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Abstract 1 

Since biodiversity often increases ecosystem functioning, changes in tree species diversity could 2 

substantially influence terrestrial carbon cycling. Yet much less is known about the relationships 3 

between forest structural diversity (i.e., the number and physical arrangement of vegetation 4 

elements in a forest) and carbon cycling, and the factors that mediate these relationships. We 5 

capitalize on spaceborne lidar data from NASA’s Global Ecosystem Dynamics Investigation 6 

(GEDI) and on-the-ground forest inventory (FIA) data from 1796 plots across the contiguous 7 

United States to assess relationships among the structural and species diversity of live trees and 8 

aboveground carbon storage. We found that carbon storage was more strongly correlated with 9 

structural diversity than with species diversity, for both forest inventory-based metrics of 10 

structural diversity (e.g., height and DBH diversity) and GEDI-based canopy metrics (i.e., 11 

foliage height diversity (FHD)). However, the strength of diversity-carbon storage relationships 12 

was mediated by forest origin and forest composition. For both plot-based and GEDI-based 13 

metrics, the relationship between structural diversity (i.e., height diversity, DBH diversity, and 14 

FHD) and carbon storage was positive in natural forests for all forest types (broadleaf, mixed, 15 

conifer). For planted forests, structural diversity showed positive relationships in conifer planted 16 

forests, but not in mixed planted forests. Species diversity did not show strong associations with 17 

carbon storage in natural forests, but showed a positive relationship in mixed coniferous-18 

broadleaf planted forests. Although plot-based structural diversity metrics refine our 19 

understanding of drivers of forest carbon balances at the plot scale, remotely sensed metrics such 20 

as those from GEDI can help extend that understanding to regional/national scales in a spatially 21 

continuous manner. Carbon storage showed stronger associations with plot-based structural 22 

diversity than with stand age, soil variables, or climate variables. Incorporating structural 23 
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diversity into management and restoration strategies could help guide efforts to increase carbon 24 

storage and mitigate climate change as nature-based solutions. 25 

 26 
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 30 

 31 

1. Introduction 32 

Increasing carbon storage in forests presents an opportunity for climate mitigation as a nature-33 

based solution (Fargione et al., 2018; IPCC, 2021). Changes in forest carbon storage could 34 

influence the global climate, since forests cover approximately 30% of the world’s lands and 35 

store 45% of the world’s terrestrial carbon (Bonan, 2008). In addition to research on the general 36 

environmental conditions that influence forest carbon storage, considerable work has explored 37 

relationships between biodiversity and ecosystem functions and services (e.g., productivity, 38 

carbon storage, nutrient uptake, water quality, and pollination) (Grace et al., 2016; Liang et al., 39 

2016; Naeem et al., 1994; Tilman and Downing, 1994), in part to assess when the twin goals of 40 

sustaining biodiversity and maintaining ecosystem services such as carbon storage may be 41 

aligned (Mori et al., 2021). Many experimental and observational studies have found positive 42 

associations between biodiversity and ecosystem functions (Cardinale et al., 2012; Hooper et al., 43 

2005; Jochum et al., 2020), although the strength and significance of these relationships may 44 

vary among functions and ecosystems and across spatial scales (Gonzalez et al., 2020; Ricketts et 45 

al., 2016). However, fewer studies have examined relationships with structural diversity—which 46 
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in forests can refer to the variation in tree heights, stand density, clumping, canopy cover, and/or 47 

spatial heterogeneity in vertical arrangement (e.g., rugosity) (Atkins et al. 2018).  48 

 49 

Theory underpinning biodiversity-ecosystem functioning research suggests that, on average, 50 

ecological communities with more species should be more productive than comparable 51 

communities with fewer species (Loreau et al. 2001; Hooper et al. 2005). Since individual 52 

species have different niches, communities with many species can use available resources more 53 

completely and efficiently than communities with few species, which in turn leads to higher 54 

productivity in species-diverse communities than in species-poor communities (Tilman et al., 55 

2014). Although it may be true that more species can indeed use available niche space and 56 

resources more fully and complementarily, measuring all axes of the niche space and all resource 57 

use is intractable in real-world ecosystems. Biodiversity metrics such as species richness provide 58 

a proxy for the potential of species to occupy different niches in the community. Metrics of 59 

diversity that serve as better proxies for resource use and efficiency within communities should 60 

show stronger associations with ecosystem functioning. Structural diversity may be a better 61 

predictor of some ecosystem functions than biodiversity (Ali et al., 2019; Dănescu et al., 2016; 62 

Gough et al., 2019; Hardiman et al., 2011; Silva Pedro et al., 2017), as structural diversity may 63 

provide a more direct indicator of the niche space occupied within a community (LaRue et al., 64 

2019; LaRue et al., 2023). For example, forest communities with differences in tree crown sizes 65 

and shapes have greater light absorption and stem biomass than forest communities where trees 66 

have similar crown architectures (Williams et al., 2017). More specifically, forest canopies with 67 

substantial vertical stratification, complementarity of crown shapes and heights, and 68 
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phenological differences among trees may lead to higher light use efficiency, resulting in higher 69 

biomass productivity (Forrester and Bauhus, 2016). 70 

 71 

While scientists have developed numerous metrics of structural diversity (e.g., MacArthur and 72 

