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Abstract 12 

Historically, humans have cleared many forests for agriculture. While this substantially reduced 13 

ecosystem carbon storage, the impacts of these land cover changes on terrestrial gross primary 14 

productivity (GPP) have not been adequately resolved yet. Here, we combine high-resolution 15 

datasets of satellite-derived GPP and environmental predictor variables to estimate the potential 16 

GPP of forests, grasslands, and croplands around the globe. With a mean GPP of 2.0 kg C m-2 yr-1 17 

forests represent the most productive land cover on two thirds of the total area suitable for any of 18 

these land cover types, while grasslands and croplands on average reach 1.5 and 1.8 kg C m-2 yr-1, 19 

respectively. Combining our potential GPP maps with a historical land-use reconstruction indicates a 20 

4.4% reduction in global GPP from agricultural expansion. This land-use-induced GPP reduction is 21 

amplified in some future scenarios as a result of ongoing deforestation (e.g., the large-scale 22 

bioenergy scenario SSP4-3.4) but partly reversed in other scenarios (e.g., the sustainability scenario 23 

SSP1-1.9) due to agricultural abandonment. Comparing our results to simulations from state-of-the-24 
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art Earth System Models, we find that all investigated models deviate substantially from our 25 

estimates and from each other. Our maps could be used as a benchmark to reduce this 26 

inconsistency, thereby improving projections of land-based climate mitigation potentials. 27 

Introduction 28 

Terrestrial ecosystems exchange large amounts of carbon with the atmosphere and thus play a 29 

crucial role in the global carbon cycle. Gross primary productivity (GPP), the amount of carbon fixed 30 

via photosynthesis, is the largest carbon flux between land and atmosphere (~130 Gt C yr-1) 1. Around 31 

half of the GPP is quickly released back to the atmosphere as autotrophic respiration while the 32 

remainder, net primary productivity (NPP) is available for biomass production. GPP and NPP thus co-33 

determine not only the carbon uptake potential of ecosystems but also other ecosystem services 34 

such as the supply of wood products, food, fodder, and bioenergy.  35 

Presently, vegetation and soils absorb around 30% of anthropogenic CO2 emissions 2, thereby slowing 36 

down the increase in atmospheric CO2 and mitigating climate change. However, over most of the 37 

Holocene, the terrestrial biosphere acted as a net carbon source as humans gradually converted 38 

more than one third of the global land area into croplands or managed grasslands 3, thereby reducing 39 

total biomass by around 260 Gt C 4 and soil carbon by around 116 Gt C 5. Reversing these carbon 40 

losses and enhancing terrestrial carbon storage via forest protection and expansion are thus 41 

increasingly considered as effective measures to achieve the targets of the Paris Agreement 6. 42 

Nevertheless, while it is clear that forests store more carbon than agricultural land 7, the question 43 

whether they are also superior in terms of productivity (GPP and NPP) has so far received less 44 

attention and is much more uncertain. 45 

The impacts of land cover changes on the terrestrial carbon cycle have so far mainly been estimated 46 

using process-based ecosystem models such as Dynamic Global Vegetation Models or Earth System 47 

Models (ESMs) 2,8-14. However, there is a large spread in simulated global productivity in these models 48 

15 and no agreement concerning the question of how land cover changes affect ecosystem 49 
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productivity 8,11,16. In fact, the large spread in simulated carbon stock changes in response to 50 

deforestation or reforestation across ecosystem models has largely been attributed to the 51 

uncertainty regarding the magnitude and direction of change in productivity associated with land 52 

cover change 8,11. For instance, LPJmL simulates large increases in ecosystem productivity following 53 

reforestation, while ORCHIDEE leads to productivity reductions 11. This is likely related to differences 54 

in how the models incorporate land-use changes and which natural and management processes are 55 

considered (e.g., LPJmL accounts for nitrogen fertilization and limitation, while ORCHIDEE does not).  56 

Maps of the potential productivity of different land cover types would therefore provide valuable 57 

benchmarks for model evaluation and help to narrow down the uncertainty concerning the impacts 58 

of land cover changes on carbon storage. This is urgently needed to assess the plausibility of land-59 

based climate mitigation scenarios given our limited understanding of the terrestrial carbon cycle 2,9 60 

and increasing evidence that even relatively small levels of climate change might have dramatic 61 

impacts on ecosystems and societies 6. 62 

Besides ecosystem modelling, large-scale GPP patterns can also be investigated via remote sensing. A 63 

major recent advancement is the measuring of Solar-Induced Chlorophyll Fluorescence (SIF) which is 64 

used to study photosynthesis 17,18. Previous studies have reported either specific or universal SIF-GPP 65 

relationships across biomes using SIF from satellites and GPP from eddy covariance flux towers or 66 

gridded products 17-19. The SIF-GPP relationship is affected by many factors, such as difference in sun-67 

target-sensor geometry, scale mismatch between satellite and tower footprint, biases in SIF 68 

retrievals and gridded GPP products. 17,20. Recently, the GOSIF GPP product was derived from the 69 

ensemble mean GPP of eight SIF-GPP relationships, which partly reduce uncertainty resulting from 70 

the variations of relationship across biomes 21. The availability of SIF observations globally and the 71 

close relationship between SIF and GPP thus allow for an independent assessment of how land cover 72 

changes affect GPP in different regions around the world. 73 

Here we estimate the productivity of different land cover types by combining the high-resolution, 74 

GOSIF GPP product, land cover from the European Space Agency Climate Change Initiative (ESA-CCI) 75 
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22, and 20 environmental predictor variables in a machine learning approach using Random Forests 76 

(RF) (see Supplementary Fig. S1). We produce global maps of the potential GPP of forests, grasslands, 77 

and croplands, which are subsequently analysed jointly with state-of-the-art land-use change 78 

reconstructions and scenarios 23 to estimate associated impacts on GPP. We also investigate the 79 

robustness of our results by conducting a sensitivity analysis in which we test a range of alternative 80 

input datasets and algorithms. Furthermore, we compare our potential GPP estimates to ESM 81 

simulations from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). We thereby 82 

address the following questions: 1) What is the potential GPP that forests, grasslands, and croplands 83 

can realize under identical environmental conditions? 2) What is the impact of land cover changes 84 

