then extracted for
each site at the grid cell where the site was located.

We extracted and calculated three vegetation indices (NDVI, EVI and NIRv) for each site
from the daily MODIS bidirectional reflectance distribution function (BRDF)-corrected
reflectance product MCD43A4 (Collection 6, 500 m) through MODIS and VIIRS Land Products
Global Subsetting and Visualization Tool (ORNL, 2018). This was performed differently from a
recent study ° that converted the top-of-atmosphere radiances from GOES-16 to top-of-
atmosphere reflectance and derived the BRDF-corrected surface reflectance using the radiative
transfer model and BRDF model for two reasons. First, the heatwave in August 2020 mainly hit
the dryland ecosystems. During the heatwave, the diurnal variations of GPP are mainly controlled
by solar radiation and environmental factors (such as VPD and air temperature). The contribution
of the canopy structure to the diurnal GPP during short time scales is assumed to be much smaller
than that of physiological changes ¢!. Second, MODIS provides operational BRDF-corrected
reflectance products that have been validated across temporal and spatial scales and different
ecosystems 2, while GOES-R requires further efforts to produce and comprehensively validate its
BRDF products, which is beyond the scope of the current study.

In total, we obtained more than 500, 000 half-hourly or hourly samples from May 2017 to
December 2020 for 77 AmeriFlux sites (Table S2). Only flux data (GPP, VPD, SW) with a good
quality-flag equal to 0 or 1 (0 = original, 1 = most reliable) were used for model development, and
for MODIS vegetation indices, only the observations with a quality flag equal to 0 indicating good
quality and full BRDF inversion were used. For training, we first sorted the samples based on the
LST values and then divided them into 14 bins ranging from -10 °C to 60 °C with 5 °C interval. In

each bin, we randomly selected two-thirds of the data as training samples, and the remaining one-
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third as testing data. Compared with the completely random selection method, this processing
ensured that both the low and high values of LST could be uniformly sampled, and that the LST
distribution in the training and testing datasets was consistent. We also tested the performance of
GPP predictions in each LST bin by increasing the proportion of samples with higher LST (e.g., >=
30 °C). In addition, we further assessed the model performance using the leave-one-out validation
method to provide a more objectively evaluation of our model. For each land cover type, we
randomly selected data from one site as test data, and used data from the remaining sites as training
samples. We randomly repeated the training and validation process 200 times and calculated the
mean and standard deviation of the model's performance metrics (R?> and RMSE).

Table S4 shows the statistical measures for model evaluation with GPP derived from daytime-
based method (GPP4ay). We found that the model including vegetation index, land cover, and three
environmental variables (LST, SW and VPD) performed the best in estimating the hourly GPP
(R?=0.88, RMSE=2.51 umol CO> m 2s!). When the data from same sites were not used for
training, the model still performed well, with an R2 of 0.82 = 0.06 and an RMSE=2.59 + 0.63
umol CO, m? s!) (Fig. S21). Among the five variables, vegetation index and SW were two of the
most important variables for GPP predictions, and excluding either of them significantly reduced
the accuracy of model prediction. Including either/both of GOES LST or/and ERAS5 VPD could
only slightly improve the GPP predictions (for all the samples) compared to the model solely based
on SW. However, the model with either/both the VPD or/and LST included performed much better
for the samples with higher LST (Fig. S22). For example, for samples with LST >= 40 °C,
compared with the model including both VPD and LST, the models without either/both showed a
decrease in R? by 0.05 to 0.18 and increase in rRMSE by 0.08 to 0.15. The model solely based on

radiation was unable to account for the effects of water and heat stress on photosynthesis. The
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three vegetation indices (NDVI, EVI, and NIRv) showed comparable performance for estimating
GPP. In the following analyses, we only provide the results from NDVI because it is a simple and
most widely used vegetation index, and previous studies also showed its smaller diurnal variations
and lower sensitivity to BRDF effects compared to EVI or NIRv 6364,

The model performance based GPP on derived from nighttime-based method (GPPnignt) 1s
provided in Table S5. The findings regarding the variable importance were similar to those based
on GPPgay but with lower prediction performance. For example, the RMSE of the same model
consisting of VPD, SW, NDVI, LST, and land cover increased by 12% based on GPPuyignt.
Therefore, we used the model based on GPP4ay to predict regional-level hourly GPP. The results
also showed that changing the proportion of samples with higher LST had little effect on the GPP
predictions (Table S5), and only negligibly improved the prediction for samples with higher LST
(not shown). The scatterplots of predicted GPP against EC GPP (GPPgay) are shown in Fig. S23
separately for different vegetation types.

