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Abstract
We generalize Holley–Stroock’s perturbation argument from commutative to finite dimen-
sional quantum Markov semigroups. As a consequence, results on (complete) modified
logarithmic Sobolev inequalities and logarithmic Sobolev inequalities for self-adjoint quan-
tum Markov processes can be used to prove estimates on the exponential convergence in
relative entropy of quantum Markov systems which preserve a fixed state. This leads to
estimates for the decay to equilibrium for coupled systems and to estimates for mixed state
preparation times using Lindblad operators. Our techniques also apply to discrete time set-
tings, wherewe show that the strong data processing inequality constant of a quantum channel
can be controlled by that of a corresponding unital channel.
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1 Introduction

Quantum information theory concerns the study of information theoretic tasks that can be
achieved using quantum systems (e.g. photons, electrons and atoms) as information carriers,
with the long-term promise that it will revolutionize our way of computing, communicat-
ing and designing new materials. However, in realistic settings, quantum systems undergo
unavoidable interactions with their environment. This gives rise to the phenomenon of deco-
herence, which leads to a loss of the information initially contained in the system [19].
Within the context of emerging quantum information-processing devices, gaining quantita-
tive knowledge about the effect of decoherence is one of the main near-term challenges for
the design of methods to achieve scalable quantum fault-tolerance. Quantifying decoherence
is known to be a difficult problem in general, already for classical systems. Two facts make
the situation even more challenging in the quantum regime: (i) the non-commutativity of
quantum observables, and (ii) the potential for entanglement between systems.

Quantum Markov semigroups (QMS) constitute a particularly interesting class of noise
that decomposes into successive applications of a quantum channel representing an arbitrarily
small amount of time. Most recent approaches aim at quantifying decoherence fromMarkov
semigroups using functional inequalities (FIs). The latter are differential versions of strong
contraction properties of various distance measures under the action of the semigroup. For
instance, the Poincaré inequality provides an estimate on the spectral gap of the semigroup.
Exponentially faster convergence can be achieved via the existence of a logarithmic Sobolev
inequality (LSI), which implies a strong contraction of weighted L p-norms under the action
of the semigroup known as hypercontractivity. Similarly, the modified logarithmic Sobolev
inequality (MLSI) governs the exponential convergence in relative entropy of any initial state
evolving according to the semigroup towards equilibrium.

In the commutative or classical setting, one of the key features of logarithmic Sobolev
inequalities is their stability under the action of coupling with an auxiliary system. This
fact implies that many such FIs can be ultimately deduced from an inequality over a two-
point space. For quantum systems, entanglement with an auxiliary system may preclude
the existence of LSI, but MLSI extends to the the stronger notion of complete (modified)
logarithmic Sobolev inequality (CLSI). CLSI plays an analogous role to LSI for studying
multiplicativity properties of QMSs.
Classical relative entropy and the Holley–Stroock perturbation argument The focus of
this paper is on inequalities in terms of relative entropy. Though we aim to show quantum
inequalities in the finite-dimensional setting, we here recall the classical Holley–Stroock
argument in its original, infinite-dimensional setting. In particular, our primary method is a
‘quantized version’ of an argument by Holley and Stroock [28] which allows one to transfer
estimates between relative entropies with respect to different measures. For any two proba-
bility measures ν � μ on Rn , their classical relative entropy is given by

D(ν‖μ) ≡ Entμ( f ) :=
∫

f ln f dμ−
∫

f dμ ln
∫

f dμ ,

where f is defined as the Radon-Nikodym derivative dν
dμ

.When ν, μ are probabilitymeasures
on finite spaces, the relative entropy reduces to the familiar form of the Kullback-Leibler
divergence given by

D(ν‖μ) =
∑
i

νi ln νi − νi lnμi .
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Thanks to the positivity of G(a, b) = a log a−b log b+b−a for a, b > 0 [28], this relative
entropy admits a variational characterization

Entμ( f ) = inf
c>0

∫
( f ln f − c ln c + c − f ) dμ .

Therefore, given any other probability measure μ′ � μ, the positivity of G implies the
following stability property of the relative entropy:

Entμ′( f ) ≤
∥∥∥∥dμ′

dμ

∥∥∥∥∞ Entμ( f ) , (1.1)

whenever the Radon-Nikodym derivative dμ′
dμ

is uniformly bounded, where ‖.‖∞ refers to the
L∞ norm here. A similar argument holds for the functional derivative of the relative entropy,
or Fisher Information

Iμ( f ) :=
∫

L( f ) ln f dμ =
∫ |∇( f )|2

f
dμ , (1.2)

for any “regular enough” f , whenever the generator of a diffusion semigroup (Tt = e−t L )t≥0
is given as L( f ) = −� f + ∇V .∇ f with respect to the derivation ∇( f ) = (

d f
dx1

, ...,
d f
dxn

)

on R
n , and for dμ = e−V dx and V ∈ C2(Rn). Again, thanks to the positivity of |∇ f |2

f , we
deduce that, if μ � μ′

Iμ( f ) ≤
∥∥∥∥ dμ

dμ′

∥∥∥∥∞ Iμ′( f ) . (1.3)

The (modified) logarithmic Sobolev inequality (MLSI) is defined as follows: for any regular
enough function f ,

α Entμ( f ) ≤ Iμ( f ) .

The largest constant α > 0 satisfying this inequality is denoted by αμ and called themodified
logarithmic Sobolev constant. Note that, by the equivalent formulation of the Fisher infor-
mation in terms of differential operators (1.2), this inequality can be merely interpreted as a
property of the measure μ. Hence, using the perturbation bounds previously mentioned, the
Holley–Stroock perturbation bound is formulated as follows:

Theorem 1.1 (Holley–Stroock [28]) Let μ ∼ μ′ be equivalent measures. Then

αμ ≤
∥∥∥∥ dμ

dμ′

∥∥∥∥∞
∥∥∥∥dμ′

dμ

∥∥∥∥∞ αμ′ .

We refer to [32] for a wealth of interesting examples, in particular a derivation of logarithmic
Sobolev inequalities at finite temperature using known estimates at infinite temperature. From
a more applied angle the most impressive application of MLSI is the entropic exponential
convergence of the corresponding semigroup (Pt )t≥0:

Entμ(Pt ( f )) ≤ e−αt Entμ( f ) .

The best constant working for all f and t ≥ 0 is exactly the MLSI constant αμ.
Quantum (modified) logarithmic Sobolev inequalities A standard procedure historically
used to obtain estimates for the above entropy decay is to use an equivalent differential formu-
lation of the notion of hypercontractivity, also known as logarithmic Sobolev inequalities (or
LSI) [1, 32]. Despite the existence of logarithmic Sobolev inequalities [40, 47] for primitive
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quantum Markov semigroups, that is for semigroups possessing a unique invariant state, it
was shown in [3] that these inequalities cannot be derived for non-primitive semigroups. In
particular, the natural notion of a logarithmic Sobolev inequality for semigroups of the form
(Pt ⊗ idR)t≥0 given some reference system R, as previously introduced in [6], is known to
fail at providing entropic convergence. Introduced by Bobkov and Tetali [10] for the study
of Markov chains over discrete configuration spaces, MLSI turns out to be more stable. The
quantumMLSIwas introduced byKastoryano and Temme in [30] for primitive evolutions. In
[2], Bardet showed that the MLSI can also be extended to non-primitive semigroups. MLSI
is equivalent to LSI for classical diffusions but provides estimates on the entropy decay of
non-hypercontractive jump processes [42]. In the quantum setting, however, MLSI is not
necessarily stable under tensor products. Quantum entanglement between subsystems may
allow composite systems to escape from the strong decay implied by MLSI. This instability
led the authors of [24] to define the notion of CLSI for the study of the convergence of the
tensor product evolution of a given quantum Markov semigroup with the identity map on an
arbitrarily large system. CLSI is tensor-stable, allowing one to combine local estimates into
global bounds on composite systems.

