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A B S T R A C T

Environmental policies are often chosen according to physical characteristics that disregard the complex in-
teractions between decision-makers, society, and nature. Environmental policy resistance has been identified as
stemming from such complexities, yet we lack an understanding of how social and physical factors interrelate to
inform policy design. The identification of synergies and trade-offs among various management strategies is
necessary to generate optimal results from limited institutional resources. Participatory modeling has been used
within the environmental community to aid decision-making by bringing together diverse stakeholders and
defining their shared understanding of complex systems, which are commonly depicted by causal feedbacks.
While such approaches have increased awareness of system complexity, causal diagrams often result in numerous
feedback loops that are difficult to disentangle without further, data-intensive modeling. When investigating the
complexities of human decision-making, we often lack robust empirical datasets to quantify human behavior and
environmental feedbacks. Fuzzy logic may be used to convert qualitative relationships into semi-quantitative
representations for numerical simulation. However, sole reliance upon computer-simulated outputs may
obscure our understanding of the underlying system dynamics. Therefore, the aim of this study is to present and
demonstrate a mixed-methods approach for better understanding: 1) how the system will respond to unique
management strategies, in terms of policy synergies and conflicts, and 2) why the system behaves as such, ac-
cording to causal feedbacks embedded within the system dynamics. This framework is demonstrated through a
case study of nature-based solutions and policymaking in Houston, Texas, USA.

1. Introduction

Environmental problems and their solutions are complex in nature
and are often challenged by social and institutional constructs that are
not well-understood. Policymakers strive to make decisions that produce
maximum benefits while minimizing adverse consequences, which re-
quires identifying and connecting all possible outcomes that could
produce synergies and trade-offs between components. In complex
systems, such interactions may produce emergent behavior, where a
shift in one component triggers self-regulating and/or divergent out-
comes elsewhere. When human actors interact with the environment
through planning and group behavior, social and political constructs
adapt to the new setting, which further refines local values and drives
emergent phenomena. Each cycle of this dynamic system denotes a new
human-nature response, which must be assessed according to altered
characteristics. When confronted with a system of many parts, humans

may try to rationalize the problem by focusing on select connections,
thereby misperceiving the overall system structure and behavior. This
inability to identify complex system dynamics often results in missed
opportunities and/or unintended outcomes from well-meaning in-
terventions, a phenomenon known as "policy resistance" (Sterman,
2001).

"Policy resistance occurs when policy actions trigger feedback from the
environment that undermines the policy and at times even exacerbates the
original problem," (Ghaffarzadegan et al., 2011).

Therefore, we cannot mitigate environmental issues by simply
assigning policies that resolve select barriers and assume the results will
be proportionally related to the change. Instead, we must be able to
incorporate human agency as an endogenous component that influences
and co-evolves with the physical systems they seek to shape. The means
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for circumventing policy resistance is to transition the planning para-
digm from a reductionist worldview toward a greater awareness of and
appreciation for system complexity (Roxas et al., 2019). In the case of
environmental management, system complexity arises from the
coupling between human behavior (e.g., policy interventions, commu-
nity activism, shifts in perception) and environmental responses (e.g.,
ecosystem performance, conservation/restoration activities). When
such dimensions are integrated in a manner which reinforces progress
toward the overarching goal, the system is said to have achieved "policy
coherence".

"Policy coherence for development means, as a first definition, the absence
of incoherences, which occur when other policies deliberately or acci-
dentally impair the effects of development policy or run counter to its
intentions. A second, more ambitious definition sees policy coherence as
the interaction of all policies that are relevant in the given context with a
view to the achievement of overriding development objectives," (Ashoff,
2005).

In other words, policy coherence describes the extent to which a
given policy (or set of policies) imposed on a system result in optimal
interactions between the system sub-components. While the literature is
not consistent in defining and measuring policy coherence, a general
understanding is that coherence is achieved when interventions trigger
more policy synergies than conflicts. Policy synergy is a term used to
describe how management strategies interact as a cohesive unit to
accomplish more than the sum of their parts. In other words, policies
that exhibit synergy reinforce one another, according to the dynamic
properties of the system feedbacks and their internal strengths, to
manifest policy objectives. Conversely, policy conflict occurs when
unique strategies interact to produce worse outcomes, or trade-offs, than
had each intervention been implemented in silo (Muscat et al., 2021;
Nilsson et al., 2012; Reyes-Mendy et al., 2014). In other words, policy
coherence helps us identify the extent to which unique management
strategies are either reinforced or jeopardized by the system’s response
to the intervention itself (Kotir, 2020).

In adopting the view that policy coherence is an increase in synergies
and a reduction in conflicts, it becomes clear that we should approach
environmental management as a complex system of moving parts, each
impacting one another through emergent behavior. To address such
complexity, we must account for a range of dynamic trajectories and
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feedbacks amidst alternative policy strategies, which may be accom-
plished through a holistic adoption of systems-thinking.

1.1. Systems-thinking archetypes

Systems-thinking involves a series of unique archetypes, often per-
formed in sync with researchers and stakeholders, to understand how
complex phenomena operate. These archetypes (i.e., dynamic-thinking,
causal-thinking, feedback-thinking, and strategy-thinking) are depicted
in Fig. 1 and described in terms of the common phenomena they seek to
address. The premise of systems-thinking is that complex issues can be
better understood when the individual components of the system are
identified and the causal links between them are associated (Allen,
1988). Common heuristics used to achieve systems-thinking include:

1) Participatory Models (PM), which derive a collective understanding
of the system structure and associated variables through stakeholder
participation,

2) Causal Loop Diagrams (CLD), which involve graphical representa-
tions of system feedbacks to describe dynamic behavior as reinforc-
ing or balancing, and

3) Fuzzy Cognitive Maps (FCM), which combine aspects of neural net-
works, system dynamics, and fuzzy logic to assess shifts in state
components through “what-if” scenarios.

While such tactics may provide useful insight into complex systems,
when used in isolation, they do not capture the full spectrum of systems-
thinking (e.g., left-hand side of Fig. 1, adapted from Kim et al., 2017).
For example, participatory modeling (PM) has been widely used within
environmental science to identify causality, facilitate group learning,
and empower communities in policymaking (e.g., Butler and Ada-
mowski, 2015; Inam et al., 2015; Stave, 2002). However, as environ-
mental complexity increases, the number of variables and feedbacks
may quickly become overwhelming (Bures, 2017; Bures et al., 2020).
Many studies have relied on aggregation of CLD components for manual
interpretation (Ryan et al., 2021), which diminishes the causal richness
identified in PM sessions (e.g., Brennan et al., 2015). Moreover, large
CLDs involve high-order interactions between overlapping feedback
loops, which are difficult to decipher using visualization alone (Osoba
and Kosko, 2019).