(both past and future) on global GPP? 3) Do state-of-the-art ESMs from CMIP6 agree on the 85 

simulated GPP of these land cover types and how do the simulations compare to our empirically 86 

derived estimate? Our study sheds light on a crucial, yet poorly constrained aspect of the terrestrial 87 

carbon cycle and its representation in the current generation of ESMs, potentially improving 88 

estimates of land cover change impacts on the carbon-climate system and the provisioning of 89 

ecosystem services. 90 

 91 

Results and discussion 92 

Forests are typically the most productive land cover type 93 

Remotely-sensed patterns of present-day GPP for each considered land cover type (forest, grassland, 94 

cropland) can be reproduced by the RF models with high accuracy and extrapolated into new areas 95 

(Fig. 1a-f). In the subsequent analyses, we focus on suitable areas where environmental conditions 96 

would allow the existence of all three land cover classes (Fig. 1g). According to our RF predictions, 97 

potential forest GPP exceeds the potential GPP of grasslands and croplands on 67% of the total 98 

suitable area, especially in Southeast Asia, large parts of South America, southeastern Europe, and 99 

African dry forests (Fig. 1g+h). Croplands are most productive on 21% of the suitable area, mostly in 100 
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Central Africa, Indonesia and northern Australia, western North America, and parts of the Amazon, 101 

while grasslands are most productive in large parts of Central Europe and the Eastern US (12%) (even 102 

though by a small margin, also see continental mean values in Supplementary Table 1). Many of the 103 

subtropical and temperate areas suitable for all three land cover types are presently used for 104 

agriculture while in the inner tropics native forests are still prevalent. Mean potential forest GPP in 105 

suitable areas is 2.0 kg C m-2 yr-1, while grassland and cropland potential GPP is 1.5 and 1.8 kg C m-2 106 

yr-1, respectively (Fig. 1i). This implies that on average grasslands and croplands reach only 77 and 107 

91% of forest productivity, respectively, the former being well in line with Haberl et al. 13 who 108 

assumed a 22% NPP reduction when converting forests to grazing land based on ecosystem 109 

modelling and site data. These findings are qualitatively consistent across alternative input datasets 110 

and machine learning algorithms even though somewhat sensitive to the underlying input land cover 111 

map (see Supplementary Discussion 1 and Fig. S2). 112 

 113 

 114 

 115 

Fig. 1: Maps of potential GPP for different land cover types derived from RF predictions. a-c, Satellite-116 

derived present-day GPP for forests (a), grasslands (b) and croplands (c) (i.e., the training data). d-f, 117 

Potential GPP predicted by the RF algorithm. g, Land cover with highest potential GPP according to d-118 
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f. h, Global fractions of the most productive land cover type. i, Potential GPP distribution across the 119 

total suitable area. R2 and RMSE values are computed on the out-of-bag testing data. The good 120 

model performance can partly be explained by the very large training data and to some degree by 121 

spatial autocorrelation 24 (Supplementary Discussion 2 and Figs. S3,S4). Global area-weighted GPP 122 

means are given by the numbers at the bottom of the maps. Grid cells where no forests exist today 123 

or potential forest cover (Supplementary Fig. S5) is <36.3% (i.e., 5th percentile of all currently 124 

forested grid cells) or which are too cold or dry for grass/crop growth are removed from d-f, and 125 

removed from g) if unsuitable for at least one land cover type. Dots in i) indicate area-weighted 126 

means. 127 

 128 

Historical and future productivity changes arising from land cover changes 129 

To investigate the impacts of anthropogenic land cover changes on global GPP we combine our 130 

derived potential GPP maps with maps of historical agricultural expansion and future land-use 131 

changes as provided by the second phase of the Land-Use Harmonization Project (LUH2) 23. 132 

According to this approach, since the early Holocene humans have converted around 1.1 Mkm2 of 133 

forests into croplands and another 1.3 Mkm2 of forests into managed grassland, thereby reducing 134 

global GPP by 2.8 and 3.9 Gt C yr-1, respectively (Fig. 2). Cropland expansion in natural grasslands 135 

increased global GPP by 0.4 Gt C yr-1, resulting in a net GPP reduction of 6.3 Gt C yr-1. For comparison, 136 

present-day global GPP in our satellite-derived GPP dataset is 135.4 Gt C yr-1, implying a potential 137 

natural GPP of 141.7 Gt C yr-1 and a historical GPP reduction of 4.4% in response to deforestation and 138 

agricultural expansion. Our uncertainty analysis yields comparable reductions in ecosystem 139 

productivity for alternative potential productivity estimates (mean: 4.6%, range: 2.5-6.0%; see 140 

Supplementary Fig. S6). These numbers are considerably smaller than the NPP reduction estimated in 141 

previous assessments based on MODIS NPP or ecosystem modelling combined with census data (7-142 
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10%) 13,25,26. This is surprising given that the lower NPP/GPP ratio of forests compared to cultivated 143 

land 27 should result in a larger GPP reduction in response to deforestation compared to NPP. 144 

Future (2015-2100) land-cover related GPP changes are investigated for eight LUH2 scenarios, 145 

describing potential pathways in terms of social-economic development (Shared Socioeconomic 146 

Pathways; SSPs) combined with greenhouse gas trajectories (Representative Concentration 147 

Pathways, RCPs). In contrast to previous research 28, the impacts of future land cover changes on 148 

productivity in our study are generally smaller than for the historical period. Some scenarios (SSP1-149 

1.9, SSP1-2.6, SSP2-4.5, SSP5-3.4) assume large-scale forest restoration on managed grassland as a 150 

measure of climate mitigation, thereby increasing GPP by up to 1.3 Gt C yr-1 despite continued 151 

cropland expansion (Fig. 2b, Supplementary Fig. S7). The historical GPP reduction could thus partly 152 

be reversed in these scenarios. In contrast, other scenarios assume continued large-scale 153 

deforestation as a result of high population growth, animal-based diets, and low agricultural land 154 

intensification (SSP3-7.0) or bioenergy cultivation for climate mitigation (SSP4-3.4), thereby 155 

decreasing GPP further by up to 1.5 Gt C yr-1. However, it should be noted that second-generation 156 

bioenergy crops like Miscanthus, which are assumed in some of these scenarios to be planted at a 157 

large scale, might turn out to be more productive than conventional crops 29. In addition, our 158 

potential GPP maps do not account for future productivity changes due to climate change and 159 

increasing atmospheric CO2 or changes in land management (e.g., fertilization). 160 

 161 
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 162 

Fig. 2: Land cover change impacts on GPP. a, Map of historical (until year 2015) land cover transitions 163 

based on LUH2 agricultural areas and potential forest cover calculated from ref. 30. Shading indicates 164 

the converted fraction of a grid cell. b, Global net land cover transitions as well as associated impacts 165 

on global GPP for the historical period (until year 2015, grey background) and future projections 166 

