Structural and species diversity explain
aboveground carbon storage in forests across the United States:
evidence from GEDI and forest inventory data
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Abstract

Since biodiversity often increases ecosystem functioning, changes in tree species diversity could
substantially influence terrestrial carbon cycling. Yet much less is known about the relationships
between forest structural diversity (i.e., the number and physical arrangement of vegetation
elements in a forest) and carbon cycling, and the factors that mediate these relationships. We
capitalize on spaceborne lidar data from NASA’s Global Ecosystem Dynamics Investigation
(GEDI) and on-the-ground forest inventory (FIA) data from 1796 plots across the contiguous
United States to assess relationships among the structural and species diversity of live trees and
aboveground carbon storage. We found that carbon storage was more strongly correlated with
structural diversity than with species diversity, for both forest inventory-based metrics of
structural diversity (e.g., height and DBH diversity) and GEDI-based canopy metrics (i.e.,
foliage height diversity (FHD)). However, the strength of diversity-carbon storage relationships
was mediated by forest origin and forest composition. For both plot-based and GEDI-based
metrics, the relationship between structural diversity (i.e., height diversity, DBH diversity, and
FHD) and carbon storage was positive in natural forests for all forest types (broadleaf, mixed,
conifer). For planted forests, structural diversity showed positive relationships in conifer planted
forests, but not in mixed planted forests. Species diversity did not show strong associations with
carbon storage in natural forests, but showed a positive relationship in mixed coniferous-
broadleaf planted forests. Although plot-based structural diversity metrics refine our
understanding of drivers of forest carbon balances at the plot scale, remotely sensed metrics such
as those from GEDI can help extend that understanding to regional/national scales in a spatially
continuous manner. Carbon storage showed stronger associations with plot-based structural

diversity than with stand age, soil variables, or climate variables. Incorporating structural
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diversity into management and restoration strategies could help guide efforts to increase carbon

storage and mitigate climate change as nature-based solutions.

Keywords (6-10)

Biodiversity; biomass; carbon stocks; FIA; foliage height diversity; International Space Station;

lidar; species diversity; structural diversity; temperate forests

1. Introduction

Increasing carbon storage in forests presents an opportunity for climate mitigation as a nature-
based solution (Fargione et al., 2018; IPCC, 2021). Changes in forest carbon storage could
influence the global climate, since forests cover approximately 30% of the world’s lands and
store 45% of the world’s terrestrial carbon (Bonan, 2008). In addition to research on the general
environmental conditions that influence forest carbon storage, considerable work has explored
relationships between biodiversity and ecosystem functions and services (e.g., productivity,
carbon storage, nutrient uptake, water quality, and pollination) (Grace et al., 2016; Liang et al.,
2016; Naeem et al., 1994; Tilman and Downing, 1994), in part to assess when the twin goals of
sustaining biodiversity and maintaining ecosystem services such as carbon storage may be
aligned (Mori et al., 2021). Many experimental and observational studies have found positive
associations between biodiversity and ecosystem functions (Cardinale et al., 2012; Hooper et al.,
2005; Jochum et al., 2020), although the strength and significance of these relationships may
vary among functions and ecosystems and across spatial scales (Gonzalez et al., 2020; Ricketts et

al., 2016). However, fewer studies have examined relationships with structural diversity—which



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

in forests can refer to the variation in tree heights, stand density, clumping, canopy cover, and/or

spatial heterogeneity in vertical arrangement (e.g., rugosity) (Atkins et al. 2018).

Theory underpinning biodiversity-ecosystem functioning research suggests that, on average,
ecological communities with more species should be more productive than comparable
communities with fewer species (Loreau et al. 2001; Hooper et al. 2005). Since individual
species have different niches, communities with many species can use available resources more
completely and efficiently than communities with few species, which in turn leads to higher
productivity in species-diverse communities than in species-poor communities (Tilman et al.,
2014). Although it may be true that more species can indeed use available niche space and
resources more fully and complementarily, measuring all axes of the niche space and all resource
use is intractable in real-world ecosystems. Biodiversity metrics such as species richness provide
a proxy for the potential of species to occupy different niches in the community. Metrics of
diversity that serve as better proxies for resource use and efficiency within communities should
show stronger associations with ecosystem functioning. Structural diversity may be a better
predictor of some ecosystem functions than biodiversity (Ali et al., 2019; Dénescu et al., 2016;
Gough et al., 2019; Hardiman et al., 2011; Silva Pedro et al., 2017), as structural diversity may
provide a more direct indicator of the niche space occupied within a community (LaRue et al.,
2019; LaRue et al., 2023). For example, forest communities with differences in tree crown sizes
and shapes have greater light absorption and stem biomass than forest communities where trees
have similar crown architectures (Williams et al., 2017). More specifically, forest canopies with

substantial vertical stratification, complementarity of crown shapes and heights, and
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phenological differences among trees may lead to higher light use efficiency, resulting in higher

biomass productivity (Forrester and Bauhus, 2016).