Fig. 1. General framework of how a holistic application of systems-thinking can be used to define complex, dynamic systems and assess policy effectiveness for a set
of management strategies. The boxes on the left represent the common systems-thinking processes included within each of the primary archetypes (PM =  partici-

patory modeling, CLD =  causal loop diagramming, FCM =  fuzzy-cognitive mapping).
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“Even if our cognitive maps of causal structure were perfect, learning,
especially double-loop learning, would still be difficult. To use a mental
model to design a new strategy or organization we must make inferences
about the consequences of decision rules that have never been tried and
for which we have no data. To do so requires intuitive solution of high-
order nonlinear differential equations, a task far exceeding human
cognitive capabilities in all but the simplest systems,” (Sternam, 2002).

As a result, many CLD-based studies explain system causality using
generalized storylines and narratives (e.g., Bahri, 2020; Gebrai et al.,
2021), which limit quantitative assessment of system performance
(Osoba and Kosko, 2019). System dynamics modeling (SDM) is the
translation of causal feedbacks into a numerical model for dynamic
simulation (Richmond, 1993). A common SDM technique is a
stock-and-flow diagram (SFD), which illustrates system propagation
through a set of integral equations. SFDs require rich numerical de-
scriptions of causal dynamics, which are often unavailable for complex
human behavior (Bures et al., 2020). Conversely, FCMs use communal
knowledge and perception to parameterize causal relationships from
verbal descriptions about how system components respond to each
other. FCMs allow for the rapid assessment of system alternatives
through “what-if” scenarios to facilitate a dynamic understanding of
complex human-environmental phenomena that may have otherwise
been difficult, or impossible, to assess through traditional empirical
approaches (Gray et al., 2014; Ozesmi and Ozesmi, 2004).

However, the structural characteristics of FCMs may pose inherent
challenges to causal reasoning. Neural networking properties allow
FCMs to exhibit forward inferencing (e.g., “what-if” simulations), which
reveal how the system behaves upon activation. At the same time, cause-
effect relations embedded within the model makes backward-chaining
(e.g., “why-based” inferencing) extremely difficult (Glykas, 2010).
Instead, feedback complexities are entrenched within the numerical
simulations and are not easily used to inform why the system produces
resulting behavior (Harich, 2010). As such, FCM-based scenarios may be
deemed black-box methods that obscure non-linear developments
emerging from within the system and their role within policymaking
(Kaljonen et al., 2012).

Stakeholders are interested in understanding why their decisions
may influence the system toward a particular trajectory due to the
continuous learning nature of adaptive management (McLain and Lee,
1996). In real-world applications of participatory modeling, a divide
may arise between the stakeholders who are involved in the cognitive
mapping and the scientists who present them with complex numerical
outputs (Gray et al., 2013). Without a strong basis of causality, stake-
holders may be unable to form generalizations, and instead, must rely on
further computational simulations each time the system changes. To
facilitate communication between environmental managers and re-
searchers, we must be able to identify the occurrence of policy coher-
ence within complex systems while also explaining its rationale
according to embedded causal logic.

1.2. The need for integrated approaches

Several state-of-the-art reviews have highlighted a rise in systems-
thinking approaches within environmental science (Mashaly and Fer-
nald, 2020; Moon, 2017; Turner et al., 2016; Zomorodian et al., 2018).
Systems-based concepts have been used to support decision-making for
complex water management systems, such as urban water supply
(House-Peters and Chang, 2011), flood protection (Perrone et al., 2020),
irrigation (Pluchinotta et al., 2018), and agriculture (Inam et al., 2015).
Other studies have emerged where systems-thinking has been applied to
nature-based solutions (NBSs) to facilitate an understanding of multiple
co-benefits and to promote stakeholder involvement (Coletta et al.,
2021; Giordano et al., 2020; Gomez Martín et al., 2020; Pagano et al.,
2019; Santoro et al., 2019). However, such studies have generally
considered the effect of physical processes on system performance (e.g.,
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land use change, climate change, co-benefits production) and have not
oft been used to assess policy effectiveness. Moreover, these studies have
focused on select components of the systems-thinking paradigm (dy-
namics, causality, feedbacks, strategy) and have not fully integrated the
strengths of all archetypes (Williams et al., 2017). Studies that have
applied systems-thinking to assess policy coherence have often relied on
manual interpretation of complex CLD feedback loops and a qualitative
presentation of results (e.g., Collins et al., 2013; Paterson and Holden,
2019; Stepp et al., 2009), which may obscure actionable insights. Within
the realm of environmental management, FCM-based studies have often
highlighted node dominance and scenario-building with lesser discus-
sion of how the feedback loops interacted to produce such behavior (e.
g., Giordano et al., 2020; Gomez Martín et al., 2020; Kokkinos et al.,
2020; Olazabal et al., 2018; Singh and Chudasama, 2020).

By focusing on system causality at the expense of scenario analysis,
or vice versa, we separate the behavior of the system from the structure
presumed to cause it (Warren, 2004). As such, there have been calls
within the literature to more clearly identify the rationale behind
environmental policy effects by exploring the causal loop structure of
fuzzy cognitive maps alongside their dynamic, numerical behaviors (de
Gooyert et al., 2016). To address this gap, this study integrates quali-
tative and semi-quantitative approaches across the full spectrum of
systems-thinking, thereby revealing systemic interactions that would
not be clear from numerical analyses alone, but which also do not
require complex data input. The proposed framework promotes a deeper
awareness of complexity in the planning of environmental systems and
denotes the elucidation of policy coherence as a primary goal of holistic
systems-thinking. By amalgamating stakeholder cognition with fuzzy-
and causal-logic, this study extends beyond measuring system perfor-
mance toward understanding its inherent nature amidst complex,
policy-driven interactions.

2. Methodological framework

The primary methods used in systems-thinking (PM, CLD, FCM) are
well-documented throughout the environmental literature and, as such,
are briefly introduced in Sect. 2.1–2.3. A means for identifying policy
synergies and conflicts within FCM-based scenario development is pre-
sented in Sect. 2.4. In Sect. 2.5, an approach is described for weighting
CLD-based feedback loops to better understand causality within the
FCM-based policy effects. The framework is applied to a case study of
environmental management in Houston, TX, USA (Sect. 3), and the
results of the case study are discussed in Sect. 4.

