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Abstract

Historically, humans have cleared many forests for agriculture. While this substantially reduced
ecosystem carbon storage, the impacts of these land cover changes on terrestrial gross primary
productivity (GPP) have not been adequately resolved yet. Here, we combine high-resolution
datasets of satellite-derived GPP and environmental predictor variables to estimate the potential
GPP of forests, grasslands, and croplands around the globe. With a mean GPP of 2.0 kg C m2 yr?
forests represent the most productive land cover on two thirds of the total area suitable for any of
these land cover types, while grasslands and croplands on average reach 1.5 and 1.8 kg C m2 yr?,
respectively. Combining our potential GPP maps with a historical land-use reconstruction indicates a
4.4% reduction in global GPP from agricultural expansion. This land-use-induced GPP reduction is
amplified in some future scenarios as a result of ongoing deforestation (e.g., the large-scale
bioenergy scenario SSP4-3.4) but partly reversed in other scenarios (e.g., the sustainability scenario

SSP1-1.9) due to agricultural abandonment. Comparing our results to simulations from state-of-the-
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art Earth System Models, we find that all investigated models deviate substantially from our
estimates and from each other. Our maps could be used as a benchmark to reduce this

inconsistency, thereby improving projections of land-based climate mitigation potentials.

Introduction

Terrestrial ecosystems exchange large amounts of carbon with the atmosphere and thus play a
crucial role in the global carbon cycle. Gross primary productivity (GPP), the amount of carbon fixed
via photosynthesis, is the largest carbon flux between land and atmosphere (~130 Gt C yr) . Around
half of the GPP is quickly released back to the atmosphere as autotrophic respiration while the
remainder, net primary productivity (NPP) is available for biomass production. GPP and NPP thus co-
determine not only the carbon uptake potential of ecosystems but also other ecosystem services

such as the supply of wood products, food, fodder, and bioenergy.

Presently, vegetation and soils absorb around 30% of anthropogenic CO; emissions 2, thereby slowing
down the increase in atmospheric CO; and mitigating climate change. However, over most of the
Holocene, the terrestrial biosphere acted as a net carbon source as humans gradually converted
more than one third of the global land area into croplands or managed grasslands 3, thereby reducing
total biomass by around 260 Gt C # and soil carbon by around 116 Gt C °. Reversing these carbon
losses and enhancing terrestrial carbon storage via forest protection and expansion are thus
increasingly considered as effective measures to achieve the targets of the Paris Agreement .
Nevertheless, while it is clear that forests store more carbon than agricultural land 7, the question
whether they are also superior in terms of productivity (GPP and NPP) has so far received less

attention and is much more uncertain.

The impacts of land cover changes on the terrestrial carbon cycle have so far mainly been estimated
using process-based ecosystem models such as Dynamic Global Vegetation Models or Earth System
Models (ESMs) 2814, However, there is a large spread in simulated global productivity in these models

15 and no agreement concerning the question of how land cover changes affect ecosystem
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productivity 116, In fact, the large spread in simulated carbon stock changes in response to
deforestation or reforestation across ecosystem models has largely been attributed to the
uncertainty regarding the magnitude and direction of change in productivity associated with land
cover change 8. For instance, LPJmL simulates large increases in ecosystem productivity following
reforestation, while ORCHIDEE leads to productivity reductions . This is likely related to differences
in how the models incorporate land-use changes and which natural and management processes are
considered (e.g., LPJmL accounts for nitrogen fertilization and limitation, while ORCHIDEE does not).
Maps of the potential productivity of different land cover types would therefore provide valuable
benchmarks for model evaluation and help to narrow down the uncertainty concerning the impacts
of land cover changes on carbon storage. This is urgently needed to assess the plausibility of land-
based climate mitigation scenarios given our limited understanding of the terrestrial carbon cycle 2°
and increasing evidence that even relatively small levels of climate change might have dramatic

impacts on ecosystems and societies ®°.