Quantum functional inequalities are still notoriously harder to derive than their classical
analogues. For a long time, only the Poincaré inequality had been shown to hold for lattice spin
systems subject to the so-called heat-bath and Davies semigroups, under some conditions
on the equilibrium Gibbs state of these evolutions [29, 46]. CLSI in these settings remained
unknown until several results following the initial version of this paper. After the first version
of this prerprint had been written it was shown by [23] that every finite dimensional σ -
detailed balance generator satisfies αCLSI (L) > 0. An alternative proof based on geometric
arguments can be found in [25]. The second proof first shows that result for trace preserving
generators and then uses the change ofmeasure argument in this paper. The precise formof the
noncommutative Holley–Stroock argument also shows that the CLSI constant is stable under
small perturbations of a preserved state provided the same derivations are used. Nonetheless,
the calculation of good constants remains open in many cases and is essential for many
applications. Hence, it is desirable to have a quantum version of Holley–Stroock’s argument,
because it would allow to transfer results from one reference state (say the completely mixed
state) to another (say aGibbs state at finite temperature).Aswehave seen, themain ingredients
for the classical proof are (i) variational principle, (ii) a good understanding of the notion of
gradient, and (iii) the pointwise positivity of the Fisher information function (∇ f ,∇ ln f ).
Generalizing them to the quantum setting requires additional deep insight from the theory
of quantum Markov semigroups and operator algebras. Such an approach is facilitated by
recent developments of trace inequalities in quantum information theory.

For a semigroup of completely positive unital maps Pt : B(H) → B(H) and generator
L := d

dt

∣∣
t=0 Pt , we denote by Pt∗ the adjoint with respect to the trace Tr(Pt∗(ρ)X) =

Tr(ρPt (X)), and E∗ = limt→∞ Pt∗ [12]. Recall that a faithful quantum Markov semigroup
(Pt := e−tL)t≥0, of corresponding conditional expectation E towards its fixed-point algebra
and full-rank invariant state σ , satisfies a weak logarithmic Sobolev inequality (LSI) with
constants c > 0 and d ≥ 0 if the following holds: for any positive definite state ρ,

D(ρ‖E∗(ρ)) ≤ c EL(σ−
1
4 ρ

1
2 σ−

1
4 )+ d

∥∥∥σ−
1
4 ρ

1
2 σ−

1
4

∥∥∥2
L2(σ )

. (LSI(c, d))

Here, the Dirichlet form EL is defined as EL(X) := 〈L(X), X〉σ = Tr(σ
1
2L(X)∗σ 1

2 X), and
the non-commutative Lp norms are defined as
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‖X‖Lp(�) :=
(
Tr|σ 1/2p Xσ 1/2p|p

) 1
p
.

In analogy with the classical setting, L is said to satisfy a modified logarithmic Sobolev
inequality if there exists a constant α > 0 such that for all density matrices ρ:

D(Pt∗(ρ)‖E∗(ρ)) ≤ e−αt D(ρ‖E∗(ρ)) .

The largest constant α such that this inequality holds for all ρ is denoted by αMLSI(L).
Similarly, we denote by αCLSI(L) the largest constant α̃ such that

D((Pt∗ ⊗ idR)(ρ)‖(E∗ ⊗ idR)(ρ)) ≤ e−α̃t D(ρ‖(E∗ ⊗ idR)(ρ))

holds for all t ≥ 0, any reference system HR , and any density matrix ρ on H ⊗ HR . The
advantage of the complete version is that for any two generators L1 and L2:

αCLSI(L1 ⊗ id+ id⊗L2) ≥ min{αCLSI(L1), αCLSI(L2)} .

In this article,wemake another step towards provingCLSI for anyfinite dimensional quantum
Markov semigroup by adapting the Holley–Stroock argument to the quantum setting, based
on the seminal work of Carlen and Maas [13]. Following Carlen-Maas, the generator of a
QMS satisfying the so-called detailed balance condition (see Sect. 2 for more details) is
given by

L(X) = −
∑
j∈J

(
e−ω j /2 A∗j [X , A j ] + eω j /2[A j , X ]A∗j

)
.

Here, the Bohr frequencies ω j ∈ R are determined by the additional condition σ A jσ
−1 =

e−ω j A j , for some full-rank state σ such that L∗(σ ) = 0. Choosing these frequencies to be
equal to 0, we end up with the corresponding noncommutative heat semigroup:

L0(X) = −
∑
j∈J

(
A∗j [X , A j ] + [A j , X ]A∗j

)
=

∑
j

A∗j A j X + X A j A
∗
j − A j X A∗j − A∗j X A j .

In its simplest form, our noncommutative Holley–Stroock argument can be stated as
follows:

Theorem 1.2 Assume that (Pt = e−tL)t≥0 is a primitive, finite dimensional quantumMarkov
semigroupwith correspondingunique, full-rank invariant stateσ = ∑

k σk |k〉〈k|and satisfies
the detailed balance condition. Then

αCLSI(L0) ≤ maxk σk

mink σk
max

j
eω j /2αCLSI(L) .

As an application of this result, we consider a primitive quantum Markov semigroup
(Pt∗ = e−tL∗)t≥0 on B(H) for finite dimensionalH, which produces a certain full-rank state
σ = ∑

k σk |k〉〈k| :
∀ρ : lim

t→∞Pt∗(ρ) = σ and αCLSI(L) > 0 .

Our lower bound for αCLSI depends in an explicit way on the ratios
σk
σl
. On a suitably chosen

inner product (., .) the derivations stabilizing σ are exactly given by commutators with
respect to matrix units |k〉〈 j |. In other words the density ‘determines’ its own derivation δ

and the corresponding gradient form (δ( f ), δ( f )), in contrast to the above classical setting.
In our construction, we have to work with invertible densities if we want to have complete
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logarithmic Sobolev inequalities, and hence our results are complementary to the results in
[31, 48] on quantum Markov semigroups producing pure states.
Outline of the paper In Sect. 2, we recall basic aspects of the theory of quantum Markov
semigroups and complete modified logarithmic Sobolev inequalities. In particular, we derive
a useful form for the entropy production of a semigroup by means of noncommutative dif-
ferential calculus. The essence of the quantum Holley–Stroock perturbation argument is first
provided in Sect. 3 where we compare a non-unital quantum Markov semigroup to a corre-
sponding unital one. In Sect. 4, we extend the previous argument to (i) non-primitive quantum
Markov semigroups and (ii) the logarithmic Sobolev inequality. A similar argument is given
in Section 5 in order to derive strong data processing inequalities for non self-adjoint quantum
channels. Sects. 6 and 6.1 focus on applications to the dissipative preparation of mixed state
and Gibbs samplers.

2 QuantumMarkov Semigroups and Entropy Decay

In this section, we briefly review the notions of quantum Markov semigroups and their
related noncommutative derivations on the algebra B(H) of bounded operators on a finite-
dimensional Hilbert space, and explain how in this framework, the generator of aQMS should
be interpreted as a noncommutative second order differential operator. We will have to recall
and adapt some of the notations from the seminal papers by Carlen and Maas [13, 14] for
Lindblad generators satisfying the detailed balance condition (see also [20]).
Notations and definitions Let (H, 〈.|.〉) be a finite dimensional Hilbert space of dimension
dH. We denote by B(H) the space of bounded operators on H, by Bsa(H) the subspace of
self-adjoint operators on H, i.e. Bsa(H) = {X ∈ B(H); X = X∗}, and by B+(H) the cone
of positive semidefinite operators on H, where the adjoint of an operator Y is written as Y ∗.
The identity operator on H is denoted by 1H, dropping the index H when it is unnecessary.
In the case when H ≡ C


, 
 ∈ N, we will also use the notation 1 for 1C
 . Similarly, we
will denote by idH, or simply id, resp. id
, the identity superoperator on B(H) and B(C
),
respectively. We denote by D(H) the set of positive semidefinite, trace one operators on H,
also called density operators, and by D+(H) the subset of full-rank density operators. In the
following, we will often identify a density matrix ρ ∈ D(H) and the state it defines, that
is the positive linear functional B(H) � X �→ Tr(ρ X). By ‖ · ‖p we denote the Schatten
p-norm. In particular, we will often use the operator norm denoted ‖ · ‖∞ and the trace norm
denoted ‖ · ‖1. By supp(ρ) we denote the support of density ρ.

Given two positive operators ρ, σ ∈ B+(H), the relative entropy between ρ and σ is
defined as follows:

D(ρ‖σ) :=
{
Tr(ρ (ln ρ − ln σ)) supp(ρ) ⊆ supp(σ )

+∞ else

We recall that, given N ⊂ B(H) a finite dimensional von-Neumann subalgebra of B(H)

and a full-rank state σ ∈ D(H), a linear map E : B(H) → N is called a conditional
expectation with respect to σ of B(H) onto N if the following conditions are satisfied:

(i) For all X ∈ B(H), ‖E(X)‖∞ ≤ ‖X‖∞;
(ii) For all X ∈ N , E(X) = X ;
(iii) For all X ∈ B(H), Tr(σ E(X)) = Tr(σ X).

