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climate modelling and prediction
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There are contrasting views on how to produce 
the accurate predictions that are needed to 
guide climate change adaptation. Here, we 
argue for harnessing artificial intelligence, 
building on domain-specific knowledge 
and generating ensembles of moderately 
high-resolution (10–50 km) climate 
simulations as anchors for detailed hazard 
models.

Adaptation planners, local decision makers and industries are demand-
ing detailed assessments of climate risks1, which necessitate large 
ensembles of climate simulations2. However, climate models struggle 
to provide the needed granular predictions with quantified uncertain-
ties. A step change in the accuracy and usability of climate predictions 
is needed.

One proposed approach for a step change in climate modelling 
is to focus on global models with 1-km horizontal resolution. These 
can improve simulations, such as those of atmospheric convective 
storms and the resulting extreme precipitation3,4. However, because 
kilometre-scale models stretch the limits of what is computationally 
feasible, they can only generate a few simulations — primarily in select 
centres in the Global North. An alternative approach increases the 
model resolution to 10–50 km (from around 100 km, which is stand-
ard today) and focuses on calibration with Earth observations and 
higher-resolution regional simulations using artificial intelligence 
(AI) tools5. This enables the generation of large ensembles to quantify 
uncertainties and support detailed impact assessments using offline 
hazard models. We argue that such a balanced approach — incorporat-
ing higher-resolution modelling, AI and learning from observational 
and simulated data — offers the most robust path to accurate climate 
risk assessments.

Kilometre-scale models
Climate models with a horizontal resolution of around 1 km are appeal-
ing because their resolution closely matches the scale at which many 
climate risk assessments are needed. They promise to reduce errors, 
for example, in simulations of regional precipitation and its extremes4.

However, although kilometre-scale models have been referred to 
as ‘digital twins’ of Earth3, they still have limitations and biases simi-
lar to current models. They fail to capture important sub-kilometre- 
scale processes, such as the dynamics of the energetically crucial 
low-lying clouds6 that operate at scales of 1–10 m. They are far from 

resolving atmospheric turbulence, which occupies a continuum of scales  
from the planetary scale to the dissipation (Kolmogorov) scale 
of around 1 mm. Consequently, although an atmosphere model 
with 1-km horizontal resolution and 200 vertical levels would have  
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Box 1

Weather forecasting versus 
climate prediction
Improved data assimilation has driven recent progress in weather 
forecasting. Similar progress may be at hand in climate prediction. 
However, weather forecasts and climate predictions differ 
fundamentally. Weather forecasts are predictions of the first kind, 
aiming to predict future system states given initial conditions18. 
Predictability of the first kind is limited by chaos — the state of the 
atmosphere is forgotten in about two weeks. Daily assimilation 
of weather observations provides initial conditions for weather 
forecasting. It also compensates for errors in the representation of 
unresolved processes by repeatedly pulling, for example, simulated 
temperatures back toward observations, offsetting biases in a 
model’s energy balance.

By contrast, climate predictions are predictions of the second 
kind18, aiming to predict future climate statistics given evolving 
boundary conditions, such as greenhouse gas emissions. 
Predictability of the second kind is limited because the signal 
of changing climate statistics emerges only slowly against the 
chaotic background variability. To predict these slowly changing 
climate statistics, a climate model must run freely for decades 
into the future, without a chance to compensate for errors through 
assimilation of observed climate states. The ability to predict how 
climate statistics change on multidecadal timescales is therefore 
principally limited by uncertainties and errors in the representation 
of unresolved processes. Uncertainties about emission scenarios 
also begin to contribute substantially on timescales around 30 
years and dominate on centennial scales19.

Thus, improved weather forecasts, whether obtained by 
traditional numerical or machine learning models, do not directly 
translate into improved climate predictions. But some of the tools 
that led to progress in weather forecasting, such as data assimilation, 
can be adapted for climate models to learn from data, albeit with 
data consisting of climate statistics rather than weather states.
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about the processes to be learned (for example, cloud microphysics). 
Learning from statistics such as multi-year averages or the seasonal 
cycle also requires accumulating simulated statistics over years to 
decades, making the training stage computationally expensive.

These challenges can be met. Ensemble Kalman methods, which 
are widely employed for state assimilation in weather forecasting, 
can be adapted to learn about parameters, parametric functions or 
even machine learning components of climate models by solving 
inverse problems10. These methods avoid the restrictions of supervised 
learning and the reliance on model gradients. They allow calibration 
of models using noisy, heterogeneous and indirect data, such as the 
plethora of Earth observations now available (Fig. 1). They can be paired 
with machine learning emulators to speed up uncertainty quantifica-
tion, reducing the number of climate model runs required from a 

1011 spatial degrees of freedom, this is less than the turbulence in Earth’s 
atmosphere by a factor of 1017.

Furthermore, below the smallest turbulent scales, processes 
operate that contribute to major uncertainties in climate predictions. 
Cloud microphysical processes, which control the formation of cloud 
droplets and ice crystals and occur on nano- and micrometre scales, 
regulate Earth’s energy balance. Uncertainties in their representation 
contribute substantially to the divergent sensitivities of climate models 
to increasing greenhouse gas concentrations. Errors in the representa-
tion of such small-scale processes percolate upscale and lead to biases 
in a model’s large-scale energy balance and in simulated features such 
as precipitation patterns.

Thus, because kilometre-scale models do not resolve many cru-
cial small-scale processes, they exhibit some of the same large-scale 
biases — for example, in tropical rainfall patterns — that have plagued 
coarser-resolution models for decades7. Accuracy gains in going from 
10-km to 1-km resolution so far have been incremental8, and the inten-
sity of convective storms has not reached convergence at kilometre 
resolution9. In fact, without calibration, large-scale biases can be larger 
at higher than at lower resolution8.

