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Abstracts: Past assessments of the global carbon balance have shown to have high uncertainty 25 

particularly in the Mainland Southeast Asia (MSEA) owing to the increasing climate extremes and 26 

land use changes. Recently, remotely sensed solar-induced chlorophyll fluorescence (SIF) and 27 

near-infrared reflectance of vegetation (NIRv) have been found to have great potential to assess 28 

the dynamics of vegetation gross primary production (GPP). Using flux tower GPP from two 29 

rubber plantation and one natural forest sites, our study assessed the utility of SIF and NIRv to 30 



2 

 

detect GPP and drought stress for these two major land uses in this tropical monsoon region, and 31 

the underlying mechanistic link among SIF, NIRv, and GPP based on path analysis. The results 32 

indicate that the native SIF from OCO-2 satellite and its two derived finer-resolution SIF products 33 

(i.e., GOSIF and 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005) outperformed the normalized difference vegetation index (NDVI) 34 

and the enhanced vegetation index (EVI) in detecting GPP and drought effects at the rubber 35 

plantation sites. Although the young natural forest exhibited much lower EVI and NIRv, it had 36 

comparable magnitude of GPP to the rubber plantations, which was captured by SIF. Path analysis 37 

shows that the SIF-GPP relationship was mainly controlled by NIRv, which represents the canopy 38 

structural effects including both the absorption and scattering traits. In line with site-scale analysis, 39 

the regional patterns indicated higher consistency between SIF and NIRv than EVI for the tropical 40 

forests. The quantum yield of SIF (∅𝐹) was sensitive to precipitation anomaly, while its negative 41 

effect on photosynthesis was offset by high PAR under drought. Both tropical deciduous forest 42 

and plantation forest were more vulnerable to drought than evergreen forest. We highlight the 43 

usage of NIRv and SIF for monitoring canopy structure and photosynthesis, respectively, and the 44 

needs of higher-resolution observations to reduce the uncertainties in quantifying SIF-GPP 45 

relationships.  46 

Keywords: Tropical deciduous forest, Plantation forest, Sun-induced fluorescence, Gross primary 47 

production, Drought  48 

1 Introduction  49 

Tropical deciduous forests (TDFs) are typically found in climates characterized by 50 

alternating dry and rainy seasons (Olson et al., 2001) and low seasonal temperature variability 51 

(U.S. DOE, 2012). As a major forest type in the tropics, TDFs play an important role in regulating 52 

the dynamics of the tropical carbon cycle (Kaewthongrach et al., 2020; Portillo-Quintero et al., 53 
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2015; Wohlfart et al., 2014). However, they have been largely influenced by climate change and 54 

land use changes in Mainland Southeast Asia (MSEA) (Wohlfart et al., 2014). Projected global 55 

warming and shifts in precipitation patterns to more extreme events and severe droughts could lead 56 

to a significant amount of carbon emissions from the MSEA region into the atmosphere (Kondo 57 

et al., 2018; Liu et al., 2017; Manomaiphiboon et al., 2013). In addition, the MSEA has become a 58 

global hotspot of deforestation for conversion to agriculture (Grogan et al., 2019; Hurni and Fox, 59 

2018). Because of increased global market incentives and economic profits, tree-based crops, 60 

especially rubber (Hevea brasiliensis) plantations, have been established across the region 61 

(Ahrends et al., 2015; Grogan et al., 2019; Kaewthongrach et al., 2020) threatening TDFs, which 62 

have low structural complexity and biomass to clear and comfortable environmental conditions to 63 

develop plantations (Portillo-Quintero et al., 2015). Assessing the impacts of these disturbances 64 

on forest production is essential for ensuring productive agriculture and understanding the 65 

terrestrial carbon budget, yet relevant studies are still limited in this region.  66 

The eddy covariance (EC) technique is commonly used to estimate ecosystem gross 67 

primary production (GPP) for investigating ecosystem-atmosphere interactions (Baldocchi, 2003; 68 

Reichstein et al., 2013) and validating land surface models (Baldocchi, 2020; Thorn et al., 2015). 69 

Based on the EC technique, a study found a mean ± standard error annual GPP of 2156 ± 186 g C 70 

m-2 yr-1 of two evergreen forests and one plantation forest in the tropical region of China (Chen et 71 

al., 2019). In contrast, annual GPP in two primary evergreen forest in Thailand and Malaysia was 72 

3200 – 3960 g C m-2 yr-1 (Adachi et al., 2011). A 33-year-old rubber plantation showed 73 

significantly higher carbon sequestration (790 g C m-2 yr-1) than a primary evergreen forest (359 g 74 

C m-2 yr-1) in Yunnan, China, while this result does not mean rubber plantations can offset carbon 75 

release caused by deforestation since the whole life cycle of the forests is not captured (Song et al., 76 
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2014). The observations at a rubber flux site in Hainan Island, China, indicated the vulnerability 77 

of rubber GPP to the flash drought varied across the seasons (Wei et al, 2022). A TDF site in 78 

MSEA showed a 9.6% decrease of GPP by the prolonged drought in 2015/2016 (Kaewthongrach 79 

et al., 2020). Based on three forest sites, Wang et al. (2022) found a slightly higher annual GPP in 80 

a young secondary deciduous forest than rubber plantations and different forest responses to this 81 

prolonged drought across the seasons. Different tropical natural forests also had distinct strategy 82 

(i.e., water stress or light benefits) on carbon assimilation to adapt to limited water availability 83 

under dry conditions (Yang et al., 2022). Large uncertainties in carbon dynamics and responses to 84 

drought still exist due to complexity of stand age, tree density, and environmental conditions and 85 

the lack of long-term data and representative samples over space. At present, the distribution of 86 

EC flux towers is still sparse in the tropics, particularly in MSEA, which makes it difficult to 87 

examine forest GPP variations at a larger scale. Techniques that can be used to monitor the regional 88 

forest production and condition are thus urgently needed. 89 

In recent years, satellite observations of solar-induced chlorophyll fluorescence (SIF) have 90 

been widely used to estimate vegetation photosynthesis due to its direct link to vegetation 91 

dynamics of photosynthesis (Frankenberg et al., 2011; Xiao et al., 2019). Satellite observed SIF 92 

from the Greenhouse Gases Observing Satellite (GOSAT, 10 km in diameter) and the Global 93 

Ozone Monitoring Experiment 2 (GOME-2, 80×40 km2) has shown strong empirical relationships 94 

to GPP estimates at large scales (Guan et al., 2016; Joiner et al., 2014). The release of the finer-95 

resolution (1.3 × 2.25 km2) SIF products from NASA's Orbiting Carbon Observatory-2 (OCO-2) 96 

satellite  makes it possible to directly link SIF to EC-based GPP (GPPEC) at a finer scale 97 

(Frankenberg et al., 2014; Li et al., 2018a, 2018b; Sun et al., 2017; Verma et al., 2017; Wood et 98 

al., 2017). To overcome the spatial gaps and low temporal resolution of OCO-2 SIF, global 99 
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contiguous gridded SIF datasets with finer resolution (0.05º) such as GOSIF (Li and Xiao, 2019) 100 

and 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 (Yu et al. 2019) were reconstructed by using machine learning methods. Moreover, 101 

the physiological link between SIF and GPP also implies the ability of SIF to detect the impact of 102 

droughts on vegetation photosynthesis and its rapid responses to water and heat stresses at a 103 

regional scale. GOME-2 SIF revealed drought onset mechanisms in the US (Sun et al., 2015) and 104 

showed different responses of mixed forest, crops and grasslands to the 2010 Russian drought 105 