Quantum Markov semigroups and noncommutative derivations The basic model for
the evolution of an open system in the Markovian regime is given by a quantum Markov
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semigroup (or QMS) (Pt )t≥0 acting on B(H). Such a semigroup is characterised by its
generator, called the Lindbladian L, which is defined on B(H) by L(X) = limt→0

1
t (X −

Pt (X)) for all X ∈ B(H), so that Pt = e−tL.1 The QMS is said to be primitive if it admits a
unique invariant state σ , which in our setting we assume to have full rank. In this paper, we
exclusively study QMS that satisfy the following detailed balance condition with respect to
some full-rank invariant state σ (also referred to as GNS-symmetry): for any X , Y ∈ B(H)

and any t ≥ 0,

Tr(σ X∗Pt (Y )) = Tr(σ Pt (X)∗Y ) . (σ -DBC)

In particular, this condition is known to be equivalent to self-adjointness of the generator
with respect to the so-called KMS inner product

〈A, B〉σ := Tr(σ
1
2 A∗σ

1
2 B) . (2.1)

Via Theorem 2.9 in [13], the semigroup will also commute with the modular group of σ :
�i t

σ ◦ L = L ◦ �i t
σ for all t ∈ R, where �σ (X) := σ Xσ−1. It was also shown in [13] that

the generator of such a semigroup has the following GKLS form [26, 35] for all X ∈ B(H),

L(X) = −
∑
j∈J

(
e−ω j /2 A∗j [X , A j ] + eω j /2[A j , X ]A∗j

)
. (2.2)

where the sum runs over a finite number of Lindblad operators {A j } j∈J = {A∗j } j∈J and
[·, ·] denotes the commutator defined as [X , Y ] := XY − Y X , ∀X , Y ∈ B(H), and ω j ∈ R.
Moreover, the Lindblad operators A j satisfy the following relations:

∀s ∈ R, �s
σ (A j ) := σ s A j σ

−s = e−ω j s A j ⇒ δA j (ln σ) = −ω j A j , (2.3)

where the second identity comes from differentiability of the first one at s = 0, and
δA j (X) := [A j , X ] is a noncommutative derivation. Therefore, the reals ω j can be inter-
preted as differences of eigenvalues of the Hamiltonian corresponding to the Gibbs state σ ,
also called Bohr frequencies. It is important to note that L is the generator in the Heisenberg
picture. The generator Pt∗ = e−tL∗ in the Schrödinger picture is defined via

Tr(L∗(ρ)X) = Tr(ρ L(X)) .

According to [13, Remark 3.3] the adjoint has the form

L∗(ρ) = −
∑
j

(
e−ω j /2[A jρ, A∗j ] + eω j /2[A∗j , ρA j ]

)

=
∑
j

e−ω j /2(A∗j A jρ − A jρA
∗
j )+ eω j /2(ρA j A

∗
j − A∗jρA j ) . (2.4)

ThegeneratorL0 := ∑
j∈J LA j , corresponding to taking all theBohr frequencies to 0, sat-

isfies the detailed balance conditionwith respect to the completelymixed state 1/dH. Because
of its analogy with the classical diffusive case, its corresponding QMS is usually called the
heat semigroup. In fact, given a Lindblad operator A, the generators LA := [A∗, [A, .]]
satisfies the following non-commutative integration by parts:

Tr(X∗LA(Y )) = Tr(δA(X)∗δA(Y )) = Tr(LA(X)∗ Y ).

1 Let us note that our sign convention is opposite to the one usually used in the community of open quantum
systems, but more common in abstract semigroup theory.
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We may also consider B = A+A∗√
2

and C = A−A∗√
2i

and observe that

LA(X) := (B2 + C2)X + X(B2 + C2)− 2(BXB + CXC) . (2.5)

has the standard form of a self-adjoint Lindbladian, with corresponding self-adjoint Lind-
blad operators B and C , and in particular is ∗-preserving. In the GNS-symmetric case, the
integration by parts formula reads as follows:

〈L(X), Y 〉σ =
∑
j∈J

〈δA j (X), δA j (Y )〉σ , (2.6)

where the KMS inner product was defined in (2.1). Because of their particular symmetry
property, self-adjoint semigroups (that is w.r.t. the Hilbert-Schmidt inner product) are cur-
rently better understood than their GNS-symmetric generalizations [5, 39]. The purpose of
this paper is to derive a technique to transfer estimates on the entropic rate of convergence
towards equilibrium of (e−tL)t≥0 in terms of that of (e−tL0)t≥0. A useful tool will be the
following commuting diagram

B(H)
e−tL→ B(H)

↓�σ ↓�σ

T1(H)
e−tL∗→ T1(H)

(2.7)

where �σ (x) = σ 1/2xσ 1/2 is the canonical completely positive map from the algebra B(H)

to the space T1(H) which can be interpreted as the predual B(H)∗ of B(H) [30, 37, 40,
47]. Indeed, we recall from [13] that L is also self-adjoint with the KMS inner product
〈X , Y 〉σ = Tr(�σ (X∗)Y ), and hence

Tr(L∗(�σ (X∗))Y ) = Tr(�σ (X∗)L(Y )) = 〈X ,L(Y )〉σ = 〈L(X),Y 〉σ = Tr(�σ (L(X∗))Y )

shows that indeed

L∗(�σ (X)) = �σ (L(X)) . (2.8)

Entropic convergence of QMS Under the condition of GNS-symmetry, the semigroup
(e−tL)t≥0 is known to be ergodic [22]: there exists a conditional expectation E onto the
fixed-point algebra F(L) := {X ∈ B(H) : L(X) = 0} such that

e−tL →
t→∞ E .

In this paper, we are interested in the exponential convergence in relative entropy of the
semigroup towards its corresponding conditional expectation. The entropy production (also
known as Fisher information) of (Pt = e−tL)t≥0 is defined as the opposite of the derivative
of the relative entropy with respect to the invariant state: for any ρ ∈ D(H),

EPL(ρ) := − d

dt

∣∣∣∣
t=0

D(Pt∗(ρ)‖E∗(ρ)) = Tr(L∗(ρ)(ln ρ − ln σ)) ,

where the expression on the right hand side of the above equation was first proved in [45]
in the primitive setting. We will also need to extend the definition of the entropy production
to non-normalized states ρ using the same expression as on the right-hand side of the above
equation. In this paper, we are interested in the uniform exponential convergence in relative
entropy of systems evolving according to a QMS towards equilibrium: more precisely, we
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ask the question of the existence of a positive constant α > 0 such that the following holds,
for any ρ ∈ D(H),

D(Pt∗(ρ)‖E∗(ρ)) ≤ e−αt D(ρ‖E∗(ρ)) .

After differentiation at t = 0 and using the semigroup property, this inequality is equivalent
to the following modified logarithmic Sobolev constant (MLSI) [4, 7, 11, 30, 38]: for any
ρ ∈ D(H),

α D(ρ‖E∗(ρ)) ≤ EPL(ρ) . (MLSI)

The best constant α achieving this bound is called the modified logarithmic Sobolev constant
of the semigroup, and is denoted by αMLSI(L). We may also consider the complete version
which requires

αCLSI(L) D(ρ‖(E∗ ⊗ id)(ρ)) ≤ EP(L⊗id)(ρ) . (CLSI)

to hold for all ρ ∈ B(HA ⊗ HB) for any system B (or even for B(HB) replaced by a
finite-dimensional von Neumann algebra).
Primitive semigroups Our main goal is to establish MLSI and CLSI for primitive semi-
groups, given similar knowledge for self-adjoint semigroups. Recall that (Pt = e−tL)t≥0
is called primitive if it admits a full-rank fixed point state σ such that Pt∗(ρ) = ρ for all t
implies ρ = σ . This is equivalent to

L∗(ρ) = 0 ⇒ ρ = σ .

We recall that L in Equation (2.2) is self-adjoint with respect to the inner product 〈A, B〉σ =
Tr(A∗σ 1/2Bσ 1/2). Therefore, we deduce that

0 = 〈L(X), X〉σ = Tr(σ 1/2L(X)∗σ 1/2X) = Tr(L(X∗)σ 1/2Xσ 1/2)

= Tr(X∗L∗(σ 1/2Xσ 1/2))

if and only if [A j , X ] = 0 for all j , by Equation (2.6). This implies that L∗(σ 1/2Xσ 1/2) = 0
if and only if X ∈ {A j : j ∈ J }′. Let us state this for later references.
Lemma 2.1 Let L∗ be given by Equation (2.4). The following are equivalent.