Besides ecosystem modelling, large-scale GPP patterns can also be investigated via remote sensing. A
major recent advancement is the measuring of Solar-Induced Chlorophyll Fluorescence (SIF) which is
used to study photosynthesis 1718, Previous studies have reported either specific or universal SIF-GPP
relationships across biomes using SIF from satellites and GPP from eddy covariance flux towers or
gridded products 71°, The SIF-GPP relationship is affected by many factors, such as difference in sun-
target-sensor geometry, scale mismatch between satellite and tower footprint, biases in SIF
retrievals and gridded GPP products. %%, Recently, the GOSIF GPP product was derived from the
ensemble mean GPP of eight SIF-GPP relationships, which partly reduce uncertainty resulting from
the variations of relationship across biomes %, The availability of SIF observations globally and the
close relationship between SIF and GPP thus allow for an independent assessment of how land cover

changes affect GPP in different regions around the world.

Here we estimate the productivity of different land cover types by combining the high-resolution,

GOSIF GPP product, land cover from the European Space Agency Climate Change Initiative (ESA-CCI)
3
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22 and 20 environmental predictor variables in a machine learning approach using Random Forests
(RF) (see Supplementary Fig. S1). We produce global maps of the potential GPP of forests, grasslands,
and croplands, which are subsequently analysed jointly with state-of-the-art land-use change
reconstructions and scenarios 2* to estimate associated impacts on GPP. We also investigate the
robustness of our results by conducting a sensitivity analysis in which we test a range of alternative
input datasets and algorithms. Furthermore, we compare our potential GPP estimates to ESM
simulations from the 6 phase of the Coupled Model Intercomparison Project (CMIP6). We thereby
address the following questions: 1) What is the potential GPP that forests, grasslands, and croplands
can realize under identical environmental conditions? 2) What is the impact of land cover changes
(both past and future) on global GPP? 3) Do state-of-the-art ESMs from CMIP6 agree on the
simulated GPP of these land cover types and how do the simulations compare to our empirically
derived estimate? Our study sheds light on a crucial, yet poorly constrained aspect of the terrestrial
carbon cycle and its representation in the current generation of ESMs, potentially improving
estimates of land cover change impacts on the carbon-climate system and the provisioning of

ecosystem services.

Results and discussion

Forests are typically the most productive land cover type

Remotely-sensed patterns of present-day GPP for each considered land cover type (forest, grassland,
cropland) can be reproduced by the RF models with high accuracy and extrapolated into new areas
(Fig. 1a-f). In the subsequent analyses, we focus on suitable areas where environmental conditions
would allow the existence of all three land cover classes (Fig. 1g). According to our RF predictions,
potential forest GPP exceeds the potential GPP of grasslands and croplands on 67% of the total
suitable area, especially in Southeast Asia, large parts of South America, southeastern Europe, and

African dry forests (Fig. 1g+h). Croplands are most productive on 21% of the suitable area, mostly in
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Central Africa, Indonesia and northern Australia, western North America, and parts of the Amazon,
while grasslands are most productive in large parts of Central Europe and the Eastern US (12%) (even
though by a small margin, also see continental mean values in Supplementary Table 1). Many of the
subtropical and temperate areas suitable for all three land cover types are presently used for
agriculture while in the inner tropics native forests are still prevalent. Mean potential forest GPP in
suitable areas is 2.0 kg C m2 yr?, while grassland and cropland potential GPP is 1.5 and 1.8 kg C m™
yri, respectively (Fig. 1i). This implies that on average grasslands and croplands reach only 77 and
91% of forest productivity, respectively, the former being well in line with Haberl et al. ** who
assumed a 22% NPP reduction when converting forests to grazing land based on ecosystem
modelling and site data. These findings are qualitatively consistent across alternative input datasets
and machine learning algorithms even though somewhat sensitive to the underlying input land cover

map (see Supplementary Discussion 1 and Fig. S2).
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Fig. 1: Maps of potential GPP for different land cover types derived from RF predictions. a-c, Satellite-
derived present-day GPP for forests (a), grasslands (b) and croplands (c) (i.e., the training data). d-f,

Potential GPP predicted by the RF algorithm. g, Land cover with highest potential GPP according to d-



119 f. h, Global fractions of the most productive land cover type. i, Potential GPP distribution across the
120  total suitable area. R? and RMSE values are computed on the out-of-bag testing data. The good

121 model performance can partly be explained by the very large training data and to some degree by
122  spatial autocorrelation 2* (Supplementary Discussion 2 and Figs. S3,54). Global area-weighted GPP
123 means are given by the numbers at the bottom of the maps. Grid cells where no forests exist today
124  or potential forest cover (Supplementary Fig. S5) is <36.3% (i.e., 5th percentile of all currently

125  forested grid cells) or which are too cold or dry for grass/crop growth are removed from d-f, and
126 removed from g) if unsuitable for at least one land cover type. Dots in i) indicate area-weighted

127 means.