Horn, 1969; Staudhammer and LeMay, 2001), metrics are derived from two main sources of 73 

data: traditional plot-based measurements and lidar (light detection and ranging) remote sensing-74 

based measurements. Traditional forest inventory data collected by field crews (e.g., manual 75 

height and diameter measurements) often provide information on the species’ identities, stem 76 

diameters, and heights of trees in each forest plot (Burrill et al., 2021). Indices of structural 77 

diversity can be created from the heterogeneity (e.g. standard deviation) in tree stem diameters 78 

and heights, number of size and height classes, or with composite metrics combining different 79 

characteristics (Bohn and Huth, 2017; Storch et al., 2018; LaRue et al., 2022). Inventory and 80 

monitoring programs provide critical data but can be time consuming and costly to collect and 81 

curate, resulting in limited sampling in both space and time. Remotely sensed data, however, can 82 

bridge these gaps by offering substantial spatial coverage at landscape (e.g., air- and uncrewed 83 

aerial vehicles or UAVs) to global (e.g., satellite and other spaceborne platforms) extents. The 84 

combination of traditional stand structural data from inventory programs with remotely sensed 85 

data may help provide additional, important information about forest health, productivity, and 86 

carbon storage (Beland et al., 2019; Wehr and Lohr, 1999), while extending the utility of each 87 

across space and time.  88 

 89 

Here, we use spaceborne lidar from NASA’s Global Ecosystem Dynamics Instrument (GEDI), 90 

which provides near-global (between 51.6°S and 51.6°N latitude; Figure 1) estimates of forest 91 
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structure (see Dubayah et al. 2020 for GEDI details). Although GEDI has been used for 92 

applications such as estimating forest canopy heights (Liu et al., 2021; Potapov et al., 2021), 93 

estimating biomass and fuel loads across large areas (Dubayah et al., 2022; Duncanson et al., 94 

2022; Leite et al., 2022), and coupling the structural information provided by GEDI with 95 

additional datasets to predict the biodiversity of trees and birds (Burns et al., 2020; Marselis et 96 

al., 2022), in this paper we examine the relative roles of structural and species diversity in 97 

explaining aboveground carbon storage. Building on previous work that found positive 98 

associations between structural diversity and net primary production using either lidar (Gough et 99 

al., 2019; Hardiman et al., 2011) or forest inventory data (Danescu et al., 2016; LaRue et al., 100 

2023), our study integrates GEDI and forest inventory data to examine diversity-carbon storage 101 

relationships across the entire USA. Understanding how well GEDI-based metrics of structural 102 

diversity align with and/or complement plot-based metrics of structural diversity—and assessing 103 

relationships between metrics of structural diversity and carbon storage—could provide key 104 

insights when scaling up from individual forests plots to provide estimates of diversity and 105 

carbon storage across large spatial scales. 106 

 107 
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 108 

Figure 1. The GEDI sensor provides estimates of structural diversity. (a) The GEDI sensor has 109 

coverage tracks over the contiguous United States (and other regions between 51.6°S and 51.6°N 110 

latitude). (b) For each GEDI track there are eight beams spaced 600 m apart. (c) Within each 111 

beam there are footprints with a 25 m diameter spaced 60 m apart. We extracted GEDI footprints 112 

that were within a 100 m buffer zone of the FIA forest plots (hypothetical forest plots that were 113 

not included marked with an X). (d) Examples of different forests with low to high structural 114 

diversity. Indices of structural diversity can be generated from (e) the GEDI data and the lidar 115 

waveform, which is based on the return energy from all aspects of vegetation within the footprint 116 

(e.g., leaves, branches, tree trunks), or from (f) forest inventory plot data using metrics based on 117 

the relative frequency of individual tree heights (or DBHs). 118 

 119 

Relationships between diversity and ecosystem functioning (e.g., carbon storage) may vary 120 

across different types of forests and between natural and planted forests. Scientists have 121 

proposed that the importance of plant species diversity for ecosystem functioning may be greater 122 

in more stressful environments than in more benign environments (Warren et al. 2009). In 123 
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support of this hypothesis, some studies found that biodiversity-productivity relationships vary 124 

among tropical, temperate, and boreal forests and among different regions (e.g., Paquette and 125 

Messier 2011; Liang et al. 2016), but it remains unclear how much these relationships vary 126 

across the broadleaf, coniferous, and mixed forests of the USA (Atkins et al., 2022). Since 127 

broadleaf and coniferous trees have very different shapes, we anticipate that the ways that 128 

individual trees interact and compete for resources may differ across broadleaf and coniferous 129 

forests, promoting different 2D and 3D arrangements of the vegetation, thus leading to different 130 

relationships between structural diversity and carbon storage. In addition, historical conditions 131 

may affect ecosystem functioning and could lead to differences in the relationships between 132 

diversity and carbon storage between natural and planted forests or between newly established 133 

and mature/old growth forests. Although evidence in grassland communities suggests that 134 

experimental and observational studies may show similar magnitudes of effects (Jochum et al., 135 

2020), differences between natural and planted forests remain uncertain, but could be important 136 

due to the legacies of human actions. The majority of research on biodiversity-ecosystem 137 

functioning in forest communities has largely been conducted through observational studies in 138 

forests with little active management. Yet understanding differences between natural and planted 139 

forests is critical, as restoration projects present key opportunities to apply knowledge of 140 

relationships between biodiversity and ecosystem functioning (Srivastava and Vellend, 2005). 141 

 142 

While we expect structural and species diversity to influence carbon storage at the site level 143 

(LaRue et al., 2023), other factors such as climate and soil conditions may influence forest 144 

biomass and carbon storage at the country-wide level (Pan et al., 2013). Temperatures vary 145 

greatly across latitudes and elevations in the USA, and warmer temperatures area often 146 
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associated with greater forest biomass in temperate forests (Keith et al., 2009). As temperate 147 

forests are mainly limited by water availability, increased precipitation leads to greater forest 148 

biomass (Stegen et al., 2011). Although in some forests, climate variables matter more than soil 149 

characteristics (Bennett et al., 2020), soil fertility is often associated with increased forest 150 

biomass (Paoli et al., 2008; Yuan et al., 2019). Nutrients such as nitrogen and phosphorus 151 

provide key elements for growth, while soil texture can influence the water availability for root 152 

uptake (Hofhansl et al., 2020; Laurance et al., 1999). Accounting for these types of additional 153 

factors that affect forest biomass can help show the relationships between structural diversity, 154 

species diversity, and carbon storage—the focus of this study. 155 

 156 

In this paper, we explore the relationships of structural and species diversity with aboveground 157 

live tree carbon storage, an ecosystem service of critical importance for global climate change 158 

policy. First, we capitalize on detailed forest inventory program data and the newly available 159 

satellite-based GEDI data to assess the relative importance of structural and species diversity for 160 

aboveground carbon storage across the contiguous USA. Second, we investigate whether there 161 

are substantial differences in relationships between structural diversity and carbon storage when 162 

using plot-based versus GEDI-based structural diversity metrics. Third, we then explore whether 163 

relationships between diversity and aboveground carbon storage vary across different forest 164 

stand origins (natural or planted) and forest compositions (broadleaf, mixed, or conifer trees). 165 