(Yoshida et al., 2015).Under heat stress, winter wheat in India had a larger decrease in SIF 106 

compared to normalized difference vegetation index (NDVI) and the enhanced vegetation index 107 

(EVI) (Song et al., 2018) and OCO-2 SIF showed a more significant and earlier response of 108 

Australian dryland vegetation than GOME-2 SIF (Qiu et al., 2020). Additionally, GOSIF captured 109 

ecosystem responses to soil moisture anomalies during the 2018 US drought (Li et al., 2020) and 110 

showed a two-month lag to soil moisture anomaly in northern China (T. Zhang et al., 2023). In 111 

MSEA, Qian et al. (2019) found a widespread SIF decline due to the prolonged drought during the 112 

2015/2016 El Niño, while the regional drought impacts on TDFs, which are important to the carbon 113 

cycle  and highly mixed with other land uses (Siyum, 2020), have never been investigated. It is 114 

necessary to examine the performance of SIF products for assessing photosynthesis variations in 115 

response to drought in TDFs before considering their usage at a continental scale.  116 

Uncertainties exist in the SIF-GPP relationship due to the lack of clear mechanistic 117 

explanation of the relative contributions of canopy structural and physiological effects to SIF and 118 

how they relate to photosynthetic light use efficiency (𝐿𝑈𝐸𝑝), especially under drought (Zhang et 119 

al., 2020). Light energy absorbed by a leaf that is allocated to photosystem II (PSII) is subject to 120 

competitive dissipation via three pathways: photochemistry, non-photochemical quenching (NPQ) 121 

and fluorescence (Govindjee, 1995). Drought stress can reduce carbon assimilation by decreasing 122 
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stomatal conductance and thus CO2 availability within leaves (Chaves, 1991; Flexas et al., 2004), 123 

or changing photosynthetic metabolism with the increase of  heat dissipation in the form of non-124 

photochemical quenching (Müller et al., 2001; Tezara et al., 1999). Additionally, drought stress 125 

can cause long-term changes in canopy structure, such as leaf area index (LAI), leaf angle 126 

distribution and leaf clumping, all of which affect both canopy light absorption and scattering of 127 

the emitted SIF (Parazoo et al., 2020). To better estimate the overall canopy structural effects, 128 

NIRv was recently developed and found to have strong correlations to SIF and GPP for various 129 

biomes  (Badgley et al., 2019, 2017; Wang et al., 2020). Therefore, disentangling the relative 130 

contributions from different components (canopy structure or physiology) to the integrated canopy 131 

information under various environmental conditions will improve our mechanistic understanding 132 

of SIF-GPP relationship.  133 

Based on multiple remotely sensed photosynthesis proxies, including native OCO-2 SIF 134 

(SIFnative), GOSIF, 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005, NDVI, EVI, and NIRv, and daily GPPEC from two mature rubber 135 

plantations and one young natural forest sites, this study aims to: (1) evaluate the performances of 136 

remotely sensed proxies in estimating forest GPP and stress induced by the prolonged and severe 137 

drought in 2015/2016; (2) disentangle the structural and physiological proportions of SIF to GPP; 138 

and (3) investigate the spatial pattern of forest photosynthesis in MSEA and different forest 139 

responses to drought at a regional scale.  140 

2 Materials and Methods 141 

2.1 Study Region and Ground-based GPP Estimates 142 

MSEA is a tropical region characterized as monsoonal with a mean annual air temperature 143 

of  25 ± 2 °C (Ian et al., 2020). There is a pronounced rainy season (May-October) influenced by 144 

the Southwest Asian monsoon (Chabangborn, 2014).We obtained the 200-m land cover map of 145 



7 

 

MSEA in 2015, which was developed based on Landsat and Moderate Resolution Imaging 146 

Spectroradiometer (MODIS) legacy collections and machine learning methods (Saah et al., 2020), 147 

from the Servir-Mekong’s Regional Land Cover Monitoring System 148 

(https://www.landcovermapping.org/en/landcover/). According to this map, the dominant land 149 

cover types in MSEA are cropland (37%), natural evergreen forest (25%), natural deciduous forest 150 

(14%) and recently increased plantation forest (18%).  151 

We obtained ground-based GPP estimates from EC flux towers in three TDFs, including 152 

two mature rubber monocultures and one secondary natural forest, along the Gulf of Thailand (Fig. 153 

1). The southern rubber (SR) site was in a traditional rubber plantation area in southern Thailand 154 

where the weather condition is classified under the Köppen system as the tropical equatorial 155 

climate. The northern rubber (NR) site was 607 km north of the SR site, an area regarded as 156 

marginal for rubber growth owing to lower precipitation (Table 1). in the tropical savanna climate. 157 

In the same climate , the natural forest (NF) site was covered by a secondary-growth young, dry 158 

dipterocarp forest dominated by deciduous or semi-deciduous tree species from the 159 

Dipterocarpaceae family (Kaewthongrach et al., 2019). Dipterocarp forest is a widely distributed 160 

forest type over the mainland but has been increasingly threatened by deforestation and plantation 161 

expansion in past decades (Wohlfart et al., 2014). The NF is dominated by deciduous or semi-162 

deciduous tree species, mainly from the Dipterocarpaceae family (Kaewthongrach et al., 2019). In 163 

this forest, leaf senescence typically occurs between December and February, and the emergence 164 

of new leaves in March-April (Kaewthongrach et al., 2020, 2019), while in rubber tree plantations 165 

defoliation and refoliation generally occur in January and February-March, respectively (Wang et 166 

al., 2022; Xiao et al., 2021). The two rubber sites were surrounded by other similar rubber tree 167 

plantations and their canopies were significantly higher than those at the NF site (Table 1).  168 

https://www.landcovermapping.org/en/landcover/
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 169 
Figure 1. Land cover map of the Mainland Southeast Asia (MSEA) and the location of three eddy 170 

covariance (EC) flux sites selected in this study. The map was obtained from Servir-Mekong 171 

(https://www.landcovermapping.org/en/landcover/). Blue circles: the Northern Rubber (NR) and 172 

the Southern Rubber (SR) sites. Cyan circle: the Natural Forest (NF) site.   173 

 174 

Table 1. General information of the canopy, including canopy height (m) in the year of observation, 175 

tree age, occupied area, dominant species, mean annual temperature (MAT), mean annual 176 

precipitation (MAP), 5-cm soil moisture (SM), and observation period in the study period at the 177 

northern rubber site (NR), the natural forest site (NF), and the southern rubber site (SR), 178 

respectively.  179 

Site Northern Rubber (NR) Natural Forest (NF) Southern Rubber (SR) 

Position 13°34'N, 101°28'E  13°35'N, 99°30'E  8°19'N, 99°35'E  

Elevation (a.s.l.) 69 m  118 m  200 m  

Canopy height (m) 20.0 (2013) 7.0 (2015) 22.1 (2019) 
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Age (years) 27 17–19 19 

Area (ha) 8  89 16  

Dominant species Hevea brasiliensis  Dipterocarpus obtusifolius 

Teijsm. Ex Miq, Shorea 

siamensis Miq., Shorea 

obtusa Wall., Shorea 

roxburghii G. Don, and 

Sindora siamensis Teijsm. & 

Miq 

Hevea brasiliensis  

MAT (°C) 27.42 ± 1.68  27.28 ± 2.15  26.43 ± 1.07  

MAP (mm) 1312 ± 519  1055 ± 192  3744 ± 463  

SM (m3 m-3) 0.20 ± 0.02 0.08 ± 0.01 0.33 ± 0.01 

Observation period 2015 – 2018 2015 – 2017 2017 – 2018 

GPP was inferred by partitioning NEE using the night-time based (Reichstein et al., 2005) 180 

and day-time based (Lasslop et al., 2010) methods. To match the temporal resolution of OCO-2 181 