(2015-2100). The net impacts of all land cover transitions on global GPP are indicated by dots.  167 

 168 

Theoretical maximum gross primary productivity 169 

We also provide an estimate of the theoretical maximum GPP achievable if all land areas were 170 

converted to the most productive land cover type (Supplementary Fig. S8). In such case, global GPP 171 

would be 13.1 Gt C yr-1 higher than presently (or 6.8 Gt C yr-1 higher than under potential natural 172 

vegetation). Much of this increase comes from forest growth on current agricultural land, in 173 

particular in the tropics where the mean GPP-effectiveness of forest growth is about twice compared 174 

to temperate and boreal regions (Supplementary Fig. S9). However, there is also considerable 175 
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potential for cropland expansion at other tropical locations and for grassland expansion in high 176 

latitudes. We want to emphasize that this represents a theoretical idea rather than a practical 177 

recommendation as such large-scale land cover conversions would dramatically impact ecosystem 178 

carbon storage (secondary forests require several centuries to achieve a carbon equilibrium 31), food 179 

production patterns, biodiversity, and other ecosystem functions. In particular, old-growth forests 180 

require conservation as they do not only store large amounts of carbon but also provide many other 181 

ecosystem services and feedbacks with local climate, e.g. biophysical cooling and water recycling due 182 

to high evapotranspiration rates. 183 

 184 

Disagreement on the most productive land cover type across CMIP6 Earth System Models  185 

We assess how well state-of-the-art ESMs capture present-day forest, grassland, and cropland GPP 186 

by comparing our potential GPP estimates to simulations from eight ESMs participating in CMIP6. For 187 

all land cover types, there are large deviations across models regarding mean GPP values as well as 188 

the distribution (Fig. 3a). Compared to our RF approach, mean forest, grassland, and cropland GPP in 189 

the ESM ensemble are underestimated by 14, 21, and 4%, respectively. There is little consistency 190 

between individual ESMs and our approach at the grid cell level even though the ESM ensemble 191 

mean performs quite well (R2: 0.43-0.69; Supplementary Table 2). Most importantly, ESMs differ in 192 

what they assume to be the most productive land cover. In three out of eight ESMs, forests are 193 

clearly the most productive land cover globally while grassland and/or cropland GPP is substantially 194 

underestimated compared to our RF approach (Fig. 3a). For the other ESMs, differences in mean GPP 195 

across land cover classes are smaller than in our RF approach and often the agricultural land cover 196 

classes are more productive than forests. The large spread in simulated agricultural GPP across ESMs 197 

is likely a result of differences in represented management processes (e.g., fertilization or crop 198 

sowing and harvest) and crop types as well as differences in grassland C3/C4 ratios simulated by the 199 

ESMs. Our analysis suggests that ESMs simulating grasslands and croplands to be more productive 200 
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than forests (such as UKESM-JULES) will likely underestimate the (soil) carbon sequestration 201 

potential from avoided deforestation and reforestation, while ESMs simulating very low agricultural 202 

productivity (such as GFDL-LM) will likely overestimate their potential 11. However, this also depends 203 

on the region where land-based mitigation takes place (spatial patterns of land cover changes in the 204 

LUH2 scenarios are shown in Supplementary Fig. S7). For instance, MPI-JSBACH and UKESM-JULES 205 

particularly overestimate grassland and cropland GPP in the tropics (Fig. 3b, Supplementary Fig. S10) 206 

but might be more reliable for the temperate zone. Overall, the large disagreement across ESMs and 207 

their deviations from our RF predictions imply an urgent need for model improvements to better 208 

represent the effects of land cover changes on terrestrial carbon cycling. 209 

 210 

 211 
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Fig. 3: Comparison of our RF GPP predictions to CMIP6 ESM simulations. a, Box and violin plots of 212 

GPP probability densities for different land cover types in our RF approach, eight ESMs and the ESM 213 

ensemble (2001-2014 mean values). The tiny coloured dots correspond to individual grid cells (subset 214 

of 1% randomly selected cells), the larger black dots indicate area-weighted means across all grid 215 

cells. b, Maps of the most productive land cover type. ESM considerably vary in their spatial 216 

resolutions and simulated forest cover so we bilinear remapped the output to 0.05° resolution using 217 

Climate Data Operators 32 and removed grid cells without any trees in at least one ESM, i.e., we 218 

compare the same area for all models. Maps of the most productive land cover type on the original 219 

ESM spatial resolution can be found in Supplementary Fig. S10.  220 

 221 

In conclusion, we find that forests on average have a 29% and 10% larger GPP than grasslands and 222 

croplands, respectively. However, on one third of the total suitable are, agricultural land cover types 223 

would potentially be more productive. Intersecting our potential GPP maps with a land-use 224 

reconstruction yields a global GPP reduction in response to historical agricultural expansion of 225 

around 4.4% , which is smaller than the NPP reduction estimated in previous studies. Noteworthy, 226 

the reduction is relatively robust across a range of alternative approaches used to estimate potential 227 

GPP (mean: 4.6%; range: 2.5-6.0%). Current land-use change projections range from continued 228 

deforestation to forest restoration, implying that the historical land-use-driven decline in GPP could 229 

either proceed or partly be reversed. However, current state-of-the-art ESMs diverge from our 230 

derived potential GPP estimates by either considerably underestimating or overestimating 231 

differences between forests and agricultural land cover types. These biases question the ability of 232 

these models to adequately simulate the impacts of anthropogenic land cover changes on the 233 

terrestrial carbon cycle and should be addressed in future model development. In particular, ESMs 234 

which overestimate forest productivity in comparison to agriculture will likely simulate too high 235 

atmospheric CO2 removal from reforestation measures. Our potential GPP maps can be used as a 236 
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benchmark when evaluating terrestrial ecosystem models, thereby improving projections on 237 

ecosystem carbon cycling, natural climate solutions, crop yields, and other ecosystem services. 238 

 239 

Materials and methods 240 

GPP data 241 

As our primary productivity product we used the GOSIF GPP dataset 21 which utilizes the linear 242 

relationship between GPP and remotely-sensed SIF 33. GOSIF GPP is available globally at 0.05° spatial 243 

resolution for the period 2000-2021, with the period 2001-2015 selected here (for a short summary 244 

of all datasets used in this study see Supplementary Table 3). GOSIF GPP is based on a gridded SIF 245 

product (GOSIF) 33 which uses MODIS enhanced vegetation index and meteorological data for spatial 246 

scaling and is trained with millions of SIF observations from the coarser-resolution Orbiting Carbon 247 

