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Abstract

We generalize Holley—Stroock’s perturbation argument from commutative to finite dimen-
sional quantum Markov semigroups. As a consequence, results on (complete) modified
logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quan-
tum Markov processes can be used to prove estimates on the exponential convergence in
relative entropy of quantum Markov systems which preserve a fixed state. This leads to
estimates for the decay to equilibrium for coupled systems and to estimates for mixed state
preparation times using Lindblad operators. Our techniques also apply to discrete time set-
tings, where we show that the strong data processing inequality constant of a quantum channel
can be controlled by that of a corresponding unital channel.

Keywords Quantum Markov semigroup - Relative entropy - Decay estimate - Modified
logarithmic Sobolev inequality

Communicated by Alessandro Giuliani.

NL is supported by NSF Grant DMS-1700168 and NSF Graduate Research Fellowship Program
DMS-1144245. MJ is partially supported by NSF Grants DMS 1800872 and Raise-TAG 1839177. CR
acknowledges financial support from the TUM university Foundation Fellowship and by the DFG cluster of
excellence 2111 (Munich Center for Quantum Science and Technology).

B Nicholas Laracuente
laracue2 @illinois.edu

Marius Junge
mjunge @illinois.edu

Cambyse Rouzé
rouzecambyse @ gmail.com

Department of Mathematics, University of Illinois, Urbana, IL 61801, USA
2 Department of Physics, University of Illinois, Urbana, IL 61801, USA

Department of Mathematics, Technische Universitidt Miinchen, Munich, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-022-03026-x&domain=pdf
http://orcid.org/0000-0003-0966-9272

30 Page2of25 M. Junge et al.

1 Introduction

Quantum information theory concerns the study of information theoretic tasks that can be
achieved using quantum systems (e.g. photons, electrons and atoms) as information carriers,
with the long-term promise that it will revolutionize our way of computing, communicat-
ing and designing new materials. However, in realistic settings, quantum systems undergo
unavoidable interactions with their environment. This gives rise to the phenomenon of deco-
herence, which leads to a loss of the information initially contained in the system [19].
Within the context of emerging quantum information-processing devices, gaining quantita-
tive knowledge about the effect of decoherence is one of the main near-term challenges for
the design of methods to achieve scalable quantum fault-tolerance. Quantifying decoherence
is known to be a difficult problem in general, already for classical systems. Two facts make
the situation even more challenging in the quantum regime: (i) the non-commutativity of
quantum observables, and (ii) the potential for entanglement between systems.

Quantum Markov semigroups (QMS) constitute a particularly interesting class of noise
that decomposes into successive applications of a quantum channel representing an arbitrarily
small amount of time. Most recent approaches aim at quantifying decoherence from Markov
semigroups using functional inequalities (FIs). The latter are differential versions of strong
contraction properties of various distance measures under the action of the semigroup. For
instance, the Poincaré inequality provides an estimate on the spectral gap of the semigroup.
Exponentially faster convergence can be achieved via the existence of a logarithmic Sobolev
inequality (LSI), which implies a strong contraction of weighted L?”-norms under the action
of the semigroup known as hypercontractivity. Similarly, the modified logarithmic Sobolev
inequality (MLSI) governs the exponential convergence in relative entropy of any initial state
evolving according to the semigroup towards equilibrium.

In the commutative or classical setting, one of the key features of logarithmic Sobolev

inequalities is their stability under the action of coupling with an auxiliary system. This
fact implies that many such FIs can be ultimately deduced from an inequality over a two-
point space. For quantum systems, entanglement with an auxiliary system may preclude
the existence of LSI, but MLSI extends to the the stronger notion of complete (modified)
logarithmic Sobolev inequality (CLSI). CLSI plays an analogous role to LSI for studying
multiplicativity properties of QMSs.
Classical relative entropy and the Holley—Stroock perturbation argument The focus of
this paper is on inequalities in terms of relative entropy. Though we aim to show quantum
inequalities in the finite-dimensional setting, we here recall the classical Holley—Stroock
argument in its original, infinite-dimensional setting. In particular, our primary method is a
‘quantized version’ of an argument by Holley and Stroock [28] which allows one to transfer
estimates between relative entropies with respect to different measures. For any two proba-
bility measures v < u on R”, their classical relative entropy is given by

DOl =Enty ()= [ finfdu [ raum [ fan.

where f is defined as the Radon-Nikodym derivative 21%' When v, u are probability measures
on finite spaces, the relative entropy reduces to the familiar form of the Kullback-Leibler
divergence given by

DOllp) =) vilnvi —vilnp; .
i
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Thanks to the positivity of G(a, b) = aloga —blogb+b —a fora, b > 0[28], this relative
entropy admits a variational characterization

Ent, (f) = ing/(flnf—clnc—i-c—f)du.

Therefore, given any other probability measure ©’' < pu, the positivity of G implies the
following stability property of the relative entropy:

du’
Ent,(f) < A

Ent,(f), (1.1)
o0
whenever the Radon-Nikodym derivative ‘2—’;, is uniformly bounded, where ||. || refers to the
L®° norm here. A similar argument holds for the functional derivative of the relative entropy,
or Fisher Information

\v/ 2
()= [ 1y fau = /%du, (12)

for any “regular enough” f, whenever the generator of a diffusion semigroup (7; = e~"),>0
is given as L(f) = —Af + VV.V f with respect to the derivation V(f) = ( af df )

T)Q’ 0 dx,
on R", and for du = e Vdxand V € CZ(R”). Again, thanks to the positivity of %, we
deduce that, if p < '

du
I(f) = aw | Ly (f) . (1.3)
The (modified) logarithmic Sobolev inequality (MLSI) is defined as follows: for any regular
enough function f,

aBnt, (f) < I.(f).

The largest constant o > 0 satisfying this inequality is denoted by «;, and called the modified
logarithmic Sobolev constant. Note that, by the equivalent formulation of the Fisher infor-
mation in terms of differential operators (1.2), this inequality can be merely interpreted as a
property of the measure p. Hence, using the perturbation bounds previously mentioned, the
Holley—Stroock perturbation bound is formulated as follows:

Theorem 1.1 (Holley—Stroock [28]) Let 1 ~ ' be equivalent measures. Then

dup/
i
We refer to [32] for a wealth of interesting examples, in particular a derivation of logarithmic
Sobolev inequalities at finite temperature using known estimates at infinite temperature. From

a more applied angle the most impressive application of MLSI is the entropic exponential
convergence of the corresponding semigroup (P;);>0:

Ent,, (P (f)) < e™* Ent,(f).

The best constant working for all f and ¢ > 0 is exactly the MLSI constant c, .