(i) L is primitive with respect to σ ;
(ii) {A j : j ∈ J }′ = C1;
(iii) L0 = ∑

j LA j is ergodic, i.e. L0(X) = 0 implies X = λ1.

The equivalence (ii)↔ (iii) follows [13, Theorem 5.3]. Equivalence to (i) follows from the
text above.
Noncommutative differential calculus via double operator integrals The entropy produc-
tion can be written in a different form that will be more convenient for our purpose. In order
to derive it, we first need to recall some notions of non-commutative differential calculus (see
[8, 9, 15–18, 41, 43]). Given an operator L ∈ B(H), as well as any two self-adjoint operators
X , Y ∈ Bsa(H), define the operator

CX ,Y
A := AY − X A .

In particular CX ,X
A := δA(X). Next, given a Borel function h : sp(X) × sp(Y ) → R, and

writing by PX and PY the spectral measures of X and Y , define the so-called double operator

123



30 Page 10 of 25 M. Junge et al.

integral

Th :=
∫

h LPX RPY .

where LZ , resp. RZ , is the operator of left, resp. right multiplication by Z . Given a differen-
tiable function f : R → R, we are exclusively interested in the restriction of the difference
quotient f̃ associated with f given by

f̃ (x, y) :=

⎧⎪⎪⎨
⎪⎪⎩

f (x)− f (y)

x − y
if (x, y) ∈ sp(X)× sp(Y )

∂ f (x)

∂x
else

. (2.9)

Theorem 2.2 (Noncommutative chain rule for differentiation, see [9]) Given an operator
A ∈ B(H), any two self-adjoint operators X , Y ∈ Bsa(H) and a Borel function f : R→ R,
the following holds:

C f (X), f (Y )
A = T X ,Y

f̃
(CX ,Y

A ) .

We use the notation and fact that

[�σ (X)]−1ω j
:= T Z j ,Y j

l̃n
(X) =

∫ ∞

0
(r + e−ω j /2L�σ (X))

−1(r + eω j /2R�σ (X))
−1dr

as in [13]. With the previous theorem at hand, the following result can be proved:

Lemma 2.3 Assume that the QMS (Pt = e−tL)t≥0 satisfies σ -DBC. Then, for any positive
operator ρ = �σ (X),

EPL(ρ) =
∑
j∈J

〈�σ (δA j (X)), [�σ (X)]−1ω j
(�σ (δA j (X)))〉HS . (2.10)

Moreover, the same formula holds for positive ρ ∈ B(H⊗K) and L replaced by L⊗ idK.

Proof By definition, for all positive ρ ∈ B(H), and any σ ∈ F(L), letting X := �−1σ (ρ) we
have

EPL(ρ) = Tr(L∗(ρ)(ln ρ − ln σ))

= 〈L(X), ln ρ − ln σ 〉σ
=

∑
j∈J

〈δA j (X), δA j (ln ρ − ln σ)〉σ .

Here the second line follows by Equation 2.8, whereas the third line follows by the integration
by parts formula (2.6). Now, due to (2.3), δA j (ln σ) = −ω j A j , so that, denoting Y j :=
ρ e−ω j /2 and Z j := ρ eω j /2, we have

δA j (ln ρ − ln σ) = A j ln(Y j )− ln(Z j )A j

= C
ln(Z j ) ,ln(Y j )

A j

= T Z j , Y j

l̃n
(C

Z j , Y j
A j

)

= T Z j ,Y j

l̃n
(σ 1/2δA j (X)σ 1/2) ,
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where the last equation follows once again from Equation (2.3). We end up with

EPL(ρ) =
∑
j∈J

〈�σ (δA j (X)), [�σ (X)]−1ω j
(�σ (δA j (X)))〉HS . (2.11)

For ρ ∈ B(H⊗ K), we observe that E∗ ⊗ idK(ρ) = σ ⊗ TrH(ρ). Since all the A j ’s act on
the first register, the calculation above remains true. ��

3 FromUnital to Non-unital QuantumMarkov Semigroups

We are now able to provide a quantum extension of the Holley–Stroock argument. In this
section, we restrict ourselves to the primitive case and assume that σ = ∑

k σk |k〉〈k| is a
positive definite density matrix of corresponding eigenbasis {|k〉} of H.

Theorem 3.1 Let L be the generator of a primitive, GNS-symmetric QMS with respect to
a full-rank state σ , L0 be generator of its corresponding heat semigroup, and ω j its Bohr
frequencies. Then

αMLSI(L0) ≤ max
k,l

σk

σl
max

j
e|ω j |/2αMLSI(L) ,

Similarly,

αCLSI(L0) ≤ max
k,l

σk

σl
max

j
e|ω j |/2αCLSI(L) .

Remark 3.2 Using interpolation techniques, the authors of [47] showed lower bounds on the
logarithmic Sobolev constant α2 of primitive QMS that are self-adjoint with respect to the
KMS inner product. Moreover, since we further assume the detailed balance condition, our
semigroups satisfy αMLSI(�) ≥ 2α2(�), by the so-called L p-regularity of Dirichlet forms
proved in [2]. Combining these two results, we can find that

αMLSI(L) ≥ 2λ(L)

ln ‖σ−1‖∞ + 2
, αMLSI(L(n)) ≥ 2λ(L)

ln(d4H ‖σ−1‖∞)+ 11
,

where L(n) stands for the generator of the n-fold product of the semigroup (e−tL)t≥0, and
where λ(L) denotes the spectral gap of L. In the primitive setting, this means that the bounds
that we derived are potentially worse than the ones provided in [47]. However, it was shown
in [3] that the logarithmic Sobolev inequality does not hold for non-primitive QMS. In the
next section, we provide a more general result for any finite dimensional, non-primitive GNS
symmetric QMS.

As in the classical case, the proof is separated in two parts: a comparison of the relative
entropies, and a comparison of the entropy productions. We review these separately in the
next two paragraphs.
Comparison of relative entropies We are now concerned with the left-hand side of the
MLSI/CLSI. First, we need to extend the definition of the relative entropy to the case where
ρ and σ are (possibly non-normalized) positive operators [34]:

DLin(ρ‖σ) := Tr(ρ (ln ρ − ln σ))+ Tr(σ )− Tr(ρ) ,

where the right-hand side can be equal to infinity. As for its restriction to normalized density
matrices, this relative entropy is positive. Moreover:
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Lemma 3.3 Lindblad’s relative entropy satisfies the following properties [34]:

(i) Data processing inequality: For any positive operators X , Y , and any CPTP map �,

DLin(�(X)‖�(Y )) ≤ DLin(X‖Y ) .

(ii) Addition under direct sums: For any positive operators X1, Y1, resp. X2, Y2, on H1,
resp. H2,

DLin(X1 ⊕ X2‖Y1 ⊕ Y2) = DLin(X1‖Y1)+ DLin(X2‖Y2) .

(iii) Normalization: For any operators X , Y ≥ 0 and any constant λ > 0

DLin(λX‖λY ) = λ DLin(X‖Y ) .

We will also need the following:

Lemma 3.4 (Chain rule for DLin) Let E : B(H) → N be a conditional expectation onto a
∗-subalgebra of B(H). Then, for any X , Y ∈ B+(H) such that Y = E∗(Y ), we have

DLin(X‖Y ) = DLin(X‖E∗(X))+ DLin(E∗(X)‖Y ) .

Proof First, by the definition of DLin,

DLin(X‖Y ) = D(X‖Y )+ Tr(Y )− Tr(X) ,

and

DLin(X‖E∗(X))+ DLin(E∗(X)‖Y )

= D(X‖E∗(X))+ D(E∗(X)‖Y )+ Tr(E∗(X))− Tr(X)+ Tr(Y )− Tr(E∗(X)) .

We observe that the traces cancel, so this Lemma reduces to the well-known chain rule for
relative entropy with conditional expectations. We include a short proof here for the finite-
dimensional case.

D(X‖E∗(Y ))+ D(E∗(X)‖Y )

= Tr(X log X − X log(E∗(X))+ E∗(X) log(E∗(X))− E∗(X) log Y )

= Tr(X log X − X log(E∗(X))+ XE(log(E∗(X)))− XE(log Y )) .