Observatory-2 34. The global coverage of GOSIF and the close relationship between SIF and GPP allow 248 

for an independent assessment of how land cover changes affect GPP in different regions around the 249 

world. For instance, SIF has been shown to capture the high GPP in the US Corn Belt derived from 250 

flux towers, while ecosystem models underestimated it 35. While GPP can thus be empirically 251 

estimated from satellite SIF observations relatively reliably (even though some assumptions like the 252 

linear GPP-SIF relationship and its universality across biomes are still debated 20,36-38), the calculation 253 

of NPP needs additional assumptions of autotrophic respiration. Therefore, we focused our study on 254 

GPP, but we included an NPP product in our uncertainty analysis. In addition to that, to account for 255 

the challenges and uncertainties in global GPP estimates we included four alternative GPP products 256 

in our sensitivity analysis (see below). 257 

Land cover mapping 258 

Gridded land cover was derived from ESA-CCI 22, a global land cover product designed for climate 259 

science. ESA-CCI is available at 300 m spatial resolution for the 1992-2020 period 260 

(https://cds.climate.copernicus.eu/). We first classified ESA-CCI land covers to forests, grasslands, 261 

https://cds.climate.copernicus.eu/
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and croplands according to IPCC classification: classes 50-100, 160, 170 forests (2,022,283 grid cells); 262 

classes 110 and 130 grasslands (509,297 grid cells); classes 10-40 croplands (950,025 grid cells). We 263 

focus on these three major land cover types to facilitate our analysis. We then converted the 264 

resulting map to 0.05° resolution by determining the prevalent (i.e., mode) land cover for each grid 265 

cell using the aggregate function from the raster package 39 and only included grid cells in our 266 

training data in which the prevalent land cover was constant over the period 2001-2015. Other 267 

classes (e.g., cropland/natural vegetation mosaics) and grid cells where the land cover changed over 268 

the 2001-2015 period were not used for the RF training. 269 

Random Forests 270 

RF is a popular and efficient supervised machine learning technique which can be applied for 271 

classification and regression problems 40. While complex, it is still easier to interpret compared to 272 

other machine learning methods such as Artificial Neural Networks. It has recently been applied to a 273 

wide range of ecological research questions, including the prediction of food 41 and bioenergy 42 crop 274 

yields, potential natural vegetation 30, forest aboveground biomass 43, soil respiration 44, and soil 275 

carbon emissions from land-use change 5 and is thus well suited for our approach. The “Forests” refer 276 

to a number of individual decision trees. For each tree, a random sample of the training data is 277 

selected and split multiple times based on a random subset of variables from which the one 278 

minimizing the weighted variance is selected by the algorithm. Model performance is computed 279 

directly on out-of-bag (OOB) data which is randomly omitted from the training data (36.8% of all grid 280 

cells). When RF is applied to new data, a weighted prediction of each individual decision tree 281 

contributes to the overall prediction. Variance in the individual trees, e.g., by selecting random 282 

subsets of the observations and random variables at each node improves the overall RF predictive 283 

skill. Model training and prediction were done using the R ranger package 45. After initial testing (see 284 

Supplementary Fig. S11) we decided to set the number of individual decision trees to 800 and the 285 

number of variables to possibly split at in each node to 10. As the good evaluation measures of RF 286 

algorithms can be related to spatial autocorrelation 24 we also tested a coordinate-only model and 287 
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performed a leave-one-out cross validation including spatial buffers (Supplementary Discussion 2, 288 

Supplementary Fig. S3). Due to the large computational effort we reduced the number of decision 289 

trees to 100 for the buffered leave-one-out cross validation. 290 

Predictor variables 291 

We predicted forest, grassland, and cropland potential GPP using the following 20 predictor variables 292 

in our RF algorithm: mean annual surface temperature (Tmean), mean diurnal temperature range 293 

(Tdiurnal), temperature seasonality (Tseason; standard deviation), minimum temperature of the 294 

coldest month (Tmin), annual temperature range (Tannual), mean temperature of the warmest 295 

quarter (Twarmest), mean annual precipitation (Pmean), precipitation seasonality (Pseason; 296 

coefficient of variation), precipitation of the wettest quarter (Pwettest), precipitation of the driest 297 

quarter (Pdriest), precipitation of the warmest quarter (Pwarmest), mean annual solar radiation (SR), 298 

growing degree days (GDD), relative humidity (RH), soil clay content (Clay), elevation (EL), nitrogen 299 

deposition (Ndep), nitrogen fertilization (NF), pesticide application (Pest), and gross domestic 300 

product (GDP; a proxy for agricultural management input other than NF and Pest). Overall Tmean, 301 

Tannual, and Pmean were the most important predictor variables (see Supplementary Discussion 3 302 

and Fig. S12). We also tested other predictors (including additional bioclimatic variables, soil pH, 303 

irrigation, or phosphate fertilization) but found only negligible improvements in RF evaluation 304 

metrics and hence decided to restrict our analysis to the 20 predictors mentioned above. 305 

Climate variables were taken from the CHELSA dataset 46,47, remapped to 0.05° spatial resolution 306 

using the aggregate function from the raster package 39. To only include years overlapping with our 307 

GPP data we used the CHELSA time-series data for the 2001-2013 period if available and 1979–2013 308 

climatologies elsewise. Clay was derived from the Regridded Harmonized World Soil Database v1.2 48. 309 

Ndep was taken from ISIMIP2b 49, bilinear remapped from 0.5° to 0.05° spatial resolution using 310 

Climate Data Operators 32. Elevation was obtained from WorldClim 50. NF and Pest were derived from 311 
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country-specific FAO data (e.g., https://ourworldindata.org/grapher/pesticide-use-per-hectare-of-312 

cropland), i.e., we used the same value for all grid cells in a country. GDP was obtained from ref 51. 313 

Suitable area 314 

For the comparison of potential forest, grassland, and cropland GPP in Fig. 1g-i we only included grid 315 

cells suitable for all three land cover types. For forests, we assumed forest cover possible if the grid 316 

cell is currently forested (e.g., all grid cells of our forest training data) or if the potential natural forest 317 

cover exceeds 36.3%. This threshold represents the 5th percentile of all currently forested grid cells. 318 

Potential natural forest cover was derived from a potential natural vegetation map, available for 20 319 

biomes at 0.00833° spatial resolution 30. To convert these biomes into potential natural forest cover 320 

we assumed 100% forest cover for the ten forest biomes and 30% forest cover for tropical savannah. 321 

Other biomes were not considered. We then aggregated the map to 0.05° spatial resolution by 322 

computing the mean of 36 grid cells using the aggregate function form the raster package 39 (see 323 