Quantum (modified) logarithmic Sobolev inequalities A standard procedure historically
used to obtain estimates for the above entropy decay is to use an equivalent differential formu-
lation of the notion of hypercontractivity, also known as logarithmic Sobolev inequalities (or
LSI) [1, 32]. Despite the existence of logarithmic Sobolev inequalities [40, 47] for primitive

du
@, < ” o
oo
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quantum Markov semigroups, that is for semigroups possessing a unique invariant state, it
was shown in [3] that these inequalities cannot be derived for non-primitive semigroups. In
particular, the natural notion of a logarithmic Sobolev inequality for semigroups of the form
(P: ® idg)s>0 given some reference system R, as previously introduced in [6], is known to
fail at providing entropic convergence. Introduced by Bobkov and Tetali [10] for the study
of Markov chains over discrete configuration spaces, MLSI turns out to be more stable. The
quantum MLSI was introduced by Kastoryano and Temme in [30] for primitive evolutions. In
[2], Bardet showed that the MLSI can also be extended to non-primitive semigroups. MLSI
is equivalent to LSI for classical diffusions but provides estimates on the entropy decay of
non-hypercontractive jump processes [42]. In the quantum setting, however, MLSI is not
necessarily stable under tensor products. Quantum entanglement between subsystems may
allow composite systems to escape from the strong decay implied by MLSI. This instability
led the authors of [24] to define the notion of CLSI for the study of the convergence of the
tensor product evolution of a given quantum Markov semigroup with the identity map on an
arbitrarily large system. CLSI is tensor-stable, allowing one to combine local estimates into
global bounds on composite systems.

Quantum functional inequalities are still notoriously harder to derive than their classical
analogues. For along time, only the Poincaré inequality had been shown to hold for lattice spin
systems subject to the so-called heat-bath and Davies semigroups, under some conditions
on the equilibrium Gibbs state of these evolutions [29, 46]. CLSI in these settings remained
unknown until several results following the initial version of this paper. After the first version
of this prerprint had been written it was shown by [23] that every finite dimensional o -
detailed balance generator satisfies ¢z s7(£) > 0. An alternative proof based on geometric
arguments can be found in [25]. The second proof first shows that result for trace preserving
generators and then uses the change of measure argument in this paper. The precise form of the
noncommutative Holley—Stroock argument also shows that the CLSI constant is stable under
small perturbations of a preserved state provided the same derivations are used. Nonetheless,
the calculation of good constants remains open in many cases and is essential for many
applications. Hence, it is desirable to have a quantum version of Holley—Stroock’s argument,
because it would allow to transfer results from one reference state (say the completely mixed
state) to another (say a Gibbs state at finite temperature). As we have seen, the main ingredients
for the classical proof are (i) variational principle, (ii) a good understanding of the notion of
gradient, and (iii) the pointwise positivity of the Fisher information function (V f, V1n f).
Generalizing them to the quantum setting requires additional deep insight from the theory
of quantum Markov semigroups and operator algebras. Such an approach is facilitated by
recent developments of trace inequalities in quantum information theory.

For a semigroup of completely positive unital maps P; : B(H) — B(H) and generator
L= %| =0 P;, we denote by P, the adjoint with respect to the trace Tr(Pr(p)X) =
Tr(pP: (X)), and &, = lim;_, o, Prx [12]. Recall that a faithful quantum Markov semigroup
(P; := e "£),=0, of corresponding conditional expectation & towards its fixed-point algebra
and full-rank invariant state o, satisfies a weak logarithmic Sobolev inequality (LSI) with
constants ¢ > 0 and d > 0 if the following holds: for any positive definite state p,

2

=

D(IIE(p) = cEceploh) +d o i plo™

. LSI(c, d
L) (LSI(c, d))

Here, the Dirichlet form & is defined as £ (X) = (L(X), X)y = Tr(c'2 £(X)*o'2 X), and
the non-commutative IL., norms are defined as
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1
1Xll ) = (Trlo 27 X0 1201 )7

In analogy with the classical setting, £ is said to satisfy a modified logarithmic Sobolev
inequality if there exists a constant « > 0 such that for all density matrices p:

D(Pu(p)IE«(p)) < e " D(plE(p)) .

The largest constant « such that this inequality holds for all p is denoted by amrsi(£).
Similarly, we denote by acrsi(£) the largest constant & such that

D((Pr ®idR) (P)I(Ex ®idR)(p) < e ¥ D(pl|(Ex ®idr)(p))

holds for all + > 0, any reference system Hpg, and any density matrix p on H & Hg. The
advantage of the complete version is that for any two generators £1 and £;:

acLsi(£1 ®id+id ®L>) > min{acrsi(£1), acLsi(£2)} .

In this article, we make another step towards proving CLSI for any finite dimensional quantum
Markov semigroup by adapting the Holley—Stroock argument to the quantum setting, based
on the seminal work of Carlen and Maas [13]. Following Carlen-Maas, the generator of a
QMS satisfying the so-called detailed balance condition (see Sect. 2 for more details) is
given by

Lo=-Y (e*w//2 ASIX, Aj]+ e@i4), X]Ajf).
JjeTg

Here, the Bohr frequencies w; € R are determined by the additional condition o A ja_‘ =
e~ “i Aj, for some full-rank state o such that £, (o) = 0. Choosing these frequencies to be
equal to 0, we end up with the corresponding noncommutative heat semigroup:

Lo(X) = — Z (Aj[x, Aj1+ 45, X]A_’;) = ZA;‘.AJ-X +XAjAL — AjXA% — ASXAj .
jeJ J
In its simplest form, our noncommutative Holley—Stroock argument can be stated as
follows:

Theorem 1.2 Assume that (P; = e 'L )t>0 18 a primitive, finite dimensional quantum Markov
semigroup with corresponding unique, full-rank invariant state o =y, oy |k) (k| and satisfies
the detailed balance condition. Then

maxy o w; /2

acLsi(£Lp) < ——— maxe
J

: acrsi(£) .
miny oy

As an application of this result, we consider a primitive quantum Markov semigroup
(P =e™! Ly )¢=0 on B(H) for finite dimensional H, which produces a certain full-rank state

o =3 oklk) (k| :

Vo : lim Pn(p) = o and acrsi(£) > 0.
—00

Our lower bound for acr s depends in an explicit way on the ratios % On a suitably chosen
inner product (.,.) the derivations stabilizing o are exactly given by commutators with
respect to matrix units |k)(j|. In other words the density ‘determines’ its own derivation &
and the corresponding gradient form (§(f), §(f)), in contrast to the above classical setting.
In our construction, we have to work with invertible densities if we want to have complete
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logarithmic Sobolev inequalities, and hence our results are complementary to the results in
[31, 48] on quantum Markov semigroups producing pure states.

Outline of the paper In Sect. 2, we recall basic aspects of the theory of quantum Markov
semigroups and complete modified logarithmic Sobolev inequalities. In particular, we derive
a useful form for the entropy production of a semigroup by means of noncommutative dif-
ferential calculus. The essence of the quantum Holley—Stroock perturbation argument is first
provided in Sect. 3 where we compare a non-unital quantum Markov semigroup to a corre-
sponding unital one. In Sect. 4, we extend the previous argument to (i) non-primitive quantum
Markov semigroups and (ii) the logarithmic Sobolev inequality. A similar argument is given
in Section 5 in order to derive strong data processing inequalities for non self-adjoint quantum
channels. Sects. 6 and 6.1 focus on applications to the dissipative preparation of mixed state
and Gibbs samplers.