(3.1)

Let σ denote the densitywith respect towhich E is self-adjoint and σ̃ denote the unnormalized
density d × σ in dimension d . By the block diagonal form of finite-dimensional conditional
expectations,

log E∗(X) = ⊕i (log(Xi )⊗ 1Ei + 1Ai ⊗ log(σi )) ,

and

E(log E∗(X)) = ⊕i (log(Xi )⊗ 1Ei + 1Ai ⊗ 1EiTr(σ̃ 1/2
i log(σi )σ̃

1/2
i )) .

Let

ηX := E(log E∗(X))− log E∗(X) = ⊕i (1
Ai ⊗ 1EiTr(σ̃ 1/2

i log(σi )σ̃
1/2
i )− 1Ai ⊗ log(σi )) .

Since the dependence of ηX on X cancels in the final expression, we define ηY analogously
and observe that ηY = ηX . Comparing to Equation (3.1),

D(X‖Y ) = D(X‖E∗(X))+ D(E∗(X)‖Y )+ Tr(X(ηY − ηX )) ,

and ηY − ηX = 0. ��
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Proposition 3.5 (Noncommutative change of measure argument) Let K be an additional
Hilbert space, E0 = TrH ⊗ 1H

dH a conditional expectation onto B(K)⊗ 1H and

E∗(ρ) = dH dK � 1K
dK⊗σ

◦ E0(ρ)

the conditional expectation on the space of densities. Then for all X ≥ 0:

DLin(�1K⊗σ (X)‖ E∗ ◦ �1K⊗σ (X)) ≤ max
k
{σk} DLin(X‖ E0(X)) .

Proof Since the following inequality holds by Lemma 3.4:

DLin(dH�1K⊗σ (X)‖ dHE∗ ◦ �1K⊗σ (X)) ≤ DLin(dH�1K⊗σ (X)‖E∗(X)) ,

it is enough to prove that

DLin(dH�1K⊗σ (X)‖E∗(X)) ≤ dH max
k
{σk} DLin(X‖ E0(X)) .

Define the map �(X) = �−1 �1K⊗σ (X), where � := maxk σk . This map is completely
positive, trace non-increasing. We may also define

�(X) :=
(

�(X) 0
0 Tr((1− 1K⊗σ

�
)X)

)
.

Then � is trace-preserving and hence, see [34], we know that

DLin(�(X)‖�(E0(X)) ≤ DLin(X‖E0(X)) .

Since DLin( ‖ ) is positive, we deduce from the diagonal output of � that indeed,

DLin(�
−1 �1K⊗σ (X)‖�−1 �1K⊗σ ◦ E0(X)) = DLin(�(X)‖�(E0(X))

≤ DLin(�(X)‖�(E0(X)) .

By definition, E∗ = dH �1K⊗σ ◦ E0. Therefore,
DLin(dH�1K⊗σ (X)‖E∗(X)) = DLin(dH�1K⊗σ (X)‖dH�1K⊗σ ◦ E0(X))

= dH � DLin(�
−1 �1K⊗σ (X)‖�−1 �1K⊗σ ◦ E0(X))

≤ dH � DLin(X‖E0(X))

= dH max
k

σk DLin(X‖E0(X)) .

��
Comparison of entropy productions We are now interested in controlling the entropy
production of L0 in terms of that of L. Extending the expression derived in Equation 2.11
for the entropy production to non-normalized states, we find for any positive operator X ∈
B(K⊗H):

EPL(�1K⊗σ (X)) =
∑
j∈J

〈�1K⊗σ (δA j (X)), [�1K⊗σ (X)]−1ω j
(�1K⊗σ (δA j (X)))〉HS

≥ inf
j

e−|ω j |/2 ∑
j∈J

〈�1K⊗σ (δA j (X)), [�1K⊗σ (X)]−10 (�1K⊗σ (δA j (X)))〉HS

where we denoted δAi = 1K ⊗ δAi by slight abuse of notations, and where we used that, by
definition [ρ]ω j ≤ max j e|ω j |/2 [ρ]0 as self-adjoint operators in 〈., .〉HS. Moreover, we need
the following direct extension of Theorem 5 of [27] to the case of trace non-increasing maps:
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Proposition 3.6 Let� : B(H) → B(H) be a completely-positive, trace non-increasing map,
then the following holds for any A > 0 and any X ∈ B(H):

〈�(X), [�(A)]−10 (�(X))〉HS ≤ 〈X , [A]−10 (X)〉HS .

Choose this time �′(X) := (�′)−1 �−11K⊗σ (X), where �′ := maxk{σ−1k }. This map is
completely positive and trace non-increasing. Then

EPL(�1K⊗σ (X)) ≥ min
j

e−|ω j |/2 ∑
j∈J

〈�1K⊗σ (δA j (X)), [�1K⊗σ (X)]−10 (�1K⊗σ (δA j (X)))〉HS

≥ min
j

e−|ω j |/2 ∑
j∈J

〈(�′)−1 δA j (X), [(�′)−1 X ]−10 ((�′)−1 δA j (X))〉HS

= (�′)−1 min
j

e−|ω j |/2 ∑
j∈J

〈δA j (X), [X ]−10 (δA j (X))〉HS

≥ (�′)−1 min
j

e−|ω j |/2 EPL0 (X) .

We have proved the following:

Proposition 3.7 Let L be the generator of a QMS that is self-adjoint with respect to the
GNS inner product associated to a full-rank state σ = ∑

k σk |k〉〈k|. Let (ω j ) be the Bohr
frequencies as in the GKLS form, Equation (2.2). Then, the following comparison of entropy
productions holds: for any positive operator X ∈ B(K⊗H),

EPL(�1K⊗σ (X)) ≥ min
k
{σk}min

j
{e−|ω j |/2} EPL0(X) .

Combining Propositions 3.5 and 3.7, we are now ready to prove the main result of this
section, namely Theorem 3.1:

Proof of Theorem 3.1 First notice the following: for any X ∈ B+(H ⊗ K), we recall that
αCLSI is defined as the CLSI constant. Thanks to the homogeneity of the entropy production
and relative entropy, the same constant holds for DLin as for D, so

αCLSI(L0) DLin(X‖(E0 ⊗ idK)(X)) ≤ EPL0(X) .

The result then comes directly from the following chain of inequalities: for any ρ =
�1K⊗σ (X) ∈ D(H⊗K):

αCLSI(L0) D(ρ‖(E∗ ⊗ idK)(ρ)) ≤ max
k

σk αCLSI(L0)DLin(X‖(E0 ⊗ idK)(X))

≤ max
k

σk EPL0⊗idK(X)

≤ max
k

σk max
k

σ−1k max e|ω j |/2 EPL⊗idK(ρ) .

The first inequality follows from Proposition 3.5, the second one by the definition of the
CLSI constant of L0, and the last one by Proposition 3.7. ��

4 A Non-primitive Holley–Stroock Perturbation Argument

In this section, we extend Theorem 3.1 in essentially two directions: first, we do not assume
that the reference semigroup (e−tL0)t≥0 is the heat semigroup. Second, we relax the condition
of primitivity for (Pt )t≥0. This situation will in particular extend the argument for CLSI. We
will be interested in both MLSI and LSI inequalities.
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4.1 Perturbing theModified Logarithmic Sobolev Inequality

More precisely, we want to compare the MLSI constants of the following two generators
satisfying the detailed balance condition with respect to two different, though commuting
states:

Lσ (X) = −
∑
j∈J

(
e−ω j /2 A∗j [X , A j ] + eω j /2[A j , X ]A∗j

)
. (4.1)

and

Lσ ′(X) = −
∑
j∈J

(
e−ν j /2 A∗j [X , A j ] + eν j /2[A j , X ]A∗j

)
. (4.2)

Remark that these generators are given by the same Lindblad operators {A j } j∈J , and only
differ at the level of their Bohr frequencies. This implies in particular that they share the same
fixed-point algebra F = {A j : j ∈ J }′, which we decompose into matrix blocks:

F =
⊕
i∈I

B(Hi )⊗ 1Ki .

By the detailed balance condition, the operators A j are eigenvectors of the modular groups
corresponding to two full-rank invariant statesσ , resp.σ ′, which canwithout loss of generality
be taken as follows: given two families of full-rank normalized traces {τi }i∈I and {τ ′i }i∈I ,

σ :=
∑
i∈I

dKi

dH
1Hi ⊗ τi , σ ′ :=

∑
i∈I

dKi

dH
1Hi ⊗ τ ′i ,

In particular, A j = ∑
i 1⊗ Ai ( j) are block diagonal with respect to the Ki ,

�σ (A j ) = e−ω j A j , and �σ ′(A j ) = e−ν j A j .