Supplementary Fig. S5 for the resulting map). For grasslands and croplands, we computed the 5th 324 

percentile of Tmean and Pmean in the training data (-9.9°C and 165 mm for grasslands and 2.7°C and 325 

295 mm for croplands, respectively) and removed all grid cells below those thresholds, assuming 326 

these areas to be too cold or too dry for the respective land cover type. Finally, we calculated the 327 

land cover with the highest potential GPP for all overlapping grid cells.  328 

Sensitivity analysis 329 

To explore the sensitivity and uncertainty of our RF approach we repeated our prediction using 330 

different input datasets, potential forest cover, and machine-learning approaches. The importance of 331 

the underlying potential forest map was estimated by replacing our potential forest map 332 

(Supplementary Fig. S5) by the LUH2 potential forest map (Supplementary Fig. S13) 23. To explore the 333 

dependency on the land cover product we repeated our RF prediction using the spatially aggregated 334 

MODIS land cover map (MCD12C1; IGBP scheme), available at 0.05° spatial resolution 52. We 335 

classified grid cells of classes 1, 2, 3, 4, 5, (all forests), 8 (woody savannahs) and 9 (savannahs) as 336 
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forest. Classes 8 and 9 were included in forest because otherwise forest cover would be 337 

underestimated in the temperate and boreal zone. Class 10 was classified as grassland and class 12 338 

as cropland. A comparison of ESA-CCI with MODIS reveals a substantially larger cropland area in ECA-339 

CCI but a smaller grassland area (Supplementary Fig. S14). 340 

The sensitivity to the climate product was tested by repeating our analysis using predictor variables 341 

from the WorldClim climatologies (1970-2000) 50, aggregated from 30 sec to 0.05° spatial resolution 342 

using the aggregate function from the raster package 39. In contrast to CHELSA, growing degree days 343 

and relative humidity were not available from WorldClim but we included water vapour pressure as 344 

additional predictor.  345 

We also tested four alternative global GPP products. The vegetation photosynthesis model (VPM) 346 

product, available for the period of interest at 0.05° spatial resolution, is based on improved light use 347 

efficiency theory and is driven by remotely sensed datasets and reanalysis climate data and land 348 

cover classification which also distinguishes C3 vs. C4 photosynthesis pathways 53. The second 349 

product is derived from remote sensing considering radiation and canopy conductance limitations on 350 

GPP and is available at 0.05° resolution for the 2001-2012 period 54. Land cover is not an input 351 

variable. The third product, FLUXCOM, uses machine learning to scale FLUXNET site GPP to the globe 352 

55,56. FLUXCOM is available at 0.0833° resolution and was conservative remapped to 0.05° using 353 

Climate Data Operators 32 meaning that the GPP of different land cover types might be mixed in 354 

regions with heterogeneous land cover patterns. The forth product is the MODIS MOD17A3 GPP 355 

product 57, available for the 2001-2013 period and aggregated to 0.05° resolution using the raster 356 

package 39. It is derived from meteorological data, fraction of absorbed photosynthetic active 357 

radiation/leaf area index, and land cover. As there is also a MOD17A3 NPP product available we 358 

additionally conducted a prediction for potential NPP. The MOD17A3 NPP product is calculated as 359 

GPP minus maintenance and growth respiration estimated from allometric relationships linking daily 360 

biomass and annual growth of plant tissues to leaf area index 57. This leads to additional uncertainty 361 

compared to the MOD17A3 GPP product. 362 
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To test the effect of an alternative RF algorithm we repeated our prediction with the RF algorithm 363 

from the Python scikit-learn library 58 using the same number of decision trees (800). Additionally, we 364 

tested another machine-learning technique, a deep neural network (DNN), using the PyTorch library 365 

59. We selected 10 linear layers with 5 times alternating 128 and 256 nodes and a sigmoid output 366 

function. All layers were connected using the rectified linear unit activation function. We used the 367 

adamW optimizer with 0.0003 learning rate and 2000 epochs of training. To prevent overfitting, we 368 

included a 10% dropout after the 7th layer. Lastly, we included a very simple estimate of the most 369 

productive land cover based on the nearest neighbour using scikit-learn’s BallTree implementation 370 

together with the Haversine formula. For each grid cell we searched for the nearest forest, grassland, 371 

and cropland grid cell and assigned the respective GPP also to this grid cell. We thus assumed that 372 

environmental conditions are more or less identical in these grid cells, which might be a reasonable 373 

assumption for many locations but less reliable in complex terrain or in large homogeneous regions 374 

like the central Amazon rainforest where the nearest cropland/grassland grid cell might be located 375 

far away. 376 

Land-use change scenarios 377 

To estimate the effects of historical and potential future land cover changes on global GPP we 378 

applied LUH2 scenarios 23 which also serve as input data for ESMs participating in CMIP6. Land-use 379 

changes over the historical period are based on the HYDE reconstruction 3, while future projections 380 

were developed by different Integrated Assessment Models combining various assumptions of socio-381 

economic behaviour (SSPs) with climate mitigation targets (RCPs). Annual fractions for the two land 382 

cover classes cropland (sum of 5 crop types) and managed grassland (sum of pasture and rangeland) 383 

were available for each scenario at 0.25° resolution (https://luh.umd.edu/). We converted to 0.05° 384 

resolution assuming the same land cover fractions for all 25 grid cells around the LUH2 grid cells. We 385 

considered the following land cover transitions: forest to managed grassland, forest to cropland, and 386 

natural grassland to cropland (and reverse transitions for future scenarios). Transitions in areas 387 

suitable for only two land cover types were also included. Conversions of natural grasslands to 388 

https://luh.umd.edu/
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managed grasslands were assumed not to affect productivity. We assumed the original land cover of 389 

a grid cell to be either forest (i.e., potential forest cover > 36.3%) or natural grassland and accordingly 390 

multiplied the converted areas by the differences in potential GPP derived from our RF approach. 391 

Our broad forest definition including open tree cover (see above) and the fact that we assumed a 392 

change from 100% to 0% forest area in deforested grid cells results in a total historical deforestation 393 

area substantially larger than estimated in a recent study (2.4 Mkm2 vs. 1.6 Mkm2) 60. These 394 

assumptions, however, do not impair our GPP estimate as our approach implicitly accounts for 395 

gradients in forest productivity (open forests tend to have lower GPP than closed forests). To test the 396 

sensitivity of the resulting GPP reduction we also applied the potential GPP maps from our 397 

uncertainty analysis to historical land-use changes (Supplementary Fig. S6). For future land cover 398 

changes we investigated changes over the 2015-2100 period for all available LUH2 scenarios: SSP1-399 