While scientists have developed numerous metrics of structural diversity (e.g., MacArthur and
Horn, 1969; Staudhammer and LeMay, 2001), metrics are derived from two main sources of
data: traditional plot-based measurements and lidar (light detection and ranging) remote sensing-
based measurements. Traditional forest inventory data collected by field crews (e.g., manual
height and diameter measurements) often provide information on the species’ identities, stem
diameters, and heights of trees in each forest plot (Burrill et al., 2021). Indices of structural
diversity can be created from the heterogeneity (e.g. standard deviation) in tree stem diameters
and heights, number of size and height classes, or with composite metrics combining different
characteristics (Bohn and Huth, 2017; Storch et al., 2018; LaRue et al., 2022). Inventory and
monitoring programs provide critical data but can be time consuming and costly to collect and
curate, resulting in limited sampling in both space and time. Remotely sensed data, however, can
bridge these gaps by offering substantial spatial coverage at landscape (e.g., air- and uncrewed
aerial vehicles or UAVs) to global (e.g., satellite and other spaceborne platforms) extents. The
combination of traditional stand structural data from inventory programs with remotely sensed
data may help provide additional, important information about forest health, productivity, and
carbon storage (Beland et al., 2019; Wehr and Lohr, 1999), while extending the utility of each

across space and time.

Here, we use spaceborne lidar from NASA’s Global Ecosystem Dynamics Instrument (GEDI),

which provides near-global (between 51.6°S and 51.6°N latitude; Figure 1) estimates of forest



92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

structure (see Dubayah et al. 2020 for GEDI details). Although GEDI has been used for
applications such as estimating forest canopy heights (Liu et al., 2021; Potapov et al., 2021),
estimating biomass and fuel loads across large areas (Dubayah et al., 2022; Duncanson et al.,
2022; Leite et al., 2022), and coupling the structural information provided by GEDI with
additional datasets to predict the biodiversity of trees and birds (Burns et al., 2020; Marselis et
al., 2022), in this paper we examine the relative roles of structural and species diversity in
explaining aboveground carbon storage. Building on previous work that found positive
associations between structural diversity and net primary production using either lidar (Gough et
al., 2019; Hardiman et al., 2011) or forest inventory data (Danescu et al., 2016; LaRue et al.,
2023), our study integrates GEDI and forest inventory data to examine diversity-carbon storage
relationships across the entire USA. Understanding how well GEDI-based metrics of structural
diversity align with and/or complement plot-based metrics of structural diversity—and assessing
relationships between metrics of structural diversity and carbon storage—could provide key
insights when scaling up from individual forests plots to provide estimates of diversity and

carbon storage across large spatial scales.
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109  Figure 1. The GEDI sensor provides estimates of structural diversity. (a) The GEDI sensor has
110  coverage tracks over the contiguous United States (and other regions between 51.6°S and 51.6°N
111 latitude). (b) For each GEDI track there are eight beams spaced 600 m apart. (¢) Within each

112 beam there are footprints with a 25 m diameter spaced 60 m apart. We extracted GEDI footprints
113 that were within a 100 m buffer zone of the FIA forest plots (hypothetical forest plots that were
114  not included marked with an X). (d) Examples of different forests with low to high structural

115  diversity. Indices of structural diversity can be generated from (e) the GEDI data and the lidar
116  waveform, which is based on the return energy from all aspects of vegetation within the footprint
117  (e.g., leaves, branches, tree trunks), or from (f) forest inventory plot data using metrics based on
118  the relative frequency of individual tree heights (or DBHs).

119

120  Relationships between diversity and ecosystem functioning (e.g., carbon storage) may vary
121  across different types of forests and between natural and planted forests. Scientists have
122 proposed that the importance of plant species diversity for ecosystem functioning may be greater

123 in more stressful environments than in more benign environments (Warren et al. 2009). In



124 support of this hypothesis, some studies found that biodiversity-productivity relationships vary
125  among tropical, temperate, and boreal forests and among different regions (e.g., Paquette and
126  Messier 2011; Liang et al. 2016), but it remains unclear how much these relationships vary

127  across the broadleaf, coniferous, and mixed forests of the USA (Atkins et al., 2022). Since

128  broadleaf and coniferous trees have very different shapes, we anticipate that the ways that

129  individual trees interact and compete for resources may differ across broadleaf and coniferous
130  forests, promoting different 2D and 3D arrangements of the vegetation, thus leading to different
131  relationships between structural diversity and carbon storage. In addition, historical conditions
132 may affect ecosystem functioning and could lead to differences in the relationships between
133 diversity and carbon storage between natural and planted forests or between newly established
134 and mature/old growth forests. Although evidence in grassland communities suggests that

135  experimental and observational studies may show similar magnitudes of effects (Jochum et al.,
136 2020), differences between natural and planted forests remain uncertain, but could be important
137  due to the legacies of human actions. The majority of research on biodiversity-ecosystem

138  functioning in forest communities has largely been conducted through observational studies in
139  forests with little active management. Yet understanding differences between natural and planted
140  forests is critical, as restoration projects present key opportunities to apply knowledge of

141  relationships between biodiversity and ecosystem functioning (Srivastava and Vellend, 2005).
142

143 While we expect structural and species diversity to influence carbon storage at the site level
144  (LaRue et al., 2023), other factors such as climate and soil conditions may influence forest

145  biomass and carbon storage at the country-wide level (Pan et al., 2013). Temperatures vary

146  greatly across latitudes and elevations in the USA, and warmer temperatures area often
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associated with greater forest biomass in temperate forests (Keith et al., 2009). As temperate
forests are mainly limited by water availability, increased precipitation leads to greater forest
biomass (Stegen et al., 2011). Although in some forests, climate variables matter more than soil
characteristics (Bennett et al., 2020), soil fertility is often associated with increased forest
biomass (Paoli et al., 2008; Yuan et al., 2019). Nutrients such as nitrogen and phosphorus
provide key elements for growth, while soil texture can influence the water availability for root
uptake (Hothansl et al., 2020; Laurance et al., 1999). Accounting for these types of additional
factors that affect forest biomass can help show the relationships between structural diversity,

species diversity, and carbon storage—the focus of this study.