2.1. Participatory modeling

Participatory modeling is a stylized approach for defining complex
system components and their inter-relationships from stakeholder
knowledge (Vennix, 1999). The mental models held by humans describe
an internal representation of real systems as shaped by social in-
teractions within the environment, including cognitive biases, values,
goals, and experiences (Jones et al., 2011). PM highlights the
problem-structuring process, rather than the end-goal of a simulation
model, to form a dynamic hypothesis of how the system operates
through real-world observations shared by a collective group. Common
PM techniques include behavioral simulations, role playing games,
workshops, white-board sketches, and curated interviews (Pahl-Wostl,
2007). Such processes are often facilitated through the use of scripts,
which were spawned by Andersen and Richardson’s (1997) call to
strengthen the scientific basis of PM best-practices in community model
building. PM scripts encompass a range of topics, including embedded
beliefs, system causality, model reflection, and collective action (Hov-
mand et al., 2011). By elucidating mental models through structured
protocols, we are better positioned to evoke complex relationships
embedded within human cognition.
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2.2. Causal loop diagrams

Causal loop diagrams stem from the PM process to form dynamic
hypotheses about how the system functions. In CLDs, individual links
are marked as positive (+), such that related variables change in the
same direction, or negative (-), where a change in one variable has the
opposite impact on the linked variable. The links may connect to form
balancing loops (odd number of negative links, counteracting change in
the system) or reinforcing loops (even number of negative links, prop-
agating change throughout the system). CLDs are conceptual in nature
and are intended to increase a holistic understanding of the causality
between individual components and sets of components. The resulting
model is cyclical, rather than linear, and explains non-linear behavior
according to feedback loop interactions. Such interactions explain
variability in the system response, which is important for understanding
how the dynamic behavior is governed. The dominant CLD loops inform
management where key leverage points are located and what types of
action would result in the system equalizing or changing exponentially.
Policies aimed at such leverage points improve efficiency within the
system and help us to better manage emergent behavior (Sternam,
2002).

2.3. Fuzzy cognitive mapping

While CLD’s provide information regarding the direction of central
relationships of the system, an understanding of how the system will
play out over time is necessary for decision-making. For this, fuzzy
cognitive maps (FCMs) provide a semi-quantitative basis for simulating
complex dynamics according to the system structure and the strengths of
variable relationships. FCMs parameterize system relationships ac-
cording to fuzzy logic by translating qualitative descriptions of strength
(e.g., low, medium high) to semi-quantitative weights between   1.00
(strong negative causality) and +  1.00 (strong positive causality) (Gray
et al., 2014). Mathematical pairwise associations between system vari-
ables are then summarized within a square adjacency matrix, which may
be simulated to better understand current and projected system states
(Ozesmi and Ozesmi, 2004). The dynamics of FCM models are specified
by state vectors, in which the state vector of one variable depends on the
state vectors of all other connected variables over time.

To simulate the FCM network, variables are denoted as equivalent to
neurons that can be activated at the onset of the simulation while also
adopting in-between states. An activation value of +  1.00 indicates the
variable is strengthened to the maximum possible weight (known as
“clamping”), thereby influencing all connected variables throughout the
simulation. Conversely, an activation value of 0 means the variable does
not change at the on-set of simulation and is only influenced by the
dynamics of causal connections. The activated variable state is
multiplied by the adjacency matrix at each time step, which propagates
throughout the simulation according to causality, thereby spreading in a
non-linear fashion until the system reaches equilibrium (Jetter and
Schweinfort, 2011). When applied to policymaking, a series of artificial
scenarios are simulated by “clamping” select management variables and
comparing end-state vectors against a baseline scenario. The extent of
change between the activated and the baseline scenario projects how the
system will respond to unique policies according to dynamic
interactions within the model.

2.4. Identifying synergies & conflicts

Policy analysis describes the sensitivity of the model to human
interaction. By altering one (or more) of the system variables and
assessing the resulting outcomes, patterns begin to emerge that reveal
which policies would lead to optimal (or sub-optimal) results (Barlas,
2002). Here, FCM-based scenario modeling is used to simulate NBS
management strategies and assess changes to the state of NBS imple-
mentation. Specifically, end-state vectors for various policy
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combinations are compared to identify areas of synergy or conflict, as
described by Eqs. 1-2.

Policy synergy occurs when a strategy produces better output than
the sum of any individual components comprising the given cohort,
defined by

{ }
ΔSk( j=n) > ΔSkj ,      A =  � : A =  n (1)

jÎA

where ΔS describes the percent change of the end-state vector for the
system goal variable within management strategy (k), j is the number of
unique policies being combined within strategy k to a maximum of n
total policies. [Note: j is within the set of natural integers (A) that sum to n
(e.g., if n =  6, j =  {1, 5}|{2, 4}|{3, 3}|{2, 2, 2}|{1, 2, 3}, etc.)].

Policy conflict occurs when adding any extra components to the
strategy results in less output than had the components not been com-
bined, such that

ΔSk( j=n) <  �
∑
Δ S k j ,       B =  {� : 

∑
B  <  n} (2)

jÎB

where j is within the set of natural integers (B) that sum to be less than n.
The logical or operator (Ú) means that any combination of ΔSkj which is
greater than ΔS would result in policy conflict (e.g., if n =  4, conflict
occurs for any ΔSkj >ΔSk4 , where j =  {1}|{2} |{3}|{1, 1}|{1, 2} |{2, 1},
etc.).

2.5. Explaining policy coherence

Areas of synergy and conflict may be compared to the strengths of
internal feedback loops to better understand the policy implications of
embedded causal logic.

Here, the weighted strengths of causal feedback loops are defined by
∑ M  ∑ M  �     �

w(t=0) =  ± i=1 

M
j=1        ij (3)

where w describes the average weighted strength of each feedback loop
f at simulation time t =  0, wij is the fuzzy strength between variable i
and j, and M is the total number of unique connections within the
feedback loop. The loop strength is assigned a polarity of ‘+ ’  for rein-
forcing and ‘-’ for balancing.

3. Case study: nature-based solutions

To demonstrate the methodology described in Sect. 2, a case study
was conducted in Houston, TX, USA regarding policies for improved
adoption of nature-based solutions (NBSs). As climate change and urban
densification continue to rise, traditional stormwater systems are being
challenged by limited conveyance capacitance and expensive mitigation
strategies (ASCE, 2020). Many flood-prone communities, such as
Houston, are considering soft-scale solutions to complement drainage
networks by emulating natural watershed processes and limiting the
amount of stormwater runoff entering the system (Demuzere et al.,
2014). In addition to mitigating stormwater, NBSs have been associated
with numerous co-benefits, including improved mental and physical
health, social vulnerability, economic prosperity, air and water quality,
temperature regulation, and ecosystem conservation. Although such
benefits have been broadly observed throughout the literature (see
Table S.1), widespread adoption of NBS has remained stunted due to
socio-institutional complexities associated with environmental
policy-making.

For example, observational case studies have identified several key
challenges to NBS uptake, including community perceptions and un-
derstanding of NBS functionality (Baptiste et al., 2015), cultural values
pertaining to risk and/or change, (Derkzen et al., 2017), and institu-
tional frameworks associated with funding, regulations, leadership,
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technical design, and maintenance (Solheim et al., 2021; Zuniga-Teran
et al., 2020) (summarized in Table A.1). While these barriers have been
studied as isolated events, we lack a general understanding of how such
factors operate holistically to influence one another. A recent workshop
conducted by the United Nations Environment Programme (UNEP)
Intergovernmental Panel on Climate Change (IPCC) emphasized that
complexities     within     multi-functional     policymaking     and     their
physical-social feedbacks are key impediments to NBS uptake. The IPCC
recommended a shift toward co-produced knowledge between practi-
tioners and researchers to overcome such implementation challenges
(Frantzeskaki et al., 2019). An example of co-produced knowledge and
systems-thinking within the realm of NBS is demonstrated by the
following case study.