This implies in particular that the states τi and τ ′i commute so that:

τi =
∑
k

λ
(i)
k P(i)

k , τ ′i =
∑
k

λ
(i)′
k P(i)

k .

Our general perturbation theorem follows:

Theorem 4.1 (Non-primitive Holley–Stroock for MLSI) With the above notations, the fol-
lowing holds:

αMLSI(Lσ ′) ≤ max
i∈I,k

λ
(i)
k

λ
(i)′
k

max
i∈I,k

λ
(i)′
k

λ
(i)
k

max
j∈J e|ω j−ν j |/2αMLSI(Lσ ) .

Similarly,

αCLSI(Lσ ′) ≤ max
i∈I,k

λ
(i)
k

λ
(i)′
k

max
i∈I,k

λ
(i)′
k

λ
(i)
k

max
j∈J e|ω j−ν j |/2αCLSI(Lσ ) .

The proof of the theorem follows the same lines as for that of Theorem 3.1. We compare
relative entropies and entropy productions separately:
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Comparison of relative entropies

Proposition 4.2 (Changeofmeasure)DenoteEσ := limt→∞ e−tLσ andEσ ′ := limt→∞ e−tLσ ′ .
Then, for all X ≥ 0:

DLin(�σ (X)||Eσ∗ ◦ �σ (X)) ≤ max
i∈I,k

λ
(i)
k

λ
(i)′
k

DLin(�σ ′(X)||Eσ ′∗ ◦ �σ ′(X)) .

Proof The conditional expectations Eσ and Eσ ′ take the following form:

Eσ∗ =
∑
i

TrKi (Pi . Pi )⊗ τi , Eσ ′∗ =
∑
i

TrKi (Pi . Pi )⊗ τ ′i ,

where for each i , Pi is the projection onto the block i in the decomposition ofF . This implies
in particular the following relation: �−1

σ ′ ◦ Eσ ′∗ = �−1σ ◦ Eσ∗. Next, consider the completely

positive map � := 1
r �σ ◦ �−1

σ ′ , with r := maxi∈I,k λ
(i)
k /λ

(i)′
k . One can readily verify that �

is trace non-increasing. Moreover, by Lemma 3.4:

DLin(�σ (X)‖Eσ∗ ◦ �σ (X)) = DLin(r � ◦ �σ ′(X)‖r Eσ∗(� ◦ �σ ′(X)))

≤ DLin(r � ◦ �σ ′(X)‖ Eσ∗(�σ ′(X)))

= DLin(r � ◦ �σ ′(X)‖ r � ◦ Eσ ′∗ ◦ �σ ′(X)) .

Next, by homogeneity and data processing inequality after proper normalization of the chan-
nel as in the proof of Theorem 3.5, we find that

DLin(�σ (X)‖Eσ∗ ◦ �σ (X)) ≤ r DLin(�σ ′(X)‖Eσ ′∗ ◦ �σ ′(X)) ,

which is what needed to be proved. ��

Comparison of entropy productions We are now interested in comparing the entropy pro-
ductions of Lσ and Lσ ′ . In this section we use the double operator integral notation from
Sect. 2, in particular the definition of [�σ (X)]−1ω j

.

Proposition 4.3 In the above notations, for any X ≥ 0:

EPLσ ′ (�σ ′(X)) ≤ max
i∈I,k

λ
(i)′
k

λ
(i)
k

max
j

e|ω j−ν j |/2 EPLσ (�σ (X)) .

Proof Using the expression derived in 2.11 for the entropy production for non-normalized
states, we find for any positive operator X ∈ B(H):

EPLσ (�σ (X)) =
∑
j∈J

〈�σ (δA j (X)), [�σ (X)]−1ω j
(�σ (δA j (X)))〉HS

≥ min
j

e−|ω j−ν j |/2 ∑
j∈J

〈�σ (δA j (X)), [�σ (X)]−1ν j
(�σ (δA j (X)))〉HS

where we used that, by definition [ρ]ω j ≤ max j e|ω j−ν j |/2 [ρ]ν j as self-adjoint operators

in 〈., .〉HS. Next, we observe that �(X) = 1
R�σ ′ ◦ �−1σ (X)) is a completely positive trace

preserving map for R := maxi∈I,k λ
(i)′
k /λ

(i)
k . Hence, given Y j := �σ (X) e−ν j /2 and Z j :=
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�σ (X) eν j /2, and Y ′j := �σ ′(X) e−ν j /2 and Z ′j := �σ ′(X) eν j /2:

R−1 EPLσ ′ (�σ ′(X)) = R−1
∑
j∈J
〈�σ ′(δA j (X)), [�σ ′(X)]−1ν j

(�σ ′(δA j (X)))〉HS

= R−1
∑
j∈J
〈�σ ′(δA j (X)), T

Y ′j ,Z ′j
l̃n

◦ �σ ′(δA j (X))〉HS

=
∑
j∈J
〈� ◦ �σ (δA j (X)), T �(Y j ),�(Z j )

l̃n
◦� ◦ �σ (δA j (X))〉HS

≤
∑
j∈J
〈�σ (δA j (X)), T Y j ,Z j

l̃n
◦ �σ (δA j (X))〉HS

=
∑
j∈J
〈�σ (δA j (X)), [�σ (X)]−1ν j

�σ (δA j (X)))〉HS .

The inequality in the calculation above follows from the version of Lieb’s concavity stated
as Theorem 5 of [27]. The Proposition follows from this Equation and the first in the proof.

��
Proof of Theorem 4.1 Combine the previous two propositions as in the proof of Theorem 3.1.

��

4.2 Perturbing the Logarithmic Sobolev Inequality

The above Holley–Stroock argument can be easily adapted to the setting of the logarithmic
Sobolev inequality. Such an inequality was shown to provide similar decoherence times as
the MLSI in the primitive [30, 40, 47] and non-primitive [3] settings.

Theorem 4.4 Let Lσ and Lσ ′ be defined as in Sect.4.1. Assume that Lσ ′ satisfies LSI with
constants (c′, d ′). Then, Lσ satisfies LSI with constants (c, d) such that

c ≤ max
i∈I,k

λ
(i)
k

λ
(i)′
k

max
i∈I,k

λ
(i)′
k

λ
(i)
k

max
j∈J e|ω j−ν j |/2 c′ , d ≤ max

i∈I,k

λ
(i)
k

λ
(i)′
k

max
i∈I,k

λ
(i)′
k

λ
(i)
k

d ′ .

Proof Given X ≥ 0, the entropic term on the left-hand side of LSI(c, d) is taken care of the
exact same way as in Proposition 4.2:

DLin(�σ (X)||Eσ∗ ◦ �σ (X)) ≤ max
i∈I,k

λ
(i)
k

λ
(i)′
k

DLin(�σ ′(X)||Eσ ′∗ ◦ �σ ′(X)) .

Next, by assumption and homogeneity of the LSI, we have that

DLin(�σ ′(X)||Eσ ′∗ ◦ �σ ′(X)) ≤ c′ ELσ ′ (σ
′− 1

4 �σ ′(X)
1
2 σ

′− 1
4 )+ d ′ ‖σ ′− 1

4 �σ ′(X)
1
2 σ

′− 1
4 ‖2

L2(σ ′) .