Regional mapping of hourly GPP

Once the predictive hourly GPP model was established at the site level, we then applied it to
the regional scale to estimate hourly GPP across the CONUS driven by explanatory variables from
gridded products (Table S3). We generated hourly GPP maps in August from 2018 to 2020
(missing data of SW across our study region in 2017) at a spatial resolution of 0.025°.

The hourly SW (ABI-L2-DSRC product, 0.25°) and LST (ABI-L2-LSTC product, ~ 2 km)
were obtained from GOES-16. Information on the algorithms for generating these data from
geostationary satellites, as well as the validation and uncertainty analysis, can be found in *> and
60 The vegetation indices were derived and calculated from 0.05°, daily MODIS BRDF-corrected

reflectance products (MCD43C4). The land cover map in 2020 was obtained from 0.05° MODIS
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land cover products (MCD12C1) with the International Geosphere—Biosphere Programme (IGBP)
classification scheme. Due to the short study period (2018-2020), we did not consider the land
cover change. The hourly VPD was obtained from the ERA5-land reanalysis dataset (0.1°) . We
compared the GOES SW and ERA5 VPD against EC observations for each site (Fig. S24) and
found that the GOES SW and ERAS VPD were highly correlated with EC SW and VPD (median
R?=0.83, RMSE= 115 W/m? for SW; median R?=0.80, RMSE= 4.7 hPa for VPD). The errors
between gridded products and site observations were slightly larger than those in our previous
study ' because we only used samples in August in this study, including more samples throughout
the year with strong seasonal variations could improve the R%. The coarser resolution of GOES
SW and ERAS VPD relative to the footprint of EC flux towers could also have increased their
inconsistency. We resampled SW, VPD and vegetation indices to 0.025° by bilinear interpolation
and land cover map to 0.025° by nearest neighbor interpolation to match the spatial resolution of
GOES-16 LST.

Although GOES-16 provided many more LST observations per day compared to polar-
orbiting satellites such as MODIS, the existing cloud cover still affected the data availability of
LST ?’. Therefore, we used LST from ERAS5-land products (0.1°) ¢ to fill the gaps in GOES-16
LST data. We extracted both LST observations for the 77 sites and established the linear
relationships between the two LST observations per hour for each land cover type (Fig. S25).
When there were valid GOES-16 LST observations, we used them for regional GPP predictions,
while when they were missing due to clouds, we then used filled LST based on ERAS for GPP
predictions. Finally, we generated spatially and temporally continuous hourly GPP. To examine
the diurnal variations of GPP during the heatwave, we relied on the gap-filled GPP, and we also

compared the results generated from the original GOES LST without gap-filling. We hypothesize
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that we can also reveal the impact of the heatwave on diurnal GPP using the original GOES LST
data, but its use will be limited due to the spatial discontinuity. Auxiliary data from other sources
(e.g., ERAS) can help to overcome its limitation and enable more flexible applications.

Fig. S26 shows an example of predicted hourly GPP from 6 am to 5 pm on August 1, 2018
(Pacific Daylight Time) across the CONUS. The ecosystems start photosynthesizing at about 6-7
am (local time) when sunlight is available; GPP increases from early morning to noon with the
increase of radiation and favorable environmental conditions (such as sufficient moisture); and
then keeps decreasing in the afternoon until sunset. It also reveals contrasting productivity between
the western part of the U.S. dominated by drylands and mesic ecosystems in the eastern part
throughout the day. In the western U.S., except for some forests along the coast, most arid and
semi-arid ecosystems which are less productive exhibited lower GPP over the course of a day,
while in the eastern part, some ecosystems such as forests in the Appalachian Mountains
maintained high photosynthetic activity from early morning to late afternoon. The most productive
crops in the Corn Belt of the central U.S. were also captured by the hourly GPP maps.