3.1. Eliciting stakeholder knowledge

A virtual workshop was held to capture the mental models of experts
who had been involved with NBS implementation efforts in Houston,
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TX, USA (Text S.1, Table S.2). The PM workshop was facilitated by
guiding the stakeholder group through a series of interactive scripts for
understanding system causality, defining key relationships, identifying
feedback strengths, and reflecting on model-based insights (Text S.2).
During the PM process, stakeholders were asked to consider how unique
factors have limited or advanced NBS efforts according to their lived
experiences. Throughout the semi-structured process, participants
identified numerous causal factors associated with NBS implementation,
which were documented in real-time and grouped according to key
socio-institutional themes (e.g., challenges and barriers, management
opportunities, and exogenous factors) (Fig. S.1, Table S.3).

The facilitator selected several variables from the elicitation exercise
and drew them as nodes within a web-based whiteboard. Sample causal
relationships and feedback loops were described and demonstrated
visually within the shared interface. The participants were asked to
describe their understanding of causal feedbacks between the different
elements, which fostered robust discussions of the underlying system
dynamics. Individual stakeholders discussed their interpretation of

Fig. 2. Stakeholder-derived causal loop diagram depicting social-institutional factors involved with implementation of nature-based solutions. Blue =  management
opportunities, within the scope of stakeholder influence. Black =  exogenous variables, outside the scope of stakeholder influence. Green =  system goal variable.
Polarity of feedback loops is indicated by ‘+  ’  for positive (same-direction causation) and ‘-’ for negative (opposite-direction causation). Reinforcing and balancing
feedback loops are denoted by direction and nomenclature ’R’ and ’B’, respectively. Note: Color should be maintained when printed.
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causal relationships, which led to group agreement or uncertainty, often
stimulating deeper discussions of system causality. As the stakeholders
communicated, the workshop facilitator moved variable nodes on the
screen and marked the causal links to correspond with the group
consensus. During the live modeling session, CLD connections were
drawn as one-way arrows between variables using traditional polarity
notations (e.g., positive (+), such that related variables changed in the
same direction, or negative (-), where a change in one variable had an
opposing impact on the linked variable). The stakeholders were also
asked to define, qualitatively, the perceived strength of each causal
feedback. Feedbacks that were deemed to be particularly strong were
denoted with three causal arrows, and moderate connections were
identified with two overlapping arrows. All other causal relationships
were depicted with a single arrow (Fig. S.2). This approach was meant to
mimic the use of color-coded sticky notes used in live PM workshops
(Andersen and Richardson, 1997; Inam et al., 2015), thereby facilitating a
virtual environment with interactive group discussions and real-time
causal loop diagramming.

After the workshop, the causal loop sketch was translated into a
composite CLD using Vensim software (Fig. 2). Several NBS policy
leaders who were not involved in the stakeholder workshop reviewed
the composite CLD for overall agreement and coherency. When areas of
ambiguity were noted, the modeler synthesized causal connections and
system variables to capture key components (e.g., floods and climate
change were noted as providing a similar exogenous impact within the
system, which were thus synthesized as one variable). A verbal

Environmental Science and Policy 136 (2022) 413–427

transcript of the recorded session was reviewed during the translation
process to ensure the variables and causal relationships were correctly
represented. The optimized CLD was emailed to all workshop partici-
pants for validation, and no discrepancies were noted.

3.2. Defining fuzzy weights

The preceding steps identified the stakeholders’ understanding of
system variables and how they interact amongst one another to facili-
tate, or hinder, local NBS implementation. These system components
provided the qualitative foundation for defining the system structure.
Next, the CLD was transposed into a semi-quantitative FCM model using
the web-based mapping suite Mental Modeler (Gray et al., 2013, 2015).
The degree of influence for each causal link was defined with fuzzy logic
according to stakeholder perceptions from the PM session. Fuzzy
weights were used to identify the strengths of system feedbacks ac-
cording to the following categories and respective scores: low strength
( ±  0.25), medium strength ( ±  0.50), high strength ( ±  0.75), where ‘+
’  represented positive causality, and ‘-’ described negative causality (Fig.
3). A score of +  1.00 was reserved for “clamping” key decision
variables for scenario development (e.g., Gray et al., 2015) as described
in Sect. 2.3. The system structure was summarized by a square adja-
cency matrix (i x j variables), demonstrated in Table S.4.

Fig. 3. Fuzzy cognitive map, as elicited by the stakeholder group for describing NBS socio-institutional challenges as either management opportunities (within the
scope of stakeholder influence) or exogenous variables (outside the scope of stakeholder influence). Blue arrows =  ‘+  ’  polarity. Black, dashed arrows =  ‘-’ polarity.
Strengths of connecting arrows are represented by line weights, as defined in the legend (low strength =  +/- 0.25, medium strength =  +/- 0.50, high strength =  +/-
0.75). Note: Color should be maintained when printed.
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Fig. 4. Scenario output from Mental Modeler (FCM-based simulation software), where the policy variable(s) listed in each chart title were activated through clamping
to a value of +  1.00, and changes in each variable state vector between the status quo and the final dynamic simulation were graphed as a relative percentage

(ΔSNBS). The shifts in state vector magnitude for nature-based solutions, which were the goal variable for this system, are shown in green.

3.3. Simulating management strategies

The weighted FCM was used to simulate various “what-if” manage-
ment strategies (where a strategy comprises one or more individual
policies) to better understand how a change in local policy would impact
the relative state of the NBS goal variable. Out of 19 total system vari-
ables, the FCM contained 9 management opportunities which were
deemed to be within the stakeholders’ sphere of influence (i.e., Educa-
tional Outreach (EO), Technical Training (TT), Pilot Projects (PP), In-
centives Programs (IP), Advocacy and Leadership (AL), Political Will
(PW), Maintenance (MT), Local Funding (FU), Local Regulations (RE)).
From these variables, 129 fuzzy scenarios were identified by assuming
the stakeholders would implement either a single policy strategy (n
=  9), a strategy combining two policies (n =  36), or a strategy
combining three policies (n =  84).

The simulations in Mental Modeler use the adjacency matrix
(Table S.4) to represent the strengths of interconnections and state
vectors to characterize the degree of variable change once a scenario is
activated. As such, the modeling suite quantifies dynamic interactions
between system components for discrete time-steps until the system
converges to equilibrium by applying formalized activation rules and
transformation functions to the adjacency matrix. The specific mathe-
matical functions used within Mental Modeler include the Kosko’s acti-
vation rule and the hyperbolic transformation function, which are
further detailed by Gray et al., (2015, 2013). After the system stabilizes
(typically before 10 iterations), changes in the end-state vectors are
output as a relative percentage. Figure 4 demonstrates how activating a
unique set of policy nodes may impact a variety of state shifts in the
remaining variables, both positive and negative, according to the model
structure and the system dynamics.