In this paper, we explore the relationships of structural and species diversity with aboveground
live tree carbon storage, an ecosystem service of critical importance for global climate change
policy. First, we capitalize on detailed forest inventory program data and the newly available
satellite-based GEDI data to assess the relative importance of structural and species diversity for
aboveground carbon storage across the contiguous USA. Second, we investigate whether there
are substantial differences in relationships between structural diversity and carbon storage when
using plot-based versus GEDI-based structural diversity metrics. Third, we then explore whether
relationships between diversity and aboveground carbon storage vary across different forest
stand origins (natural or planted) and forest compositions (broadleaf, mixed, or conifer trees).
Using observational rather than experimental data in this study, we do not directly evaluate
directions of causality; we report the statistical relationships between diversity and carbon

storage from spatial data across the USA.
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2. Methods

Our study included data from the forested regions of the contiguous USA, with forest plots
spanning 13 different EPA level II ecoregions (US EPA 2018; Figure 2). Based on the Daymet
climate data (Thornton et al., 2020), the mean minimum annual temperature varied from -5.4°C
to 15.8°C, the mean maximum temperature from 6.1°C to 29.1°C, and annual precipitation from
218 mm to 3742 mm over the past ten years at our forest plots. Individual forest plots contained
1 to 15 species, and all plots in the study region that were included in our analyses collectively
contained 188 species. The analyses proceeded in three main steps: we selected suitable forest
plots (section 2.1); extracted GEDI satellite data (2.2); and conducted statistical analyses to
evaluate the effects of biological and structural diversity (2.3) (Figure 3). We conducted the

analyses described below using R version 4.1.2 (R Core Team, 2021).

10
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Figure 2. Our analysis includes 1796 Forest Inventory and Analysis (FIA) plots across the
western and northeastern forests of the USA in 13 different EPA Level II Ecoregions. FIA plots
are displayed using the publicly available perturbed coordinates.

2.1 Plot-Based Variables from Forest Inventory Data

We relied on Forest Inventory and Analysis (FIA) data to calculate estimates of aboveground
carbon storage, metrics of species diversity, and other explanatory variables (Burrill et al., 2021).
FIA data were also used to calculate plot-based structural diversity metrics. Administered by the
United States Department of Agriculture Forest Service, the FIA program provides the most
comprehensive forest database currently available in the United States (Tinkham et al., 2018).

The FIA program divides each state into different strata (forested land and non-forested land)

11
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using remotely sensed imagery, and conducts on-the-ground forest land sampling to match the
relative area of forested strata, which results in a national sample intensity of approximately one
plot per 2,428 ha (sampling ratio to total land of roughly 0.0028%; Bechtold and Patterson
2005). Forest land is defined as having >10% tree or woody canopy cover (or formerly having
such cover that will be naturally or artificially regenerated) and being >0.4 ha in size and 37 m
wide (Burrill et al., 2021). This incorporates both timberland and non-timberland, which includes

woodland vegetation and reserved forest land (Oswalt et al., 2019).

We selected forest plots that were surveyed in 2017-2020, as these years corresponded most
closely with the GEDI data (2019-2021) and provide a sample size of 1796 corresponding plots.
The sampling protocols for these plots encompassed four subplots of 7.3 m in diameter for a total
0f 0.0672 ha per FIA forest plot (FIA plot design codes: 1, 501, 502). We selected FIA plots in
which all four subplots contained trees and where at least 90% of the plot was specified as
covered by forest. Our selection of FIA plots for the main analyses was further refined by the
availability of GEDI data, as described in Section 2.2, but we also evaluated the
representativeness of the sample of plots that spatially matched with GEDI footprints by using
the most recent inventory measurement from all FIA plots that satisfied the above criteria (see
Supplemental Information Section B for further details). Data for each subplot includes living
trees that had a diameter at breast height (DBH) of at least 12.7 cm (5 inches). We excluded any
trees in the FIA ‘macroplots’ (for plot design codes where macroplots existed)—regions
surrounding the area of the ‘subplots’. The FIA database uses allometric equations from Jenkins
et al. (2003) to provide estimates of biomass for different components of the tree—the stem, tops

and limbs, and stump of each tree (see Woodall et al. 2011 for details). A conversion factor of

12
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0.5 was used to estimate carbon storage from biomass, since carbon is roughly 50% of the tree
biomass (but can vary between 46%-55%; Lamlom et al., 2003). We aggregated the carbon
storage estimates for each living tree with a DBH greater than 12.7 cm to obtain aboveground

carbon storage for each forest plot.

We calculated species diversity for each forest plot using metrics of species richness (simply a
count of the number of species) and Shannon diversity, which weights species by the relative
abundances according to Eqn (1):

Diversity = —),;—1 Pi * log(Pi) (1)
where P; is the proportion of species (i.e., relative abundance) of species / within each forest
plot. We report results from Shannon diversity in the main text, since it facilitates direct
comparison with the plot-based and GEDI-based metrics of structural diversity described in the
next paragraph and next section, but we include results from species richness in the supplemental

information (Figures S5, S6).