Overall, kilometre-scale models do not offer the step change in 
accuracy that would justify accepting the limitations that they impose 
on the size of simulation ensembles, which are needed both to calibrate 
the unavoidable empirical models of unresolved processes and to 
quantify uncertainties.

Harnessing AI and data to improve Earth systems models
Rather than prioritizing kilometre-scale resolution, we propose a  
balanced approach that capitalizes on advances in computing and 
AI. By moderately increasing global resolution while extensively  
harnessing observational and simulated data, this approach is more 
likely to achieve the objective of climate modelling for risk assessment, 
which involves minimizing model errors and quantifying uncertain-
ties. Model resolution is no panacea but one of several parameters to 
be optimized in pursuit of this objective. It serves as a potent lever for 
optimization because computational cost scales cubically with hori-
zontal resolution when vertical resolution is fixed: 1,000 simulations 
at 10-km resolution cost the same as 1 simulation at 1-km resolution. 
Transitioning to global resolutions around 10 km would represent a 
significant improvement over current standards, while still enabling 
the generation of large ensembles. These ensembles are essential for 
quantifying uncertainties and leveraging AI tools to learn from data 
about crucial small-scale processes, such as cloud dynamics and micro-
physics, which cannot be directly resolved.

Because climate predictions focus on statistical quantities, such 
as mean temperatures or probabilities of extreme precipitation events,  
it is natural to learn about unresolvable processes from climate sta-
tistics accumulated over time5; this contrasts with the assimilation of 
weather states in weather forecasting (see Box 1 for crucial differences 
between weather forecasting and climate prediction). The relatively 
smooth spatial and temporal variation of climate statistics also helps 
mitigate challenges stemming from resolution disparities between 
simulations and observations.

However, learning from climate statistics using AI tools poses 
its own challenges. The widely adopted machine learning paradigm 
of supervised learning, which typically relies on model gradients for 
training, is too restrictive because it requires direct training data at the 
level of the processes to be learned. However, climate data (for exam-
ple, cloud cover statistics) usually only provide indirect information 
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Fig. 1 | Improving climate models and predictions by learning from 
observational and simulated data. To improve climate models, model 
components encoding domain-specific knowledge should learn from diverse 
climate statistics that are obtained from Earth observations or regional 
high-resolution simulations. Ideally, the model components learn jointly, and 
have their joint uncertainties quantified, to reveal and reduce compensating 
errors among components through a shared layer of data assimilation and 
machine learning tools wrapping all model components5. Large ensembles of 
climate simulations are necessary for this model calibration and uncertainty 
quantification, and large ensembles are also necessary to sample the space of 
plausible climate outcomes2. These simulation ensembles can be generated at 
moderately high resolution (10–50 km), but not yet at kilometre scales. 
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prohibitive O(106), with standard Markov chain Monte Carlo methods, to a  
manageable O(103) (refs. 11,12).

The otherwise overwhelming data demands arising from the vast 
range of unresolvable scales in the climate system and the need to 
generalize from available observations to unseen climates can be miti-
gated by pairing learning from data with domain-specific knowledge 
(for example, theories and conservation laws). The area of combin-
ing data and new AI tools with domain-specific knowledge is ripe for 
further advances. Progress will be important not just for the climate 
sciences, but also for the computational sciences and engineering, 
where learning closure models for unresolved processes from limited 
data is a common problem.

Whichever AI tools will prevail, we need to be able to run climate 
models O(103) times to calibrate unresolvable processes, quantify 
model uncertainties, and produce large ensembles of predictions 
that sample from the learned models and span plausible climate  
outcomes2. Producing these large ensembles will remain infeasible at 
kilometre-scale resolution for the next decade. Therefore, although 
we should push the resolution frontier as computer performance 
increases, climate modelling in the next decade needs to focus on 
resolutions in the 10–50 km range. In this range, tropical cyclones13 
and mesoscale ocean turbulence14 begin to be resolved, improving 
the simulation of the most damaging weather hazards and the rate  
of ocean heat and carbon uptake relative to today’s standard  
of O(100 km) resolution.

Large ensembles then remain feasible, and are even beginning to 
be generated. Simulations at yet higher resolutions, from kilometres 
down to metres, have a role to play here in providing training and vali-
dation data for coarser-resolution models, including in climates that 
are different from that of today for which we do not have observations. 
However, these simulations do not need to span the globe but can be 
targeted to specific regions or climate conditions where they are par-
ticularly informative5 — an approach that lends itself well to distributed 
(cloud) computing (Fig. 1).

A hierarchy of models in a distributed research programme
Climate modelling must support a variety of adaptation decisions, 
many on local scales. This requires that ensembles of climate predic-
tions are downscaled to impact-relevant scales and anchor a hierarchy 
of offline hazard models, based on process models or generative AI, for 
the efficient exploration of scenarios and propagation of uncertainties 
to specific climate impacts. Hazard models include metre-scale models 
of inland and coastal flooding15, compound storm–heatwave impacts 
on infrastructure and vulnerable populations16, and wildfire risks17.

Importantly, climate models must be developed so that they can 
be used and improved on through rapid iteration, in a globally inclu-
sive and distributed research programme that does not concentrate 
resources in the few monolithic centres that would be needed if the 
focus is on kilometre-scale global modelling. An approach focused on 
generating large ensembles of simulations at moderately high reso-
lution (10–50 km) provides a better assessment of climate risks and 
enables wider adoption. After computationally costly calibration and 
uncertainty quantification, such models can be run by diverse groups, 

tapping into the global talent pool of those most vulnerable to climate 
change and knowledgeable about risks to their communities.
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