SIF products, the daily GPP data smoothed using a 16-day moving average for the days of SIF 182 

products were selected to detect the daily SIF-GPP relationships. Additional site information and 183 

details on how GPP was derived from the EC measurements can be found in Wang et al., (2022).  184 

2.2 OCO-2 SIF products 185 

We used SIF products derived from observations made by the OCO-2 satellite. Far red SIF 186 

is retrieved from high resolution spectral measurements of the O2-A band using two solar 187 

Fraunhofer lines at 757 and 771 nm (Sun et al., 2018).  The typical repeat cycle of OCO-2 is 188 

approximately 16 days, and the nominal spatial resolution is 1.3 km × 2.25 km. We used the SIF 189 

Lite product (V8r), and calculated 𝑆𝐼𝐹𝑛𝑎𝑡𝑖𝑣𝑒 for 2015 to 2018 at each site as the average of the SIF 190 
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at 757 nm and 1.5 times the SIF at 771 nm (Wood et al., 2017). Daily 𝑆𝐼𝐹𝑛𝑎𝑡𝑖𝑣𝑒 was converted 191 

from the instantaneous observations by applying a daily correction factor which accounts for the 192 

variations of solar zenith angle and length of the day at each location (Sun et al., 2018). To ensure 193 

representativeness of the relationships at each site, we selected nadir SIF retrievals that were within 194 

a 50 km radius of the respective flux towers, and for which the pixel had 70% land cover similarity 195 

according to the 200-m land cover map from Servir-Mekong (Fig. 1).  196 

The performance of daily 𝑆𝐼𝐹𝑛𝑎𝑡𝑖𝑣𝑒 at each site was compared with two derivative gridded 197 

contiguous products (i.e., GOSIF and 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005). GOSIF was developed by Li and Xiao (2019) 198 

and is produced at 0.05º and 8-day resolution (http://globalecology.unh.edu/). This product was 199 

generated by a Cubist regression tree model based on discrete OCO-2 SIF soundings, MODIS EVI, 200 

MODIS land cover type, and meteorological variables from MERRA-2. Global 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 201 

product is produced at 0.05º and 16-day resolution using an artificial neural network on the 202 

SIFnative,  MODIS reflectance and land cover (https://daac.ornl.gov/cgi-203 

bin/dsviewer.pl?ds_id=1696). We extracted GOSIF and 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 at the pixel covering each flux 204 

tower during the period from 2015 to 2018.  205 

2.3 MODIS Vegetation Indices  206 

NDVI, EVI, and NIRv were derived from the MODIS bidirectional reflectance distribution 207 

function (BRDF) corrected reflectance product (MCD43A4) at 500 m and 8-day resolution (Schaaf 208 

and Wang, 2015). To make VIs have comparable spatial resolution with the gridded SIF products, 209 

we averaged all pixels with high quality data within a 0.05º ×0.05º window centered at each flux 210 

tower. To avoid the potential bias induced by inappropriate interpolation, we used the original 211 

temporal resolution for each satellite product in the analysis.  212 



11 

 

2.4 Drought Identification 213 

The spatial pattern and duration of the drought 2015/2016 was determined using the monthly 214 

self-calibrating Palmer Drought Severity Index (scPDSI) for global land 215 

(https://crudata.uea.ac.uk/cru/data/drought/) from 1990 to 2018 at 0.5º spatial resolution based on 216 

the global Climate Research Unit (CRU) TS 4 dataset (Barichivich et al., 2021). The scPDSI is a 217 

variant of the PDSI (Palmer, 1965) that is calibrated to local climate and geographic information 218 

(Wells et al., 2004), and can thus be used to detect the long-term drought for different climate 219 

regimes (He et al., 2018; Trenberth et al., 2014; Van Der Schrier et al., 2013). According to Wells 220 

et al. (2004), the period with monthly scPDSI values less than -2 (sc-PDSI < -2) was considered 221 

under drought stress. The scPDSI values of the grid cell covering each site was extracted to 222 

determine the drought period and strength at the site scale. For the spatial analysis, we focused on 223 

the effects of long-term drought and only considered pixels with drought duration longer than 6 224 

months. In addition, the standard anomalies of monthly temperature and precipitation from 1990 225 

to 2018 at 0.5º spatial resolution from CRU TS v4 (Ian et al., 2020) were used to further interpret 226 

the drought event.  227 

2.5 SIF-GPP relationships 228 

The seasonal variations of daily SIFnative, GOSIF, 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 , NDVI, EVI, NIRv and 229 

GPPEC were compared to examine the performance of SIF and other satellite products in 230 

monitoring forest GPP variations and drought effects. The t-test was used to determine statistical 231 

significance between drought and non-drought conditions. Even though the GPP product from the 232 

MODIS (Running et al., 2004) has a high spatial resolution (500 m), it was not included in this 233 

study because there was no significant correlation between this product and EC GPP at our sites 234 

(P-value >0.01).  235 
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To further explore the mechanism of forest SIF-GPP relationship and disentangle the 236 

structural and physiological contributions of SIF to GPP, we conducted a path analysis (Li, 1975) 237 

on the basis of the LUE model. According to the LUE model (Monteith, 1977, 1972): 238 

𝐺𝑃𝑃 = 𝐴𝑃𝐴𝑅 ∙ 𝐿𝑈𝐸𝑝             (1) 239 

where APAR is the absorbed photosynthetically active radiation, which is the product of incident 240 

photosynthetically active radiation (PAR) and the fraction of the absorbed photosynthetically 241 

active radiation (𝑓𝑃𝐴𝑅). 𝑓𝑃𝐴𝑅 can be approximated by EVI (Xiao et al., 2004). 𝐿𝑈𝐸𝑝  is the 242 

photosynthetic LUE of the canopy, and is a bulk term that represents many processes (i.e., 243 

photochemical, nonphotochemical, kinetic, physiological, and diffusive transport) (Gu et al., 2019).  244 

Similarly, SIF observed above the canopy is related to APAR and can be expressed as: 245 

𝑆𝐼𝐹 = 𝐴𝑃𝐴𝑅 ∙ ∅𝐹 ∙  𝑓𝑒𝑠𝑐             (2)  246 

where ∅𝐹 is the quantum yield of SIF for the total canopy. 𝑓𝑒𝑠𝑐 is the escape probability of SIF 247 

photons that accounts for scattering and absorption of fluorescence photons within the canopy. 248 

Thus, GPP can be written as a function of SIF: 249 

𝐺𝑃𝑃 =
𝐿𝑈𝐸𝑝

∅𝐹∙𝑓𝑒𝑠𝑐
 𝑆𝐼𝐹             (3) 250 

𝐿𝑈𝐸𝑝

∅𝐹  𝑓𝑒𝑠𝑐
 represents the physiological nonlinearity between 𝐿𝑈𝐸𝑝  and ∅𝐹 ,  resulting from the 251 

saturating light response of photosynthesis at high light as the carboxylation is limited by stomata 252 

and mesophyll diffusion while a stronger tendency of SIF to keep increasing due to a lower 253 

sensitivity of SIF to light and the compensating effect of NPQ and photochemistry (Gu et al., 2019). 254 