128

129 Historical and future productivity changes arising from land cover changes

130  Toinvestigate the impacts of anthropogenic land cover changes on global GPP we combine our

131  derived potential GPP maps with maps of historical agricultural expansion and future land-use

132 changes as provided by the second phase of the Land-Use Harmonization Project (LUH2) =,

133 According to this approach, since the early Holocene humans have converted around 1.1 Mkm? of
134  forests into croplands and another 1.3 Mkm? of forests into managed grassland, thereby reducing
135  global GPP by 2.8 and 3.9 Gt C yr?, respectively (Fig. 2). Cropland expansion in natural grasslands

136  increased global GPP by 0.4 Gt C yr?, resulting in a net GPP reduction of 6.3 Gt C yr’’. For comparison,
137 present-day global GPP in our satellite-derived GPP dataset is 135.4 Gt C yr’, implying a potential
138  natural GPP of 141.7 Gt C yr! and a historical GPP reduction of 4.4% in response to deforestation and
139  agricultural expansion. Our uncertainty analysis yields comparable reductions in ecosystem

140  productivity for alternative potential productivity estimates (mean: 4.6%, range: 2.5-6.0%; see

141 Supplementary Fig. S6). These numbers are considerably smaller than the NPP reduction estimated in

142 previous assessments based on MODIS NPP or ecosystem modelling combined with census data (7-
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10%) 12528 This is surprising given that the lower NPP/GPP ratio of forests compared to cultivated

land ¥ should result in a larger GPP reduction in response to deforestation compared to NPP.

Future (2015-2100) land-cover related GPP changes are investigated for eight LUH2 scenarios,
describing potential pathways in terms of social-economic development (Shared Socioeconomic
Pathways; SSPs) combined with greenhouse gas trajectories (Representative Concentration
Pathways, RCPs). In contrast to previous research %, the impacts of future land cover changes on
productivity in our study are generally smaller than for the historical period. Some scenarios (SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP5-3.4) assume large-scale forest restoration on managed grassland as a
measure of climate mitigation, thereby increasing GPP by up to 1.3 Gt C yr! despite continued
cropland expansion (Fig. 2b, Supplementary Fig. S7). The historical GPP reduction could thus partly
be reversed in these scenarios. In contrast, other scenarios assume continued large-scale
deforestation as a result of high population growth, animal-based diets, and low agricultural land
intensification (SSP3-7.0) or bioenergy cultivation for climate mitigation (SSP4-3.4), thereby
decreasing GPP further by up to 1.5 Gt C yr'l. However, it should be noted that second-generation
bioenergy crops like Miscanthus, which are assumed in some of these scenarios to be planted at a
large scale, might turn out to be more productive than conventional crops 2. In addition, our
potential GPP maps do not account for future productivity changes due to climate change and

increasing atmospheric CO, or changes in land management (e.g., fertilization).
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163 Fig. 2: Land cover change impacts on GPP. a, Map of historical (until year 2015) land cover transitions
164  based on LUH2 agricultural areas and potential forest cover calculated from ref. 3. Shading indicates
165  the converted fraction of a grid cell. b, Global net land cover transitions as well as associated impacts
166  on global GPP for the historical period (until year 2015, grey background) and future projections

167  (2015-2100). The net impacts of all land cover transitions on global GPP are indicated by dots.