Using the FIA plot-based data, we calculated structural diversity metrics for height and DBH
diversity. For each forest plot, first we allocated trees into height classes with increments of
3.048 m (10 feet), and into DBH size classes with increments of 12.7 cm (5 inches). We used
these bin widths to provide a range of size class values across the forest plots (1 to 14 and 1 to 10
size classes for height and DBH, respectively) comparable to the range of values species

diversity (1-15 species). Then we calculated height and DBH diversity for each forest plot based

13
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on the Shannon diversity formula used for species diversity (Eqn 1), but in this case P; now

represents the proportion of trees within size class i.

For calculations of other explanatory variables, the FIA dataset provides information on different
forested conditions (i.e., subsections within subplots of the overall forest plot characterized by
different stand ages, soil types, and/or levels of human influence). We calculated stand age for
each forest plot using a weighted average, where age was weighted based on the area covered by
each forested condition. We classified each forest plot into different forest compositions, where a
forest plot was deemed ‘broadleaf’ if at least 70% of the total number of stems were broadleaf
trees, ‘conifer’ if at least 70% of the stems were coniferous trees, and ‘mixed’ if conifer and
broadleaf composition were between these two percentages (sensu Bonan et al., 2002). We
categorized forests as ‘natural’ if the FIA data did not indicate any planted areas (0%) within the
forest plot, and as ‘planted’ if more than 98% of the area was planted. Since there were few plots
between these percentages, we excluded those plots from analyses and treated forest origin
(natural/planted) as a categorical variable. Here, ‘planted’ forests are not necessarily
‘plantations’ and may contain multiple different species, including trees from natural
regeneration. For disturbances, we include all plots in the results presented in the main text. In
the supplemental information we provide results where we excluded any forest plot where the
database indicated more than 5% disturbance (e.g., ice storm, fire, insect damage) (Figure S10
a,b). We used the USA EPA Ecoregions of North America dataset to identify the ecoregion
associated with each forest plot (US EPA 2018). We report results from level II ecoregions since

initial analysis showed that using level II (with 13 ecoregions in our study region) data explained

14
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more of the variation in carbon storage than the broader level I ecoregion categories or an

east/west division.

2.2 GEDI-derived Structural Diversity Metrics

With each overpass, GEDI collects data along 8 ground transects spaced approximately 600m
apart, with footprints of 25 m in diameter spaced every 60 m along each transect (Figure 1).
GEDI provides full waveform lidar returns from which metrics of forest structure are calculated.
We used data from the GEDI Level 2B version 2 products (Dubayah et al. 2021), using the
LPDAAC data prep scripts to find suitable GEDI tracks (Krehbiel, 2019) and the ‘rGEDI’
package in R to extract and process the data (Silva, 2021). We downloaded data for our study
region during the years 2019, 2020, and 2021 for the months of July and August, peak summer
months with leaf-on conditions in broadleaf forests. We then followed the latest GEDI user guide
(Beck et al., 2021), selecting GEDI footprints where the algorithm and quality flags indicated
that the measurements were suitable (values of 1), and where the footprints had at least a 95%
beam sensitivity rating (i.e., the canopy cover percentage through which the beam would be able
to detect the ground 90% of the time; Hancock et al. 2019). At lower beam sensitivities where
the beam does not reach the forest floor, the relative height values provided in the GEDI data
may not match on-the-ground conditions, and estimates of forest height and structural diversity
may not be accurate representations. Because GEDI data cover all areas of the world (forests,
cropland, urban areas, etc.), we extracted GEDI footprints that lined up with pixels that were
classified as ‘forests’ on the ‘LCMAP’ national land cover map from 2019 (30 m resolution;

USGS 2021).
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The GEDI 2B provides metrics of forest structure and diversity, such as canopy gap fraction,
plant area index (PAI), and foliage height diversity (FHD). The PAI is similar to the traditional
concept of leaf area index (i.e., leaf area per unit ground area), but PAI incorporates all
vegetation components (leaves, branches, and stems) as these components cannot be
distinguished with GEDI (Tang and Armston, 2019). FHD measures the vertical heterogeneity of
vegetation within the GEDI footprint by applying the Shannon diversity formula (Eqn 1); using
bin widths of 1 m (Tang and Armston, 2019), P; indicates the proportion of the PAI profile

within the i vertical height band.

We extracted GEDI footprints that aligned with the FIA plots, where the footprint center was
within a 100 m buffer zone around the center of the FIA plot (Figure 1). If there were multiple,
suitable GEDI footprints within a given FIA buffer zone, we averaged these metrics of structural
diversity across the footprints. By assessing the correlations between GEDI-derived height
measurements (i.e., RH98 from the GEDI 2A version 2 product; Figure S2) and the maximum
tree height in the FIA data, we found that choosing a reasonable buffer size involved a balance
between the accuracy of GEDI measurements (i.e., better with a small buffer and with multiple
GEDI footprints within the buffer region) and the sample size available for analyses (i.e., better
with a larger buffer and a minimum of one GEDI footprint; Figure S3). Sensitivity analyses with
different buffer sizes—using a 50 m buffer and a minimum of one GEDI footprint, a 100 m
buffer and at least three GEDI footprints, and a 200 m buffer with at least three footprints—
showed similar associations between metrics of diversity and carbon storage (Figures S7-S9); we

report results in the main text using a buffer of 100 m and a minimum of three GEDI footprints
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Figure 3. Schematic showing input data and how we selected appropriate plots for our main
analyses and supplementary analyses. “Covariates” indicate datasets used to generate additional
explanatory variables for the statistical modelling. Blue boxes indicate input datasets. Green
boxes indicate selection criteria. Yellow boxes indicate results that are reported, with the results
reported in the main text indicated in darker yellow and bold text. This figure is illustrative, not

exhaustive, of all sensitivity analyses (see supplemental figures).
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2.3 Statistical Analyses