Eq. 3 indicates that GPP is determined by SIF and the nonlinear term of 
𝐿𝑈𝐸𝑝

∅𝐹  𝑓𝑒𝑠𝑐
. Since 𝐿𝑈𝐸𝑝 varies 255 

with environmental conditions, and also with the canopy structure and illumination-viewing 256 
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geometries via 𝑓𝑒𝑠𝑐 (Hao et al., 2021), the canopy structure effect on 𝐿𝑈𝐸𝑝 is excluded by  
𝐿𝑈𝐸𝑝

𝑓𝑒𝑠𝑐
 257 

and linked only to the term of SIF in Eq. 3. According to Zeng et al. (2019), except for very low 258 

fractional vegetation cover, 𝑓𝑒𝑠𝑐 can be approximated as: 259 

𝑓𝑒𝑠𝑐 ≈
𝑁𝐼𝑅𝑣

𝑓𝑃𝐴𝑅
                       (4)  260 

Then, according to Eq. (2) and Eq. (4), 𝑆𝐼𝐹 can be written as: 261 

𝑆𝐼𝐹 ≈ 𝑃𝐴𝑅 ∙ ∅𝐹 ∙ 𝑁𝐼𝑅𝑣                  (5)  262 

where NIRv describes the integrated canopy structure effects of absorption and scattering (Dechant 263 

et al., 2022, 2020).   264 

In path analysis, direct effect refers to the relationship between two adjacent variables and 265 

indirect effect refers to the relationship between two variables that is mediated by one or more 266 

intervening variables. We designed the paths according to Eq. 3 and Eq. 5: NIRv, PAR and ∅𝐹 first 267 

influence SIF variations, and then SIF and the physiological nonlinearity between 𝐿𝑈𝐸𝑝 and ∅𝐹 268 

influence GPP variations. Based on the lavaan package (Rosseel, 2012) in R, the direct effects of 269 

NIRv, PAR, and ∅𝐹 on SIF, as well as the direct effects of SIF and 
𝐿𝑈𝐸𝑝

∅𝐹∙𝑓𝑒𝑠𝑐
 on GPP were calculated 270 

by the standardized path coefficients in path analysis. The indirect effects of NIRv PAR, and ∅𝐹 271 

on GPP via SIF were calculated by the product of the standardized coefficient between the 272 

corresponding factor and SIF and that between SIF and GPP, respectively.  273 

2.6 Regional analysis 274 

We first analyzed the spatial patterns of different remotely-sensed photosynthesis proxies 275 

and quantified their differences among multiple vegetation types in MSEA. Then, we examined 276 

the spatial changes (%) of these proxies induced by the prolonged drought for each pixel as the 277 



14 

 

difference between drought and non-drought conditions divided by the non-drought mean. To 278 

maintain the consistency between satellite products and their advantage of the relatively high 279 

spatial resolution, we used the aggregated 0.05º and monthly mean EVI, NIRv, GOSIF, and 280 

𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005, and the aggregated 0.5º and monthly mean SIFnative, for the spatial analysis. Only the 281 

pixels with the duration of drought (scPDIS<-2) longer than 6 months were considered to 282 

investigate the long-term drought impacts on different proxies among different vegetation types. 283 

3 Results  284 

3.1 Site-level relationships between GPP and remotely sensed photosynthesis proxies at the 285 

site scales  286 

3.1.1 Seasonal variations  287 

Daily variations of GPPEC and different remotely sensed photosynthesis proxies were 288 

shown in Fig. 2. The three sites exhibited different seasonality of photosynthesis, with larger 289 

amplitude of GPPEC and later dormancy period in the natural forest than in the rubber plantations. 290 

Overall, all the satellite products captured the seasonal cycles of photosynthesis in the TDFs and 291 

indicated significant linear relationships to GPPEC (R2 > 0.42, p-values < 0.05) with the equations 292 

and R2 of the linear regression models shown in Fig. 2. However, the rubber plantations showed 293 

lower GPPEC and SIF (Fig. 2a, 2c) while significantly higher VIs (i.e., NDVI, EVI and NIRv) than 294 

the young natural forest (Fig. 2b, 2f), leading to the larger intercepts in the linear regression models 295 

of GPPEC by VIs than SIF. In addition to the SIF (R2: 0.52 – 0.75), NIRv (R
2: 0.74 – 0.79) had 296 

substantially stronger correlations with GPPEC than NDVI or EVI (R2: 0.42 – 0.51) did for the 297 

rubber plantations, where NDVI and EVI were more susceptible to saturation and exhibited less 298 

capacity to show the seasonal peak in the rainy seasons. This phenomenon also occurred in GOSIF 299 

even though it (R2: 0.59 – 0.75) outperformed 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 (R2: 0.55 – 0.63) and SIFnative (R

2: 0.54 300 

– 0.65) in detecting the seasonal variability of GPPEC. For the young natural forest, NDVI and EVI 301 
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(R2 > 0.82) had stronger temporal consistency with GPPEC than NIRv (R
2=0.74) and SIF (R2: 0.52 302 

– 0.71). Overall, NIRv showed a strong and stable ability to estimate the seasonal variability of 303 

GPPEC within the ecosystem and SIF, especially GOSIF, outperformed VIs to indicate the GPPEC 304 

differences among multiple TDF ecosystems.  305 

 306 
Figure 2. Time series of daily GPPEC and GOSIF, 𝑆𝐼𝐹̅̅ ̅̅

𝑜̅𝑐𝑜2_005, SIFnative, NDVI, EVI, and NIRv 307 

from 2015 to 2018 at the Northern Rubber site (a,b), Natural Forest site (c,d), and the Southern 308 

Rubber site (e,f). Shaded areas represent the prolonged drought period from April 2015 to August 309 

2016, which was determined by sc-PDSI < -2 based on the long-term CRU dataset. 310 

 311 

3.1.2 Performance of modeled GPP in estimating drought effects  312 

A strong El Niño event (Burton et al., 2018) caused the NR and NF sites to suffer from 313 

prolonged and severe drought from April 2015 to August 2016 (Fig. 2). We used the modeled GPP 314 

from the linear regressions (Fig. 2) to examine the performance of different satellite products for 315 

estimating the drought effects on photosynthesis (Fig. 3). GPPEC in the dry season and the rainy 316 

season showed a significant (t-test, p-value < 0.05) decrease (18% and 10% at the NR site, and 33% 317 

and 18% at the NF site, respectively) by drought, which was successfully captured by SIF (Fig. 3a, 318 

3b). At the NR sites, particularly in the rainy season, the modeled GPP from SIF  except for SIFnative 319 

better estimated the drought-induced reduction (by 7%) than GPPEVI and GPPNIRv (by 1%). The 320 
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sparse observations of SIFnative when high GPPEC occurred resulted in underestimation of GPP in 321 

the rainy season. At the NF site, modeled GPP from EVI (2.24 g C m-2 day-1) and NIRv  (1.29 g C 322 

m-2 day-1) performed better in detecting the difference of GPPEC (2.30 g C m-2 day-1) between two 323 

drought conditions than that from SIF (-0. 25 – 0.31 g C m-2 day-1) in the rainy season. The enlarged 324 

inter-quartile ranges of NF GPPEC due to the drier condition were successfully captured by 325 

GPPGOSIF, GPPEVI and GPPNIRv. At the SR site, we had only two years of tower observations (2017-326 

2018) during non-drought condtions when the SR GPPEC amplitude was obviously less than that 327 

at the NR site.  The slight difference of mean GPPEC (1.64 g C m-2 day-1) between two seasons was 328 

better detected by GPPGOSIF (1.01 g C m-2 day-1) and GPPSIF005 (1.40 g C m-2 day-1) than GPPEVI 329 