Using observational rather than experimental data in this study, we do not directly evaluate 166 

directions of causality; we report the statistical relationships between diversity and carbon 167 

storage from spatial data across the USA.  168 

 169 



10 

 

2. Methods 170 

Our study included data from the forested regions of the contiguous USA, with forest plots 171 

spanning 13 different EPA level II ecoregions (US EPA 2018; Figure 2). Based on the Daymet 172 

climate data (Thornton et al., 2020), the mean minimum annual temperature varied from -5.4oC 173 

to 15.8oC, the mean maximum temperature from 6.1oC to 29.1oC, and annual precipitation from 174 

218 mm to 3742 mm over the past ten years at our forest plots. Individual forest plots contained 175 

1 to 15 species, and all plots in the study region that were included in our analyses collectively 176 

contained 188 species. The analyses proceeded in three main steps: we selected suitable forest 177 

plots (section 2.1); extracted GEDI satellite data (2.2); and conducted statistical analyses to 178 

evaluate the effects of biological and structural diversity (2.3) (Figure 3). We conducted the 179 

analyses described below using R version 4.1.2 (R Core Team, 2021). 180 

 181 
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 182 

Figure 2. Our analysis includes 1796 Forest Inventory and Analysis (FIA) plots across the 183 

western and northeastern forests of the USA in 13 different EPA Level II Ecoregions. FIA plots 184 

are displayed using the publicly available perturbed coordinates. 185 

 186 

2.1 Plot-Based Variables from Forest Inventory Data 187 

We relied on Forest Inventory and Analysis (FIA) data to calculate estimates of aboveground 188 

carbon storage, metrics of species diversity, and other explanatory variables (Burrill et al., 2021). 189 

FIA data were also used to calculate plot-based structural diversity metrics. Administered by the 190 

United States Department of Agriculture Forest Service, the FIA program provides the most 191 

comprehensive forest database currently available in the United States (Tinkham et al., 2018). 192 

The FIA program divides each state into different strata (forested land and non-forested land) 193 
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using remotely sensed imagery, and conducts on-the-ground forest land sampling to match the 194 

relative area of forested strata, which results in a national sample intensity of approximately one 195 

plot per 2,428 ha (sampling ratio to total land of roughly 0.0028%; Bechtold and Patterson 196 

2005). Forest land is defined as having >10% tree or woody canopy cover (or formerly having 197 

such cover that will be naturally or artificially regenerated) and being >0.4 ha in size and 37 m 198 

wide (Burrill et al., 2021). This incorporates both timberland and non-timberland, which includes 199 

woodland vegetation and reserved forest land (Oswalt et al., 2019).  200 

 201 

We selected forest plots that were surveyed in 2017-2020, as these years corresponded most 202 

closely with the GEDI data (2019-2021) and provide a sample size of 1796 corresponding plots. 203 

The sampling protocols for these plots encompassed four subplots of 7.3 m in diameter for a total 204 

of 0.0672 ha per FIA forest plot (FIA plot design codes: 1, 501, 502). We selected FIA plots in 205 

which all four subplots contained trees and where at least 90% of the plot was specified as 206 

covered by forest. Our selection of FIA plots for the main analyses was further refined by the 207 

availability of GEDI data, as described in Section 2.2, but we also evaluated the 208 

representativeness of the sample of plots that spatially matched with GEDI footprints by using 209 

the most recent inventory measurement from all FIA plots that satisfied the above criteria (see 210 

Supplemental Information Section B for further details). Data for each subplot includes living 211 

trees that had a diameter at breast height (DBH) of at least 12.7 cm (5 inches). We excluded any 212 

trees in the FIA ‘macroplots’ (for plot design codes where macroplots existed)—regions 213 

surrounding the area of the ‘subplots’. The FIA database uses allometric equations from Jenkins 214 

et al. (2003) to provide estimates of biomass for different components of the tree—the stem, tops 215 

and limbs, and stump of each tree (see Woodall et al. 2011 for details). A conversion factor of 216 
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0.5 was used to estimate carbon storage from biomass, since carbon is roughly 50% of the tree 217 

biomass (but can vary between 46%-55%; Lamlom et al., 2003). We aggregated the carbon 218 

storage estimates for each living tree with a DBH greater than 12.7 cm to obtain aboveground 219 

carbon storage for each forest plot. 220 

 221 

We calculated species diversity for each forest plot using metrics of species richness (simply a 222 

count of the number of species) and Shannon diversity, which weights species by the relative 223 

abundances according to Eqn (1):   224 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =  − ∑ 𝑃𝑖 ∗ 𝑙𝑜𝑔(𝑃𝑖)𝑖=1     (1) 225 

where Pi is the proportion of species (i.e., relative abundance) of species I within each forest 226 

plot. We report results from Shannon diversity in the main text, since it facilitates direct 227 

comparison with the plot-based and GEDI-based metrics of structural diversity described in the 228 

next paragraph and next section, but we include results from species richness in the supplemental 229 

information (Figures S5, S6). 230 

 231 

 232 

Using the FIA plot-based data, we calculated structural diversity metrics for height and DBH 233 

diversity. For each forest plot, first we allocated trees into height classes with increments of 234 