168

169  Theoretical maximum gross primary productivity

170  We also provide an estimate of the theoretical maximum GPP achievable if all land areas were

171 converted to the most productive land cover type (Supplementary Fig. S8). In such case, global GPP
172 would be 13.1 Gt C yr! higher than presently (or 6.8 Gt C yr higher than under potential natural

173  vegetation). Much of this increase comes from forest growth on current agricultural land, in

174 particular in the tropics where the mean GPP-effectiveness of forest growth is about twice compared

175  totemperate and boreal regions (Supplementary Fig. S9). However, there is also considerable
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potential for cropland expansion at other tropical locations and for grassland expansion in high
latitudes. We want to emphasize that this represents a theoretical idea rather than a practical
recommendation as such large-scale land cover conversions would dramatically impact ecosystem
carbon storage (secondary forests require several centuries to achieve a carbon equilibrium 1), food
production patterns, biodiversity, and other ecosystem functions. In particular, old-growth forests
require conservation as they do not only store large amounts of carbon but also provide many other
ecosystem services and feedbacks with local climate, e.g. biophysical cooling and water recycling due

to high evapotranspiration rates.

Disagreement on the most productive land cover type across CMIP6 Earth System Models

We assess how well state-of-the-art ESMs capture present-day forest, grassland, and cropland GPP
by comparing our potential GPP estimates to simulations from eight ESMs participating in CMIP6. For
all land cover types, there are large deviations across models regarding mean GPP values as well as
the distribution (Fig. 3a). Compared to our RF approach, mean forest, grassland, and cropland GPP in
the ESM ensemble are underestimated by 14, 21, and 4%, respectively. There is little consistency
between individual ESMs and our approach at the grid cell level even though the ESM ensemble
mean performs quite well (R%: 0.43-0.69; Supplementary Table 2). Most importantly, ESMs differ in
what they assume to be the most productive land cover. In three out of eight ESMs, forests are
clearly the most productive land cover globally while grassland and/or cropland GPP is substantially
underestimated compared to our RF approach (Fig. 3a). For the other ESMs, differences in mean GPP
across land cover classes are smaller than in our RF approach and often the agricultural land cover
classes are more productive than forests. The large spread in simulated agricultural GPP across ESMs
is likely a result of differences in represented management processes (e.g., fertilization or crop
sowing and harvest) and crop types as well as differences in grassland C3/C4 ratios simulated by the

ESMs. Our analysis suggests that ESMs simulating grasslands and croplands to be more productive



201

202

203

204

205

206

207

208

209

210

211

than forests (such as UKESM-JULES) will likely underestimate the (soil) carbon sequestration
potential from avoided deforestation and reforestation, while ESMs simulating very low agricultural
productivity (such as GFDL-LM) will likely overestimate their potential 1. However, this also depends
on the region where land-based mitigation takes place (spatial patterns of land cover changes in the
LUH2 scenarios are shown in Supplementary Fig. S7). For instance, MPI-JSBACH and UKESM-JULES
particularly overestimate grassland and cropland GPP in the tropics (Fig. 3b, Supplementary Fig. S10)
but might be more reliable for the temperate zone. Overall, the large disagreement across ESMs and
their deviations from our RF predictions imply an urgent need for model improvements to better

represent the effects of land cover changes on terrestrial carbon cycling.
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Fig. 3: Comparison of our RF GPP predictions to CMIP6 ESM simulations. a, Box and violin plots of
GPP probability densities for different land cover types in our RF approach, eight ESMs and the ESM
ensemble (2001-2014 mean values). The tiny coloured dots correspond to individual grid cells (subset
of 1% randomly selected cells), the larger black dots indicate area-weighted means across all grid
cells. b, Maps of the most productive land cover type. ESM considerably vary in their spatial
resolutions and simulated forest cover so we bilinear remapped the output to 0.05° resolution using
Climate Data Operators 32 and removed grid cells without any trees in at least one ESM, i.e., we
compare the same area for all models. Maps of the most productive land cover type on the original

ESM spatial resolution can be found in Supplementary Fig. S10.