We applied a generalized additive model (GAM) to model the relationships between carbon
storage, species diversity, structural diversity, and other covariates. Using climate data from the
Daymet dataset at a 1 km? pixel resolution (Thornton et al., 2020), we extracted the average
annual temperature and precipitation at each forest plot over the past 10 years (2011-2020). We
extracted soil data from the SoilGrids 2.0 database at a 1 km? resolution for pH, bulk density,
clay and sand percentages, coarse fragments, and cation exchange capacity (ISRIC, 2022; Poggio
et al., 2021). To approximate normal distributions for subsequent analyses, we log transformed
carbon storage, mean annual maximum temperature, and precipitation, and square root
transformed elevation. We scaled all variables to a mean of zero with unit variance, so that

relationships of all variables with carbon storage could be compared on a common scale.

We built statistical models of increasing complexity to examine associations between diversity
metrics and carbon storage and the amount of variation (i.e., R? value) explained by each
variable or combination of variables. First, we modelled each of the metrics of structural
diversity, species diversity, mean tree height, top canopy return (RH98), and several covariates
individually with carbon storage, as well as models using the mean tree height, top canopy return
(RH98), and several covariates individually to predict carbon storage. We then ran models that
included both a height metric and a structural diversity metric as explanatory variables; this
included mean tree height and height diversity or DBH diversity for the plot-based models, and
RH98 and FHD for the GEDI-based model. We then ran models with several explanatory
variables, with multiple metrics of diversity alone and with covariates; we conducted two full

GAMs, where all variables remained the same except for the data source for structural diversity
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and for height; one model used plot-based structural diversity (i.e., height and DBH diversity)
and mean tree height and a second model used GEDI-based structural diversity (i.e., FHD) and
canopy height (RH98). These full GAMs included carbon storage as the dependent variable and
several explanatory variables and their interactions, including: smooth terms for species diversity
and for structural diversity that simultaneously varied by forest origin (natural/planted) and forest
composition (broadleaf, mixed, conifer); a smooth term for stand age; smooth terms for the
pairwise interactions between stand age, structural diversity, and species diversity; and the factor
variables forest origin, forest composition and EPA Ecoregion level II. We ran the GAM models
with the ‘mgcv’ package v1.8.38 (Wood, 2011) using restricted maximum likelihood (REML) to
estimate the model parameters. To compute these models within a reasonable time, we initially
specified the number of basis dimensions at k=4 for each parameter, checked whether the basis
dimensions of the resulting model were adequate, and increased k as necessary for each
parameter. No evidence of spatial correlation was found via testing the residuals of the models
with a Moran’s I index (Moran, 1950). To examine whether relationships between diversity and
carbon storage varied by geography or by climate, we re-ran the models with an interaction term
between each of the three diversity variables (i.e., DBH, height, and species diversity) and
ecoregion, and also between the three diversity variables and climate categories; see
supplemental information section C for further details. We visualized the GAM results with
assistance from the ‘gratia’ package (Simpson, 2022). We tested for differences among the
groups for the factor variables (forest origin, forest composition, and ecoregion) using a Kruskal-
Wallis test with pairwise testing adjusted for multiple tests with Holm’s procedure (Holm 1979).
In the following sections the results were ‘significant’ if P < 0.05, but we recognize that P-values

are only one part of the overall relationships that we examined in this study.
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3. Results

3.1 Associations Between Diversity and Carbon Storage

We found that structural diversity (both GEDI-based and plot-based metrics) explained more of
the variation in carbon storage than did species diversity (Figure 4). When modelling each of the
variables individually with carbon storage, FIA plot-based structural diversity metrics of height
diversity and DBH diversity both explained 49.4% of the variation in carbon storage. A model
that only included the mean tree height explained 61.2% of the variation in carbon storage, but
adding height diversity or DBH diversity to this model increased the explanatory ability of model
to 68.2% and 72.0%, respectively. GEDI-based metrics of FHD, PAI, and canopy gap fraction
individually explained 37.9%, 21.2%, and 22.1% of the variation in carbon storage, respectively.
A model with the canopy height (RH98) explained 44.9% of the variation in carbon storage, and
adding FHD as well only increased the explanatory ability to 45.8%, while adding the gap
fraction increased the explanatory ability to 46.5%. Species diversity (Shannon index) and
species richness showed weaker associations with carbon storage than did any metric of
structural diversity; species diversity and richness explained 4.8% and 6.1% of the variation in
carbon storage, respectively. Similar to these results with each of the variables individually, the
GAM using FIA plot-based metrics of structural diversity (height and DBH diversity) plus
additional covariates (i.e., stand age, forest composition, forest origin, ecoregion, soil, climate
variables) explained a higher proportion of the variation in carbon storage than the GAM using
GEDI-based metric of structural diversity (i.e., FHD) with the same covariates (71.6% vs. 61.2%

respectively).
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387  Figure 4. The amount of variation in carbon storage (adjusted R?) explained by each variable
388  individually or with one variable plus a height measurement (left-hand bars: “individual

389  correlations”) and by models that included two or more diversity variables (right-hand bars:

390  “multiple variables™). The “Full Model” included all variables (i.e., stand age, ecoregion, forest
391  origin, forest composition, soil, and climate variables) and the interactions examined in this study
392 when using the plot-based metrics of structural diversity and when using GEDI-based metrics.
393  The axis label “composition” means forest composition (broadleaf, mixed, or conifer). Height
394  indicates the mean tree height.