Impact of heatwave on diurnal cycles of GPP

First, we averaged hourly GPP during the six days of the heatwave period (August 14-19) for
each year from 2018 to 2020. Based on the hourly GPP, we then derived three diurnal metrics for
each pixel: the diurnal centroid, GPP peak hour, and the ratio of afternoon GPP to morning GPP.
The diurnal centroid is often used to quantify the diurnal shifts in EC flux variables (NEE, GPP or
ET) induced by environmental conditions °7. For a given pixel, the diurnal centroid of GPP (Cgpp)

was defined as follows:

A Y(GPP, X t)
GPP yGPP,
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where t is the local time in decimal hours from 7—17 (7 am to 5 pm) and GPP; is the GPP at hour
t. The resulting Cgpp is the weighted mean hour of the diurnal cycle of GPP. For example, if Cgpp
is greater than 12, it indicates a shift of GPP towards afternoon, while if Cgpp is less than 12, it
indicates a shift towards morning **. The GPP peak hour (Hourpeax) was defined as the local time
at which GPP reached the maximum from 7 am to 5 pm. The ratio of afternoon GPP to morning
GPP (Ratioa/m) indicated the difference between the averaged GPP in the afternoon (1 pm to 5 pm)
relative to that in the morning (7 am to 11 am). For pixels, if the GPP at 7 am or 5 pm was missing,
the GPP in the afternoon and morning was then averaged from shorter times (1 pm to 4 pm and 8
am to 11 am, respectively). These three diurnal metrics adequately describe the diurnal pattern
(symmetry or asymmetry) of GPP during the heatwave. Since we aimed to examine the effect of
water and heat stress on diurnal GPP, we had to isolate any shift or variations of these diurnal
metrics caused by solar radiation or cloud. For example, if both GPP and SW peaked at 12 pm
under normal conditions, and both of them peaked at 11 am during the heatwave, we could not
conclude that there was a shift in the GPP diurnal cycle during the heatwave since it was simply
caused by the changed time of solar radiation. Therefore, we first determined the peak hour of
solar radiation as local noon, and then used it as a reference to calculate Cgpp, Hourpeak, and
Ratioam. As a result, all the diurnal metrics were aligned with the peak time of solar radiation.
Another way to eliminate the effect from radiation is to use their difference (Capp - Csw) for
analyses *°.

Fig. S4 shows an example of the spatial patterns of Copp, Hourpeak, and Ratioam. The three
metrics consistently reveal contrasting diurnal patterns of GPP between the western and eastern
U.S. The arid and semi-arid regions in the Southwest had higher photosynthesis in the morning, in

contrast to the forest and cropland in the eastern U.S. We compared the diurnal metrics derived

33



698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

from the gridded GPP and the EC flux data and found that the predicted diurnal metrics were
strongly correlated with those based on EC flux data (R?>=0.42 to 0.67, p<0.0001, Fig. S27),
supporting its application at the larger scale regarding the analyzes of the impact of the heatwave
on the diurnal cycle of GPP. The model better predicted Cgpp and Ratioanm than Hourpeax since
Carp and Ratioa/m were more stable, as they were calculated from multiple hours and less affected
by outliers. Interestingly, the model solely based on SW effectively predicted the diurnal metrics
for non-drylands but were unable to predict them for drylands.

To examine the effect of heatwaves on the diurnal variations of GPP, we calculated the
difference (referred to “anomaly” henceforth) of these diurnal metrics in the 2020 heatwave period
relative to the average in the same period in 2018 and 2019. This approach provided insights into
the magnitude of the shift in diurnal GPP metrics attributable to the 2020 heatwave. We recognize,
however, that establishing a baseline using mean values from just two years may introduce
uncertainty. To address this concern and verify the reliability of our findings, we have also
incorporated data from 2021 and 2022, thereby extending the baseline period. This additional
analysis aids in assessing the consistency and robustness of our results. We then examined how
these metrics changed for different vegetation types and aridity conditions with different heat
stresses. The vegetation types were determined by the MODIS land cover map, including
evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), deciduous broadleaf forest
(DBF), mixed forest (MF), shrubland, savanna, grassland, and cropland. Since we found that ENF
showed shifted diurnal metrics during the heatwave, as did shrubland, savanna, and grassland,
while EBF, DBF, MF and cropland were more resistant to the heat condition, we then discussed
them separately as two types based on their responses and combined the three other forest types as