1.9, SSP2-2.6, SSP4-3.4, SSP5-3.4, SSP2-4.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5. Land-use activities in 400 

these scenarios range from large-scale deforestation (e.g., SSP3-7.0) to reforestation (e.g., SSP1-1.9) 401 

(Supplementary Fig. S7).  402 

Earth System Models 403 

We compared the potential GPP estimated by our RF algorithm to simulations of eight ESMs 404 

participating in CMIP6 (CESM2-CLM5 61, CNRM-ESM2.1-Surfex 8.0c 62, EC-Earth3-Veg-LPJ-GUESSv4 63, 405 

GFDL-ESM4-GFDL-LM4.1 64, IPSL-CM6A-LR-ORCHIDEEv2.0 65, MIROC-ES2L-MATSIRO6.0+VISIT-e 406 

ver.1.0 66, MPI-ESM1-2-LR-JSBACH3.20 67, UKESM1-0-LL-JULES-ES-1.0 68) with an explicit 407 

representation of natural vegetation and at least one agricultural land cover class (cropland or 408 

managed grassland) in their vegetation sub-model. We selected these ESMs so that all vegetation 409 

models implemented in more than one ESM were represented only once (e.g., the JSBACH 410 

vegetation model is a component of both MPI-ESM1-2-LR and AWI-ESM). For each ESM, the variable 411 

gppLut was downloaded from the CMIP6 archive (https://esgf-data.dkrz.de/search/cmip6-dkrz/) for 412 

the historical simulations. These files contain simulated GPP for natural vegetation, pasture, and 413 

cropland for which we calculated the 2001-2014 mean (2014 is the last year of the historical period). 414 

https://esgf-data.dkrz.de/search/cmip6-dkrz/
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ESMs use fractional land covers for each grid cell, meaning that climatic drivers are inherently the 415 

same for all land cover types within a grid cell and simulated productivities can therefore be directly 416 

compared. As ESMs differ in their spatial resolution we bilinear remapped all output to 0.05° 417 

resolution using Climate Data Operators 32 to allow for a fair comparison across models. To assess the 418 

sensitivity of our results to the interpolation method we also tested conservative remapping which, 419 

however, usually resulted in larger model biases (Supplementary Table 2). In addition, ESMs differ in 420 

where they simulate forests in natural vegetation areas, and therefore we removed all grid cells from 421 

the comparison where at least one ESM simulated no tree productivity/cover/biomass in order to 422 

avoid comparing the GPP of natural grasslands to managed grasslands. We provide maps based on 423 

the original output for each ESM in Supplementary Fig. S10. 424 

FLUXNET data 425 

We compared our predictions of potential GPP to FLUXNET Tier 1 eddy covariance measurements 426 

(Supplementary Fig. S15) 69. We included all forest, woody savannah (classified as forest), grassland 427 

and cropland sites 21 which were located in suitable areas for the respective land cover. Mean GPP 428 

was calculated as the mean of the GPP estimates based on the night-time (GPP_NT_VUT_REF) and 429 

day-time (GPP_DT_VUT_REF) partitioning method. As some sites only had a few years of data, all 430 

available years were considered (i.e., site mean GPP was calculated for a different time period than 431 

2001-2015). Comparisons were made with the potential GPP in the respective grid cell in which the 432 

site was located (i.e., not calibrated to site conditions). 433 

 434 

Acknowledgements 435 

This study was supported by ****. J.X. was supported by the National Science Foundation (NSF) 436 

(Macrosystem Biology & NEON-Enabled Science program: DEB-2017870).  437 

 438 



20 
 

Author contributions 439 

AK and AR designed the study. AK led the analysis and the writing, while AB, KG, LL, PP, and CZ 440 

provided additional input regarding the employed methods and statistical models. XL and JX 441 

provided the GOSIF GPP data. All authors contributed to the discussions and the writing of the 442 

manuscript. 443 

 444 

Data availability statement 445 

All datasets used in this study are publicly available. The GOSIF dataset can be downloaded from 446 

http://data.globalecology.unh.edu/data/GOSIF_v2/. CMIP6 output can be downloaded from 447 

https://esgf-data.dkrz.de/search/cmip6-dkrz/ while the LUH2 scenarios are available from 448 

https://luh.umd.edu/. The potential GPP maps will be made publicly available upon publication. 449 

 450 

Competing interests statement 451 

The authors declare no competing interests. 452 

 453 

References 454 

1 Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev 455 
Geophys 53, 785-818, doi:10.1002/2015rg000483 (2015). 456 

2 Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst Sci Data 12, 3269-3340, 457 
doi:10.5194/essd-12-3269-2020 (2020). 458 

3 Goldewijk, K. K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for 459 
the holocene - hyde 3.2. Earth Syst Sci Data 9, 927-953, doi:10.5194/essd-9-927-2017 (2017). 460 

4 Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global 461 
vegetation biomass. Nature 553, 73-+, doi:10.1038/nature25138 (2018). 462 

5 Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. P 463 
Natl Acad Sci USA 115, E1700-E1700, doi:10.1073/pnas.1800925115 (2018). 464 

6 IPCC. Global warming of 1.5°c. An ipcc special report on the impacts of global warming of 465 
1.5°c above pre-industrial levels and related global greenhouse gas emission pathways, in the 466 
context of strengthening the global response to the threat of climate change, sustainable 467 

http://data.globalecology.unh.edu/data/GOSIF_v2/
https://esgf-data.dkrz.de/search/cmip6-dkrz/
https://luh.umd.edu/


21 
 

development, and efforts to eradicate poverty. (World Meteorological Organization, 468 
https://www.ipcc.ch/sr15/, 2018). 469 

7 Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of 470 
forests. Science 320, 1444-1449, doi:10.1126/science.1155121 (2008). 471 

8 Boysen, L. R. et al. Global climate response to idealized deforestation in cmip6 models. 472 
Biogeosciences 17, 5615–5638, doi:10.5194/bg-17-5615-2020 (2020). 473 

9 Arneth, A. et al. Historical carbon dioxide emissions caused by land-use changes are possibly 474 
larger than assumed. Nat Geosci 10, doi:10.1038/Ngeo2882 (2017). 475 

10 Krause, A. et al. Multimodel analysis of future land‐use and climate change impacts on 476 
ecosystem functioning. Earth's Future 7, 833-851, doi:10.1029/2018EF001123 (2019). 477 