395

396 3.2 Relationships Among Metrics of Structural Diversity

397  The data show reasonable correlations between plot-based and GEDI-based metrics of structural
398  diversity (Figure 5; see also Figure S1). In general, FHD saturates and levels off at higher levels
399  of height diversity and DBH diversity, but we note that there are also fewer GEDI footprints
400  which have the highest levels of FHD. Despite positive correlations, there remains considerable
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scatter in the pairwise relationships between the three metrics (FHD, height diversity, and DBH

diversity), indicating that they capture different aspects of structural diversity.
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Figure 5. The main metrics of structural diversity used in this paper (FHD, height diversity, and

DBH diversity) show positive correlations, although scatter in the relationships indicates that the

metrics capture different aspects of structural diversity.

3.3 Plot-Based Models of Structural Diversity

Partial effects plots from the GAMs illustrate that the magnitude and significance of
relationships between diversity and carbon storage varied between metrics of diversity and
between natural and planted forests (Figure 6). With the FIA plot-based models, structural
diversity metrics of both height diversity and DBH diversity showed positive associations with
carbon storage across all forest types (broadleaf, mixed, and conifer) in natural and planted

forests (GAM; P < 0.001 for all, except for height diversity in mixed planted forests where P =
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0.10). We could not estimate diversity-carbon storage relationships in broadleaf planted forests
since there was only one such plot in our dataset. Species richness did not show significant
relationships with carbon storage in natural forests. Species richness showed a non-significant
relationship in mixed planted forests, and a significant negative relationship in conifer planted

forests (P < 0.001). In addition to these relationships between diversity and carbon storage, the

mean values of height diversity, species diversity, and carbon storage were all slightly higher in

natural forests than in planted forests (Figure 6; Kruskal-Wallis; P = 0.049 for carbon storage,

and P <0.001 for all others).
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Figure 6. Partial effects plots from a GAM model using plot-based metrics of structural diversity
show the relationship between diversity and carbon storage across forest types in (A) natural
versus (B) planted forests. Boxplots (A and B subpanels) show the distributions of diversity
metrics. Relationships different than 0 at the P < 0.10 level are shown with a *, and at the P <
0.05 level with a **.
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3.4 GEDI-Based Models of Structural Diversity

Metrics of GEDI-based structural diversity showed contrasting results across broadleaf, mixed,
and conifer forests (Figure 7). In natural forests, the partial effects of structural diversity (i.e.,
FHD) showed a positive significant relationship with carbon storage in all forest types (GAM; P
<0.001). In planted forests, FHD showed a significant positive relationship with carbon storage
in conifer forests (P < 0.001), but no significant relationship in mixed forests. As above, we
could not estimate relationships in broadleaf planted forests as there was only one forest plot. In
natural forests, species diversity showed positive associations with carbon storage in broadleaf
forests (P =0.019), and no association in mixed forests or conifer forests. In planted forests,
species diversity showed no association with carbon storage in conifer forests and a positive

association in mixed forests (P = 0.027).
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Figure 7. Partial effects plots from a GAM model with GEDI-based measurements of structural
diversity and with plot-based measurements (B) show the relationship between diversity and
carbon storage across forest types in (A) natural and (B) planted forests. Boxplots (A, B

subpanels) show the distributions of carbon storage and diversity. Relationships significantly
different than 0 at the P < 0.05 level are shown with a **).

3.5 Ecoregions
The mean values and degree of variation in carbon storage, structural diversity, and species
diversity varied among some of the 13 EPA level II ecoregions (Figure 8). For example, the

Marine West Coast Forests (region 7.1) had higher carbon storage and height diversity than the

26



454

455

456

457

458

459

460

461
462
463
464

Atlantic highlands (region 5.3). The Upper Gila Mountains (region 13.1) had lower species

diversity than regions such as the Atlantic highlands (region 5.3) and the Appalachian forests

(region 8.4). Although forests of the Temperate Prairies (region 9.2) showed relatively high

variation in species diversity and DBH diversity between forest plots in this region, the

temperate prairies had low variation in height diversity.
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Figure 8. The distributions of (a) carbon storage, (b) GEDI-based structural diversity (FHD), (c)

FIA plot-based structural diversity index, (d) and species diversity across the 13 EPA Level 11

Ecoregions. The number of forest plots in each ecoregion is shown above panel (d).
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3.6 Stand Age

Stand age was a strong driver of carbon storage, as we found that, individually, stand age
explained 14.1% of the variation in carbon storage. The amount of variation in carbon storage
explained by the plot-based metrics of structural diversity, height diversity (49.4%) and DBH
diversity (49.4%), was greater than the variation in carbon explained individually by stand age

(14.1%), soil variables (23.3%), or climate variables (27.8%) (Figure 4).