non-ENF. The heat stress was quantified by the standardized normalized anomaly of air
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temperature (Ta_ano) and VPD (VPD ano) in the 2020 heatwave period relative to the multiyear
average during 2000— 2019. Daily air temperature and VPD in August from 2000 to 2020 were
obtained from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2).
The global aridity map was obtained from the Global Aridity Index (Global-Aridity) and the
Global Potential Evapo-Transpiration (Global-PET) Geospatial Database . The aridity index (Al)
defined as the ratio of mean annual precipitation to mean annual potential ET ranged from 0 to
more than 2 with a higher value indicating a more humid condition. The aridity conditions were
grouped by six Al bins (0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, 0.8—1, and > 1) to explore their responses
to the heatwave. The Al threshold of 0.65 was used to separate the drylands (Al <= 0.65; Fig. S2)
and non-drylands (AI > 0.65) in our analyses **. We also examined the relationship between Cgpp
and the corresponding change in daily GPP to understand how the shift in diurnal metrics affected
the daily aggregated GPP. We further explored at which hour ecosystems had the largest loss of
GPP during the heatwave compared to the normal years. This question further sheds light on the
symmetrical or asymmetrical diurnal variations of GPP in the heatwave. If the heatwave only
inhibits photosynthesis without altering its diurnal shape (i.e., uniformly), the largest loss of GPP
should occur at the time when the vegetation is most productive, such as near noon; otherwise, it
should occur at other times.

Finally, we further aimed to confirm the robustness of the observed shift in diurnal metrics
revealed by gridded GPP estimations using EC flux site data. The site-level validation was twofold:
solely based on the EC flux site data and based on modelled GPP data driven by site explanatory
variables. During the examined heatwave period (August 14—19), not all the sites experienced a
severe heatwave, and thus we extended the heatwave period throughout August. If the site had a

positive Ta_ano larger than 1.5 for at least five consecutive days, then it was used to explore the
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effect of the heatwave. The used sites are listed in Table S2. We also selected four sites with
different vegetation types to demonstrate how the environmental factors (Ta, VPD, SW) and GPP
varied over the course of a day under normal and heatwave conditions. The four sites included
woody savanna (Tonzi Ranch, US-Ton), grassland (Walnut Gulch Kendall Grasslands, US-Wkg),
ENF (Valles Caldera Ponderosa Pine, US-Vc¢p), and cropland (Rosemount 118 South, US-Ro5).
Exploration of environmental regulation on diurnal cycle of GPP

To further understand the regulation of water and heat stresses on the diurnal behavior of
ecosystem photosynthesis, we examined the relationships between three diurnal metrics (Capp,
Hourpeak, Ratioam) and daily environmental variables for different vegetation types. For the diurnal
shift and environmental controls, both results from the regional level based on gridded data and
the site level based on EC flux data are provided. For the regional level, the diurnal metrics, VPD,
and LST were averaged per year for each vegetation type, and then their correlations were
examined. For the pixel level, we examined their relationship for all the pixels for three years and
provided the pixel-level relationships for each vegetation type for Copp. The slope of VPD (or LST)
—Capp relationship was used to describe the sensitivity of Cgpp to the variations of VPD and LST.
We also carried out analogous analyses to compare the distinct responses between drylands (Al
<= 0.65) and non-drylands (AI > 0.65), and to investigate the effects of varying baseline periods,
whether two or four years. In addition, we also examined the relationships between the three
diurnal metrics and environmental variables based on EC flux data with air temperature included
in the analyses.

Since we used MODIS NDVTI to estimate the hourly GPP estimations, the diurnal asymmetry
of GPP if observed was assumed to be mainly resulting from the diurnal variations in light use

efficiency (LUE) considering generally the symmetrical diurnal cycle of radiation. We then
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calculated hourly LUE and examined its hourly anomaly during the heatwave relative to normal
years to examine how LUE accounted for the shift in diurnal metrics. The strict definition of LUE
is GPP divided by the product of photosynthetically active radiation (PAR) and the fraction of
absorbed PAR (fPAR). In this study, LUE was approximated by hourly GPP divided by the product
of NDVI and hourly SW, considering the following: 1) we only aimed to analyze the relative
change of LUE per hour during the heatwave rather than use its absolute value; 2) NDVI and
hourly SW data were already processed and included in our analyses, and NDVI is often used as
a proxy of fPAR and SW scales with PAR. We calculated the hourly LUE anomaly (expressed as
the difference of LUE under normal and heatwave years divided by LUE in the normal years) to
explore its relationship with variations of diurnal metrics. Specifically, we counted for the
proportions of pixels with a negative Cgpp anomaly (morning-shifted) when the decrease of LUE
was smaller than 0%, 20%, and 50%, respectively, and further examined the LUE anomaly across
hours for three situations: 1) drylands with Ta_ano >= 1; 2) non-drylands with Ta ano >= 1; and
3) drylands with Ta_ano >= 2. This could indicate how the LUE anomaly changed across hours
for different ecosystems and under different heat conditions.
Calculation of daily GPP and GPP loss during the heatwave