Areas of policy synergy and conflict were then calculated from the
simulation outputs (per Eqs. 1–2) to identify which combinations of
management strategy produced cohesive or resistant outcomes. The

strengths of the reinforcing and balancing feedback loops were also
calculated (per Eq. 3) to better understand the observed policy effects in
accordance with the system’s causal structure.

4. Results

4.1. Characterizing system causality

The stakeholder workshop revealed 19 unique variables and 37
causal links associated with NBS implementation and management in
Houston, TX. These results corresponded well with the average number
of variables (n =  23) and connections (n =  37) observed in socio-
environmental systems, according to a meta-study by Ozesmi and
Ozesmi (2004). According to Vensim, the CLD variables connected to
form 97 unique feedback loops. A key sampling of four reinforcing loops
and two balancing loops were chosen to demonstrate the
systems-thinking framework (Fig. A.1). During the PM session, the
stakeholders were asked to define the fuzzy strengths of causal con-
nectivity between system variables, which were used to determine the
average weighting of each feedback loop at the onset of FCM-based
simulation (Eq. 3). Table 1 summarizes the polarity and weighted
strength for each feedback loop. Here, reinforcing loop R1 was noted as
the “Maintenance Loop”, where improved maintenance from local reg-
ulations would reduce habitat over-growth and improve community
buy-in of NBS technologies, driving political will and local regulations.
Reinforcing loop R2, the “Funding Loop”, was identified as an oppor-
tunity to increase NBSs by using local funds to implement more pilot
projects, thereby enhancing visualization of co-benefits and strength-
ening community buy-in. The reinforcing loop R3, “Community Loop”,
describes the general stakeholder belief that enhanced external regula-
tions would drive local regulation, negating the need for voluntary in-
centives programs. This, in turn, would drive local political will and
trigger additional influence of federal and state regulations. Reinforcing
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Table 1
Summary of feedback loops identified within the stakeholder-led causal loop
diagram. R =  reinforcing feedback loop (even number of negative connections). B
=  balancing feedback loop (odd number of negative connections). The di-
rection of polarity and strength of each feedback is shown.

Loop Variable Connections w(t=0)

R1 Political Will →(+0.75) Local Regulation →(+0.50) Maintenance 0.35
→ (-0.75) Habitat Growth →(-0.25) Community Buy-in →(+0.50)
Political Will

R2 Political Will →(+0.75) Local Funding →(+0.25) External Grants 0.54
→(+0.75) Pilot Projects →(+0.50) Visualization of Co-benefits
→(+0.50) Community Buy-in →(+0.50) Political Will

R3 Political Will →(+0.25) External Regulation →(+0.75) Local 0.40
Regulation →(-0.25) Incentives Programs →(-0.25) Community
Buy-in →(+0.50) Political Will

R4 Political Will →(+0.50) Local Advocates →(+0.25) Pilot Projects 0.33
→(+0.25) Technical Training →(+0.25) Educational Outreach
→(+0.25) Community Buy-in →(+0.50) Political Will

B1 Political Will →(+0.75) Local Funding →(+0.50) Nature-based - 0.56
Solutions →(-0.50) Climate Intensification →(+0.50) Local
Political Will

B2 Social Equity →(-0.25) Population Growth →(+0.75) Increased - 0.40
Development →(+0.25) Local Funding →(+0.25) Nature-based
Solutions →(+0.50) Social Equity

loop R4, the “Advocacy Loop”, describes the condition where political
will could be used to increase the amount and influence of NBS advocacy
groups and local champions, thereby driving implementation of addi-
tional pilot projects, trainings, and outreach to bolster community
acceptance.

Balancing loop B1, “Climate Loop”, was identified as an opportunity
to balance the system of NBS implementation upon achieving a desirable
level of climate mitigation (e.g., urban heat regulation, stormwater flow
abatement, water quality enhancement, carbon sequestration),
depending on local goals and conditions. The balancing loop B2, “Equity
Loop”, was observed as an opportunity to counteract the negative im-
pacts of population growth and subsequent impervious development
while also strengthening community buy-in. Loop R2 exhibited the
strongest potential for system amplification, while loop B1 displayed the
strongest equalizing capacitance within the system. Loops R1 and R4
demonstrated relatively weak functions of system propagation, while
loop R3 and B2 provided moderate reinforcing and balancing effects,
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respectively.

4.2. FCM-based policy effectiveness

The dynamics of the system resulted in a positive increase in the state
of the NBS variable for all of the modeled management strategies, except
for local regulations, which resulted in no impact. The relative change in
NBS implementation for each management strategy is summarized in
Table 2. Here, ΔS represents the change in state vector for the NBS
variable after unique policy strategies were activated. Policy combina-
tions that were synergistic, meaning they worked together to produce a
greater NBS state change than had the policies been implemented in silo,
are highlighted in green. For example, the combined strategy IP-PW
(incentives programs and political will) resulted in an NBS state
change of ΔS =  74%. Had each of these policies been implemented
separately, and the dynamic interactions not considered, the NBS state-
vector would have only increased by ΔS =  68% (e.g., ΔS =12%+Δ
S =56%). Management strategies that were conflicting, meaning they
interacted to produce an NBS state vector that was less than that of the
corresponding individual policies, are noted in orange. For example,
while strategy AL-PW-FU (advocacy and leadership, political will, local
funding) resulted in a large state-vector shift (ΔS =  80%), the
policy components worked against one another to produce slightly less
output than had they been implemented separately. The shift in NBS
state-vector for strategy AL-FU, without PW, was ΔS        =  81%. In
other words, the addition of PW decreased the relative policy effec-
tiveness by 1%.

This approach is useful for cycling through numerous policy options
and their combinations to guide decision-making, particularly when
such decisions are cyclical in nature (i.e., where each decision alters the
system environment and impacts the state values of all connected vari-
ables). However, sole reliance upon FCM-based modeling does not
explain why unique strategies interacted to trigger synergies or conflicts.
For this, we must explore the causal feedback loops embedded within
the system structure and how activation of key policy variables might
trigger various levels of reinforcing or balancing behavior.