First, notice that

‖σ ′ −1
4 �σ ′(X)

1
2 σ

′ −1
4 ‖2

L2(σ ′) = Tr(σ ′X) ≤ max
i∈I,k

λ
(i)′
k

λ
(i)
k

Tr(σ X)

= max
i∈I,k

λ
(i)′
k

λ
(i)
k

‖σ −1
4 �σ (X)

1
2 σ

−1
4 ‖2

L2(σ ) ,
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which directly gives the expected upper bound on d . For c, we control the Dirichlet form in
a way that is completely analogous to what we did for the entropy production in the proof of
Proposition 4.3: we have

ELσ ′ (σ
′− 1

4 �σ ′(X)
1
2 σ

′− 1
4 ) =

∑
j∈J

〈CY ′j , Z ′j
A j

, T
Y ′j , Z ′j
f̃ 21/2

(C
Yj , Z ′j
A j

)〉HS

=
∑
j∈J

〈�σ ′(δA j (X)), T
Y ′j , Z ′j
f̃ 21/2

(�σ ′(δA j (X)))〉HS ,

where Y ′j := e
ν j
2 �σ ′(X), Z ′j := e−

ν j
2 �σ ′(X) and f1/2 : x �→ x1/2. We conclude by first

noticing that

T e
ν j
2 X̃ ,e−

ν j
2 X̃

f̃ 21/2
≤ max

j∈J e|ν j−ω j |/2 T e
ω j
2 X̃ ,e−

ω j
2 X̃

f̃ 21/2

and by invoking Theorem 5 of [27] in the same way as we did in Proposition 4.3. ��

5 Strong Data Processing Inequality

In this section, we adapt the proof of Sect. 3 to the discrete time setting. Let �∗ : T1(H) →
T1(H) be a quantum channel. Assume that �∗ has a full-rank invariant state σ , and that the
following detailed balance condition holds for its dual map �: for all X , Y ∈ B(H),

Tr(σ �(X)∗Y ) = Tr(σ X∗�(Y )) . (5.1)

Itwas shown in [7] that�has the followingKrausdecomposition�(X) := ∑
j∈J λ j K j XK ∗

j
for some normalization constants λ j > 0, and where the Kraus operators {K j } = {K ∗

j } sat-
isfy σK j = e−ω j K jσ , ω j ∈ R. The normalization constants are defined in such a way that
the map �0 defined by

�0(X) =
∑
j∈J

K ∗
j X K j (5.2)

is unital. It is easy to see that the choice λ j = eω j works. Therefore, we have

�(X) =
∑
j∈J

eω j K j XK ∗
j . (5.3)

Now, in complete analogy with the continuous time setting, there exists a conditional expec-
tation, call it E , onto the fixed point algebra F(�) := {X ∈ B(H) : �(X) = X}, such
that

�n →
n→∞ E .

In this section, we are interested in estimating a particular form of the strong data processing
inequality (SDPI) constant c(�), in our case the largest constant c such that for any ρ ≥ 0,

DLin(�∗(ρ)‖E∗(ρ)) ≤ cDLin(ρ‖E∗(ρ)) .

By the data processing inequality, and since�∗◦E∗ = E∗, c ≤ 1 necessarily.Moreover, when
�∗ is unital, the constant c can be estimated in terms of the logarithmic Sobolev constant of a
related quantumMarkov semigroup, see [39]. Now, a direct adaptation of the Holley–Stroock
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argument of Sect. 3 allows us to reduce to this setting. For sake of simplicity, we state our
result in the primitive case so that σ is the unique invariant state of �:

Proposition 5.1 Let �∗ be a primitive quantum channel of unique invariant state σ and
satisfying Equation (5.1), and let �0 be the corresponding unital channel defined as in
Equation (5.2). Then,

c(�) ≤ min{1, ‖σ‖∞ ‖σ−1‖∞ c(�0)} .
Proof First of all, we notice that �∗ ◦ �σ = �σ ◦�0. Indeed:

�σ ◦�0(X) = σ
1
2

∑
j∈J

K ∗
j X K jσ

1
2 =

∑
j∈J

eω j K ∗
j �σ (X)K j = �∗(�σ (X)) .

Then, given any ρ := �σ (X) ≥ 0,

DLin(�∗(ρ)‖σ) ≤ DLinD(�∗(ρ)‖E∗(X)/dH)

= DLin(�σ ◦�0(X)‖�σ (E0(X)))

≤ ‖σ‖∞ DLin(�0(X)‖E0(X))

≤ ‖σ‖∞ c(�0)DLin(X‖E0(X))

≤ ‖σ‖∞ c(�0)DLin(X‖1)
= ‖σ‖∞ c(�0) DLin(�

−1
σ (ρ)‖�−1σ (σ ))

≤ ‖σ‖∞ ‖σ−1‖∞ c(�0) DLin(ρ‖σ) .

where the first and fourth inequalities follow from Lemma 3.4, whereas the second and last
inequalities follow the same way as in Proposition 3.5. ��

In [36], Miclo devised a technique to estimate the SDPI constant of a doubly stochastic,
primitive Markov chain in terms of the logarithmic Sobolev inequality of a corresponding
Markov semigroup. This result was later generalized in [44]. An extension to the tracial quan-
tum setting was recently provided in [39]. Combining their result with our Proposition 5.1,
we arrive at the following corollary. Given a unital, self-adjoint quantumMarkov semigroup
(e−tL0)t≥0, its logarithmic Sobolev constant is defined as

α2(L0) := inf
X>0

1
d 〈X ,L0(X)〉HS

Tr
(
X2

d ln X2
)
− Tr

(
X2

d

)
ln Tr

(
X2

d

) .

Corollary 5.2 Let �,�0 be defined as in (5.1) and assume that �0 is primitive. Then,

c(�) ≤ min{‖σ‖∞ ‖σ−1‖∞ , 1} .
Proof Theorem 4.2 in [39] estimates c0 ≤ (1 − α2(�

2
0 − id)) in this case, as their result

shows a strong data processing inequality for the case in which the fixed point subspace is
spanned by the completely mixed state. The bound then follows Proposition 5.1. ��

6 Preparation of Mixed Densities

In this section our goal is to identify certain quantum Markov semigroups that can be used
to prepare a given mixed state and satisfy CLSI estimates. While decoherence is an impor-
tant problem for which CLSI estimates may seem to paint a pessimistic picture, fast decay
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could be optimistic when one hopes to generate certain states. Though CLSI for symmetric
semigroups already yields strong bounds on the preparation times of states with completely
mixed or dephased components, the ability to prepare thermal and other non-maximal mix-
tures is far more general and useful. Furthermore, these techniques allow us to study thermal
equilibration and extend decoherence estimates to not just unital noise but to processes that
decay states toward biased mixtures.

CLSI estimates will allow us to estimate the waiting time for a good approximation of the
state. As the current work considers mixed fixed point states, our results complement those
of [31]. For the rest of this section we will assume that

σ =
m∑

k=1
σk Pk

is a full-rank state on an n-dimensional Hilbert space, the Pk are the projections onto
eigenspaces.
Eigenvalues of multiplicity one/state transition graphs Here we assume in addition that
Tr(Pk) = 1. Following [13], we know that the operators A j are eigenvectors of the mod-
ular operator �σ . In this particular case, these are given by the matrix units Ers := |r〉〈s|
corresponding to a subset of graph edges E ⊂ {1, ...,m}2. Hence we may think of such
semigroups as corresponding to a graph representing transitions between quantum states in
the given basis. One may find analogies between graph-based Lindbladians and graph Lapla-
cians as studied in the classical literature, though such are not necessary to understand the
examples we consider here. We may also choose

Ars = χrs Ers and Asr = χrs Esr ,

given some arbitrary constants χrs such that χrs = χsr . The Bohr frequencies are given by
�σ (Ers) = σr

σs
Ers and hence ωrs = ln σs − ln σr . Therefore the generator of the semigroup

is given by

LE (X) =
∑
rs∈E

|χrs |2
((σr

σs

)1/2
(Ess X − Esr X Ers)+

(σs

σr

)1/2
(XErr − Ers X Esr )

)
.

(6.1)
Note that both terms are necessary for LE to be the generator of a semigroup and we assume
χrs �= 0.When the Bohr frequencies are all equal to 0, the corresponding generator is denoted
by LE0.

Definition 6.1 Let E ⊂ {(r , s)|1 ≤ r < s ≤ m} be a subset of edges and Ẽ = E ∪
{(s, r)|(r , s) ∈ E}. Then E is said to be irreducible if the graph with vertices {1, ...,m} and
edges Ẽ is connected.

Lemma 6.2 LE leaves the diagonal matrices 
m∞ ⊂ Mm with respect to the basis {|r〉}r
invariant. Moreover, if E is irreducible, then LE is primitive.

Proof For a diagonal matrix X we have

Ess X − Esr X Ers = (Xss − Xrr )Ess , XErr − Ers X Esr = (Xrr − Xss)Err .

Thus LE (
m∞) ⊂ 
m∞.
Next, let us define δrs(x) = [Ers, x]. Thanks to Lemma (2.1) we note that LE (X) = 0

if and only if [Ers, X ] = 0 for all (r , s) ∈ Ẽ . Since the graph is irreducible, we can find a
chain (t, t1), (t1, t2), ..., (tk , v) connecting any t and v and write

Etv = Ett1 Et1t2 · · · Etkv .
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Thus X commutes with all matrix units and hence is a multiple of the identity. ��
In the following we will assume that χrs = 1 for all r , s.