2 Quantum Markov Semigroups and Entropy Decay

In this section, we briefly review the notions of quantum Markov semigroups and their
related noncommutative derivations on the algebra B(H) of bounded operators on a finite-
dimensional Hilbert space, and explain how in this framework, the generator of a QMS should
be interpreted as a noncommutative second order differential operator. We will have to recall
and adapt some of the notations from the seminal papers by Carlen and Maas [13, 14] for
Lindblad generators satisfying the detailed balance condition (see also [20]).
Notations and definitions Let (7, (.|.)) be a finite dimensional Hilbert space of dimension
dy. We denote by B(H) the space of bounded operators on H, by B, (H) the subspace of
self-adjoint operators on H, i.e. Bsa(H) = {X € B(H); X = X*}, and by B+ (H) the cone
of positive semidefinite operators on H, where the adjoint of an operator Y is written as Y*.
The identity operator on H is denoted by 14/, dropping the index H when it is unnecessary.
In the case when H = C¢, ¢ € N, we will also use the notation 1 for Ie. Similarly, we
will denote by ids, or simply id, resp. id, the identity superoperator on B(H) and B(C?),
respectively. We denote by D(H) the set of positive semidefinite, trace one operators on ,
also called density operators, and by D4 (H) the subset of full-rank density operators. In the
following, we will often identify a density matrix p € D(H) and the state it defines, that
is the positive linear functional B(H) > X + Tr(p X). By || - ||, we denote the Schatten
p-norm. In particular, we will often use the operator norm denoted || - || o and the trace norm
denoted || - ||;. By supp(p) we denote the support of density p.

Given two positive operators p, o € By (H), the relative entropy between p and o is
defined as follows:

Tr(p (Inp —Ino)) supp(p) < supp(o)
D(pllo) ==
+ 00 else
We recall that, given N' C B(H) a finite dimensional von-Neumann subalgebra of B(H)
and a full-rank state 0 € D(H), a linear map & : B(H) — N is called a conditional
expectation with respect to o of B(H) onto N if the following conditions are satisfied:

(1) Forall X € B(H), [€(X)lloo = 1 Xloo;

(ii) Forall X e NV, £(X) = X;
(iii) Forall X € B(H), Tr(o £(X)) = Tr(o X).
Quantum Markov semigroups and noncommutative derivations The basic model for
the evolution of an open system in the Markovian regime is given by a quantum Markov
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semigroup (or QMS) (P;);>0 acting on B(H). Such a semigroup is characterised by its
generator, called the Lindbladian £, which is defined on B(H) by £(X) = lim;_,¢ % (X —
P;(X)) for all X € B(H), so that P; = e£.! The QMS is said to be primitive if it admits a
unique invariant state o, which in our setting we assume to have full rank. In this paper, we
exclusively study QMS that satisfy the following detailed balance condition with respect to
some full-rank invariant state o (also referred to as GNS-symmetry): for any X, Y € B(H)
and any t > 0,

Tr(o X*P;(Y)) = Tr(o Py (X)*Y). (o-DBC)

In particular, this condition is known to be equivalent to self-adjointness of the generator
with respect to the so-called KMS inner product

(A, B)y :=Tr(c2 A*c2B) . 2.1

Via Theorem 2.9 in [13], the semigroup will also commute with the modular group of o:
Aff oL=Lo Af,’ for all t € R, where A, (X) := o Xo~ L. It was also shown in [13] that
the generator of such a semigroup has the following GKLS form [26, 35] for all X € B(H),

L=-Y (e_“’f/z AYX, Aj]+ €245, X]Aj) . 2.2)
jeg
where the sum runs over a finite number of Lindblad operators {A;}jes = {A’;} jes and

[-, -] denotes the commutator defined as [X, Y] := XY — YX,VX,Y € B(H), and w; € R.
Moreover, the Lindblad operators A ; satisfy the following relations:

Vs eR, AL(Aj) =0 Ajo " =e P A; = Sa;(no) =—-w;A;, (2.3)

where the second identity comes from differentiability of the first one at s = 0, and
) A; (X) := [A}, X] is a noncommutative derivation. Therefore, the reals w; can be inter-
preted as differences of eigenvalues of the Hamiltonian corresponding to the Gibbs state o,
also called Bohr frequencies. It is important to note that £ is the generator in the Heisenberg
picture. The generator P, = e~'** in the Schrodinger picture is defined via

Tr(Li(p)X) = Tr(p L(X)) .

According to [13, Remark 3.3] the adjoint has the form

Lup) == (1A p. A7)+ €147, pA )
J
=Y e ATAjp — AjpAT) + e (pAjAT — ATpA)) . (2.4)
J

The generator Lo := ) jeg L£a;,corresponding to taking all the Bohr frequencies to 0, sat-
isfies the detailed balance condition with respect to the completely mixed state 1 /d3. Because
of its analogy with the classical diffusive case, its corresponding QMS is usually called the
heat semigroup. In fact, given a Lindblad operator A, the generators L4 = [A*, [A, .]]

satisfies the following non-commutative integration by parts:

Tr(X*La(Y)) = Tr(6a(X)*84(Y)) = Tr(La(X)"Y).

! Let us note that our sign convention is opposite to the one usually used in the community of open quantum
systems, but more common in abstract semigroup theory.
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A+A* A—A*
and C =
V2 V2i

LA(X):=(B>+CHX +X(B>+C? —2(BXB +CXC). (2.5)

We may also consider B = and observe that

has the standard form of a self-adjoint Lindbladian, with corresponding self-adjoint Lind-
blad operators B and C, and in particular is *-preserving. In the GNS-symmetric case, the
integration by parts formula reads as follows:

(LX), Yo =Y (8a;(X), 84,(V))s . (2.6)
jeJ

where the KMS inner product was defined in (2.1). Because of their particular symmetry
property, self-adjoint semigroups (that is w.r.t. the Hilbert-Schmidt inner product) are cur-
rently better understood than their GNS-symmetric generalizations [5, 39]. The purpose of
this paper is to derive a technique to transfer estimates on the entropic rate of convergence
towards equilibrium of (e~"%),> in terms of that of (e 7/%0),~0. A useful tool will be the
following commuting diagram

B S B
Ir, Ir, 2.7

e—tﬁ*
Ti(H) — Ti(H)

where Ty (x) = 0'/2x0'/? is the canonical completely positive map from the algebra B(H)

to the space 77(H) which can be interpreted as the predual B(H),. of B(H) [30, 37, 40,
47]. Indeed, we recall from [13] that £ is also self-adjoint with the KMS inner product
(X,Y)s =Tr(I's (X*)Y), and hence

Tr(Ly(Fo (X*)Y) = Tr(Fe (XHLY)) = (X, L))o = (L(X),Y)o = Tr(Fs (L(X)Y)
shows that indeed
Ly(T5(X)) = Ty (L(X)). (2.8)

Entropic convergence of QMS Under the condition of GNS-symmetry, the semigroup
(e_’L),Zo is known to be ergodic [22]: there exists a conditional expectation £ onto the
fixed-point algebra F(£) := {X € B(H) : L(X) = 0} such that

e 't > €.
1—>00
In this paper, we are interested in the exponential convergence in relative entropy of the
semigroup towards its corresponding conditional expectation. The entropy production (also
known as Fisher information) of (P, =e™! ﬂ),zo is defined as the opposite of the derivative
of the relative entropy with respect to the invariant state: for any p € D(H),

EP£(p) :=— % . D(Pr(p)IEx(p)) = Tr(Ly(p)(Inp —Ino)),
=l
where the expression on the right hand side of the above equation was first proved in [45]
in the primitive setting. We will also need to extend the definition of the entropy production
to non-normalized states p using the same expression as on the right-hand side of the above
equation. In this paper, we are interested in the uniform exponential convergence in relative
entropy of systems evolving according to a QMS towards equilibrium: more precisely, we
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ask the question of the existence of a positive constant > 0 such that the following holds,
for any p € D(H),

D(Pr(p)lI€«(p)) < e D(plIE«(p)) .