3.048 m (10 feet), and into DBH size classes with increments of 12.7 cm (5 inches). We used 235 

these bin widths to provide a range of size class values across the forest plots (1 to 14 and 1 to 10 236 

size classes for height and DBH, respectively) comparable to the range of values species 237 

diversity (1-15 species). Then we calculated height and DBH diversity for each forest plot based 238 
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on the Shannon diversity formula used for species diversity (Eqn 1), but in this case Pi now 239 

represents the proportion of trees within size class i. 240 

 241 

For calculations of other explanatory variables, the FIA dataset provides information on different 242 

forested conditions (i.e., subsections within subplots of the overall forest plot characterized by 243 

different stand ages, soil types, and/or levels of human influence). We calculated stand age for 244 

each forest plot using a weighted average, where age was weighted based on the area covered by 245 

each forested condition. We classified each forest plot into different forest compositions, where a 246 

forest plot was deemed ‘broadleaf’ if at least 70% of the total number of stems were broadleaf 247 

trees, ‘conifer’ if at least 70% of the stems were coniferous trees, and ‘mixed’ if conifer and 248 

broadleaf composition were between these two percentages (sensu Bonan et al., 2002). We 249 

categorized forests as ‘natural’ if the FIA data did not indicate any planted areas (0%) within the 250 

forest plot, and as ‘planted’ if more than 98% of the area was planted. Since there were few plots 251 

between these percentages, we excluded those plots from analyses and treated forest origin 252 

(natural/planted) as a categorical variable. Here, ‘planted’ forests are not necessarily 253 

‘plantations’ and may contain multiple different species, including trees from natural 254 

regeneration. For disturbances, we include all plots in the results presented in the main text. In 255 

the supplemental information we provide results where we excluded any forest plot where the 256 

database indicated more than 5% disturbance (e.g., ice storm, fire, insect damage) (Figure S10 257 

a,b). We used the USA EPA Ecoregions of North America dataset to identify the ecoregion 258 

associated with each forest plot (US EPA 2018). We report results from level II ecoregions since 259 

initial analysis showed that using level II (with 13 ecoregions in our study region) data explained 260 
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more of the variation in carbon storage than the broader level I ecoregion categories or an 261 

east/west division. 262 

 263 

2.2 GEDI-derived Structural Diversity Metrics 264 

With each overpass, GEDI collects data along 8 ground transects spaced approximately 600m 265 

apart, with footprints of 25 m in diameter spaced every 60 m along each transect (Figure 1). 266 

GEDI provides full waveform lidar returns from which metrics of forest structure are calculated. 267 

We used data from the GEDI Level 2B version 2 products (Dubayah et al. 2021), using the 268 

LPDAAC data prep scripts to find suitable GEDI tracks (Krehbiel, 2019) and the ‘rGEDI’ 269 

package in R to extract and process the data (Silva, 2021). We downloaded data for our study 270 

region during the years 2019, 2020, and 2021 for the months of July and August, peak summer 271 

months with leaf-on conditions in broadleaf forests. We then followed the latest GEDI user guide 272 

(Beck et al., 2021), selecting GEDI footprints where the algorithm and quality flags indicated 273 

that the measurements were suitable (values of 1), and where the footprints had at least a 95% 274 

beam sensitivity rating (i.e., the canopy cover percentage through which the beam would be able 275 

to detect the ground 90% of the time; Hancock et al. 2019). At lower beam sensitivities where 276 

the beam does not reach the forest floor, the relative height values provided in the GEDI data 277 

may not match on-the-ground conditions, and estimates of forest height and structural diversity 278 

may not be accurate representations. Because GEDI data cover all areas of the world (forests, 279 

cropland, urban areas, etc.), we extracted GEDI footprints that lined up with pixels that were 280 

classified as ‘forests’ on the ‘LCMAP’ national land cover map from 2019 (30 m resolution; 281 

USGS 2021).  282 

 283 
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The GEDI 2B provides metrics of forest structure and diversity, such as canopy gap fraction, 284 

plant area index (PAI), and foliage height diversity (FHD). The PAI is similar to the traditional 285 

concept of leaf area index (i.e., leaf area per unit ground area), but PAI incorporates all 286 

vegetation components (leaves, branches, and stems) as these components cannot be 287 

distinguished with GEDI (Tang and Armston, 2019). FHD measures the vertical heterogeneity of 288 

vegetation within the GEDI footprint by applying the Shannon diversity formula (Eqn 1); using 289 

bin widths of 1 m (Tang and Armston, 2019), Pi indicates the proportion of the PAI profile 290 

within the ith vertical height band.  291 

  292 

 293 

We extracted GEDI footprints that aligned with the FIA plots, where the footprint center was 294 

within a 100 m buffer zone around the center of the FIA plot (Figure 1). If there were multiple, 295 

suitable GEDI footprints within a given FIA buffer zone, we averaged these metrics of structural 296 

diversity across the footprints. By assessing the correlations between GEDI-derived height 297 

measurements (i.e., RH98 from the GEDI 2A version 2 product; Figure S2) and the maximum 298 

tree height in the FIA data, we found that choosing a reasonable buffer size involved a balance 299 

between the accuracy of GEDI measurements (i.e., better with a small buffer and with multiple 300 

GEDI footprints within the buffer region) and the sample size available for analyses (i.e., better 301 

with a larger buffer and a minimum of one GEDI footprint; Figure S3). Sensitivity analyses with 302 

different buffer sizes—using a 50 m buffer and a minimum of one GEDI footprint, a 100 m 303 

buffer and at least three GEDI footprints, and a 200 m buffer with at least three footprints—304 

showed similar associations between metrics of diversity and carbon storage (Figures S7-S9); we 305 

report results in the main text using a buffer of 100 m and a minimum of three GEDI footprints 306 
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within each FIA buffer zone, which provided a total of 1796 plots suitable for our subsequent 307 

analyses.  308 

 309 

Figure 3. Schematic showing input data and how we selected appropriate plots for our main 310 

analyses and supplementary analyses. “Covariates” indicate datasets used to generate additional 311 

explanatory variables for the statistical modelling. Blue boxes indicate input datasets. Green 312 

boxes indicate selection criteria. Yellow boxes indicate results that are reported, with the results 313 

reported in the main text indicated in darker yellow and bold text. This figure is illustrative, not 314 

exhaustive, of all sensitivity analyses (see supplemental figures). 315 

 316 
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2.3 Statistical Analyses 317 