(0.86 g C m-2 day-1) and GPPNIRv (0.83 g C m-2 day-1).  330 

 331 
Figure 3. Boxplots of daily GPPEC and modeled GPP by GOSIF, 𝑆𝐼𝐹̅̅ ̅̅

𝑜̅𝑐𝑜2_005, SIFnative, NDVI, EVI, 332 

and NIRv under non-drought and drought conditions in dry and rainy seasons at the Northern 333 

Rubber site (a), Natural Forest site (b), and Southern Rubber site (c). The boxplots depict the 25th 334 

and 75th percentiles (edges of the box), the maximum and minimum GPP (whiskers), the outliers 335 

(red plus) and the mean (central circle). The filled circle represents no significant difference 336 

between GPPEC and the corresponding modeled GPP (t-test, p-value>0.05). 337 

 338 

3.1.3 Contribution of canopy structure in SIF–GPP relationship 339 

Significant linear correlations were found between daily GPPEC and SIF products, as well 340 

as between SIF products and NIRv at all three study sites (Fig. 4). The higher R2 (>0.5) suggests a 341 

dominant role of SIF to explain GPP variations and that of NIRv to explain SIF. To better 342 

understand the SIF-GPP relationships, we used path analysis to compare the effects of NIRv and 343 
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other related factors (i.e., ∅𝐹, PAR, and 
𝐿𝑈𝐸𝑝

∅𝐹  𝑓𝑒𝑠𝑐
) in Fig. 5. Despite the presence of physiological 344 

nonlinearity between 𝐿𝑈𝐸𝑝 and ∅𝐹 at the seasonal scale, SIF performed well in estimating GPP 345 

variations with much higher effects (0.7-0.88) than the nonlinearity term (0.35-0.58). Consistent 346 

with Fig. 4, the higher indirect effects of NIRv (0.59-0.81) than PAR (0.01-0.11) and ∅𝐹 (0.27-347 

0.41) in path analysis revealed the primary contribution of canopy structure to link SIF and GPP 348 

at the NR and the NF sites (Fig. 5a, 5b). At the SR sites, GPP and NIRv had less variability (Fig. 349 

2) in the humid and warm condition, accompanied by an increased effect of 
𝐿𝑈𝐸𝑝

∅𝐹  𝑓𝑒𝑠𝑐
 (Fig. 5c). Even 350 

though the canopy structure is still a major factor to influence GPP via SIF, the indirect effects of 351 

PAR (0.24-0.48) and ∅𝐹 (0.57-0.63) became stronger at the SR site compared to the two northern 352 

sites. 353 

 354 
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Figure 4. Linear relationships between daily GOSIF, 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005, SIFnative, and GPP, and that 355 

between GOSIF, 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005, SIFnative, and NIRv at the Northern Rubber site (a,d), Natural Forest 356 

site (b,e), and the Southern Rubber site (c,f). Daily values in non-drought (o) and drought (+) 357 

conditions are shown separately. 358 

 359 

 360 

Figure 5. Comparison of the direct effects of SIF and 
𝐿𝑈𝐸𝑝

∅𝐹  𝑓𝑒𝑠𝑐
, and the indirect effects of NIRv, ∅𝐹 , 361 

and PAR on GPPEC via SIF based on path analysis at the Northern Rubber site (a), Natural Forest 362 

site (b), and Southern Rubber site (c).   363 

 364 

3.2 Remotely sensed photosynthesis at the regional scale 365 

3.2.1 Spatial pattern of vegetation photosynthesis 366 

The significant linear relationships between the satellite products and GPP at the site-level 367 

validate the usage of SIF and VI as photosynthesis proxies. At the regional scale, all the satellite 368 

products indicated that tropical forests had higher photosynthesis than croplands (Fig. 6) which 369 

are mainly located in the middle, northwest and northeast of MSEA (Fig. 1). Compared to other 370 

satellite products, mean EVI was apparently larger in the evergreen forest (0.78), the natural 371 

deciduous forest (0.69) and plantation forest (0.65) (Fig. 6f). Taking the two forest areas where 372 

the rubber sites were located as an example, both SIF and NIRv exhibited lower photosynthesis in 373 

the evergreen forest than in their adjacent plantation forest in these areas (shown by the black 374 

dashed-line boxes in Fig. 6a, b, c, e), which was opposite to EVI results (Fig. 6d). The difference 375 

between natural deciduous forest and plantation forest was positive in EVI (0.04) but not 376 

significant (t-test, p-value >0.05) in NIRv and GOSIF and was negative in 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 (-0.04) and 377 
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SIFnative, (-0.06) (Fig. 6f). Mean SIF for the forests sequentially decreased from GOSIF to 378 

𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 to SIFnative,.  379 

 380 
Figure 6. Spatial patterns of averaged GOSIF (a), 𝑆𝐼𝐹̅̅ ̅̅

𝑜̅𝑐𝑜2_005 (b), SIFnative (c), EVI (d), and NIRv 381 

(e) from August 2014 to August 2018 in MSEA, and their mean (+/- one standard deviation) for 382 

different vegetation types (f), including natural evergreen forest (EF), natural deciduous forest 383 

(DF), plantation forest (PF), cropland (CL), and all vegetation types (AV). Black dashed-line boxes 384 

highlight the forest areas with different spatial patterns between EVI and other proxies.  385 

 386 

3.2.2 Response of vegetation to drought 387 

According to scPDSI, the prolonged drought period occurred from September 2014 to 388 

August 2016, with significantly lower precipitation and higher temperature over the region (Fig. 389 

7a). The maximum negative standardized anomalies (less than -1.5) of precipitation occurred in 390 

the eastern MSEA (Fig. 7b). The positive temperature anomalies were substantial over the most 391 

region, especially in North Thailand with standardized anomalies of up to 1.5 (Fig. 7c). As a result, 392 
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a large region of MSEA from northwest to southeast suffered from the prolonged drought (Fig. 393 

7d). 394 

 395 

Figure 7. Spatiotemporal distributions of drought. (a) monthly standard anomalies (SA) of 396 

precipitation (Prec), temperature (Temp), and monthly scPDSI from 1900 to 2018. Shaded area 397 

represents the prolonged drought period from September 2014 to August 2016 (determined by 398 

scPDSI < -2). The spatial pattern of SA of (b) Prec, (c) Temp, and (d) scPDSI, respectively, in 399 

drought relative to the means during the reference period (1900 – 2018). We only considered the 400 

pixels with drought (scPDSI < -2) duration longer than 6 months to assess the long-term drought 401 

effects on vegetation. 402 

 403 

Both VI and SIF showed negative changes in response to the drought (Fig. 8). The proxies 404 

decreased by over 15% in central Myanmar, Central Thailand, and North Cambodia, which were 405 

mainly covered by cropland, natural deciduous forest or plantation forest (Fig. 1). In contrast to 406 

GOSIF and SIFnative, 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 indicated less drought impact in MSEA and a positive change in 407 

Northeast Thailand (Fig. 8d). Furthermore, the suppression in response to drought varied among 408 

different vegetation types (Fig. 9). Evergreen forest suffered from the least impact during the 409 
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prolonged drought, with an averaged change of photosynthesis proxy from -2% (EVI) – -6% 410 

(𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005). In contrast, natural deciduous forest and plantation forest were more vulnerable to 411 

the drought, and the corresponding averaged declines were from -3% (𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005) to -8% (GOSIF) 412 

and from -3% (𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005) to -9% (SIFnative), respectively. The cropland suppression exhibited the 413 

largest differences among multiple proxies, from 2% (𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005)  to 10% (GOSIF). For all the 414 

vegetation types, EVI and NIRv decreased by 6% and SIF decreased by 3% – 9%. The magnitude 415 

of averaged 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 change (from -2% to -3%) was much smaller than that of GOSIF (from -416 