Remark 6.3 Since the initial version of this paper, the results of [25] showed that for every irre-
ducible E , LE0 satisfies the CLSI. For the complete graph, i.e., when all edges are included,
we see that

LE0(X) = 2m
(
X − 1

m

m∑
k=1

Xkk 1
)
.

This semigroup directly replaces the input state by the fixed point in convex combination. As
in [2], we deduce that αCLSI(LE0) ≥ 2m. For the cyclic graph E = {( j, j + 1)} we know
that αCLSI(LE0) ≥ c

m2 for some universal constant c via the results of [33].

Corollary 6.4 Let E ⊂ {1, ...,m}2 be an irreducible graph with CLSI constant αCLSI(LE0).
Assume further that σ = ∑m

k=1 σk |k〉〈k| is nondegenerate. Then the CLSI constant of LE

satisfies

αCLSI(LE0) ≤ max
kl

σk

σl
max

(rs)∈Ẽ

(σs

σr

)1/2
αCLSI(LE ) .

Proof This follows directly from Theorem 3.1 and Lemma 6.2. ��
Remark 6.5 For Lindblad operators with coefficients χrs , we obtain a similar result. Similar
generators were considered in [33].

Eigenvalues of larger multiplicity and locality We will now extend Corollary (6.4) to the
general case following the same procedure. Recalling that σ = ∑

k σk Pk , let us define the
subspaces Hk = PkH and write

{1, ..., n} =
⋃
k

Ik ,

where each subset Ik corresponds to the eigenspaceHk . We will also assume that the eigen-
values σk of σ are defined in decreasing order. Then we choose edges E ⊂ {1, ..., n}2 and
consider

LE (X) =
∑

(r ,s)∈E

(
e−ωrs/2(Ess X − Esr X Ers)+ eωrs/2(XErr − Ers X Esr )

)
, (6.2)

where

e−ωrs/2 =
⎧⎨
⎩
0 if there exists a k such that r , s ∈ Ik(

σk
σ j

)1/2
if there exists k �= j such that r ∈ Ik, s ∈ I j .

Corollary 6.6 Let E be an irreducible graph and σ = ∑
k σk Pk. Then the semigroup LE

satisfies CLSI and

αCLSI(LE0) ≤ max
k,l

σk

σl
max

Ik×I j∩Ẽ �=0

(σk

σl

)1/2
αCLSI(LE ) .
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Note here that the graph structure is by no means necessary. In particular, we could use
any nice set of generators to produce primitive semigroups in B(Hk). Moreover, once this is
achieved we just need sufficiently many links Akj ∈ B(Hk,H j ) to guarantee primitivity of
L0.

We assume now that H⊗d is a d-partite system, and denote by Hk the eigensubspaces of
σ ∈ D(H⊗d). We say that a subspace K ⊂ H⊗d is l-local if there exists a permutation π :
{1, ..., d} → {1, ..., d} and a projection Q ∈ B(H⊗l) such that PK = �−1

π (Q⊗1H⊗(d−l) )�π ,
where�π is obtained by permuting registers:�π(h1⊗· · ·⊗hd) = hπ(1)⊗· · · hπ(d). Similarly
we say that an operator A is l-local if A ∼= B⊗1H⊗(d−l) holds up to a permutation of registers.
The same definition holds for superoperators.

Lemma 6.7 Assume that for all k the subspacesHk are l-local, and that for Ik × I j ∩ E the
space Hk +H j is l-local. Then LE∗ is l-local.

Proof We recall that

LE∗(ρ) =
∑

(r ,s)∈E
e−ωrs/2(A∗rs Arsρ − ArsρA

∗
rs)+ e+ωrs/2(ρArs A

∗
rs − A∗rsρArs) .

Here we may replace the matrix units by Ers ⊗ 1 for r ∈ Il and s ∈ Il up to permutation.
Similarly, we can stabilize the space 1⊗H⊗d−l using a Lindbladian

L =
d−l∑
i=1

1⊗ · · · ⊗ LH︸︷︷︸
i−th position

⊗ · · · ⊗ 1

for a primitive Lindbladian on B(H) given by commutators. Then LE0 and LE∗ will only
use local operators Ars and second order differential operators of the form [Arsρ, A∗rs]. ��
Remark 6.8 1) The semigroups (Pt = e−tL0)t≥0 for unital L0 can be obtained in the form
Pt (X) = E[U∗

t XUt ] for some random unitaries Ut . The approximation of e−tLE∗ ≈ 1 −
tLE∗ with unitary operations will be investigated in a forthcoming publication.

2) Nevertheless in the local situation operators Ars do not really depend on the state per
se, just on its eigen-projections. The Bohr-frequencies however, drive the QMS specifically
in σ .

6.1 Estimating Rates of Thermal Equilibration

A system in contact with a heat bath at fixed temperature will decay toward a Gibbs state
given by

σβ = e−βH

Zβ

= 1

Zβ

m∑
k=1

e−βEk |k〉〈k| = 1

Zβ

∑
E∈sp(H)

e−βE
∑

k:Ek=E

|k〉〈k| , (6.3)

where H is the correspondingHamiltonian,β is the unitless inverse temperature, and energies
are indexed in increasing order. Here the last expression explicitly separates the sum over
possibly degenerate energies. The partition function Zβ = ∑

k exp(−βEk) normalizes the
probabilities.

In practice, we often expect matter qubits to decay toward a low-temperature thermal
state. On the preparation side, we may wish to heat or cool a system to a desired temperature.
Directly following Theorem 3.1,
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Corollary 6.9 Let ωβ be a thermal state as in Equation (6.3) and the fixed point of QMS
(Pt )t≥0 generated by Lindbladian L with m energy levels 0 = E1 < E2 < ... < Em. Let L0

be the corresponding self-adjoint Lindbladian. Then

αCLSI(L0) ≤ eβEm max
j

eβ(E j+1−E j )/2 αCLSI(L) . (6.4)

The completely mixed state is equivalent to the infinite temperature Gibbs state σ0, so we
might think of the CLSI constant comparison as perturbing the infinite-temperature limit.
With a finite maximum energy and for temperatures substantially above that scale, this CLSI
constant is close to that for decay toward complete mixture.

In general, our CLSI constant estimate depends exponentially on the largest energy scale
and becomes trivial with an infinite spectrum. This appears to be not a flaw of the estimate, but
a property of the relative entropy. When high-energy elements of the Gibbs state are close
to 0, even small fluctuations into the high-energy regime can result in enormous relative
entropy. In thermodynamics, a usual solution to relative entropy blowup on rare states is
to work with smoothed relative entropies [21], which discount contributions from highly
unlikely configurations. While it is beyond the scope of this paper to fully formulate CLSI
for smoothed relative entropy, we may nonetheless consider an analogous approach for states
that rarely occur.

A simple strategy is to replace the Gibbs state by

σ̃ = 1

Z̃β

( l−1∑
k=1

e−βEk |k〉〈k| +
m∑
k=l

e−βEl |k〉〈k|
)

, (6.5)

for which the associated Lindbladian L̃ has

αCLSI(L0) ≤ eβEl max
j≤l e

β(E j+1−E j )/2 αCLSI(L̃) .

Physically, this is equivalent to artificially compressing high energies to a single, degenerate
level.We do not claim that this accurately represents the high-energy parts of the thermal state
or decay of states with substantial support above El . Rather, L̃ is an example of a Lindbladian
with the same transitions as L and similar low-energy behavior at short timescales. It hence
naturally has the same locality properties.

The distance ‖σβ − σ̃‖1 increases with the value of E j+1 and higher levels. We can
overestimate it by assuming El+1 = ∞, as though σβ had no support in the high-energy
space. We can easily check that |Z̃β − Zβ | ≤ (m − l)e−βEl , so ‖σβ − (Zβ/Z̃β)σβ‖1 ≤
(m − l)e−βEl /Z̃β . Similarly, ‖(Zβ/Z̃β)σβ − σ̃‖1 ≤ (m − l)e−βEl /Z̃β . Hence

‖σ̃ − σβ‖1 ≤ 2

Z̃β

(m − l)e−βEl ,

which decreases exponentially with El .
Estimating rates of thermal equilibration is an active area of research. The techniques

of this paper allow one to directly transfer estimates from the infinite to finite temperature
setting.
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