After differentiation at # = 0 and using the semigroup property, this inequality is equivalent
to the following modified logarithmic Sobolev constant (MLSI) [4, 7, 11, 30, 38]: for any
p € D(H),

a D(pll€x(p)) < EP£(p). (MLSI)

The best constant o achieving this bound is called the modified logarithmic Sobolev constant
of the semigroup, and is denoted by ampsi(£). We may also consider the complete version
which requires

acLsi(£) D(p||(Ex ® 1d)(p)) < EP(£gid)(p) - (CLSD

to hold for all p € B(Has ® Hp) for any system B (or even for B(Hp) replaced by a
finite-dimensional von Neumann algebra).

Primitive semigroups Our main goal is to establish MLSI and CLSI for primitive semi-
groups, given similar knowledge for self-adjoint semigroups. Recall that (P, = e~"%),5
is called primitive if it admits a full-rank fixed point state o such that P, (p) = p for all ¢
implies p = o. This is equivalent to

Li(p) =0 = p=o.

We recall that £ in Equation (2.2) is self-adjoint with respect to the inner product (A, B), =
Tr(A*c /2 Bo1/?). Therefore, we deduce that

0 = (LX), X)y = Tr(c'?L(X)*c'?X) = Tr(L(X*)o'/*X0!/?)
= Tr(X*Ly(c?Xo /%))

if and only if [A;, X] = O for all j, by Equation (2.6). This implies that £, (c!/?Xo!/?) = 0
ifand only if X € {A; : j € J}'. Let us state this for later references.

Lemma 2.1 Let L, be given by Equation (2.4). The following are equivalent.

(1) L is primitive with respect to o;
() {A;: jeJ)Y = Cl;
(i) Ly = Zj La; is ergodic, i.e. Lo(X) = 0 implies X = Al.

The equivalence (ii) <> (iii) follows [13, Theorem 5.3]. Equivalence to (i) follows from the
text above.

Noncommutative differential calculus via double operator integrals The entropy produc-
tion can be written in a different form that will be more convenient for our purpose. In order
to derive it, we first need to recall some notions of non-commutative differential calculus (see
[8,9, 1518, 41, 43]). Given an operator L € B(H), as well as any two self-adjoint operators
X, Y € By, (H), define the operator

cXl =AY — XA.

In particular CX’X 1= 34(X). Next, given a Borel function £ : sp(X) x sp(Y) — R, and
writing by Py and Py the spectral measures of X and Y, define the so-called double operator
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integral

7;, ZZ/]’LLPX pr.

where Lz, resp. Rz, is the operator of left, resp. right multiplication by Z. Given a differen-
tiable fungtion f : R — R, we are exclusively interested in the restriction of the difference
quotient f associated with f given by

) %ﬁc(” if (x, ) € sp(X) x sp(¥)
flx,y) = 5 f(x) 1 . 2.9
ax clse

Theorem 2.2 (Noncommutative chain rule for differentiation, see [9]) Given an operator
A € B(H), any two self-adjoint operators X, Y € Bs,(H) and a Borel function f : R — R,
the following holds:

CLO0FM) _ T;(,Y(Ci(,Y) .
We use the notation and fact that
—1 Zj:Yj > —w;i/2 -1 w;/2 —1
[To(X)]y; =77 (X) = (r+e /Ly x)” (r+e“/“Rr (x))~ dr
0
as in [13]. With the previous theorem at hand, the following result can be proved:

Lemma 2.3 Assume that the QMS (P; = e_’ﬁ),zo satisfies o -DBC. Then, for any positive
operator p = I's(X),

EP.(p) = Z (Lo (84, (X)), [Fa(X)];j] (Fo(84;(X))))Hs - (2.10)
jeg
Moreover, the same formula holds for positive p € B(H ® K) and L replaced by £ ® idx.

Proof By definition, for all positive p € B(H), and any o € F(L), letting X :=T'; ! (p) we
have

EP£(p) = Tr(L«(p)(In p — Ino))
= (LX), Inp —Ino)s
=D (8a,(X), 8a,(np —Ino))g .
jeg
Here the second line follows by Equation 2.8, whereas the third line follows by the integration

by parts formula (2.6). Now, due to (2.3), 8a; (Ino) = —wjAj, so that, denoting Y; :=

P e—a)_,'/z and Zj =p ew.f/z, we haVC

(SAJ‘ (lnp — lna) = Aj ln(Yj) — ln(Zj)Aj
_In(Z)).In(¥))

- CA./‘
_ 7L Y 2 Y
=7 (G4 D)

Z;,Y;
=77 (0'264,(X)0 '),
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where the last equation follows once again from Equation (2.3). We end up with

EP£(p) = Y (Lo (64,(X)). [Fo (X)15! (T (04, (X)) - @.11)

jeJg
For p € B(H ® K), we observe that &, ® idx(p) = 0 ® Try(p). Since all the A;’s act on
the first register, the calculation above remains true. O

3 From Unital to Non-unital Quantum Markov Semigroups

We are now able to provide a quantum extension of the Holley—Stroock argument. In this
section, we restrict ourselves to the primitive case and assume that o = Y, o |k) (k| is a
positive definite density matrix of corresponding eigenbasis {|k)} of H.

Theorem 3.1 Let L be the generator of a primitive, GNS-symmetric QMS with respect to
a full-rank state o, Lo be generator of its corresponding heat semigroup, and w; its Bohr
frequencies. Then

amisi(£Lo) < max —- max eI 2y s1(L)
JAoop

Similarly,

O X
acrsi(£o) < max — max el 2acg1(L) .
A oo

Remark 3.2 Using interpolation techniques, the authors of [47] showed lower bounds on the
logarithmic Sobolev constant oy of primitive QMS that are self-adjoint with respect to the
KMS inner product. Moreover, since we further assume the detailed balance condition, our
semigroups satisfy amrsi(®) > 2a2(P), by the so-called L -regularity of Dirichlet forms
proved in [2]. Combining these two results, we can find that

20(L)

o L)> —————r |
mLsi(£) = - o1l 12

2A(L)
In(dj, llo="loo) + 11°

amLsi(£™) >

where £ stands for the generator of the n-fold product of the semigroup (e_’c),zo, and
where A (L) denotes the spectral gap of L. In the primitive setting, this means that the bounds
that we derived are potentially worse than the ones provided in [47]. However, it was shown
in [3] that the logarithmic Sobolev inequality does not hold for non-primitive QMS. In the
next section, we provide a more general result for any finite dimensional, non-primitive GNS
symmetric QMS.

As in the classical case, the proof is separated in two parts: a comparison of the relative
entropies, and a comparison of the entropy productions. We review these separately in the
next two paragraphs.

Comparison of relative entropies We are now concerned with the left-hand side of the
MLSI/CLSI. First, we need to extend the definition of the relative entropy to the case where
p and o are (possibly non-normalized) positive operators [34]:

Drin(pllo) :=Tr(p (Inp —Ino)) + Tr(o) — Tr(p) ,
where the right-hand side can be equal to infinity. As for its restriction to normalized density

matrices, this relative entropy is positive. Moreover:
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Lemma 3.3 Lindblad’s relative entropy satisfies the following properties [34]:
(1) Data processing inequality: For any positive operators X, Y, and any CPTP map P,
Dpin(®(X)[[P(Y)) < DLin(X||Y) .