4% to -10%) and SIFnative (from -4% to -9%), while the variability of SIFnative change (SD: 7% – 417 

10%) was significantly larger than that of other proxies (SD: 1% – 7%) among different vegetation 418 

types. 419 
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 420 
 421 

Figure 8. Spatial patterns of changes (%) of GOSIF (a), 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 (b), SIFnative (c), EVI (d), NIRv 422 

(e), PAR (f), ∅𝐺𝑂𝑆𝐼𝐹 (g), ∅𝑆𝐼𝐹̅̅ ̅̅ 𝑜̅𝑐𝑜2_005
 (h), and ∅𝑆𝐼𝐹𝑛𝑎𝑡𝑖𝑣𝑒 (i) by drought (September 2014 – August 423 

2016) compared to non-drought condition (September 2016 – August 2018). We only considered 424 

the pixels with drought (scPDSI < -2) duration longer than 6 months to assess the long-term 425 

drought effects on vegetation.  426 

 427 
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 428 
Figure 9. Mean (+/- one Standard Deviation, SD) of changes (%) of GOSIF, 𝑆𝐼𝐹̅̅ ̅̅

𝑜̅𝑐𝑜2_005, SIFnative 429 

∅𝐺𝑂𝑆𝐼𝐹 ,∅𝑆𝐼𝐹̅̅ ̅̅ 𝑜̅𝑐𝑜2_005 , ∅𝑆𝐼𝐹𝑛𝑎𝑡𝑖𝑣𝑒 , EVI, NIRv, and PAR by drought (September 2014 – August 2016) 430 

compared to non-drought condition (September 2016 – August 2018) in different vegetation types 431 

including natural evergreen forest (EF), natural deciduous forest (DF), plantation forest (PF), 432 

cropland (CL), and all vegetation types (AV).   433 

 434 

Furthermore, the spatial patterns of the PAR and ∅𝐹 changes induced by drought were 435 

shown in Fig. 8f-8i. Inversely related to the spatial pattern of precipitation anomalies, PAR showed 436 

a large increase (more than 15%) in the eastern MSEA likely due to the less cloud coverage while 437 

a slight decrease in Myanmar in response to drought. Correspondingly, all the ∅𝐹 estimates had a 438 

large decrease in the eastern MSEA. The averaged changes of ∅𝐹 induced by drought (from -3% 439 

to -15%) were more substantial than those of SIF and VI except for natural deciduous forest (Fig. 440 

9). Natural deciduous forest was mainly located in the northern MSEA (Fig. 1) with less 441 

precipitation anomalies (Fig. 7b) and PAR anomalies (Fig. 8f) under drought. Consistent with SIF 442 

products, drought-induced ∅𝐹  changes calculated by 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 (from -3% to -7%) were less than 443 

∅𝐺𝑂𝑆𝐼𝐹 (from -3% to -14%) and ∅𝑆𝐼𝐹𝑛𝑎𝑡𝑖𝑣𝑒
 (from -4% to -15%).The variabilities of ∅𝐹 changes (SD: 444 

7% – 19%), however, were significantly larger than SIF changes (SD: 3% – 10%), especially in 445 

cropland.  446 
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4 Discussion 447 

4.1 Relationships between tower GPP and remotely sensed vegetation proxies 448 

Consistent with previous studies related to other forest types in different latitudes (Shekhar 449 

et al., 2022; Lu et al., 2018; Zuromski et al., 2018), the linear SIF-GPP relationships at the three 450 

forest sites varied across SIF datasets, different forest characteristics and environmental conditions 451 

(Fig. 2). As SIF is more linked to the vegetation dynamics of photosynthesis than the remotely 452 

sensed vegetation greenness, it was expected that the SIF products indicated stronger correlations 453 

with GPP (R2: 0.54 – 0.75) in the two rubber plantations compared to NDVI and EVI (R2: 0.42 – 454 

0.51). Particularly, GOSIF outperformed 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005  and SIFnative in estimating the seasonal 455 

variations of GPP. In addition to MODIS reflectance, GOSIF uses meteorological data in its 456 

development and has higher temporal resolution compared to 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 . Therefore, GOSIF 457 

likely includes more information on physiological response to the environmental factors besides 458 

the structural response depicted by MODIS reflectance. Additionally, the saturation of NDVI and 459 

EVI was significant at the rubber sites with high values of LAI (Wang et al., 2022), resulting in 460 

their lower relationships to GPP (R2: 0.42 – 0.51). The long time (March – September) of the fully 461 

expanded leaf stage of rubber trees  (Chayawat et al., 2019) could also cause the less variability of 462 

greenness during this period. Furthermore, the large intercepts in the fitting models of NDVI and 463 

EVI would decrease the regression accuracy since a small bias could lead to a significant difference 464 

of GPP, particularly at the SR site. The greater intercepts of all the satellite vegetation proxies at 465 

the SR site than at the NR site were probably attributed to the higher soil moisture (Wang et al., 466 

2022), and thus less foliage abscission in the dry season in the south (Table 1).  467 

At the young NF site, however, VI showed higher correlations to GPP than did SIF. Similar 468 

results were also found in the tropical dryland savannas (Wang et al., 2019). SIF products could 469 
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be restricted by the scale match or mismatch between flux tower footprint and OCO-2 footprint. 470 

The scale mismatch between SIFnative and the NF tower footprint could degrade the SIF-GPP 471 

relationship as the NF site that was located in the orbital gaps of OCO-2 (Wang et al., 2019). It is 472 

noted that NIRv, designed to better characterize canopy structure, had an efficient and stable ability 473 

to estimate GPPEC and even performed better than GOSIF for both the young NF and the mature 474 

rubber plantations (R2 > 0.74). Compared with traditional VI, NIRv has a more direct physical 475 

interpretation as it presents the proportion of NIR light reflected by vegetation canopy  (Badgley 476 

et al. 2017), which minimizes the impacts of soil background and sun-canopy-sensor geometry 477 

(Badgley et al., 2019). The higher correlations between GPPEC and NIRv than between GPPEC and 478 

SIF suggest the need for more high-resolution and good-quality SIF products for the ecosystem-479 

scale GPP detection in the future. 480 

Path analysis demonstrated the dominant role of canopy structure (NIRv) on SIF-GPP 481 

relationship. Similar result was also found in the temperate crops (Dechant et al., 2022, 2020). 482 

NIRv (≈ 𝑓𝑃𝐴𝑅 ∙ 𝑓𝑒𝑠𝑐) describes the integrated canopy structure effects of absorption and scattering 483 

(Dechant et al., 2020). In addition to 𝑓𝑃𝐴𝑅 mainly controlled by LAI, NIRv also relates to the 484 

canopy scattering via 𝑓𝑒𝑠𝑐  and suggests a possible effect of leaf angle distribution on 𝐿𝑈𝐸𝑝 by 485 

modifying the fraction of sunlit and shaded leaves (Hao et al., 2021). As a tree species from humid 486 

tropics, mature rubber monocultures had taller and denser crowns than the NF. The individual 487 

rubber trees may tend to minimize foliage overlap by changing the leaf angle distribution from 488 

planophile during the green-up period to more erectophile as the canopy closes. Modeling and 489 

observations have shown that erectophile canopies have significant less variability of 𝐿𝑈𝐸𝑝 with 490 

