Comment

https://doi.org/10.1038/s41558-023-01769-3

Harnessing Aland computing toadvance
climate modelling and prediction

Tapio Schneider, Swadhin Behera, Giulio Boccaletti, Clara Deser, Kerry Emanuel,
Raffaele Ferrari, L. Ruby Leung, Ning Lin, Thomas Miiller, Antonio Navarra,

Ousmane Ndiaye, Andrew Stuart, Joseph Tribbia & Toshio Yamagata

R Check for updates

There are contrasting views on how to produce
the accurate predictions that are needed to
guide climate change adaptation. Here, we
argue for harnessing artificial intelligence,
building on domain-specific knowledge

and generating ensembles of moderately
high-resolution (10-50 km) climate
simulations as anchors for detailed hazard
models.

Adaptation planners, local decision makers and industries are demand-
ing detailed assessments of climate risks’, which necessitate large
ensembles of climate simulations’. However, climate models struggle
to provide the needed granular predictions with quantified uncertain-
ties. Astep changeinthe accuracy and usability of climate predictions
isneeded.

One proposed approach for a step change in climate modelling
is to focus on global models with 1-km horizontal resolution. These
can improve simulations, such as those of atmospheric convective
storms and the resulting extreme precipitation®*. However, because
kilometre-scale models stretch the limits of what is computationally
feasible, they can only generate afew simulations — primarily in select
centres in the Global North. An alternative approach increases the
model resolution to 10-50 km (from around 100 km, which is stand-
ard today) and focuses on calibration with Earth observations and
higher-resolution regional simulations using artificial intelligence
(A tools’. This enables the generation of large ensembles to quantify
uncertainties and support detailed impact assessments using offline
hazard models. We argue that suchabalanced approach —incorporat-
ing higher-resolution modelling, Al and learning from observational
and simulated data — offers the most robust path to accurate climate
risk assessments.

Kilometre-scale models
Climate models withahorizontal resolution of around 1kmare appeal-
ing because their resolution closely matches the scale at which many
climate risk assessments are needed. They promise to reduce errors,
forexample, in simulations of regional precipitation and its extremes®.
However, although kilometre-scale models have beenreferred to
as ‘digital twins’ of Earth?, they still have limitations and biases simi-
lar to current models. They fail to capture important sub-kilometre-
scale processes, such as the dynamics of the energetically crucial
low-lying clouds® that operate at scales of 1-10 m. They are far from

BOX1

Weather forecasting versus
climate prediction

Improved data assimilation has driven recent progress in weather
forecasting. Similar progress may be at hand in climate prediction.
However, weather forecasts and climate predictions differ
fundamentally. Weather forecasts are predictions of the first kind,
aiming to predict future system states given initial conditions'®.
Predictability of the first kind is limited by chaos — the state of the
atmosphere is forgotten in about two weeks. Daily assimilation

of weather observations provides initial conditions for weather
forecasting. It also compensates for errors in the representation of
unresolved processes by repeatedly pulling, for example, simulated
temperatures back toward observations, offsetting biases in a
model’s energy balance.

By contrast, climate predictions are predictions of the second
kind™®, aiming to predict future climate statistics given evolving
boundary conditions, such as greenhouse gas emissions.
Predictability of the second kind is limited because the signal
of changing climate statistics emerges only slowly against the
chaotic background variability. To predict these slowly changing
climate statistics, a climate model must run freely for decades
into the future, without a chance to compensate for errors through
assimilation of observed climate states. The ability to predict how
climate statistics change on multidecadal timescales is therefore
principally limited by uncertainties and errors in the representation
of unresolved processes. Uncertainties about emission scenarios
also begin to contribute substantially on timescales around 30
years and dominate on centennial scales'.