4.3. Making sense of policy coherence

Here, the management strategies discussed in Sect. 4.2 are further

Fig. 5. Illustration of causal feedback loop interactions associated with activation of select policy variables (black), and all associated causal variables (grey) for a)
policy synergy and b) policy conflict. [Educational Outreach =  EO, Technical Training =  TT, Pilot Projects =  PP, Incentives Programs =  IP, Advocacy and Leadership =
AL, Political Will =  PW, Maintenance =  MT, Local Funding =  FU, Local Regulations =  RE, External Regulations =  ER, Community Buy-in =  CB, Habitat Growth =  HG,
Visualization of Co-benefits =  VC, External Grants =  EG, Nature-Based Solutions =  NBS, Climate Intensification =  CI, Social Equity =  SE, Population Growth
=  PG, Increased Development =ID]. The reinforcing (R) and balancing (B) loops correspond to color-coded nomenclature in Fig. A.1.
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Table 2
Fuzzy cognitive mapping-based scenario output used to understand policy effectiveness on the final state change ΔSk      of nature-based solutions. k =  nomenclature of
each strategy. [Educational Outreach =  EO, Technical Training =  TT, Pilot Projects =  PP, Incentives Programs =  IP, Advocacy and Leadership =  AL, Political Will

=  PW, Maintenance =  MT, Local Funding =  FU, Local Regulations =  RE].

explored to assess the influence of feedback loops on policy coherence.
In considering the synergy between IP and PW, we may locate each
policy variable within the composite CLD and examine their associated
feedback loops. As demonstrated in Fig. 5a, political will (PW) is located
at the confluence of five feedback loops, each with unique strengths and
polarities (R1, R2, R3, R4, B1). Incentives programs (IP) are only located
on loop R3. Since R3 is connected to the same feedback loops as PW, via
the PW node, activation of both policies generates a very strong response
from all four reinforcing loops in the diagram. Even though balancing
loop B1 is trigged in this scenario, the combination of reinforcing effects
is much stronger than the equalizing effects of B1 (e.g., 4 w �w ).
In other words, local activism produces a synergistic effect that propa-
gates a strong, positive trajectory throughout the system through
improved maintenance, funding, community buy-in, and leadership.
Once activated, these loops are not easily dampened by the balancing
effects of the climate loop.

In considering the conflicting nature of AL-PW-FU, we may observe
the feedback loops demonstrated in Fig. 5b. Activation of PW exhibits
the same effects as described previously. Activation of AL triggers loop
R4, which when combined with PW, results in a strong reinforcing ef-
fect. However, when node FU is activated, both balancing loops B1 and
B2 are triggered, thereby dampening the system trajectory. According to
the stakeholders, FU was presumed to have a positive causal association
with local development and population growth, which negatively
impact urban greening. Since loop R4 is relatively weak, activation of AL
does not offset these balancing effects. While this strategy does not shift

the system into a negative state (i.e., policy resistance), it could be
argued that additional PW alongside AL-FU is not an efficient use of
resources.

Additional insights may be derived by ranking the NBS end-state
vectors for all strategies and noting the occurrence of specific policies
(Table 3). Variables PP, PW, and FU are noted within many high-
efficiency strategies (i.e., upper quartile). Both PP and PW are located at
the confluence of several strong reinforcing loops, which explains why
they are associated with greater NBS impact in the system. FU is a
component of both the strong balancing loops B1-B2 and the strong
reinforcing loop R2, which may have trended the system toward equi-
librium had there been no other dynamic forces involved. However, loop
R2 triggers several other reinforcing loops, thereby potentially ampli-
fying systematic change, depending on the activity of other associated
variables. Other system variables that interacted with loop B1, but
which did not have strong reinforcements to counteract the balancing
forces, showcased less favorable outcomes. Conversely, variables TT,
MT, and EO tended to exhibit weak efficiencies when combined with
other policy options. An assessment of the associated causal structures
demonstrated how these variables are each located on only one feedback
loop, thereby triggering less change and momentum in the overall sys-
tem trajectory than those variables that are leveraged at the intersection
of many overlapping loops. While such manual interpretations of all
policy combinations and feedback loops within the system would
quickly become burdensome, the approach presented here provides a
rapid visual assessment of how strategies may interact within the system
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Table 3
Rank of management strategies (k) and their corresponding NBS end-state vector values (ΔSk), describing the efficacy of policy combinations toward furthering
implementation of nature-based solutions in the case study model. [Educational Outreach =  EO, Technical Training =  TT, Pilot Projects =  PP, Incentives Programs

=  IP, Advocacy and Leadership =  AL, Political Will =  PW, Maintenance =  MT, Local Funding =  FU, Local Regulations =  RE.].

No. Upper Quartile (Q3) Middle Quartile (Q2) Lower Quartile (Q1)

Strategy (k)

1 PP-IP-FU
2 PP-AL-FU
3 IP-AL-FU
4 PP-IP-PW
5 PP-PW-FU
6 PP-FU
7 EO-PP-FU
8 TT-PP-FU
9 PP-MT-FU
10 IP-PW-FU
11 PP-FU-RE
12 AL-FU
13 EO-AL-FU
14 TT-AL-FU
15 IP-AL-PW
16 AL-MT-FU
17 AL-PW-FU
18 PP-AL-PW
19 AL-FU-RE
20 EO-IP-FU
21 TT-IP-FU
22 IP-MT-FU
23 IP-FU-RE
24 PP-PW
25 IP-FU
26 EO-PP-PW
27 TT-PP-PW
28 PP-PW-MT
29 PP-PW-RE
30 IP-PW

Efficacy (ΔSk), %

90%
88%
88%
86%
85%
84%
84%
84%
84%
84%
82%
81%
81%
81%
81%
81%
80%
79%
79%
77%
77%
77%
77%
76%
76%
76%
76%
76%
75%
74%

Strategy (k)

EO-IP-PW
IP-PW-MT
IP-PW-RE
PW-FU
EO-PW-FU
TT-PW-FU
PW-MT-FU
PW-FU-RE
PP-IP-AL
AL-PW
EO-AL-PW
TT-AL-PW
AL-PW-MT
EO-TT-FU
EO-MT-FU
AL-PW-RE
EO-FU
TT-FU
MT-FU
TT-MT-FU
EO-PP-IP
TT-IP-PW
EO-PP-AL
EO-FU-RE
TT-FU-RE
MT-FU-RE
FU-RE
TT-PP-IP
PP-IP-MT
PP-IP-RE

Efficacy (ΔSk), %

74%
74%
74%
73%
73%
73%
73%
72%
71%
68%
68%
68%
68%
67%
67%
67%
66%
66%
66%
66%
64%
64%
63%
63%
63%
63%
62%
62%
62%
62%

Strategy (k)

TT-PP-AL
PP-AL-MT
PP-IP
PP-AL
PP-AL-RE
EO-PW
TT-PW
PW-MT
EO-TT-PW
EO-PW-MT
TT-PW-MT
PW-RE
EO-IP-AL
EO-PW-RE
PW-MT-RE
TT-PW-RE
EO-PP-MT
EO-TT-PP
TT-IP-AL
IP-AL-MT
EO-PP
IP-AL-RE
PP-MT
TT-PP-MT
TT-PP
IP-AL
EO-PP-RE
TT-PP-RE
PP-MT-RE
PP-RE

Efficacy (ΔSk), %

61%
61%
60%
60%
58%
56%
56%
56%
56%
56%
56%
55%
55%
55%
55%
55%
54%
53%
53%
53%
52%
52%
51%
51%
50%
50%
50%
48%
48%
47%