In conclusion, we find that forests on average have a 29% and 10% larger GPP than grasslands and
croplands, respectively. However, on one third of the total suitable are, agricultural land cover types
would potentially be more productive. Intersecting our potential GPP maps with a land-use
reconstruction yields a global GPP reduction in response to historical agricultural expansion of
around 4.4% , which is smaller than the NPP reduction estimated in previous studies. Noteworthy,
the reduction is relatively robust across a range of alternative approaches used to estimate potential
GPP (mean: 4.6%,; range: 2.5-6.0%). Current land-use change projections range from continued
deforestation to forest restoration, implying that the historical land-use-driven decline in GPP could
either proceed or partly be reversed. However, current state-of-the-art ESMs diverge from our
derived potential GPP estimates by either considerably underestimating or overestimating
differences between forests and agricultural land cover types. These biases question the ability of
these models to adequately simulate the impacts of anthropogenic land cover changes on the
terrestrial carbon cycle and should be addressed in future model development. In particular, ESMs
which overestimate forest productivity in comparison to agriculture will likely simulate too high

atmospheric CO; removal from reforestation measures. Our potential GPP maps can be used as a
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benchmark when evaluating terrestrial ecosystem models, thereby improving projections on

ecosystem carbon cycling, natural climate solutions, crop yields, and other ecosystem services.

Materials and methods

GPP data

t 2t which utilizes the linear

As our primary productivity product we used the GOSIF GPP datase
relationship between GPP and remotely-sensed SIF 33, GOSIF GPP is available globally at 0.05° spatial
resolution for the period 2000-2021, with the period 2001-2015 selected here (for a short summary
of all datasets used in this study see Supplementary Table 3). GOSIF GPP is based on a gridded SIF
product (GOSIF) 3 which uses MODIS enhanced vegetation index and meteorological data for spatial
scaling and is trained with millions of SIF observations from the coarser-resolution Orbiting Carbon
Observatory-2 34 The global coverage of GOSIF and the close relationship between SIF and GPP allow
for an independent assessment of how land cover changes affect GPP in different regions around the
world. For instance, SIF has been shown to capture the high GPP in the US Corn Belt derived from
flux towers, while ecosystem models underestimated it 3°>. While GPP can thus be empirically
estimated from satellite SIF observations relatively reliably (even though some assumptions like the
linear GPP-SIF relationship and its universality across biomes are still debated 2%3¢-38), the calculation
of NPP needs additional assumptions of autotrophic respiration. Therefore, we focused our study on
GPP, but we included an NPP product in our uncertainty analysis. In addition to that, to account for

the challenges and uncertainties in global GPP estimates we included four alternative GPP products

in our sensitivity analysis (see below).

Land cover mapping

Gridded land cover was derived from ESA-CCI %, a global land cover product designed for climate
science. ESA-CCl is available at 300 m spatial resolution for the 1992-2020 period

(https://cds.climate.copernicus.eu/). We first classified ESA-CCI land covers to forests, grasslands,
12
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and croplands according to IPCC classification: classes 50-100, 160, 170 forests (2,022,283 grid cells);
classes 110 and 130 grasslands (509,297 grid cells); classes 10-40 croplands (950,025 grid cells). We
focus on these three major land cover types to facilitate our analysis. We then converted the
resulting map to 0.05° resolution by determining the prevalent (i.e., mode) land cover for each grid
cell using the aggregate function from the raster package 3° and only included grid cells in our
training data in which the prevalent land cover was constant over the period 2001-2015. Other
classes (e.g., cropland/natural vegetation mosaics) and grid cells where the land cover changed over

the 2001-2015 period were not used for the RF training.

Random Forests

RF is a popular and efficient supervised machine learning technique which can be applied for
classification and regression problems °. While complex, it is still easier to interpret compared to
other machine learning methods such as Artificial Neural Networks. It has recently been applied to a
wide range of ecological research questions, including the prediction of food #* and bioenergy ** crop
yields, potential natural vegetation 3, forest aboveground biomass #3, soil respiration *4, and soil
carbon emissions from land-use change ° and is thus well suited for our approach. The “Forests” refer
to a number of individual decision trees. For each tree, a random sample of the training data is
selected and split multiple times based on a random subset of variables from which the one
minimizing the weighted variance is selected by the algorithm. Model performance is computed
directly on out-of-bag (OOB) data which is randomly omitted from the training data (36.8% of all grid
cells). When RF is applied to new data, a weighted prediction of each individual decision tree
contributes to the overall prediction. Variance in the individual trees, e.g., by selecting random
subsets of the observations and random variables at each node improves the overall RF predictive
skill. Model training and prediction were done using the R ranger package . After initial testing (see
Supplementary Fig. S11) we decided to set the number of individual decision trees to 800 and the
number of variables to possibly split at in each node to 10. As the good evaluation measures of RF

algorithms can be related to spatial autocorrelation 2* we also tested a coordinate-only model and
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performed a leave-one-out cross validation including spatial buffers (Supplementary Discussion 2,
Supplementary Fig. S3). Due to the large computational effort we reduced the number of decision

trees to 100 for the buffered leave-one-out cross validation.