(i) Addition under direct sums: For any positive operators X1, Y1, resp. Xo, Y2, on Hy,
resp. Ha,

Drin(X1 & X2[|Y1 ® Y2) = Drin(X1/IY1) + Drin(X2[|Y2) .
(iii) Normalization: For any operators X, Y > 0 and any constant A > 0
Diin(AX[|AY) = A Dpin(X[Y) .
We will also need the following:

Lemma 3.4 (Chain rule for Dyj,) Let £ : B(H) — N be a conditional expectation onto a
s-subalgebra of B(H). Then, for any X, Y € By (H) such that Y = E.(Y), we have

Drin(X 1Y) = Drin(X[I€4(X)) + Drin(E(XONIY) .
Proof First, by the definition of Dy,
Drin(X[IY) = D(X||Y) + Tr(Y) — Tr(X) ,
and

Drin(X[|€4(X)) + Drin(Ex(X)[|Y)
= D(X[|E«(X)) + D(E«X)Y) + Tr(£4(X)) — Tr(X) + Tr(¥Y) — Tr(Ex(X)) .

We observe that the traces cancel, so this Lemma reduces to the well-known chain rule for
relative entropy with conditional expectations. We include a short proof here for the finite-
dimensional case.

D(X[IE«(Y)) + D(E«(X)Y)
=Tr(Xlog X — Xlog(&(X)) + &«(X) log(€x(X)) — Ex(X) logY)  (3.1)
= Tr(X log X — X 10g(£.(X)) + XE(log(£4(X))) — XE(logY)) .

Let o denote the density with respect to which £ is self-adjoint and 6 denote the unnormalized
density d x o in dimension d. By the block diagonal form of finite-dimensional conditional
expectations,

log £.(X) = @i (log(X;) ® 15 + 14 ® log(a1)) |
and
E; A; Eim. ~1/2 ~1/2
E(log £(X)) = @i (log(X;) ® 1 + 17 @ 17 Tr(o; '~ log(oi)a; 7)) .
Let

172

nx := E(og £x(X)) — log £,(X) = &; (1% ®@ 15Te(5,* log(01)6,/%) — 1% @ log(07)) -

Since the dependence of x on X cancels in the final expression, we define 1y analogously
and observe that ny = ny. Comparing to Equation (3.1),

DX|Y) = D(X||€«(X)) + D(E«(X)Y) + Tr(X(ny —nx)) ,

and ny —nx = 0. ]
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Proposition 3.5 (Noncommutative change of measure argument) Let K be an additional
Hilbert space, & = Try ® tli—: a conditional expectation onto B(K) ® 14 and

E(p) = dpdi Ui o &(p)
dic

the conditional expectation on the space of densities. Then for all X > 0:

Dpin(T1xco (X) [ €x 0 Mo (X)) = ml?x{ak}DLin(X” & (X)) .

Proof Since the following inequality holds by Lemma 3.4:
Drin(d1T 10 (X)) drEx 0 Moo (X)) = DLin(drT 1o (X)€4(X))
it is enough to prove that

Drin(@n 10 (X)1E4(X)) < dp mlflx{ak} Drin (X1 £0(X)) -

Define the map ®(X) = A1 I g0 (X), where A := max; oy. This map is completely
positive, trace non-increasing. We may also define

o (X) 0 )

T :=< 0 Tr((1— K8%)x)

Then W is trace-preserving and hence, see [34], we know that
Drin (Y (X)W (Ep(X)) = Drin(X[E0(X)) .
Since Dyin( || ) is positive, we deduce from the diagonal output of W that indeed,

DLin(A™' Tixego DA™ Ticgo 0 E0(X)) = DLin(®(X)[|®(E0(X))
< Drin(W(X)[W(&o(X)) .

By definition, & = dy ', g6 © £. Therefore,

DLin(@nT 100 (X)1E4(X)) = DLin(dHT1c@0 (X)ldnT g0 © E0(X))
=dy A DLin(A™ ' Ti e (XA Ticgo 0 (X))
< dy A DLin(X|1E0(X))
=dy max oy Dpin(X|E0(X)) .

[m}

Comparison of entropy productions We are now interested in controlling the entropy
production of £y in terms of that of £. Extending the expression derived in Equation 2.11
for the entropy production to non-normalized states, we find for any positive operator X €
B(K ® H):
EP£(Ticeo (X)) = Y (Ticeo 8a; (X)), [Miceo (015! (Tices (04, (X)))ns
jed
> inf e 112 Y " (D) 9o (84, (X)), [Tieae (X" (Tiego (Ba; (X))))us
! jeJ

where we denoted 64, = 1xc ® 84, by slight abuse of notations, and where we used that, by

definition [,o]wj < max; elojl/2 [po]o as self-adjoint operators in (., .)gs. Moreover, we need
the following direct extension of Theorem 5 of [27] to the case of trace non-increasing maps:
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Proposition 3.6 Let @ : B(H) — B(H) be a completely-positive, trace non-increasing map,
then the following holds for any A > 0 and any X € B(H):

(@(X), [P (@X))us < (X, [Aly' (X))ns -

Choose this time ®'(X) := (A")~! Ff,é@a (X), where A’ := maxk{a,:l}. This map is
completely positive and trace non-increasing. Then

EPL (10 (X)) = min e 12N (Do (84, (X)), Moo (g (Ticao (84; (X))Hs

jeJg
> min e 112 3 (AT 84, (X), [(A) T X (AT 84, (X)) s
! jed
= (A min e 12N (54, (X), [X]5" (84, (X))mis
! jeg
>

(A" 'min e71®i/2 EP£ (X)) .
J

We have proved the following:

Proposition 3.7 Let L be the generator of a QMS that is self-adjoint with respect to the
GNS inner product associated to a full-rank state o = Y, oy|k){k|. Let (w;) be the Bohr
frequencies as in the GKLS form, Equation (2.2). Then, the following comparison of entropy
productions holds: for any positive operator X € B(K @ H),

EP(Ticqo (X)) = minfox} min{e™*//2} EP, (X) .
J
Combining Propositions 3.5 and 3.7, we are now ready to prove the main result of this
section, namely Theorem 3.1:

Proof of Theorem 3.1 First notice the following: for any X € B (H ® K), we recall that
acr sy is defined as the CLSI constant. Thanks to the homogeneity of the entropy production
and relative entropy, the same constant holds for Dy, as for D, so

acrsi(£o) DLin(X[[(&o @ idic) (X)) < EP.,(X) .