We applied a generalized additive model (GAM) to model the relationships between carbon 318 

storage, species diversity, structural diversity, and other covariates. Using climate data from the 319 

Daymet dataset at a 1 km2 pixel resolution (Thornton et al., 2020), we extracted the average 320 

annual temperature and precipitation at each forest plot over the past 10 years (2011-2020). We 321 

extracted soil data from the SoilGrids 2.0 database at a 1 km2 resolution for pH, bulk density,  322 

clay and sand percentages, coarse fragments, and cation exchange capacity (ISRIC, 2022; Poggio 323 

et al., 2021). To approximate normal distributions for subsequent analyses, we log transformed 324 

carbon storage, mean annual maximum temperature, and precipitation, and square root 325 

transformed elevation. We scaled all variables to a mean of zero with unit variance, so that 326 

relationships of all variables with carbon storage could be compared on a common scale.  327 

 328 

We built statistical models of increasing complexity to examine associations between diversity 329 

metrics and carbon storage and the amount of variation (i.e., R2 value) explained by each 330 

variable or combination of variables. First, we modelled each of the metrics of structural 331 

diversity, species diversity, mean tree height, top canopy return (RH98), and several covariates 332 

individually with carbon storage, as well as models using the mean tree height, top canopy return 333 

(RH98), and several covariates individually to predict carbon storage. We then ran models that 334 

included both a height metric and a structural diversity metric as explanatory variables; this 335 

included mean tree height and height diversity or DBH diversity for the plot-based models, and 336 

RH98 and FHD for the GEDI-based model. We then ran models with several explanatory 337 

variables, with multiple metrics of diversity alone and with covariates; we conducted two full 338 

GAMs, where all variables remained the same except for the data source for structural diversity 339 
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and for height; one model used plot-based structural diversity (i.e., height and DBH diversity) 340 

and mean tree height and a second model used GEDI-based structural diversity (i.e., FHD) and 341 

canopy height (RH98). These full GAMs included carbon storage as the dependent variable and 342 

several explanatory variables and their interactions, including: smooth terms for species diversity 343 

and for structural diversity that simultaneously varied by forest origin (natural/planted) and forest 344 

composition (broadleaf, mixed, conifer); a smooth term for stand age; smooth terms for the 345 

pairwise interactions between stand age, structural diversity, and species diversity; and the factor 346 

variables forest origin, forest composition and EPA Ecoregion level II. We ran the GAM models 347 

with the ‘mgcv’ package v1.8.38 (Wood, 2011) using restricted maximum likelihood (REML) to 348 

estimate the model parameters. To compute these models within a reasonable time, we initially 349 

specified the number of basis dimensions at k=4 for each parameter, checked whether the basis 350 

dimensions of the resulting model were adequate, and increased k as necessary for each 351 

parameter. No evidence of spatial correlation was found via testing the residuals of the models 352 

with a Moran’s I index (Moran, 1950). To examine whether relationships between diversity and 353 

carbon storage varied by geography or by climate, we re-ran the models with an interaction term 354 

between each of the three diversity variables (i.e., DBH, height, and species diversity) and 355 

ecoregion, and also between the three diversity variables and climate categories; see 356 

supplemental information section C for further details. We visualized the GAM results with 357 

assistance from the ‘gratia’ package (Simpson, 2022). We tested for differences among the 358 

groups for the factor variables (forest origin, forest composition, and ecoregion) using a Kruskal-359 

Wallis test with pairwise testing adjusted for multiple tests with Holm’s procedure (Holm 1979). 360 

In the following sections the results were ‘significant’ if P < 0.05, but we recognize that P-values 361 

are only one part of the overall relationships that we examined in this study. 362 
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 363 

3. Results 364 

3.1 Associations Between Diversity and Carbon Storage 365 

We found that structural diversity (both GEDI-based and plot-based metrics) explained more of 366 

the variation in carbon storage than did species diversity (Figure 4). When modelling each of the 367 

variables individually with carbon storage, FIA plot-based structural diversity metrics of height 368 

diversity and DBH diversity both explained 49.4% of the variation in carbon storage. A model 369 

that only included the mean tree height explained 61.2% of the variation in carbon storage, but 370 

adding height diversity or DBH diversity to this model increased the explanatory ability of model 371 

to 68.2% and 72.0%, respectively. GEDI-based metrics of FHD, PAI, and canopy gap fraction 372 

individually explained 37.9%, 21.2%, and 22.1% of the variation in carbon storage, respectively. 373 

A model with the canopy height (RH98) explained 44.9% of the variation in carbon storage, and 374 

adding FHD as well only increased the explanatory ability to 45.8%, while adding the gap 375 

fraction increased the explanatory ability to 46.5%. Species diversity (Shannon index) and 376 

species richness showed weaker associations with carbon storage than did any metric of 377 

structural diversity; species diversity and richness explained 4.8% and 6.1% of the variation in 378 

carbon storage, respectively. Similar to these results with each of the variables individually, the 379 

GAM using FIA plot-based metrics of structural diversity (height and DBH diversity) plus 380 

additional covariates (i.e., stand age, forest composition, forest origin, ecoregion, soil, climate 381 

variables) explained a higher proportion of the variation in carbon storage than the GAM using 382 

GEDI-based metric of structural diversity (i.e., FHD) with the same covariates (71.6% vs. 61.2% 383 

respectively).  384 

 385 
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 386 

Figure 4. The amount of variation in carbon storage (adjusted R2) explained by each variable 387 

individually or with one variable plus a height measurement (left-hand bars: “individual 388 

correlations”) and by models that included two or more diversity variables (right-hand bars: 389 