Predictor variables

We predicted forest, grassland, and cropland potential GPP using the following 20 predictor variables
in our RF algorithm: mean annual surface temperature (Tmean), mean diurnal temperature range
(Tdiurnal), temperature seasonality (Tseason; standard deviation), minimum temperature of the
coldest month (Tmin), annual temperature range (Tannual), mean temperature of the warmest
quarter (Twarmest), mean annual precipitation (Pmean), precipitation seasonality (Pseason;
coefficient of variation), precipitation of the wettest quarter (Pwettest), precipitation of the driest
quarter (Pdriest), precipitation of the warmest quarter (Pwarmest), mean annual solar radiation (SR),
growing degree days (GDD), relative humidity (RH), soil clay content (Clay), elevation (EL), nitrogen
deposition (Ndep), nitrogen fertilization (NF), pesticide application (Pest), and gross domestic
product (GDP; a proxy for agricultural management input other than NF and Pest). Overall Tmean,
Tannual, and Pmean were the most important predictor variables (see Supplementary Discussion 3
and Fig. S12). We also tested other predictors (including additional bioclimatic variables, soil pH,
irrigation, or phosphate fertilization) but found only negligible improvements in RF evaluation

metrics and hence decided to restrict our analysis to the 20 predictors mentioned above.

Climate variables were taken from the CHELSA dataset “¢#’, remapped to 0.05° spatial resolution
using the aggregate function from the raster package *. To only include years overlapping with our
GPP data we used the CHELSA time-series data for the 2001-2013 period if available and 1979-2013
climatologies elsewise. Clay was derived from the Regridded Harmonized World Soil Database v1.2 .
Ndep was taken from ISIMIP2b %%, bilinear remapped from 0.5° to 0.05° spatial resolution using

Climate Data Operators 2. Elevation was obtained from WorldClim *°. NF and Pest were derived from

14



312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

country-specific FAO data (e.g., https://ourworldindata.org/grapher/pesticide-use-per-hectare-of-

cropland), i.e., we used the same value for all grid cells in a country. GDP was obtained from ref >,

Suitable area

For the comparison of potential forest, grassland, and cropland GPP in Fig. 1g-i we only included grid
cells suitable for all three land cover types. For forests, we assumed forest cover possible if the grid
cell is currently forested (e.g., all grid cells of our forest training data) or if the potential natural forest
cover exceeds 36.3%. This threshold represents the 5% percentile of all currently forested grid cells.
Potential natural forest cover was derived from a potential natural vegetation map, available for 20
biomes at 0.00833° spatial resolution 3°. To convert these biomes into potential natural forest cover
we assumed 100% forest cover for the ten forest biomes and 30% forest cover for tropical savannah.
Other biomes were not considered. We then aggregated the map to 0.05° spatial resolution by
computing the mean of 36 grid cells using the aggregate function form the raster package *° (see
Supplementary Fig. S5 for the resulting map). For grasslands and croplands, we computed the 5"
percentile of Tmean and Pmean in the training data (-9.9°C and 165 mm for grasslands and 2.7°C and
295 mm for croplands, respectively) and removed all grid cells below those thresholds, assuming
these areas to be too cold or too dry for the respective land cover type. Finally, we calculated the

land cover with the highest potential GPP for all overlapping grid cells.