Thus, improved weather forecasts, whether obtained by
traditional numerical or machine learning models, do not directly
translate into improved climate predictions. But some of the tools
that led to progress in weather forecasting, such as data assimilation,
can be adapted for climate models to learn from data, albeit with
data consisting of climate statistics rather than weather states.

resolvingatmosphericturbulence, whichoccupiesacontinuumof scales
from the planetary scale to the dissipation (Kolmogorov) scale
of around 1 mm. Consequently, although an atmosphere model
with 1-km horizontal resolution and 200 vertical levels would have
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10" spatial degrees of freedom, thisisless than the turbulencein Earth’s
atmosphere by a factor of 10",

Furthermore, below the smallest turbulent scales, processes
operate that contribute to major uncertainties in climate predictions.
Cloud microphysical processes, which control the formation of cloud
droplets and ice crystals and occur on nano- and micrometre scales,
regulate Earth’s energy balance. Uncertainties in their representation
contribute substantially to the divergent sensitivities of climate models
toincreasing greenhouse gas concentrations. Errorsin therepresenta-
tion of suchsmall-scale processes percolate upscale and lead to biases
inamodel’s large-scale energy balance and in simulated features such
as precipitation patterns.

Thus, because kilometre-scale models do not resolve many cru-
cial small-scale processes, they exhibit some of the same large-scale
biases — for example, in tropical rainfall patterns — that have plagued
coarser-resolution models for decades’. Accuracy gains in going from
10-km to 1-km resolution so far have beenincremental®, and the inten-
sity of convective storms has not reached convergence at kilometre
resolution’. In fact, without calibration, large-scale biases can be larger
at higher than at lower resolution®.

Overall, kilometre-scale models do not offer the step change in
accuracy that wouldjustify accepting the limitations that they impose
onthesize of simulation ensembles, which are needed both to calibrate
the unavoidable empirical models of unresolved processes and to
quantify uncertainties.

Harnessing Al and data to improve Earth systems models
Rather than prioritizing kilometre-scale resolution, we propose a
balanced approach that capitalizes on advances in computing and
Al. By moderately increasing global resolution while extensively
harnessing observational and simulated data, this approach is more
likely to achieve the objective of climate modelling for risk assessment,
which involves minimizing model errors and quantifying uncertain-
ties. Model resolution is no panacea but one of several parameters to
be optimized in pursuit of this objective. It serves as apotent lever for
optimization because computational cost scales cubically with hori-
zontal resolution when vertical resolution is fixed: 1,000 simulations
at10-kmresolution cost the same as 1 simulation at 1-km resolution.
Transitioning to global resolutions around 10 km would represent a
significant improvement over current standards, while still enabling
the generation of large ensembles. These ensembles are essential for
quantifying uncertainties and leveraging Al tools to learn from data
about crucial small-scale processes, such as cloud dynamics and micro-
physics, which cannot be directly resolved.

Because climate predictions focus on statistical quantities, such
asmeantemperatures or probabilities of extreme precipitation events,
itis natural to learn about unresolvable processes from climate sta-
tistics accumulated over time’; this contrasts with the assimilation of
weather statesin weather forecasting (see Box 1for crucial differences
between weather forecasting and climate prediction). The relatively
smooth spatial and temporal variation of climate statistics also helps
mitigate challenges stemming from resolution disparities between
simulations and observations.

However, learning from climate statistics using Al tools poses
its own challenges. The widely adopted machine learning paradigm
of supervised learning, which typically relies on model gradients for
training, istoorestrictive becauseitrequires direct training dataatthe
level of the processes to be learned. However, climate data (for exam-
ple, cloud cover statistics) usually only provide indirect information
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Fig.1|Improving climate models and predictions by learning from
observational and simulated data. To improve climate models, model
components encoding domain-specific knowledge should learn from diverse
climate statistics that are obtained from Earth observations or regional
high-resolution simulations. Ideally, the model components learnjointly, and
have their joint uncertainties quantified, to reveal and reduce compensating
errors among components through a shared layer of data assimilation and
machine learning tools wrapping allmodel components®. Large ensembles of
climate simulations are necessary for this model calibration and uncertainty
quantification, and large ensembles are also necessary to sample the space of
plausible climate outcomes’. These simulation ensembles can be generated at
moderately high resolution (10-50 km), but not yet at kilometre scales.