“multiple variables”). The “Full Model” included all variables (i.e., stand age, ecoregion, forest 390 

origin, forest composition, soil, and climate variables) and the interactions examined in this study 391 

when using the plot-based metrics of structural diversity and when using GEDI-based metrics. 392 

The axis label “composition” means forest composition (broadleaf, mixed, or conifer). Height̅̅ ̅̅ ̅̅ ̅̅ ̅ 393 

indicates the mean tree height.  394 

 395 

3.2 Relationships Among Metrics of Structural Diversity 396 

The data show reasonable correlations between plot-based and GEDI-based metrics of structural 397 

diversity (Figure 5; see also Figure S1). In general, FHD saturates and levels off at higher levels 398 

of height diversity and DBH diversity, but we note that there are also fewer GEDI footprints 399 

which have the highest levels of FHD. Despite positive correlations, there remains considerable 400 
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scatter in the pairwise relationships between the three metrics (FHD, height diversity, and DBH 401 

diversity), indicating that they capture different aspects of structural diversity. 402 

 403 

Figure 5. The main metrics of structural diversity used in this paper (FHD, height diversity, and 404 

DBH diversity) show positive correlations, although scatter in the relationships indicates that the 405 

metrics capture different aspects of structural diversity. 406 

 407 

3.3 Plot-Based Models of Structural Diversity  408 

Partial effects plots from the GAMs illustrate that the magnitude and significance of 409 

relationships between diversity and carbon storage varied between metrics of diversity and 410 

between natural and planted forests (Figure 6). With the FIA plot-based models, structural 411 

diversity metrics of both height diversity and DBH diversity showed positive associations with 412 

carbon storage across all forest types (broadleaf, mixed, and conifer) in natural and planted 413 

forests (GAM; P < 0.001 for all, except for height diversity in mixed planted forests where P = 414 
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0.10). We could not estimate diversity-carbon storage relationships in broadleaf planted forests 415 

since there was only one such plot in our dataset. Species richness did not show significant 416 

relationships with carbon storage in natural forests. Species richness showed a non-significant 417 

relationship in mixed planted forests, and a significant negative relationship in conifer planted 418 

forests (P < 0.001). In addition to these relationships between diversity and carbon storage, the 419 

mean values of height diversity, species diversity, and carbon storage were all slightly higher in 420 

natural forests than in planted forests (Figure 6; Kruskal-Wallis; P = 0.049 for carbon storage, 421 

and P < 0.001 for all others). 422 

 423 
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 424 

Figure 6. Partial effects plots from a GAM model using plot-based metrics of structural diversity 425 

show the relationship between diversity and carbon storage across forest types in (A) natural 426 

versus (B) planted forests. Boxplots (A and B subpanels) show the distributions of diversity 427 

metrics. Relationships different than 0 at the P < 0.10 level are shown with a *, and at the P < 428 

0.05 level with a **. 429 
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 430 

3.4 GEDI-Based Models of Structural Diversity 431 

Metrics of GEDI-based structural diversity showed contrasting results across broadleaf, mixed, 432 

and conifer forests (Figure 7). In natural forests, the partial effects of structural diversity (i.e., 433 

FHD) showed a positive significant relationship with carbon storage in all forest types (GAM; P 434 

< 0.001). In planted forests, FHD showed a significant positive relationship with carbon storage 435 

in conifer forests (P < 0.001), but no significant relationship in mixed forests. As above, we 436 

could not estimate relationships in broadleaf planted forests as there was only one forest plot. In 437 

natural forests, species diversity showed positive associations with carbon storage in broadleaf 438 

forests (P = 0.019), and no association in mixed forests or conifer forests. In planted forests, 439 

species diversity showed no association with carbon storage in conifer forests and a positive 440 

association in mixed forests (P = 0.027). 441 
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 442 

Figure 7. Partial effects plots from a GAM model with GEDI-based measurements of structural 443 

diversity and with plot-based measurements (B) show the relationship between diversity and 444 

carbon storage across forest types in (A) natural and (B) planted forests. Boxplots (A, B 445 

subpanels) show the distributions of carbon storage and diversity. Relationships significantly 446 

different than 0 at the P < 0.05 level are shown with a **). 447 

 448 

 449 

3.5 Ecoregions 450 

The mean values and degree of variation in carbon storage, structural diversity, and species 451 

diversity varied among some of the 13 EPA level II ecoregions (Figure 8). For example, the 452 

Marine West Coast Forests (region 7.1) had higher carbon storage and height diversity than the 453 
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Atlantic highlands (region 5.3). The Upper Gila Mountains (region 13.1) had lower species 454 

diversity than regions such as the Atlantic highlands (region 5.3) and the Appalachian forests 455 

(region 8.4). Although forests of the Temperate Prairies (region 9.2) showed relatively high 456 

variation in species diversity and DBH diversity between forest plots in this region, the 457 

temperate prairies had low variation in height diversity. 458 

 459 

 460 

Figure 8. The distributions of (a) carbon storage, (b) GEDI-based structural diversity (FHD), (c) 461 

FIA plot-based structural diversity index, (d) and species diversity across the 13 EPA Level II 462 

Ecoregions. The number of forest plots in each ecoregion is shown above panel (d). 463 

 464 
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3.6 Stand Age 465 

Stand age was a strong driver of carbon storage, as we found that, individually, stand age 466 

explained 14.1% of the variation in carbon storage. The amount of variation in carbon storage 467 

explained by the plot-based metrics of structural diversity, height diversity (49.4%) and DBH 468 

diversity (49.4%), was greater than the variation in carbon explained individually by stand age 469 