11 Krause, A. et al. Large uncertainty in carbon uptake potential of land-based climate-change 478 
mitigation efforts. Global Change Biol 24, 3025-3038, doi:10.1111/gcb.14144 (2018). 479 

12 Harper, A. B. et al. Land-use emissions play a critical role in landbased mitigation for paris 480 
climate targets. Nat Commun 9, doi:10.1038/s41467-018-05340-z (2018). 481 

13 Haberl, H. et al. Quantifying and mapping the human appropriation of net primary 482 
production in earth's terrestrial ecosystems. P Natl Acad Sci USA 104, 12942-12945, 483 
doi:10.1073/pnas.0704243104 (2007). 484 

14 Hou, H. Y. et al. Future land use/land cover change has nontrivial and potentially dominant 485 
impact on global gross primary productivity. Earths Future 10, doi:10.1029/2021EF002628 486 
(2022). 487 

15 Anav, A. et al. Evaluating the land and ocean components of the global carbon cycle in the 488 
cmip5 earth system models. J Climate 26, 6801-6843, doi:10.1175/Jcli-D-12-00417.1 (2013). 489 

16 Quesada, B., Arneth, A., Robertson, E. & de Noblet-Ducoudre, N. Potential strong 490 
contribution of future anthropogenic land-use and land-cover change to the terrestrial 491 
carbon cycle. Environ Res Lett 13, doi:10.1088/1748-9326/aac4c3 (2018). 492 

17 Sun, Y. et al. Oco-2 advances photosynthesis observation from space via solar-induced 493 
chlorophyll fluorescence. Science 358, doi:10.1126/science.aam5747 (2017). 494 

18 Li, X. et al. Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial 495 
photosynthesis for a wide variety of biomes: First global analysis based on oco-2 and flux 496 
tower observations. Global Change Biol 24, 3990-4008, doi:10.1111/gcb.14297 (2018). 497 

19 Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from gosat: 498 
Patterns of plant fluorescence with gross primary productivity. Geophys Res Lett 38, 499 
doi:10.1029/2011gl048738 (2011). 500 

20 Zhang, Z., Zhang, Y., Joiner, J. & Migliavacca, M. Angle matters: Bidirectional effects impact 501 
the slope of relationship between gross primary productivity and sun-induced chlorophyll 502 
fluorescence from orbiting carbon observatory-2 across biomes. Global Change Biol 24, 503 
5017-5020, doi:10.1111/gcb.14427 (2018). 504 

21 Li, X. & Xiao, J. F. Mapping photosynthesis solely from solar-induced chlorophyll 505 
fluorescence: A global, fine-resolution dataset of gross primary production derived from oco-506 
2. Remote Sens-Basel 11, doi:10.3390/rs11212563 (2019). 507 

22 ESA. Land cover cci product user guide version 2. (2017). 508 
23 Hurtt, G. C. et al. Harmonization of global land use change and management for the period 509 

850-2100 (luh2) for cmip6. Geosci Model Dev 13, 5425-5464, doi:10.5194/gmd-13-5425-2020 510 
(2020). 511 

24 Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale 512 
ecological mapping models. Nat Commun 11, doi:10.1038/s41467-020-18321-y (2020). 513 

25 Erb, K. H. et al. Biomass turnover time in terrestrial ecosystems halved by land use. Nat 514 
Geosci 9, 674-+, doi:10.1038/Ngeo2782 (2016). 515 

26 Smith, W. K., Cleveland, C. C., Reed, S. C. & Running, S. W. Agricultural conversion without 516 
external water and nutrient inputs reduces terrestrial vegetation productivity. Geophys Res 517 
Lett 41, 449-455, doi:10.1002/2013gl058857 (2014). 518 

https://www.ipcc.ch/sr15/


22 
 

27 Zhang, Y. J., Xu, M., Chen, H. & Adams, J. Global pattern of npp to gpp ratio derived from 519 
modis data: Effects of ecosystem type, geographical location and climate. Global Ecol 520 
Biogeogr 18, 280-290, doi:10.1111/j.1466-8238.2008.00442.x (2009). 521 

28 DeFries, R. Past and future sensitivity of primary production to human modification of the 522 
landscape. Geophys Res Lett 29, doi:10.1029/2001gl013620 (2002). 523 

29 Dohleman, F. G. & Long, S. P. More productive than maize in the midwest: How does 524 
miscanthus do it? Plant Physiol 150, 2104-2115, doi:10.1104/pp.109.139162 (2009). 525 

30 Hengl, T. et al. Global mapping of potential natural vegetation: An assessment of machine 526 
learning algorithms for estimating land potential. Peerj 6, doi:10.7717/peerj.5457 (2018). 527 

31 Krause, A., Pugh, T. A. M., Bayer, A. D., Lindeskog, M. & Arneth, A. Impacts of land-use 528 
history on the recovery of ecosystems after agricultural abandonment. Earth Syst Dynam 7, 529 
745–766, doi:10.5194/esd-7-745-2016 (2016). 530 

32 Schulzweida, U. Cdo user guide (version 1.9.8).  (2019). 531 
<http://doi.org/10.5281/zenodo.3539275>. 532 

33 Li, X. & Xiao, J. F. A global, 0.05-degree product of solar-induced chlorophyll fluorescence 533 
derived from oco-2, modis, and reanalysis data. Remote Sens-Basel 11, 534 
doi:10.3390/rs11050517 (2019). 535 

34 Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the 536 
orbiting carbon observatory-2. Remote Sens Environ 147, 1-12, doi:10.1016/j.rse.2014.02.007 537 
(2014). 538 

35 Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with 539 
chlorophyll fluorescence. P Natl Acad Sci USA 111, E1327-E1333, 540 
doi:10.1073/pnas.1320008111 (2014). 541 

36 Porcar-Castell, A. et al. Chlorophyll a fluorescence illuminates a path connecting plant 542 
molecular biology to earth-system science. Nat Plants 7, 998-1009, doi:10.1038/s41477-021-543 
00980-4 (2021). 544 

37 Gu, L. H., Han, J. M., Wood, J. D., Chang, C. Y. Y. & Sun, Y. Sun-induced chl fluorescence and 545 
its importance for biophysical modeling of photosynthesis based on light reactions. New 546 
Phytol 223, 1179-1191, doi:10.1111/nph.15796 (2019). 547 

38 Magney, T. S., Barnes, M. L. & Yang, X. On the covariation of chlorophyll fluorescence and 548 
photosynthesis across scales. Geophys Res Lett 47, doi:10.1029/2020GL091098 (2020). 549 