Strategy (k)

EO-AL-MT
EO-TT-AL
EO-AL
TT-AL-MT
TT-AL
AL-MT
EO-AL-RE
TT-AL-RE
AL-MT-RE
AL-RE
EO-IP-MT
EO-TT-IP
EO-IP-RE
EO-IP
TT-IP-MT
TT-IP-RE
TT-IP
IP-MT
IP-MT-RE
IP-RE
EO-TT-MT
EO-MT
EO-TT
EO-MT-RE
EO-TT-RE
EO-RE
TT-MT
TT-MT-RE
TT-RE
MT-RE

Efficacy (ΔSk), %

43%
42%
41%
40%
39%
39%
39%
37%
36%
35%
27%
24%
24%
21%
20%
19%
18%
18%
18%
16%
14%
13%
11%
10%
9%
8%
7%
4%
3%
2%

dynamics to produce synergies or conflicts according to embedded
causality. When combined with the quantitative strengths of scenario-
building, we are able to gain a fuller picture of policy effects associ-
ated with human-nature systems.

5. Methodological limitations

Several limitations to this methodology stem from the choice in FCM
software (e.g., Mental Modeler), which restricts user modification. Mental
Modeler was designed to be used by, or alongside, stakeholders as a quick
and simple tool for FCM mapping and simulation. As such, the software
suite contains no computer learning-based algorithms, and system
activation is only possible through Kosko’s inference rule (Gray et al.,
2015). In essence, Mental Modeler lacks extensive capabilities for re-
configuring the internal mechanisms of the model, such as transfer
functions, number of iterations, or learning-based inference tools.
Several papers have described these limitations of Mental Modeler (e.g.,
Felix et al., 2019; Nikas et al., 2019) while also highlighting how it is an
optimal choice for low-entry and user-friendly FCM-based stakeholder
modeling. A deeper investigation of FCM-based modeling, activation
rules, and inference capabilities is noted by Napoles et al. (2018) and
Papageorgiou et al. (2018). Using FCM to understand how the system
shifts in terms of end-state vector values has been shown within the
socio-ecological literature to be a valid use of Mental Modeler (Ozesmi
and Ozesmi, 2004). As such, the emphasis of this article is to describe a
learning-based framework for spurring systems-thinking and collabo-
ration across diverse stakeholders while extracting both the why and the
how of general policy effect. Such a framework, naturally, is not inten-
ded for high-resolution predictive capabilities of system dynamics
models.

Moreover, it should be noted that Eq. 3 describes loop strength at the
onset of FCM-based simulation. Naturally, the weighted strengths will
change during the dynamic simulation as the loops are influenced by

other system components over time. With 97 causal feedback loops
within the case study, manual interpretation is impractical. However, by
identifying the initial strengths of key feedback loops and comparing
them to policy synergies and conflicts, it becomes possible to comple-
ment our understanding of general system behavior with insights
regarding loop structure. Finally, this simplified approach to calculating
policy synergy or conflict does not consider dynamic time effects of
separate implementation strategies. For example, strategy EO-PW-RE is
considered a conflict according to Eq. 2 (e.g., 55%(ΔS )
<  56%(ΔS )). By adding RE, the system exhibited less output than
had just EO-PW been implemented. However, the shift in end-state-
vector for EO-PW-RE depends on the order of implementation. This
study assumed that single-policy strategies were implemented after
multi-policy strategies. Had RE been implemented first, various system
states would have shifted in accordance with RE-based causality. A
subsequent simulation for EO-PW should consider the propagation ef-
fects of the previous policy implementation(s). Such dynamics were
outside the scope of this study, and future research could explore the
sensitivity of adjoining impacts associated with the timing of unique
policy combinations.

6. Insights & discussion

This case study highlights how holistic systems-thinking may be used
to investigate complex policy effects while also fostering adaptive
learning opportunities. During the PM workshop, unique belief schemas
were noted regarding the group’s initial perception of system perfor-
mance. Some of these assumptions conflicted with general findings in
the NBS literature (e.g., Table S.1) while others were contradicted by the
FCM-based simulation results (e.g., Table 2). For example, the stake-
holders felt that a lack of external laws regarding sustainable develop-
ment was the main hindrance to local NBS implementation. The
stakeholders presumed that if the external regulations (ER) could be
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strengthened, the remaining components of the system would somehow
transform to work seamlessly together for optimal impact. However, the
NBS literature suggests that collaboration across socio-institutional
scales is paramount for successful policymaking. Figure 4 demon-
strated how a streamlined focus on ER results in significantly fewer NBSs
when compared with collaborative management opportunities.

The stakeholders were also wary of the role played by enhanced
visualization of co-benefits from NBS production. The group insisted
that locals were more concerned with stormwater mitigation capaci-
tance due to the flood-prone nature of Houston. They conceded that
while a causal connection exists, the environmental and social co-
benefits associated with NBSs were significantly less valued in the
local culture and would not enhance the overall system performance.
While the stakeholders believed that visualization of NBS co-benefits did
not serve a primary role in local uptake, Tables 2–3 demonstrated how
improved pilot projects (PP) would trigger positive reinforcing out-
comes of co-benefit visualization, which had a strong positive impact on
NBS development.

Such findings emphasize how the beliefs of system behavior at the
forefront of cognition may conflict with the actual system dynamics
defined by deeply embedded causal knowledge. As a result, stakeholders
may leave PM sessions with self-confirming inferences that do not
represent the system they had collectively defined. The framework
presented here allows us to work alongside decision-makers in exploring
unique policy effects using mathematical models and causal reasoning.
When we identify an outcome which contradicts group perception, we
are able to foster self-reflection and adaptive learning. For instance, after
the conclusion of this study, the FCM model was simulated alongside key
resilience leaders in Houston, TX. These leaders observed a positive
response throughout the system when social equity was strengthened.
Over the course of several meetings, initial perceptions regarding system
causality and dominance began to shift in accordance with the outputs
described in Sect. 4. Indeed, this interactive process facilitated a shift in
local NBS decision-making. Following the group-learning exercises,
local leaders requested assistance with transitioning from hydrology-
based NBS planning to a composite framework involving hydrologic,
environmental, and social co-benefits (e.g., equity-based planning)
(Castro, 2022).

Initial stakeholder perceptions do not always match our empirical
findings of system causality and dominance. By using causal reasoning
and fuzzy logic to identify and counteract limitations in stakeholder
beliefs, this study transposed dominant system properties into action-
able insights for ongoing adaptive management. Specifically, by
combining complex belief systems across institutional scales and by
using a mixed-methods approach to systems-thinking, we may better
match the system dynamics to group cognition within a cyclic process of
discovery and actualization.

7. Conclusion

Nearly three decades ago, at the dawn of climate awareness and
environmental politicization, systems scientist Barry Richmond urged us
to embrace holistic systems-thinking as key for overcoming policy
resistance.