(14.1%), soil variables (23.3%), or climate variables (27.8%) (Figure 4).  470 

 471 

For some metrics of diversity, the relationships between diversity and carbon storage varied 472 

modestly with forest stand age (Figures 9, S6). There were positive interaction effects on carbon 473 

storage (i.e., a more positive effect than expected based on the values of either variable on their 474 

own) for young stands with either very high or very low height diversity and for both very young 475 

and very old stands with low FHD. There were negative interaction effects for old stands with 476 

high height diversity and with high FHD. That said, the interaction effects of diversity and stand 477 

age on carbon storage were subtle compared to the main effects of these variables individually 478 

and incorporating interactions into the model added a minimal increase in the overall explanatory 479 

ability of the model. 480 

 481 
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 482 

Figure 9. Partial effects plots showing interaction effects between stand age and diversity on 483 

carbon storage when using models with (A) plot-based metrics of structural diversity and (B) 484 

GEDI-based metrics of structural diversity. Warm (red) colors indicate positive interaction 485 

effects, while cold (blue) colors indicate negative interaction effects. Numbers next to the colour 486 

bar indicate the combined effect of stand age and diversity metrics on carbon storage. Areas in 487 

dark grey indicate too few data points to make reasonable estimates in those regions. Interactions 488 

that were not significant are indicated by light grey numbers beside the scale bar. 489 
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 490 

4. Discussion 491 

4.1 Structural vs. Species Diversity 492 

Our results based on FIA and GEDI data show that structural diversity explained more of the 493 

variation in carbon storage (i.e., higher R2 values) than did species diversity, suggesting 494 

important considerations for management. Although we cannot measure species’ niches directly 495 

in this observational study, our results are consistent with the idea that structural diversity may 496 

provide better estimates than species diversity of the niche space occupied by the community 497 

(LaRue et al., 2023). Previous work has demonstrated that structural diversity enhances light and 498 

resource use efficiencies, potentially explaining relationships with higher productivity and 499 

carbon storage (Atkins et al., 2018; Hardiman et al., 2013). One challenge of species diversity is 500 

that it remains difficult to partition the effects of composition versus the effects of diversity 501 

(Isbell et al., 2018; Loreau and Hector, 2001); differences in composition between sites could 502 

confound relationships between diversity and functioning. However, structural diversity 503 

approximates how the physical volume of a forest is utilized more directly, potentially reducing 504 

this challenge. From a management perspective, incorporating estimates of structural diversity 505 

into management considerations could help enhance carbon storage and mitigate climate change. 506 

 507 

4.2 FIA Plot-Based vs. GEDI-Based Structural Diversity 508 

FIA plot-based and GEDI-based metrics of structural diversity explained substantially different 509 

amounts of the variation in carbon storage, potentially because of uncertainty in the GEDI data, 510 

spatial and temporal differences in data collection, and distinctions between what aspects of the 511 

vegetation plot-based and GEDI-based metrics capture. Similar to previous studies (Fayad et al., 512 

2021; Wang et al., 2022), we found that GEDI height measurements (RH98) did not match 513 
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perfectly with the maximum tree heights in the FIA plots (Fig S2, S3). Accurately estimating the 514 

canopy heights from GEDI requires accurate elevations of both the ground returns and top 515 

returns. The number of peaks in the lidar waveform, slope and elevation at the site, and forest 516 

canopy cover can all introduce error into the GEDI canopy height estimates (Adam et al., 2020; 517 

Wang et al., 2022). In addition, plot-based metrics of structural diversity measure diversity at the 518 

same location as the carbon storage estimates. On the other hand, some of our GEDI-based 519 

measurements come from adjacent locations (i.e., within the 100 m buffer region), and may or 520 

may not overlap directly with the trees used to calculate carbon storage. Geolocation uncertainty 521 

of up to 10 m in the GEDI footprints further complicates comparing FIA and GEDI data directly 522 

and may contribute to these differences between the relationships in plot-based and GEDI-based 523 

estimates of structural diversity on carbon storage (Dubayah et al., 2020; Roy et al., 2021); 524 

however, similar associations between diversity and carbon storage with the 50 m, 100 m, and 525 

200 m buffer regions (Figures S7-S9), suggest that geolocation uncertainty likely had only minor 526 

effects on the core results. Similarly, plot-based measurements of structural diversity and carbon 527 

storage estimates are based on data collected at the same time. However, when relating GEDI-528 

based structural diversity to carbon storage, there may be up to a four-year time difference 529 

between when data used to calculate structural diversity were collected by GEDI versus when 530 

field data used to estimate carbon storage were collected at the FIA plot. In addition to ongoing 531 

growth during this period, any disturbances during the intervening years could affect the strength 532 

of the structural diversity-carbon storage relationships. Since aggregating data from multiple 533 

GEDI footprints reduced the noise associated with individual data points (Figure S2), uncertainty 534 

in the GEDI height measurements due to site characteristics and spatial and temporal mismatches 535 
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between plot and GEDI data collection—which in turn influence FHD values—could have led to 536 

the stronger associations observed in plot-based diversity than GEDI-based structural diversity. 537 

 538 

 Notwithstanding uncertainty in the contributions of different vegetation elements to carbon 539 

storage (Radtke et al., 2017), the plot-based measurements of structural diversity are based on 540 

components of forests—the diversity of tree heights and DBHs—which one would expect to be 541 

closely related to carbon storage However, all the vegetation elements in the plot, collectively 542 

influence the vertical distribution of lidar return energy, and thus determine the GEDI-based 543 

FHD metric. While the leaves, small twigs, and shrubs greatly affect the lidar waveform, these 544 

vegetation elements do not contribute nearly as much to carbon storage as the large branches and 545 

tree stems. As metrics of structural diversity from plot and remote sensing data are correlated but 546 

not identical (Figure S1; Fischer et al., 2019; Knapp et al., 2020), these differences in what 547 

components of the vegetation most influenced the FIA plot-based and GEDI-based metrics of 548 

structural diversity could explain why plot-based metrics explained much more of the variation 549 

in carbon storage. 550 

 551 

Although the FIA plot-based metrics explained a greater fraction of the variation in carbon 552 

storage, the GEDI-based metrics showed qualitatively similar relationships to those from plot-553 

based metrics (Figures 6, 7). GEDI data could be coupled with other satellite data (e.g., Landsat, 554 