39 Hijmans, R. J. et al. Package ‘raster’: Geographic data analysis and modeling.  (2022). 550 
<https://rspatial.org/raster>. 551 

40 Breiman, L. Random forests. Mach Learn 45, 5-32, doi:10.1023/A:1010933404324 (2001). 552 
41 Hoffman, A. L., Kemanian, A. R. & Forest, C. E. Analysis of climate signals in the crop yield 553 

record of sub-saharan africa. Global Change Biol 24, 143-157, doi:10.1111/gcb.13901 (2018). 554 
42 Li, W. et al. Mapping the yields of lignocellulosic bioenergy crops from observations at the 555 

global scale. Earth Syst Sci Data 12, 789–804, doi:10.5194/essd-12-789-2020 (2020). 556 
43 Li, Y. C., Li, M. Y., Li, C. & Liu, Z. Z. Forest aboveground biomass estimation using landsat 8 557 

and sentinel-1a data with machine learning algorithms. Sci Rep-Uk 10, doi:10.1038/s41598-558 
020-67024-3 (2020). 559 

44 Jian, J. S., Steele, M. K., Thomas, R. Q., Day, S. D. & Hodges, S. C. Constraining estimates of 560 
global soil respiration by quantifying sources of variability. Global Change Biol 24, 4143-4159, 561 
doi:10.1111/gcb.14301 (2018). 562 

45 Wright, M. N. & Ziegler, A. Ranger: A fast implementation of random forests for high 563 
dimensional data in c plus plus and r. J Stat Softw 77, 1-17, doi:10.18637/jss.v077.i01 (2017). 564 

46 Karger, D. N. et al. Data descriptor: Climatologies at high resolution for the earth's land 565 
surface areas. Sci Data 4, doi:10.1038/sdata.2017.122 (2017). 566 

47 Karger, D. N. et al. Data from: Climatologies at high resolution for the earth's land surface 567 
areas, doi:10.5061/dryad.kd1d4 (2018). 568 

48 Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded harmonized world soil 569 
database v1.2, doi:10.3334/ORNLDAAC/1247 (2014). 570 

http://doi.org/10.5281/zenodo.3539275
https://rspatial.org/raster


23 
 

49 Lamarque, J. F. et al. Multi-model mean nitrogen and sulfur deposition from the atmospheric 571 
chemistry and climate model intercomparison project (accmip): Evaluation of historical and 572 
projected future changes. Atmos Chem Phys 13, 7997-8018, doi:10.5194/acp-13-7997-2013 573 
(2013). 574 

50 Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for 575 
global land areas. Int J Climatol 37, 4302-4315, doi:10.1002/joc.5086 (2017). 576 

51 Kummu, M., Taka, M. & Guillaume, J. H. A. Data descriptor: Gridded global datasets for gross 577 
domestic product and human development index over 1990-2015. Sci Data 5, 578 
doi:10.1038/sdata.2018.4 (2018). 579 

52 Friedl, M. & Sulla-Menashe, D. Mcd12c1 modis/terra+aqua land cover type yearly l3 global 580 
0.05deg cmg v006, doi:10.5067/MODIS/MCD12C1.006 (2015). 581 

53 Zhang, Y. et al. Data descriptor: A global moderate resolution dataset of gross primary 582 
production of vegetation for 2000-2016. Sci Data 4, doi:10.1038/sdata.2017.165 (2017). 583 

54 Yebra, M., Van Dijk, A. I. J. M., Leuning, R. & Guerschman, J. P. Global vegetation gross 584 
primary production estimation using satellite-derived light-use efficiency and canopy 585 
conductance. Remote Sens Environ 163, 206-216, doi:10.1016/j.rse.2015.03.016 (2015). 586 

55 Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and 587 
evaluation of the fluxcom approach. Biogeosciences 17, 1343-1365, doi:10.5194/bg-17-1343-588 
2020 (2020). 589 

56 Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global fluxnet sites 590 
with regression algorithms. Biogeosciences 13, 4291-4313, doi:10.5194/bg-13-4291-2016 591 
(2016). 592 

57 Zhao, M. S., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the modis 593 
terrestrial gross and net primary production global data set. Remote Sens Environ 95, 164-594 
176, doi:10.1016/j.rse.2004.12.011 (2005). 595 

58 Pedregosa, F. et al. Scikit-learn: Machine learning in python. J Mach Learn Res 12, 2825-2830 596 
(2011). 597 

59 Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. 598 
Advances in Neural Information Processing Systems 32 (Nips 2019) 32 (2019). 599 

60 Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724-+, 600 
doi:10.1038/s41586-020-2784-9 (2020). 601 

61 Danabasoglu, G. Ncar cesm2 model output prepared for cmip6 cmip historical. Version 602 
20190516, doi:10.22033/ESGF/CMIP6.7627 (2019). 603 

62 Seferian, R. Cnrm-cerfacs cnrm-esm2-1 model output prepared for cmip6 cmip historical. 604 
Version 20180610, doi:10.22033/ESGF/CMIP6.4068 (2018). 605 

63 EC-Earth Consortium (EC-Earth). Ec-earth-consortium ec-earth3-veg model output prepared 606 
for cmip6 cmip historical. Version 20190719, doi:10.22033/ESGF/CMIP6.4706 (2019). 607 

64 Krasting, J. P. et al. Noaa-gfdl gfdl-esm4 model output prepared for cmip6 cmip historical. 608 
Version 20190806, doi:10.22033/ESGF/CMIP6.8597 (2018). 609 

65 Boucher, O., Denvil, S., Caubel, A. & Foujols, M. A. Ipsl ipsl-cm6a-lr model output prepared for 610 
cmip6 cmip historical. Version 20180711, doi:10.22033/ESGF/CMIP6.5195 (2018). 611 

66 Hajima, T. et al. Miroc miroc-es2l model output prepared for cmip6 cmip historical. Version 612 
20190625, doi:10.22033/ESGF/CMIP6.5602 (2019). 613 

67 Wieners, K.-H. et al. Mpi-m mpi-esm1.2-lr model output prepared for cmip6 cmip historical. 614 
Version 20190929, doi:10.22033/ESGF/CMIP6.6595 (2019). 615 

68 Tang, Y. et al. Mohc ukesm1.0-ll model output prepared for cmip6 cmip historical. Version 616 
20191104, doi:10.22033/ESGF/CMIP6.6113 (2019). 617 

69 Pastorello, G. et al. The fluxnet2015 dataset and the oneflux processing pipeline for eddy 618 
covariance data. Sci Data 7, doi:10.1038/s41597-020-0534-3 (2020). 619 

 620 