Sensitivity analysis

To explore the sensitivity and uncertainty of our RF approach we repeated our prediction using
different input datasets, potential forest cover, and machine-learning approaches. The importance of
the underlying potential forest map was estimated by replacing our potential forest map
(Supplementary Fig. S5) by the LUH2 potential forest map (Supplementary Fig. S13) 2. To explore the
dependency on the land cover product we repeated our RF prediction using the spatially aggregated
MODIS land cover map (MCD12C1; IGBP scheme), available at 0.05° spatial resolution >2. We

classified grid cells of classes 1, 2, 3, 4, 5, (all forests), 8 (woody savannahs) and 9 (savannahs) as
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forest. Classes 8 and 9 were included in forest because otherwise forest cover would be
underestimated in the temperate and boreal zone. Class 10 was classified as grassland and class 12
as cropland. A comparison of ESA-CCIl with MODIS reveals a substantially larger cropland area in ECA-

CCl but a smaller grassland area (Supplementary Fig. S14).

The sensitivity to the climate product was tested by repeating our analysis using predictor variables
from the WorldClim climatologies (1970-2000) *°, aggregated from 30 sec to 0.05° spatial resolution
using the aggregate function from the raster package *. In contrast to CHELSA, growing degree days
and relative humidity were not available from WorldClim but we included water vapour pressure as

additional predictor.

We also tested four alternative global GPP products. The vegetation photosynthesis model (VPM)
product, available for the period of interest at 0.05° spatial resolution, is based on improved light use
efficiency theory and is driven by remotely sensed datasets and reanalysis climate data and land
cover classification which also distinguishes C3 vs. C4 photosynthesis pathways 3. The second
product is derived from remote sensing considering radiation and canopy conductance limitations on
GPP and is available at 0.05° resolution for the 2001-2012 period 4. Land cover is not an input
variable. The third product, FLUXCOM, uses machine learning to scale FLUXNET site GPP to the globe
5556 FLUXCOM is available at 0.0833° resolution and was conservative remapped to 0.05° using
Climate Data Operators 3> meaning that the GPP of different land cover types might be mixed in
regions with heterogeneous land cover patterns. The forth product is the MODIS MOD17A3 GPP
product >, available for the 2001-2013 period and aggregated to 0.05° resolution using the raster
package *. It is derived from meteorological data, fraction of absorbed photosynthetic active
radiation/leaf area index, and land cover. As there is also a MOD17A3 NPP product available we
additionally conducted a prediction for potential NPP. The MOD17A3 NPP product is calculated as
GPP minus maintenance and growth respiration estimated from allometric relationships linking daily
biomass and annual growth of plant tissues to leaf area index *’. This leads to additional uncertainty

compared to the MOD17A3 GPP product.
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To test the effect of an alternative RF algorithm we repeated our prediction with the RF algorithm
from the Python scikit-learn library >® using the same number of decision trees (800). Additionally, we
tested another machine-learning technique, a deep neural network (DNN), using the PyTorch library
9. We selected 10 linear layers with 5 times alternating 128 and 256 nodes and a sigmoid output
function. All layers were connected using the rectified linear unit activation function. We used the
adamW optimizer with 0.0003 learning rate and 2000 epochs of training. To prevent overfitting, we
included a 10% dropout after the 7*" layer. Lastly, we included a very simple estimate of the most
productive land cover based on the nearest neighbour using scikit-learn’s BallTree implementation
together with the Haversine formula. For each grid cell we searched for the nearest forest, grassland,
and cropland grid cell and assigned the respective GPP also to this grid cell. We thus assumed that
environmental conditions are more or less identical in these grid cells, which might be a reasonable
assumption for many locations but less reliable in complex terrain or in large homogeneous regions
like the central Amazon rainforest where the nearest cropland/grassland grid cell might be located

far away.

Land-use change scenarios

To estimate the effects of historical and potential future land cover changes on global GPP we
applied LUH2 scenarios 2 which also serve as input data for ESMs participating in CMIP6. Land-use
changes over the historical period are based on the HYDE reconstruction 3, while future projections
were developed by different Integrated Assessment Models combining various assumptions of socio-
economic behaviour (SSPs) with climate mitigation targets (RCPs). Annual fractions for the two land
cover classes cropland (sum of 5 crop types) and managed grassland (sum of pasture and rangeland)

were available for each scenario at 0.25° resolution (https://luh.umd.edu/). We converted to 0.05°

resolution assuming the same land cover fractions for all 25 grid cells around the LUH2 grid cells. We
considered the following land cover transitions: forest to managed grassland, forest to cropland, and
natural grassland to cropland (and reverse transitions for future scenarios). Transitions in areas