For some metrics of diversity, the relationships between diversity and carbon storage varied
modestly with forest stand age (Figures 9, S6). There were positive interaction effects on carbon
storage (i.e., a more positive effect than expected based on the values of either variable on their
own) for young stands with either very high or very low height diversity and for both very young
and very old stands with low FHD. There were negative interaction effects for old stands with
high height diversity and with high FHD. That said, the interaction effects of diversity and stand
age on carbon storage were subtle compared to the main effects of these variables individually
and incorporating interactions into the model added a minimal increase in the overall explanatory

ability of the model.
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Figure 9. Partial effects plots showing interaction effects between stand age and diversity on
carbon storage when using models with (A) plot-based metrics of structural diversity and (B)
GEDI-based metrics of structural diversity. Warm (red) colors indicate positive interaction
effects, while cold (blue) colors indicate negative interaction effects. Numbers next to the colour
bar indicate the combined effect of stand age and diversity metrics on carbon storage. Areas in
dark grey indicate too few data points to make reasonable estimates in those regions. Interactions
that were not significant are indicated by light grey numbers beside the scale bar.
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4. Discussion

4.1 Structural vs. Species Diversity

Our results based on FIA and GEDI data show that structural diversity explained more of the
variation in carbon storage (i.e., higher R? values) than did species diversity, suggesting
important considerations for management. Although we cannot measure species’ niches directly
in this observational study, our results are consistent with the idea that structural diversity may
provide better estimates than species diversity of the niche space occupied by the community
(LaRue et al., 2023). Previous work has demonstrated that structural diversity enhances light and
resource use efficiencies, potentially explaining relationships with higher productivity and
carbon storage (Atkins et al., 2018; Hardiman et al., 2013). One challenge of species diversity is
that it remains difficult to partition the effects of composition versus the effects of diversity
(Isbell et al., 2018; Loreau and Hector, 2001); differences in composition between sites could
confound relationships between diversity and functioning. However, structural diversity
approximates how the physical volume of a forest is utilized more directly, potentially reducing
this challenge. From a management perspective, incorporating estimates of structural diversity

into management considerations could help enhance carbon storage and mitigate climate change.

4.2 FIA Plot-Based vs. GEDI-Based Structural Diversity

FIA plot-based and GEDI-based metrics of structural diversity explained substantially different
amounts of the variation in carbon storage, potentially because of uncertainty in the GEDI data,
spatial and temporal differences in data collection, and distinctions between what aspects of the
vegetation plot-based and GEDI-based metrics capture. Similar to previous studies (Fayad et al.,

2021; Wang et al., 2022), we found that GEDI height measurements (RH98) did not match
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perfectly with the maximum tree heights in the FIA plots (Fig S2, S3). Accurately estimating the
canopy heights from GEDI requires accurate elevations of both the ground returns and top
returns. The number of peaks in the lidar waveform, slope and elevation at the site, and forest
canopy cover can all introduce error into the GEDI canopy height estimates (Adam et al., 2020;
Wang et al., 2022). In addition, plot-based metrics of structural diversity measure diversity at the
same location as the carbon storage estimates. On the other hand, some of our GEDI-based
measurements come from adjacent locations (i.e., within the 100 m buffer region), and may or
may not overlap directly with the trees used to calculate carbon storage. Geolocation uncertainty
of up to 10 m in the GEDI footprints further complicates comparing FIA and GEDI data directly
and may contribute to these differences between the relationships in plot-based and GEDI-based
estimates of structural diversity on carbon storage (Dubayah et al., 2020; Roy et al., 2021);
however, similar associations between diversity and carbon storage with the 50 m, 100 m, and
200 m buffer regions (Figures S7-S9), suggest that geolocation uncertainty likely had only minor
effects on the core results. Similarly, plot-based measurements of structural diversity and carbon
storage estimates are based on data collected at the same time. However, when relating GEDI-
based structural diversity to carbon storage, there may be up to a four-year time difference
between when data used to calculate structural diversity were collected by GEDI versus when
field data used to estimate carbon storage were collected at the FIA plot. In addition to ongoing
growth during this period, any disturbances during the intervening years could affect the strength
of the structural diversity-carbon storage relationships. Since aggregating data from multiple
GEDI footprints reduced the noise associated with individual data points (Figure S2), uncertainty

in the GEDI height measurements due to site characteristics and spatial and temporal mismatches
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between plot and GEDI data collection—which in turn influence FHD values—could have led to

the stronger associations observed in plot-based diversity than GEDI-based structural diversity.

Notwithstanding uncertainty in the contributions of different vegetation elements to carbon
storage (Radtke et al., 2017), the plot-based measurements of structural diversity are based on
components of forests—the diversity of tree heights and DBHs—which one would expect to be
closely related to carbon storage However, all the vegetation elements in the plot, collectively
influence the vertical distribution of lidar return energy, and thus determine the GEDI-based
FHD metric. While the leaves, small twigs, and shrubs greatly affect the lidar waveform, these
vegetation elements do not contribute nearly as much to carbon storage as the large branches and
tree stems. As metrics of structural diversity from plot and remote sensing data are correlated but
not identical (Figure S1; Fischer et al., 2019; Knapp et al., 2020), these differences in what
components of the vegetation most influenced the FIA plot-based and GEDI-based metrics of
structural diversity could explain why plot-based metrics explained much more of the variation

in carbon storage.