The result then comes directly from the following chain of inequalities: for any p =
Mees(X) € D(H® K):

acLsi(Lo) D(pll(€x @ idk)(p)) < max oy acrLsi(Lo) DLin (X 1(&o ® 1dic) (X))
< mkax ok EP£yidx (X)
< ml?X O mI?X Uk_l max el?il/? EP£giar (0) -

The first inequality follows from Proposition 3.5, the second one by the definition of the
CLSI constant of L, and the last one by Proposition 3.7. O

4 A Non-primitive Holley-Stroock Perturbation Argument

In this section, we extend Theorem 3.1 in essentially two directions: first, we do not assume
that the reference semigroup (e~ Loy (>0 1s the heat semigroup. Second, we relax the condition
of primitivity for (P;);>o. This situation will in particular extend the argument for CLSI. We
will be interested in both MLSI and LSI inequalities.
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4.1 Perturbing the Modified Logarithmic Sobolev Inequality

More precisely, we want to compare the MLSI constants of the following two generators
satisfying the detailed balance condition with respect to two different, though commuting
states:

£,00 ==Y (T2 A3X. Aj1+ €[4, X147). (.1
jeT
and
Lo(X)==Y" (e’W/zAj[X,Aj]+-EUﬂ[Aj,X]A§>. (4.2)
jea

Remark that these generators are given by the same Lindblad operators {A;};c 7, and only
differ at the level of their Bohr frequencies. This implies in particular that they share the same
fixed-point algebra 7 = {A; : j € J}, which we decompose into matrix blocks:

F=EP BH) ® I, .
ieT

By the detailed balance condition, the operators A ; are eigenvectors of the modular groups
corresponding to two full-rank invariant states o, resp. o/, which can without loss of generality
be taken as follows: given two families of full-rank normalized traces {7;};e7 and {rl./ Yiez,

di; / d; /
a::Z 1y, @1, U:Z “ly, @1,
i dn el

In particular, A; = >"; 1 ® A;(j) are block diagonal with respect to the ;,
Ag(Aj) = e_“)fAj, and Aa/(Aj) = e_UjAj .

This implies in particular that the states z; and 7/ commute so that:
k k

Our general perturbation theorem follows:

Theorem 4.1 (Non-primitive Holley—Stroock for MLSI) With the above notations, the fol-
lowing holds:

NG NGE
aMLsI(Ly7) < max L, max —~— max el®iVil/2
ieTk )\I({U €Tk )“1(;) jed

amLsi(Le) -

Similarly,

)\(i) k(i)/
acLsi(Ly7) < max k - max k_ maxe
i€Z.k )“1(;) i€Z.k A}i’) jeT

lwj—=v;jl/2

acLsi(Ly) -

The proof of the theorem follows the same lines as for that of Theorem 3.1. We compare
relative entropies and entropy productions separately:
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Comparison of relative entropies

Proposition 4.2 (Change of measure) Denote £y = 1im;_, o0 e %0 and Eyr = lim;_, o0 e 150",

Then, for all X > 0:
A0

Dun(Te (i o ToX0) = gy i

Dpin(Po (X)[|E674 0 Tyt (X))

Proof The conditional expectations &; and &, take the following form:

Eor=) T, (Pi.P)®Ti, Egu=) Trx,(P.P)®7T],
i i
where for each i, P; is the projection onto the block i in the decomposition of F. This implies
in particular the following relation' I‘_,1 0y = I‘_1 o &y «. Next, consider the completely

positive map @ := 1 Lool , , with 7 := max;ez )L(’)/A(') One can readily verify that
is trace non—increasmg Moreover by Lemma 3.4:

Drin(Te (X)) I€54 0 T'o (X)) = DLin(r ® o T (X) |7 E54(P 0 T/ (X))
< DLin(r @ o '/ (X) || Eo4 (T (X))
= Drin(r ® o o/ (X)[| r P 0 Eprs 0 Tp (X))

Next, by homogeneity and data processing inequality after proper normalization of the chan-
nel as in the proof of Theorem 3.5, we find that

DLin(To (X)|€5x 0 T'o (X)) < ¥ DLin(T'6/ (X)[|E575 0 Tor (X))
which is what needed to be proved. O

Comparison of entropy productions We are now interested in comparing the entropy pro-
ductions of £, and L,. In this section we use the double operator integral notation from
Sect. 2, in particular the definition of [['; (X )];jl.

Proposition 4.3 In the above notations, for any X > 0:

2 l0j—vj1/2
EP. ,(T's/ (X)) < max F mjaxe IS EP,, (o (X)) .

Proof Using the expression derived in 2.11 for the entropy production for non-normalized
states, we find for any positive operator X € B(H):

EP., (T (X)) = ) (T (84;(X)), [T (1, (To (84; (X)))mis
jeJ
> min eI N (T, (84, (X)), [T (X, (Do (84, (X)))s
J Jjedg
where we used that, by definition [p], ; < max; eloj—vjl/2 [ply ; as self-adjoint operators
n (., .)gs. Next, we observe that ®(X) = %Fo/ o F;l (X)) is a completely positive trace
preserving map for R := max;e7 k )»,(f)//}»,(f). Hence, given Y; := I's (X) e "i/2 and Zj:=

@ Springer



Stability of Logarithmic Sobolev Inequalities Under... Page 17 of 25 30

Iy (X)eYi/2, and Y} =T (X) e vi/2 and Z), :=To(X) evil2:

R™VEPL,, (T (X)) = R™' Y (Tgr(8a; (X)), [Tor (X1, (Tor (8, (X))))ms

jeJ
= R Y (084, (X)), T 0 Tor (84, (X)))tts
jeJ
=3 (@0 Ty (64, 0). T T 0 0 0 Do (54, (X)) s
jeJ
< D (T84, (X)), T 0 T (84, (X))nis
jeJ
= 3 (o (3a, (X)), [To (X)]; T (Ba, (X)))nis
jeJ

The inequality in the calculation above follows from the version of Lieb’s concavity stated
as Theorem 5 of [27]. The Proposition follows from this Equation and the first in the proof.
[}

Proof of Theorem 4.1 Combine the previous two propositions as in the proof of Theorem 3.1.
o

4.2 Perturbing the Logarithmic Sobolev Inequality

The above Holley—Stroock argument can be easily adapted to the setting of the logarithmic
Sobolev inequality. Such an inequality was shown to provide similar decoherence times as
the MLSI in the primitive [30, 40, 47] and non-primitive [3] settings.

Theorem 4.4 Let L, and L, be defined as in Sect. 4.1. Assume that L, satisfies LSI with
constants (', d’). Then, Ly satisfies LSI with constants (c, d) such that

(i) @ (@) @y
A A A. A
¢ < max —— max max el Vil’2 ¢ d < max —X max “k-q’.
i€l k )»(l) i€l k )\(’) jeT i€Zk )\(‘) i€z, k k(l)

Proof Given X > 0, the entropic term on the left-hand side of LSI(c, d) is taken care of the
exact same way as in Proposition 4.2:

A0

Drin(To (X)[|€54 0 o (X)) < maX )\( O3

Dpin(Po (X)[|E674 0 Tyt (X))

Next, by assumption and homogeneity of the LSI, we have that
r_ 1 1 /1 r_ 1 1 /1
DLin(To(X)||Egrs 0 Tor (X)) < 'z, (0 "iTo(X)20 ") +d|lo "3Te/(X)Zo ~4 ||§2(a,) )

First, notice that

/—Tlr X% =2  Tre'X) < )\’((i)/T }
llo o (X)2o ||L2(g/) =Tr(o )_lrg%)i @ r(o X)
A0 L

Ttk 50 o % To ()20 % I,
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which directly gives the expected upper bound on d. For ¢, we control the Dirichlet form in
a way that is completely analogous to what we did for the entropy production in the proof of
Proposition 4.3: we have