∅𝑭 and much lower 𝑓𝑒𝑠𝑐 than planophile canopies (Hao et al., 2021; L. He et al., 2018; Zeng et al., 491 

2019), which could explain the significantly decreased NIRv while relatively constant NDVI and 492 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/canopy-vegetation
https://www.sciencedirect.com/science/article/pii/S0303243419313029#bib0015
https://www.sciencedirect.com/science/article/pii/S0303243419313029#bib0015


26 

 

EVI at the end of each year at the NR and the SR sites (Fig. 2b, 2f). Although the canopy structure 493 

effect is important, the physiological effect (∅𝑭) was likely to increase in a wetter condition (Fig. 494 

5c) to adjust to some short-term changes in meteorological conditions, such as PAR, temperature, 495 

and soil moisture, when LAI was less varied after leaf became mature.  496 

Furthermore, we highlight the different usage of NIRv and SIF in estimating canopy 497 

structure and photosynthesis, separately, in the comparison among multiple forest types. The 498 

mature rubber plantations at the NR and the SR sites showed much higher EVI while comparable 499 

SIF and GPPEC compared to the young NF. Similarly, the spatial pattern of remotely sensed 500 

variables exhibited higher VI (i.e., EVI and NIRv) while lower SIF of natural deciduous forest than 501 

that of plantation forest (Fig. 7f). Additionally, both the natural deciduous forest and plantation 502 

forest had higher SIF, but lower EVI compared to evergreen forest. Consistently, the tropical 503 

evergreen forest in Amazon showed largely reduced photosynthesis but slightly increased canopy 504 

greenness during the extreme drought (Yang et al., 2018). The inconsistency between VI and SIF 505 

emphasizes the unique advantage of SIF to monitor vegetation photosynthesis. Besides, the widely 506 

used 500-m MODIS GPP product (MOD17A2) was not shown in this study since it had no 507 

significant correlations to GPPEC at our three sites. Other studies also pointed out the limited 508 

performance of the MODIS GPP product in multiple biomes (Qiu et al., 2020; Sjöström et al., 509 

2013; Wu et al., 2018) due to the limitations of the LUE model and inaccurate input parameters. 510 

The remotely sensed SIF and their global continuous products are recommended to improve the 511 

direct GPP detection from the ecosystem to the regional scale for MSEA where multiple forest 512 

types are highly mixed.   513 
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4.3 Drought effects 514 

The prolonged and severe drought in 2015/2016 (Fig. 7) caused a large decrease of 515 

vegetation photosynthesis at the flux sites and in the spatial pattern of MSEA. At both the NR and 516 

the NF sites, the drought suppression on GPP was more significant in the dry season than in the 517 

rainy season (Fig. 3). Under drought stress, the response of canopy leaf angle distribution can be 518 

significant and affect 𝐿𝑈𝐸𝑝 by modifying the fraction of sunlit and shaded leaves (Xu et al., 2021), 519 

while the LAI changes mainly control 𝑓𝑃𝐴𝑅 (Zeng et al., 2019). Consistently, the spatial patterns 520 

of SIF changes induced by drought was more like EVI and NIRv rather than ∅𝐹 and PAR (Fig. 8).  521 

Besides, drought can also affect photosynthesis through the physiological processes, 522 

including increasing NPQ, decreasing enzyme activity and stomatal conductance to prevent 523 

excessive energy and water loss (Blackman et al., 2009; Flexas et al., 2000; Xu et al., 2020). To 524 

detect the physiological response to water and heat stresses, prior research approximated the 525 

fluorescence yield emitted from the top of the canopy (SIFyield) as 
𝑆𝐼𝐹

𝐴𝑃𝐴𝑅
. These studies indicated 526 

that SIFyield had a higher sensitivity to water condition changes (i.e., water stress and recovery) 527 

than SIF and that the response of SIFyield to water stress agreed well with LUEp (Li et al., 2022; 528 

Ma et al., 2023; Qian et al., 2019). Our study further excluded the scattering effect of canopy 529 

structure on the fluorescence escaped probability (𝑓𝑒𝑠𝑐) and directly estimated the fluorescence 530 

yield from all the leaves in the canopy (∅𝐹 = 
𝑆𝐼𝐹

𝐴𝑃𝐴𝑅∙𝑓𝑒𝑠𝑐
=

𝑆𝐼𝐹

𝑃𝐴𝑅∙𝑁𝐼𝑅𝑣
) according to Eq. 5. Consistent 531 

with SIFyield, the ∅𝐹 estimates exhibited similar spatial pattern of precipitation anomaly (Fig. 7b) 532 

with a significant decrease in the eastern MSEA under drought (Fig.7g-7i). While this negative 533 

effect of water stress was offset by higher PAR (Fig. 8f), resulting in the smaller change of SIF 534 

compared to ∅𝐹 under water stress. This also explains why the remaining effect of SIF on GPPEC 535 

related to canopy physiology and PAR, was relatively small and did not change significantly 536 
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between non-drought and drought conditions at both the NR and the NF sites. ∅𝐹 estimates (Fig. 537 

9) had large variabilities because ∅𝐹, as a function of SIF, NIRv, and PAR, directly inherited the 538 

uncertainties of these remotely sensed variables.  539 

Both SIF and VI decreased in different vegetation types under the prolonged drought. 540 

GOSIF and SIFnative outperformed EVI and NIRv by exhibiting more significant change in response 541 

to drought, while 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 was less sensitive to drought and even showed an opposite pattern 542 

in the Northeast Thailand compared to the other satellite variables. Consistent with 543 

∅𝑆𝐼𝐹𝑛𝑎𝑡𝑖𝑣𝑒 , ∅𝐺𝑂𝑆𝐼𝐹 𝑎𝑛𝑑 ∅𝑆𝐼𝐹̅̅ ̅̅ 𝑜̅𝑐𝑜2_005
  showed a similar spatial pattern to the precipitation anomaly, 544 

suggesting the capacity of SIFnative and its gridded SIF products in capturing the physiological 545 

response to drought compared to VI. We found three areas with large negative change of SIF 546 

induced by drought: central Myanmar, Central Thailand, and Northeast Cambodia. Under the 547 

prolonged drought, the Central Dry Zone of Myanmar exhibited the most significant decline 548 

(larger than 15%) across all the vegetation proxies. Though being a primary upland cropping area 549 

in Myanmar, it has suffered from underperformance during the past five decades and been 550 

considered as one of the most food-insecure, water-stressed, climate-sensitive, and least-developed 551 

regions of the country by the Asia Development Bank (ADB, 2016). Facing the hotter and more 552 

erratic rainfall, the conservation agriculture for improved water-use efficiency is imperative in this 553 

area (Herridge et al., 2019). In addition to the rice paddy in Central Thailand, the natural deciduous 554 

forest and plantation forest in North Cambodia also suffered from the prolonged drought 555 

significantly. Consistent with a study based on global EVI (Huang, 2019), higher resistance of 556 

tropical evergreen forest than natural deciduous forest and plantation forest was found in EVI and 557 

NIRv (Fig. 9). Previous research has indicated that radiation, rather than water availability, is the 558 

main factor to determine tropical evergreen forest productivity (Guan et al., 2015; Saleska et al., 559 
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2016). The increased light exposure under drought could result in enhanced EVI (Huang, 2019). 560 

Then, tropical evergreen forest tends to increase canopy light use efficiency in response to drought 561 

during the dry season (Tang and Dubayah, 2017), and is less limited by water stress (Guan et al., 562 

2015). Compared to plantation forest, natural deciduous forest would be more vulnerable to 563 

drought, evidenced by less changes of ∅𝐹 and PAR while comparable suppression of SIF and VI 564 