“The problems that we currently face have been stubbornly resistant to
solution, particularly unilateral solution. As we are painfully discovering,
there is no way to unilaterally solve the problem of carbon dioxide
buildup, which is steadily and inexorably raising the temperature around
the globe…Why is it no longer possible for some world power to pull out a
big stick and beat a nasty problem into submission? The answer is that it
probably never was,” (Richmond, 1993).

I argue here that the web of interdependencies between environ-
mental mitigation efforts and the human process of policymaking has
only worsened over time, and our capacity for thinking in terms of
complex systems has become further challenged. As our technological
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capacities for modeling systems have become more robust, our episte-
mological boundaries have thickened. It is not the detailed computa-
tional algorithms that should dominate at the expense of causal
understanding, or vice versa. Rather, we should integrate broad systems-
based philosophies to achieve a multifaceted understanding of envi-
ronmental policies amidst complex human-nature feedbacks.

This study highlights how identifying the function of environmental
policies must be supplemented by characterizing the causal context
within which the system is embedded. Several major synergies and
tradeoffs associated with NBS implementation, which had hitherto been
studied as a series of individual barriers (Table A.1), were revealed by
combining the strengths of dynamic-, causal-, feedback-, and strategy-
thinking. This holistic approach was described and demonstrated using
best practices among the complementary fields of PM, CLD, and FCM.
Here, the initial stages of systems-thinking were used to capture system
complexity from embedded stakeholder knowledge. A dynamic analysis
of the resulting structure explained how the system would respond to
unique policy interventions in terms of synergy and conflict. Finally,
causal feedback loops were assessed according to internal strengths and
overall connectivity to better understand the rationale behind observed
policy effects. Such an interactive process transforms elusive systematic
barriers into a broad vision of adaptive management opportunities.

Effective policy design necessitates understanding how unique in-
terventions would propagate throughout the system to impact the end-
goal. Without considering the causal chain reactions driving complex
policy effects, well-intended strategies may result in stubborn environ-
mental responses. As highlighted by Biesbroek et al. (2017), environ-
mental science has been largely unsuccessful in capturing the
complexity of human governance feedbacks, particularly when used as
an explanatory mechanism of causality. The vision for the future is that
we will approach human-environmental problems as a web of inter-
linked connections with weighted interdependencies through the lens of
systems-thinking, thereby providing a mechanism based on human re-
ality to better understand management actions within a rapidly chang-
ing world. The framework described here enriches the theoretical
merging of systems-thinking epistemology (i.e., embedding human
cognition within the system) with ontology (i.e., using the underling
structure of the system to elicit insights). Rather than maintaining the
confines of methodological black-boxes, this study serves as an
encouragement and practical means for embracing the full spectrum of
systems-thinking archetypes in environmental governance.
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Table A.1
Summary of literature review identifying key socio-institutional barriers to widespread NBS adoption and implementation.

Theme

Community Buy-in

Social Culture

Institutional
Characteristics

Engineering &
Maintenance

Variable

Economic Incentives

Educational
Opportunities
Public Participation

Cultural Values

Equitable Resilience
Strategy
Co-benefits

Fragmentation

Financing

Regulatory
Frameworks

Design Standards
Technical
Experience
Maintainability

Pilot Projects

References

(Baptiste et al., 2015; Tayouga and Gagne, 2016; Vogel et al., 2015)

(Chaffin et al., 2016; Derkzen et al., 2017; Solheim et al., 2021; Thorne et al., 2018)

(Baptiste et al., 2015; Bissonnette et al., 2018; Cohen-Shacham et al., 2019; Dhakal
and Chevalier, 2017; Santoro et al., 2019; Wamsler et al., 2020; Zuniga-Teran et al.,
2020)
(Derkzen et al., 2017; Solheim et al., 2021; Thorne et al., 2018)

(Derkzen et al., 2017; Zuniga-Teran et al., 2020)

(O’Donnell et al., 2017; Ramírez-Agudelo et al., 2020; Solheim et al., 2021)

(Chaffin et al., 2016; Ellis and Lundy, 2016; Kabisch et al., 2016; Ramírez-Agudelo
et al., 2020; Solheim et al., 2021; Vasquez et al., 2016; Wamsler et al., 2020;
Zuniga-Teran et al., 2020)
(Li et al., 2017; McRae, 2016; O’Donnell et al., 2017; Solheim et al., 2021; Thorne
et al., 2018; Zuniga-Teran et al., 2020)
(Dhakal and Chevalier, 2016; Gersonius et al., 2016; Levy et al., 2014; O’Donnell
et al., 2017; Sarabi et al., 2020; Solheim et al., 2021)

(Kronenberg, 2015; Solheim et al., 2021; Zuniga-Teran et al., 2020)
(Li et al., 2017; O’Donnell et al., 2017; Solheim et al., 2021; Wamsler et al., 2020;
Zuniga-Teran et al., 2020)
(Kabisch et al., 2016; Li et al., 2017; Ramírez-Agudelo et al., 2020; Thorne et al.,
2018)
(Li et al., 2017, 2018; Zuniga-Teran et al., 2020)

Key Considerations

Subsidies, grants, loans, fee reductions. Incorporated into local development plants. Drainage tax/fee
reduction for individual residents. Federal subsidy programs.
Community perceptions and understanding of NBS functionality and benefits, as well as costs. Outreach
programs. Media reporting.
Adaptive governance structure. Targeted and strategic citizen involvement in selection and planning
process, funding, increasing public awareness. Neighborhood workshops. Dialogue with civil groups.
Targeted media outlets.
Traditional versus progressive engineering culture. Public perception shift. Fear of perceived risk to
change. Lack of sense of urgency to addressing climate change.
Capacitance building in vulnerable and marginalized communities with reference to NBSs.

Clear identification of co-benefits to support shared set of values and community support. Long-term
focus on co-benefits.
Central, singular NBS department. Integrated across sectors, separate from other utilities. Transverses
multiple jurisdictions. Interagency work. Active cohesion.

Understanding cost comparison to grey-infrastructure. Quantification of co-benefits. Combined funding
sources. Adequate economic resources. Competing priorities.
Less stringent than grey-water, improves costs and implementation. Defined legal standards. Thresholds
to trigger NBS stormwater management. Confusion/conflicting provisions. Regulations regarding long-
term maintenance requirements.
Uncertainties regarding how NBSs work locally. Technical manuals. Spatial planning guidelines.
History of past project success. Certified expertise. Workshops and trainings. Staff turnover of NBS
expertise.
Regular inspections, monitoring guidelines. Cost of regular maintenance (diversified responsibility).
Low-maintenance design options.
Political leadership and champions. Successful community pilot projects (tours, educational signage,
press coverage).
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Fig. A.1. Feedback loops in causal diagram, delineated by color, presented for ease of visualization while reading and considering the impact of causal logic on
policy effectiveness. Note: Color should be maintained when printed.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.envsci.2022.07.001.
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