suitable for only two land cover types were also included. Conversions of natural grasslands to
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managed grasslands were assumed not to affect productivity. We assumed the original land cover of
a grid cell to be either forest (i.e., potential forest cover > 36.3%) or natural grassland and accordingly
multiplied the converted areas by the differences in potential GPP derived from our RF approach.
Our broad forest definition including open tree cover (see above) and the fact that we assumed a
change from 100% to 0% forest area in deforested grid cells results in a total historical deforestation
area substantially larger than estimated in a recent study (2.4 Mkm?2 vs. 1.6 Mkm?) 8. These
assumptions, however, do not impair our GPP estimate as our approach implicitly accounts for
gradients in forest productivity (open forests tend to have lower GPP than closed forests). To test the
sensitivity of the resulting GPP reduction we also applied the potential GPP maps from our
uncertainty analysis to historical land-use changes (Supplementary Fig. S6). For future land cover
changes we investigated changes over the 2015-2100 period for all available LUH2 scenarios: SSP1-
1.9, SSP2-2.6, SSP4-3.4, SSP5-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5. Land-use activities in
these scenarios range from large-scale deforestation (e.g., SSP3-7.0) to reforestation (e.g., SSP1-1.9)

(Supplementary Fig. S7).

Earth System Models

We compared the potential GPP estimated by our RF algorithm to simulations of eight ESMs
participating in CMIP6 (CESM2-CLM5 ¢!, CNRM-ESM2.1-Surfex 8.0c 2, EC-Earth3-Veg-LPJ-GUESSv4 3,
GFDL-ESM4-GFDL-LM4.1 5, IPSL-CM6A-LR-ORCHIDEEV2.0 %, MIROC-ES2L-MATSIRO6.0+VISIT-e
ver.1.0 %, MPI-ESM1-2-LR-JSBACH3.20 7, UKESM1-0-LL-JULES-ES-1.0 %8) with an explicit
representation of natural vegetation and at least one agricultural land cover class (cropland or
managed grassland) in their vegetation sub-model. We selected these ESMs so that all vegetation
models implemented in more than one ESM were represented only once (e.g., the JSBACH
vegetation model is a component of both MPI-ESM1-2-LR and AWI-ESM). For each ESM, the variable

gpplut was downloaded from the CMIP6 archive (https://esgf-data.dkrz.de/search/cmip6-dkrz/) for

the historical simulations. These files contain simulated GPP for natural vegetation, pasture, and

cropland for which we calculated the 2001-2014 mean (2014 is the last year of the historical period).
18


https://esgf-data.dkrz.de/search/cmip6-dkrz/

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

ESMs use fractional land covers for each grid cell, meaning that climatic drivers are inherently the
same for all land cover types within a grid cell and simulated productivities can therefore be directly
compared. As ESMs differ in their spatial resolution we bilinear remapped all output to 0.05°
resolution using Climate Data Operators 32 to allow for a fair comparison across models. To assess the
sensitivity of our results to the interpolation method we also tested conservative remapping which,
however, usually resulted in larger model biases (Supplementary Table 2). In addition, ESMs differ in
where they simulate forests in natural vegetation areas, and therefore we removed all grid cells from
the comparison where at least one ESM simulated no tree productivity/cover/biomass in order to
avoid comparing the GPP of natural grasslands to managed grasslands. We provide maps based on

the original output for each ESM in Supplementary Fig. S10.

FLUXNET data

We compared our predictions of potential GPP to FLUXNET Tier 1 eddy covariance measurements
(Supplementary Fig. S15) ®°. We included all forest, woody savannah (classified as forest), grassland
and cropland sites 2! which were located in suitable areas for the respective land cover. Mean GPP
was calculated as the mean of the GPP estimates based on the night-time (GPP_NT_VUT_REF) and
day-time (GPP_DT_VUT_REF) partitioning method. As some sites only had a few years of data, all
available years were considered (i.e., site mean GPP was calculated for a different time period than
2001-2015). Comparisons were made with the potential GPP in the respective grid cell in which the

site was located (i.e., not calibrated to site conditions).
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