We calculated the daily GPP based on two methods: aggregated from hourly GPP derived
from GOES-R (GPPgogs) and upscaled from the instantaneous satellite observations (GPPupscaling)
by assuming an ideal cosine curve and symmetrical diurnal cycle. This temporal upscaling strategy
has been widely used to convert instantaneous SIF to daily SIF "*°, We followed the temporal
upscaling method proposed by ' to obtain daily GPP from hourly GPP. Their main assumption
was that the diurnal variation of the energy-related variables (GPP, ET) scaled with that of potential

solar radiation (Rgpot) and the instantaneous GPP or ET could be converted to daily using the ratio
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of the instantaneous Rgpor to the daily total Rgpot. This method is expected to perform better when
there is no substantial asymmetry in environmental conditions between morning and afternoon that
alters the diurnal shape of targeted variables. One example of the upscaling method is shown in
Fig. S28. The predicted GPP from GOES exhibited a highly asymmetrical diurnal cycle with a
peak time at 9 am, while the upscaled GPP scaled with radiation showed a symmetrical diurnal
cycle with a peak time at 12 pm. The upscaled GPP from GPP at 8 am overestimated the hourly
GPP for most hours, leading to an overestimation of 88.2% for the daily GPP, while the upscaled
GPP from GPP at 12 pm underestimated the hourly GPP for most hours, leading to an
underestimation of 60.9% for the daily GPP.

We obtained multiple GPPupscaling values upscaled from five single hours (8 am, 10 am, 12
pm, 2 pm and 4 pm) and then compared their difference with GPPgogs in both normal and
heatwave years to provide insight into the effect of selected upscaling time and heat conditions on
the resulting daily GPP. The probability distribution of biases was calculated for both drylands and
non-drylands for both years. We also estimated the daily GPP based on the fixed hourly LUE
upscaling scheme, which assumed LUE remains invariant over the course of a day, and compared
the results with GPPypscaling. For example, if we had GPP and SW at 8 am, then the LUE at § am
was used to infer GPP at other times with known hourly SW. In fact, the radiation-based upscaling
method also implicitly used a fixed hourly LUE throughout the day.

We illustrated how the regional-averaged GPPypscaiing under/overestimated the GPPgogs across
hours in both normal and heatwave years and how this bias changed with increasing heat conditions
using GPPupscaiing derived from 2 pm as an example. The bias was calculated as the difference of
GPPypscaling and GPPgogs divided by GPPgogs and then compared across hours in both years. The

difference of bias between the normal and heatwave years (biasnormal — biaSheatwave) Was then
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calculated for each hour under four conditions: 1) Ta ano >= 1; 2) Ta ano >=2; 3) Ta ano >=2
and only for shrubland and grassland; and 4) Ta ano >= 3 and only for shrubland and grassland.
The heat conditions and diurnal asymmetry in GPP increase from condition 1 to 4. We further
examined how the bias was propagated to the calculation of GPP loss across hours during the
heatwave. We first calculated the GPP loss in percentage based on both the GPPuypscaling (the
difference of GPPupscaling heatwave and GPPupscaling normat divided by GPPypscaling normal) and GPPgogs
(the difference of GPPGOES neatwave and GPPGOES normat divided by GPPGoEs normal) for each hour,
and then examined how this difference by two methods varied under the four aforementioned
conditions. Finally, based on the daily GPP estimates from two methods, we calculated the regional
total GPP from August 14 to 19 in the normal and heatwave years, and compared their difference
in quantifying the total dryland GPP loss during the heatwave across the region (Ta_ano >= 1 and
Al <= 0.65). For the upscaling methods, we provided all the results based on GPPupscaiing derived

from 8 am to 4 pm, respectively.
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