Although the FIA plot-based metrics explained a greater fraction of the variation in carbon
storage, the GEDI-based metrics showed qualitatively similar relationships to those from plot-
based metrics (Figures 6, 7). GEDI data could be coupled with other satellite data (e.g., Landsat,
Sentinel, NISAR, Tandem-X; Choi et al., 2021; Duncanson et al., 2020) and other data products
to interpolate between GEDI footprints and provide spatially continuous estimates of forest
structure and diversity in areas without forest inventory plots. While airborne lidar provide more

detailed forest information than data from the GEDI satellite, data from satellite sensors such as
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GEDI, and ICESat provide 3D structural information across large areas of the world that is freely
and openly accessible—information that is highly useful for estimating carbon storage across

entire countries and continents.

4.3 Planted vs. Natural Forests

Natural forests may have shown stronger associations with carbon storage than did planted
forests for plot-based structural diversity (i.e., DBH diversity) due to management activities or
systematic differences in species composition. If human influence on carbon storage through
management activities substantially outweighed the influences of structural and species diversity,
diversity-carbon storage relationships may appear weak (Guo and Ren, 2014). These ‘planted’
forests are not necessarily ‘plantations’, and the degree of human influence in each forest plot
remains difficult to ascertain; some planted forests have experienced no management since
planting, while others have been actively managed (Burrill et al., 2021). Thinning or harvesting
in planted forests transfer carbon out of the forest plot and also affect structural diversity, thus
confounding the relationship between the two. In addition, forest managers often select and plant
species and within-species provenances that are particularly suited to the local environmental
conditions and/or plant species with fast growth rates and high commercial value (e.g., for the
purposes of timber harvesting). We found higher relative proportions of species such as Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco), loblolly pine (Pinus taeda L.), western hemlock
(Tsuga heterophylla (Raf.) Sarg.), bigleaf maple (Acer macrophyllum Pursh), and red alder
(Alnus rubra Bong.) in planted forests than in natural forests (Figure S12). These (non-random)
systematic differences in species composition between planted and natural forests can confound

diversity-carbon storage relationships (Sonkoly et al., 2019). This combination of management
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actions and species composition differences could explain the one negative relationship observed
in this study—between species diversity and carbon storage in conifer-dominated planted forests
(Figure 6b3). Future research could explore the role of disturbances and management legacies,
and should aim to understand relationships in planted forests since restoration work provides an
important application of biodiversity-ecosystem functioning research (Srivastava and Vellend,

2005).

4.4 Future Research Directions and Implications for Restoration & Management

Although theory suggests explanations for why higher diversity may increase carbon storage
(i.e., more efficient and complete resource use) (Hooper et al., 2005; Tilman et al., 2014), in this
observational study we cannot determine the directions of causality in relationships between
diversity and carbon storage, only the strength of their associations across space. Future
experimental studies that intentionally create communities with different levels of structural
diversity could help elucidate whether there is a causative effect. In addition, just as research has
sought to disentangle the effects of species diversity versus species composition (Grime, 1998),
future work could examine trade-offs and synergies between promoting structural diversity
versus particular structural attributes (e.g., maximum height) for increasing forest productivity

and maximizing resilience in the face of changing global conditions.

While forest management plans often include provisions for biological diversity and climate
change, our results indicate that incorporating structural diversity into management decisions
could help bolster carbon stocks and help meet climate change mitigation targets. For example,

in forest restoration projects where planting many tree species may not be feasible (i.e., specific
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species are desired, leading to low species diversity), planting seedlings of different sizes and
ages, or continuing to plant in subsequent years to create uneven aged stands, could increase
forest structural diversity (Laiho et al., 2011). In addition, management actions geared at
fostering resilience in highly stocked and/or fire-prone stands might consider increasing the
structural complexity of residual trees to encourage higher rates of carbon accrual. Management
actions that consider how forest canopies will develop in decades to come (i.e., planning how
tree heights, crown shapes and sizes will develop and occupy space) could promote greater light-
use efficiency and in turn prompt greater productivity and carbon storage (Atkins et al., 2022,

2018).

5. Conclusions

The combination of spaceborne lidar data from GEDI and ground-based data from FIA enabled
us to assess relationships of structural and species diversity with aboveground carbon storage for
forests across the contiguous Unites States. Our results showed strong relationships between
plot-based metrics of structural diversity and carbon storage. We found that the amount of
variation in carbon storage explained by structural diversity was greater than the variation
explained individually by stand age, soil conditions, and climate variables—variables all known
to substantially influence carbon storage. Plot-based metrics of structural diversity showed
positive relationships with carbon storage in both natural and planted forests, while GEDI based
metrics of structural diversity showed positive associations in natural forests, but non-significant
relationships in planted forests of mixed broadleaf and conifer trees. Plot-based metrics of
structural diversity provided stronger associations with carbon storage than did species diversity

or GEDI-based metrics of structural diversity, but using satellite-based lidar measurements of
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forest structure and diversity in concert with field-based measurements may be useful for large-
scale monitoring programs that strive to estimate carbon storage across the world’s forests.
Incorporating structural diversity alongside species diversity and climate considerations into
management and restoration strategies could help guide efforts to increase carbon storage and

mitigate climate change through nature-based solutions.
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project from the US Forest Service after requesting special permissions and executing a material
transfer agreement. For privacy reasons, maps shown in the paper use the perturbed publicly

available coordinates.
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