Sentinel, NISAR, Tandem-X; Choi et al., 2021; Duncanson et al., 2020) and other data products 555 

to interpolate between GEDI footprints and provide spatially continuous estimates of forest 556 

structure and diversity in areas without forest inventory plots. While airborne lidar provide more 557 

detailed forest information than data from the GEDI satellite, data from satellite sensors such as 558 
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GEDI, and ICESat provide 3D structural information across large areas of the world that is freely 559 

and openly accessible—information that is highly useful for estimating carbon storage across 560 

entire countries and continents. 561 

 562 

4.3 Planted vs. Natural Forests 563 

Natural forests may have shown stronger associations with carbon storage than did planted 564 

forests for plot-based structural diversity (i.e., DBH diversity) due to management activities or 565 

systematic differences in species composition. If human influence on carbon storage through 566 

management activities substantially outweighed the influences of structural and species diversity, 567 

diversity-carbon storage relationships may appear weak (Guo and Ren, 2014). These ‘planted’ 568 

forests are not necessarily ‘plantations’, and the degree of human influence in each forest plot 569 

remains difficult to ascertain; some planted forests have experienced no management since 570 

planting, while others have been actively managed (Burrill et al., 2021). Thinning or harvesting 571 

in planted forests transfer carbon out of the forest plot and also affect structural diversity, thus 572 

confounding the relationship between the two. In addition, forest managers often select and plant 573 

species and within-species provenances that are particularly suited to the local environmental 574 

conditions and/or plant species with fast growth rates and high commercial value (e.g., for the 575 

purposes of timber harvesting). We found higher relative proportions of species such as Douglas-576 

fir (Pseudotsuga menziesii (Mirb.) Franco), loblolly pine (Pinus taeda L.), western hemlock 577 

(Tsuga heterophylla (Raf.) Sarg.), bigleaf maple (Acer macrophyllum Pursh), and red alder 578 

(Alnus rubra Bong.) in planted forests than in natural forests (Figure S12). These (non-random) 579 

systematic differences in species composition between planted and natural forests can confound 580 

diversity-carbon storage relationships (Sonkoly et al., 2019). This combination of management 581 
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actions and species composition differences could explain the one negative relationship observed 582 

in this study—between species diversity and carbon storage in conifer-dominated planted forests 583 

(Figure 6b3). Future research could explore the role of disturbances and management legacies, 584 

and should aim to understand relationships in planted forests since restoration work provides an 585 

important application of biodiversity-ecosystem functioning research (Srivastava and Vellend, 586 

2005). 587 

 588 

4.4 Future Research Directions and Implications for Restoration & Management 589 

Although theory suggests explanations for why higher diversity may increase carbon storage 590 

(i.e., more efficient and complete resource use) (Hooper et al., 2005; Tilman et al., 2014), in this 591 

observational study we cannot determine the directions of causality in relationships between 592 

diversity and carbon storage, only the strength of their associations across space. Future 593 

experimental studies that intentionally create communities with different levels of structural 594 

diversity could help elucidate whether there is a causative effect. In addition, just as research has 595 

sought to disentangle the effects of species diversity versus species composition (Grime, 1998), 596 

future work could examine trade-offs and synergies between promoting structural diversity 597 

versus particular structural attributes (e.g., maximum height) for increasing forest productivity 598 

and maximizing resilience in the face of changing global conditions. 599 

 600 

While forest management plans often include provisions for biological diversity and climate 601 

change, our results indicate that incorporating structural diversity into management decisions 602 

could help bolster carbon stocks and help meet climate change mitigation targets. For example, 603 

in forest restoration projects where planting many tree species may not be feasible (i.e., specific 604 
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species are desired, leading to low species diversity), planting seedlings of different sizes and 605 

ages, or continuing to plant in subsequent years to create uneven aged stands, could increase 606 

forest structural diversity (Laiho et al., 2011). In addition, management actions geared at 607 

fostering resilience in highly stocked and/or fire-prone stands might consider increasing the 608 

structural complexity of residual trees to encourage higher rates of carbon accrual. Management 609 

actions that consider how forest canopies will develop in decades to come (i.e., planning how 610 

tree heights, crown shapes and sizes will develop and occupy space) could promote greater light-611 

use efficiency and in turn prompt greater productivity and carbon storage (Atkins et al., 2022, 612 

2018).  613 

 614 

5. Conclusions 615 

The combination of spaceborne lidar data from GEDI and ground-based data from FIA enabled 616 

us to assess relationships of structural and species diversity with aboveground carbon storage for 617 

forests across the contiguous Unites States. Our results showed strong relationships between 618 

plot-based metrics of structural diversity and carbon storage. We found that the amount of 619 

variation in carbon storage explained by structural diversity was greater than the variation 620 

explained individually by stand age, soil conditions, and climate variables—variables all known 621 

to substantially influence carbon storage. Plot-based metrics of structural diversity showed 622 

positive relationships with carbon storage in both natural and planted forests, while GEDI based 623 

metrics of structural diversity showed positive associations in natural forests, but non-significant 624 

relationships in planted forests of mixed broadleaf and conifer trees. Plot-based metrics of 625 

structural diversity provided stronger associations with carbon storage than did species diversity 626 

or GEDI-based metrics of structural diversity, but using satellite-based lidar measurements of 627 
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forest structure and diversity in concert with field-based measurements may be useful for large-628 

scale monitoring programs that strive to estimate carbon storage across the world’s forests. 629 

Incorporating structural diversity alongside species diversity and climate considerations into 630 

management and restoration strategies could help guide efforts to increase carbon storage and 631 

mitigate climate change through nature-based solutions. 632 

 633 
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