1 1 /1 Y., 7 Y., 7

’ s V2 Yi, Z
(0 AT (X)20 )= (C,/ 7, T, )us
? ‘ J fir J
jeg
YI/.,Z;.
=Y (Tor(8a; (X)), T T Ga, (XD
jeg

where Y; = eTjI‘a/(X), Z} = e_TiI‘a/(X) and fi @ x — x!/2. We conclude by first
noticing that

and by invoking Theorem 5 of [27] in the same way as we did in Proposition 4.3. O

5 Strong Data Processing Inequality

In this section, we adapt the proof of Sect. 3 to the discrete time setting. Let @, : 77 (H) —
71 (H) be a quantum channel. Assume that @, has a full-rank invariant state o, and that the
following detailed balance condition holds for its dual map ®: for all X, Y € B(H),

Tr(o ®(X)*Y) = Tr(c X*®(Y)) . (5.1)

It was shown in [7] that ® has the following Kraus decomposition ® (X) := Zjej AjK; XK}k
for some normalization constants A ; > 0, and where the Kraus operators {K ;} = { K;k} sat-

isfyocK; =e ™ Ko, w; € R. The normalization constants are defined in such a way that
the map ®( defined by

(X) = Y KiXK; (5.2)
jeg
is unital. It is easy to see that the choice A ; = e/ works. Therefore, we have
O(X) =Y e’ K;XK}. (5.3)
jed
Now, in complete analogy with the continuous time setting, there exists a conditional expec-

tation, call it &£, onto the fixed point algebra F(®) := {X € B(H) : ®(X) = X}, such
that

" - £.

n—oo

In this section, we are interested in estimating a particular form of the strong data processing
inequality (SDPI) constant ¢(®), in our case the largest constant ¢ such that for any p > 0,

Dpin(P+(p)[1€4(p)) = cDrLin(plIEx(p)) -

By the data processing inequality, and since ®, o0&, = &,, ¢ < 1 necessarily. Moreover, when
®, is unital, the constant ¢ can be estimated in terms of the logarithmic Sobolev constant of a
related quantum Markov semigroup, see [39]. Now, a direct adaptation of the Holley—Stroock
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argument of Sect. 3 allows us to reduce to this setting. For sake of simplicity, we state our
result in the primitive case so that ¢ is the unique invariant state of ®:

Proposition 5.1 Let @, be a primitive quantum channel of unique invariant state o and
satisfying Equation (5.1), and let ®g be the corresponding unital channel defined as in
Equation (5.2). Then,

c(®) < min{L, |olloc |0 ™" floo (o)} -
Proof First of all, we notice that ®, o I'y = I', o ®. Indeed:
Too®o(X) =02 Y KiXKjo? = Y e KiTo(X)K; = Du(To(X)).
jeg jeJ
Then, given any p := ' (X) > 0,
Drin(@+(p)ll0) < Drin D(Ps(p)|1E4(X) /d 1)
= Drin(I'g 0 Po(X) 1T (£0(X)))
=< [l lloo DLin (Po(X) [[€0(X))
= llolloc c(@0) Drin (X 1 E0(X))
= llolloc ¢(®o) DLin (X1
= llolloc ¢(®0) DLin(T; ' (0)IIT; " ()
< llolloo llo ™ oo ¢(P0) Drin(pllo) -
where the first and fourth inequalities follow from Lemma 3.4, whereas the second and last

inequalities follow the same way as in Proposition 3.5. O

In [36], Miclo devised a technique to estimate the SDPI constant of a doubly stochastic,
primitive Markov chain in terms of the logarithmic Sobolev inequality of a corresponding
Markov semigroup. This result was later generalized in [44]. An extension to the tracial quan-
tum setting was recently provided in [39]. Combining their result with our Proposition 5.1,
we arrive at the following corollary. Given a unital, self-adjoint quantum Markov semigroup
(e—t£0)t20’ its logarithmic Sobolev constant is defined as

o TUX, Lo(X))us
T et

Corollary 5.2 Let @, ®q be defined as in (5.1) and assume that ® is primitive. Then,
(@) < minfl|ofloc o lloo, 1}

Proof Theorem 4.2 in [39] estimates ¢y < (1 — az(dD(z) — id)) in this case, as their result
shows a strong data processing inequality for the case in which the fixed point subspace is
spanned by the completely mixed state. The bound then follows Proposition 5.1. O

6 Preparation of Mixed Densities
In this section our goal is to identify certain quantum Markov semigroups that can be used

to prepare a given mixed state and satisfy CLSI estimates. While decoherence is an impor-
tant problem for which CLSI estimates may seem to paint a pessimistic picture, fast decay
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could be optimistic when one hopes to generate certain states. Though CLSI for symmetric
semigroups already yields strong bounds on the preparation times of states with completely
mixed or dephased components, the ability to prepare thermal and other non-maximal mix-
tures is far more general and useful. Furthermore, these techniques allow us to study thermal
equilibration and extend decoherence estimates to not just unital noise but to processes that
decay states toward biased mixtures.

CLSI estimates will allow us to estimate the waiting time for a good approximation of the
state. As the current work considers mixed fixed point states, our results complement those
of [31]. For the rest of this section we will assume that

m
o = ZUkPk
k=1

is a full-rank state on an n-dimensional Hilbert space, the P, are the projections onto
eigenspaces.

Eigenvalues of multiplicity one/state transition graphs Here we assume in addition that
Tr(P;) = 1. Following [13], we know that the operators A are eigenvectors of the mod-
ular operator A, . In this particular case, these are given by the matrix units E,s := |r)(s|
corresponding to a subset of graph edges E C {1, ..., m}*>. Hence we may think of such
semigroups as corresponding to a graph representing transitions between quantum states in
the given basis. One may find analogies between graph-based Lindbladians and graph Lapla-
cians as studied in the classical literature, though such are not necessary to understand the
examples we consider here. We may also choose

Ay = Xrs Eys and Ay = Xrs Eg

given some arbitrary constants x,s such that x,; = x,-. The Bohr frequencies are given by
As(Erg) = %EH and hence w,; = Ino; — In o,-. Therefore the generator of the semigroup
is given by

Oy Oy

LeX) = 3 Il ((—)1/2(15”)( — EyXE,,) + (—)I/Z(XE,, - E,SXES,)) .

rsek Os or

6.1)
Note that both terms are necessary for £ to be the generator of a semigroup and we assume
Xxrs 7 0. When the Bohr frequencies are all equal to 0, the corresponding generator is denoted
by ﬁE().
Definition 6.1 Let E C {(r,s)|]1 < r < s < m} be a subset of edges and E = EU
{(s,r)|(r,s) € E}. Then E is said to be irreducible if the graph with vertices {1, ..., m} and
edges E is connected.

Lemma 6.2 Lg leaves the diagonal matrices L2, C M, with respect to the basis {|r)},
invariant. Moreover, if E is irreducible, then Lg is primitive.

Proof For a diagonal matrix X we have
EssX - EsrXErs = (Xss - er)Ess > XErr - ErsXEsr = (er - Xss)Err .

Thus L (L) C L.

Next, let us define 8,4(x) = [E,s, x]. Thanks to Lemma (2.1) we note that Lg(X) = 0
if and only if [E,g, X] = O for all (r, s) € E. Since the graph is irreducible, we can find a
chain (¢, 1), (11, t2), ..., (tx, v) connecting any ¢ and v and write

Ezv = Em Et]tz Etkv-
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Thus X commutes with all matrix units and hence is a multiple of the identity. O
In the following we will assume that x,; = 1 forall r, s.