(Fig. 9). At the NF site, the young natural deciduous forest also had a larger decrease of GPP than 565 

the mature rubber trees (Fig. 3) under the same drought. It was probably because of the water 566 

extraction from the upper soil layers with shorter roots and not fully developed ecosystem among 567 

the species (Wang et al., 2022). Additionally, the decreased photosynthesis of plantation forest 568 

also related to other types of plantations except for rubber (e.g., coffee, fruit trees, cashews) (Hurni 569 

and Fox, 2018).  570 

4.4 Uncertainties in remotely sensed photosynthesis proxies 571 

Although we confirmed usage of SIF in predicting GPP and drought stress effects in TDFs 572 

and explored the potential mechanisms behind SIF-GPPEC relationship at the canopy scale, there 573 

are still several limitations in our study. We found that SIF had lower correlations to GPPEC than 574 

NIRv and limited performance to capture the maximum GPPEC during the rainy season (Fig. 2). It 575 

may be related to the noise and bias in SIF retrieval. As a by-product of photosynthesis, SIF is a 576 

small signal (~1% of the absorbed light) and vulnerable to the noise from the strong background 577 

of reflected sunlight (Damm et al., 2011). In addition, the large orbital gap of OCO-2 SIFnative 578 

cannot match flux towers well at the canopy scale, and the expansion of data collecting area may 579 

result in an increase of the pixel heterogeneity and scale mismatch. We found a more significant 580 

change of SIFnative induced by drought, while the variances were larger with the coarser spatial and 581 

unfixed temporal resolution (Fig. 8). To over this problem, the contiguous gridded GOSIF and 582 
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𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 products were produced, but the estimated SIF was still affected by the uncertainties 583 

associated with the model training and the input data. 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005 was less sensitive to drought 584 

with a larger variance compared to GOSIF and VI at the regional scale. The TROPOspheric 585 

Monitoring Instrument (TROPOMI), launched in October 2017 with small footprint size (7 km × 586 

3.5 km) and daily continuous global coverage, could improve SIF significantly (Köhler et al., 2018) 587 

and has been used to examine the SIF-GPP relationship (Li and Xiao 2022). TROPOMI SIF was 588 

not used in our analysis due to the mismatch of the study periods. Moreover, higher spatial 589 

resolution (less than 1 km) is still required to make the footprint truly match the flux tower scale, 590 

especially for the highly heterogeneous land cover under human activities. We expect that the 591 

upcoming FLEX SIF data with 300-m spatial resolution can better distinguish different vegetation 592 

types, and capture vegetation productivity and stress in MSEA.  593 

Moreover, the sun-synchronous satellite cannot provide temporally continuous 594 

measurements of SIF due to the fixed local overpass time for a given location, such as 13:30 for 595 

the OCO-2. To investigate seasonal SIF-GPP relationships and eliminate the impact of varying 596 

incident solar radiation intensities with latitude and time, we converted the remotely sensed 597 

instantaneous SIF to the corresponding daily value by applying a daily-mean adjustment factor 598 

(Frankenberg et al., 2011) as it has been done in GOSIF and 𝑆𝐼𝐹̅̅ ̅̅
𝑜̅𝑐𝑜2_005. Previous studies have 599 

confirmed the importance of daily adjustment factor in determining the consistency of seasonal 600 

SIF-GPP correlation among biomes (Sun et al., 2018; Zhang et al., 2018).  However, uncertainty 601 

still exists since this correction factor is based on the analytical approximation of solar zenith angle 602 

and does not consider the diurnal variation of other environmental factors (e.g., temperature, water 603 

stress). A cross-mission comparison of OCO-2 (observed at 13:30) and GOME-2 (observed at 9:30) 604 

confirmed the larger reduction of OCO-2 SIF under heat stress in the afternoon than GOME-2 SIF 605 
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in the morning by EC measurements and showed higher mean OCO-2 SIF during the growing 606 

season (Qiu et al., 2020). The recently launched Orbiting Carbon Observatory-3 (OCO-3) has 607 

diurnal sampling capability, and its SIF measurements at different times of day can reveal diurnal 608 

cycling of photosynthesis and the mid-day depression in photosynthesis due to water and heat 609 

stresses (Xiao et al., 2021). The overlapping tracks of OCO-3 at different times of the day exhibited 610 

a larger depression of photosynthesis in the afternoon than in the morning in the dry year by 611 

comparing the morning and afternoon retrievals (Zhang et al., 2023). The stomatal limitations and 612 

photorespiration are stronger under stresses in the afternoon (Porcar-Castell et al., 2021), while the 613 

physiological water stress tends to be diminished in the morning due to the redistribution of soil 614 

moisture overnight (Qiu et al., 2020). The specific overpass time of OCO-2 could cause an 615 

overestimation of daily averaged photosynthesis and GPP depression under drought. More in-situ 616 

SIF measurements at a sub-daily scale are needed to better interpret the GPP-SIF relationship 617 

across various ecosystems. The diurnal SIF variation at a large scale will be further elucidated over 618 

Americas and Europe by the forthcoming missions such as the NASA Tropospheric Emissions: 619 

Monitoring of Pollution (TEMPO) and European Sentinel 4.  620 

The EC instruments and different carbon partitioning methods for estimating GPPEC would 621 

also influence the accuracy of GPPEC (Keenan et al., 2019; Lasslop et al., 2010). We only examined 622 

the SIF-GPP relationship at the three TDF sites from two to four years. More sites in the tropical 623 

regions, especially with longer data records, are required to further improve our mechanistic 624 

understanding of the SIF-GPP relationship. Even though our study found that SIF successfully 625 

captured the photosynthesis reduction under drought stress at both the NR and NF sites, the SIF-626 

GPPEC relationship could be decoupled to some extent (Li and Xiao, 2022). Drought stress would 627 

reduce carbon assimilation despite of no change in the light reactions of photosynthesis since the 628 
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stomatal closure of plants could decrease internal CO2 concentration and increase photorespiration, 629 

often occurring with an increase of heat dissipation in the form of non-photochemical quenching 630 

(NPQ), and even caused photoinhibition under severe drought  (Helm et al., 2020; Marrs et al., 631 

2020; van der Tol et al., 2014).  632 

5 Conclusions 633 

This study explored the performance of OCO-2 SIF for monitoring ecosystem-scale GPP and the 634 

effect of drought on TDFs, which can contribute a better understanding of the mechanisms 635 

underlying the SIF-GPP relationships based on the EC measurements. The results reveal that: (1) 636 

OCO-2 SIF products had significant linear correlations with daily forest GPPEC at the three sites; 637 

(2) NIRv and SIF products, especially GOSIF, performed well in predicting canopy structure and 638 

forest productivity while NDVI and EVI saturated at the two rubber sites due to the high values of 639 

LAI; and (3) The SIF-GPP relationships in TDFs were dominantly explained by canopy structure 640 

effect, which was represented by NIRv because it includes both the absorption (𝑓𝑃𝐴𝑅 ) and 641 

scattering (𝑓𝑒𝑠𝑐) traits of the canopy structure; (4) ∅𝐹 was sensitive to the precipitation anomaly 642 

and indicated a large decrease in the eastern MSEA, while its negative effects on SIF was offset 643 

by high PAR under drought; (5) Cropland and deciduous forest were more vulnerable to the 644 

prolonged drought compared to evergreen forest in MSEA. More observations with higher 645 

spatiotemporal resolution and investigations on the effect of physiology in SIF-GPP relationships 646 

are highly recommended.  647 
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