aboutthe processestobelearned (for example, cloud microphysics).
Learning from statistics such as multi-year averages or the seasonal
cycle also requires accumulating simulated statistics over years to
decades, making the training stage computationally expensive.
These challenges can be met. Ensemble Kalman methods, which
are widely employed for state assimilation in weather forecasting,
can be adapted to learn about parameters, parametric functions or
even machine learning components of climate models by solving
inverse problems'®. These methods avoid the restrictions of supervised
learning and the reliance on model gradients. They allow calibration
of models using noisy, heterogeneous and indirect data, such as the
plethoraof Earth observations now available (Fig.1). They can be paired
with machine learning emulators to speed up uncertainty quantifica-
tion, reducing the number of climate model runs required from a
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prohibitive O(10°), withstandard Markov chain Monte Carlomethods, toa
manageable O(10°) (refs.11,12).

The otherwise overwhelming data demands arising from the vast
range of unresolvable scales in the climate system and the need to
generalize from available observations to unseen climates can be miti-
gated by pairing learning from data with domain-specific knowledge
(for example, theories and conservation laws). The area of combin-
ing data and new Al tools with domain-specific knowledge is ripe for
further advances. Progress will be important not just for the climate
sciences, but also for the computational sciences and engineering,
where learning closure models for unresolved processes from limited
dataisacommon problem.

Whichever Al tools will prevail, we need to be able to run climate
models O(10%) times to calibrate unresolvable processes, quantify
model uncertainties, and produce large ensembles of predictions
that sample from the learned models and span plausible climate
outcomes’. Producing these large ensembles will remain infeasible at
kilometre-scale resolution for the next decade. Therefore, although
we should push the resolution frontier as computer performance
increases, climate modelling in the next decade needs to focus on
resolutions in the 10-50 km range. In this range, tropical cyclones"
and mesoscale ocean turbulence™ begin to be resolved, improving
the simulation of the most damaging weather hazards and the rate
of ocean heat and carbon uptake relative to today’s standard
of 0(100 km) resolution.

Large ensembles then remainfeasible, and are even beginning to
be generated. Simulations at yet higher resolutions, from kilometres
downtometres, have arole to play here in providing training and vali-
dation data for coarser-resolution models, including in climates that
are different fromthat of today for which we do not have observations.
However, these simulations do not need to span the globe but can be
targeted to specific regions or climate conditions where they are par-
ticularly informative’ —anapproach that lendsitselfwell to distributed
(cloud) computing (Fig. 1).

A hierarchy of modelsin adistributed research programme
Climate modelling must support a variety of adaptation decisions,
many on local scales. This requires that ensembles of climate predic-
tions are downscaled toimpact-relevant scales and anchor a hierarchy
of offline hazard models, based on process models or generative Al, for
the efficient exploration of scenarios and propagation of uncertainties
tospecific climateimpacts. Hazard modelsinclude metre-scale models
of inland and coastal flooding"”, compound storm-heatwave impacts
oninfrastructure and vulnerable populations', and wildfire risks".
Importantly, climate models must be developed so that they can
be used and improved on through rapid iteration, in a globally inclu-
sive and distributed research programme that does not concentrate
resources in the few monolithic centres that would be needed if the
focusisonkilometre-scale global modelling. Anapproachfocused on
generating large ensembles of simulations at moderately high reso-
lution (10-50 km) provides a better assessment of climate risks and
enables wider adoption. After computationally costly calibrationand
uncertainty quantification, suchmodels canbe run by diverse groups,

tappinginto the global talent pool of those most vulnerable to climate
change and knowledgeable about risks to their communities.
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