Remark 6.3 Since the initial version of this paper, the results of [25] showed that for every irre-
ducible E, L satisfies the CLSI. For the complete graph, i.e., when all edges are included,
we see that

1 m
Lro(X) = 2m(X - 3 X 1).
k=1

This semigroup directly replaces the input state by the fixed point in convex combination. As
in [2], we deduce that acrs1(Lgp) > 2m. For the cyclic graph E = {(j, j + 1)} we know
that acrsi(LEo) > ﬁ for some universal constant ¢ via the results of [33].

Corollary 6.4 Let E C {1, ..., m}? be an irreducible graph with CLSI constant acrs1(L go).
Assume further that o = )}, ox|k) (k| is nondegenerate. Then the CLSI constant of Lg
satisfies

Ok os\1/2
acLsi(£Lgo) < max — max_ (*) acLsi(LE) -
kL o1 (rs)eE \Or

Proof This follows directly from Theorem 3.1 and Lemma 6.2. O

Remark 6.5 For Lindblad operators with coefficients x, s, we obtain a similar result. Similar
generators were considered in [33].

Eigenvalues of larger multiplicity and locality We will now extend Corollary (6.4) to the
general case following the same procedure. Recalling that ¢ = ), oy Py, let us define the
subspaces Hy = Py’H and write
Un)y = Uk .
k

where each subset /; corresponds to the eigenspace Hy. We will also assume that the eigen-
values oy of o are defined in decreasing order. Then we choose edges E C {1, ..., n}*> and
consider

LX) = Z (e_w“/z(EssX —EgXEy) + ewm/z(XErr - ErsXEsr)) ) (6.2)
(r,s)eE

where

0 if there exists a k such that r, s € I}
—wys /2 —

12 . .
(Z—’I‘) if there exists k # j suchthatr € Iy, s € I .

Corollary 6.6 Let E be an irreducible graph and o = )", oy Py. Then the semigroup Lg
satisfies CLSI and

ok o\ 1/2
acLsi(£Lgo) < max —  max (*) acLsi(LE) -
kl 01 [xI;nE#0 \O1
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Note here that the graph structure is by no means necessary. In particular, we could use
any nice set of generators to produce primitive semigroups in B(Hy). Moreover, once this is
achieved we just need sufficiently many links Ax; € B(Hy, H;) to guarantee primitivity of
Lo.

We assume now that H®? is a d-partite system, and denote by Hy the eigensubspaces of
o € D(H®?). We say that a subspace K € H® is [-local if there exists a permutation 7 :
{1,....d} — {1, ...,d}and aprojection Q € B(H®) suchthat Px = ;' (Q® 1 yew1)Ex,
where X is obtained by permuting registers: X (h1®- - -®hyq) = hz(1)®- - - hy(q). Similarly
we say that an operator A is /-local if A = B ® 142w holds up to a permutation of registers.
The same definition holds for superoperators.

Lemma 6.7 Assume that for all k the subspaces Hy. are l-local, and that for Iy x 1; N E the
space Hy + H; is I-local. Then Ly is [-local.

Proof We recall that
LEx(p) = Z e_wm/z(A;ksArsp — ArspA7) + e+w”/2(,0ArsA;Fs — Al PArs) .
(r,s)eE

Here we may replace the matrix units by E,s ® 1 for r € I; and s € I; up to permutation.
Similarly, we can stabilize the space 1 ® H®?~! using a Lindbladian

d—l

L = I1® - -® L ®R---®1
; H
= i—th position

for a primitive Lindbladian on B(H) given by commutators. Then Lo and Lg, will only
use local operators A, and second order differential operators of the form [A,sp, Af]. O

Remark 6.8 1) The semigroups (P; = e’“:")tzo for unital £y can be obtained in the form
P:(X) = E[U;XU, ] for some random unitaries U;. The approximation of ¢~ Les 1 —
t L g, with unitary operations will be investigated in a forthcoming publication.

2) Nevertheless in the local situation operators A,s do not really depend on the state per
se, just on its eigen-projections. The Bohr-frequencies however, drive the QMS specifically
ino.

6.1 Estimating Rates of Thermal Equilibration

A system in contact with a heat bath at fixed temperature will decay toward a Gibbs state
given by
e BH

1 & 1
— _ —BE _ b _BE
Tz Tz YoePER k= 3 e PE YT k. ©63)

B =1 B Eesp(H) kEr—E

where H is the corresponding Hamiltonian, § is the unitless inverse temperature, and energies
are indexed in increasing order. Here the last expression explicitly separates the sum over
possibly degenerate energies. The partition function Zg = Y exp(— B Ey) normalizes the
probabilities.

In practice, we often expect matter qubits to decay toward a low-temperature thermal
state. On the preparation side, we may wish to heat or cool a system to a desired temperature.
Directly following Theorem 3.1,
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Corollary 6.9 Let wg be a thermal state as in Equation (6.3) and the fixed point of QMS
(Pr)i=0 generated by Lindbladian L with m energy levels 0 = E1 < Ey < ... < E,,. Let Ly
be the corresponding self-adjoint Lindbladian. Then

acLsi(Lo) < P Em max P Eir1=ED2 qey 1(L) 6.4)
J

The completely mixed state is equivalent to the infinite temperature Gibbs state o, so we

might think of the CLSI constant comparison as perturbing the infinite-temperature limit.

With a finite maximum energy and for temperatures substantially above that scale, this CLSI

constant is close to that for decay toward complete mixture.

In general, our CLSI constant estimate depends exponentially on the largest energy scale
and becomes trivial with an infinite spectrum. This appears to be not a flaw of the estimate, but
a property of the relative entropy. When high-energy elements of the Gibbs state are close
to 0, even small fluctuations into the high-energy regime can result in enormous relative
entropy. In thermodynamics, a usual solution to relative entropy blowup on rare states is
to work with smoothed relative entropies [21], which discount contributions from highly
unlikely configurations. While it is beyond the scope of this paper to fully formulate CLSI
for smoothed relative entropy, we may nonetheless consider an analogous approach for states
that rarely occur.

A simple strategy is to replace the Gibbs state by

-1 m

- 1 _ _

5= T( PRI K|+ ) e /”fl|k>(k|), 6.5)
Zgp k=1 k=l

for which the associated Lindbladian £ has

acrsi(Lo) < e acisi(£) .

BEI max P (Ei+1=E)/2
Jj=l

Physically, this is equivalent to artificially compressing high energies to a single, degenerate

level. We do not claim that this accurately represents the high-energy parts of the thermal state

or decay of states with substantial support above E;. Rather, £ is an example of a Lindbladian

with the same transitions as £ and similar low-energy behavior at short timescales. It hence

naturally has the same locality properties.

The distance ||log — o |1 increases with the value of E; | and higher levels. We can
overestimate it by assuming E;;| = oo, as though og had no support in the high-energy
space. We can easily check that |Zg — Zg| < (m — e PFi, s0 |log — (Zg/Zp)oplli <
(m — e PE1 ) Zg. Similarly, |(Zg/Zg)op — &Iy < (m — 1)e PFl/Z5. Hence

2
16 — oplly < =(m — De PE,
Zg

which decreases exponentially with E;.

Estimating rates of thermal equilibration is an active area of research. The techniques
of this paper allow one to directly transfer estimates from the infinite to finite temperature
setting.
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