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ABSTRACT

Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional
calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type
III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki L, spaces enable re-expressing trace inequalities in non-
tracial von Neumann algebras. In particular, we show this for the generalized Araki-Lieb-Thirring and Golden-Thompson inequalities from
the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general
von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show
subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the
existence of an Li-isometry implementing the channel on both input states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0066653

I. INTRODUCTION

Trace inequalities are extremely powerful in studying quantum information and probabilities. Often, a classical inequality that follows
from the functional calculus will yield a quantum generalization from an inequality on traces of matrix products. A well-known example is
the Golden-Thompson inequality, stating that for a pair of Hermitian matrices x, y,

tr exp(x + y) < tr(exp(x) exp(y)). (1)

For classical vectors or simultaneously diagonalizable matrices, the equality holds almost trivially. In Ref. 1, Sutter et al. generalized the
Golden-Thompson inequality to show that for Hermitian matrices {Hy }j_; and p > 1,

In |lexp > Hil|| < /dtﬂo(t) In (|TT exp((1+it)Hy)| » (2)
k=1, JE k=1 »
where | - |, is the Schatten p-norm on matrices, and
Bo(t) = g(cosh(m‘) L)L 3)

This generalized Golden-Thompson inequality follows from a generalization of the Araki-Lieb-Thirring inequality.

The four-input version of Eq. (2) implies a key result in quantum information theory. The quantum channel is a general model of how the
state of an open quantum system changes when interacting with an initially uncoupled environment. Due to this environmental interaction,
the effect of a channel is generally not invertible—it may lose information about the system. In some special cases, it is nonetheless possible to
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recover the original input state. For example, quantum error correction defines a “code space” within a larger system such that perturbations
of states in the code space are effectively invertible.”” In the theory of quantum communication,”” one asks how many bits of information
one may recover from the output of a quantum channel with arbitrarily powerful encoding and decoding. Holography in high energy physics
relies on a reversible map between bulk and boundary theories.”

A key quantity in quantum information is the relative entropy between quantum density matrices, denoted as D(p| #) for densities p and
7. One of the most fundamental inequalities in quantum information theory is the data processing inequality for relative entropy, which states
that for any quantum channel ®,

D(p|n) = D(@(p)[ (1))

We recall and denote by R, o the Petz recovery map, given by a normalized and re-weighted adjoint of ®.
Ry 0 ©(7) = 1. The Petz map for 1, ® sometimes acts as an inverse on p as well. In particular,

D(p[n) = D(@(p)| (1)) == Ry o @(p) = D(p). 4)

The intuition for data processing is that no stochastic or quantum process may increase the distinction between two probability
distributions or densities. Equality of relative entropy faithfully indicates that ® also does not destroy any information in p relative to #.

A natural question is whether a small difference in relative entropy implies approximate recovery. Holographic theories, for instance,
consider approximately invertible maps between subsystems of a bulk spacetime and the corresponding quantum boundary.” Quantum infor-
mation applications, such as error correction and communication, may work with only approximately preserved code spaces, formally outside
the strict criteria for the perfect recovery via the Petz map. A number of recent works have begun to quantitatively link a relative entropy
difference to the fidelity of recovered states.

A resurgence of activity on approximate recovery started with Fawzi and Renner’s approximate Markov chain result."" A special form of
relative entropy is the conditional mutual information on a tripartite system A ® B ® C, given by

1 BC) (AC 1 c
— ®p =Dlp 7 ||r=®p" )
A ||

BC AC

where p®¢, p€, and p€ refer to respective marginals of p. Fawzi and Renner showed that

>0 1t is always the case that

ABC

I(A: B|C), = D(p

I(A:BC), 2 -2 In fi(p, R™ (5"°)),

where fi(p, %) = tr(|\/p/7]) is the usual fidelity, for some channel R™" (not necessarily the Petz map). If one can perfectly recover p**“

from p™“ by acting only on C, then the system is called a quantum Markov chain.'” In Ref. 13, the same inequality is shown for a universal
recovery map, which only depends on p”® rather than on p**“. Li and Winter used this form of recovery in Ref. 14 to show a monogamy of
entanglement.

Wilde extends approximate recovery to general relative entropy differences in Ref. 15, showing that

D(pln) - D(@(p) 001) > 2 n{sp i . Ry ) ) ®
€
for a twirled recovery map R;, parameterized by t. In Ref. 16, Junge et al. showed that

D(p[n) - D(®(p)[®(n)) = —ZfR In fi(p, Ryo (©(p)))do(t), Q

where df,(t) = (n/2)(cosh(mt) + 1)~ dt. Using convexity, one may move the integral inside the logarithm and fidelity to construct the
explicit, universal recovery map, given by

Ryalp) = -2 [ Ry ()dBo(t). )

Another result by Sutter et al. (Refs. 1, Corollary 4.2) strengthens the inequality as a corollary of Eq. (2). Let Dm(p|n)
= sup,poyamsP(M(p) [ M(#)) denote the measured relative entropy. Then,

D(p[n) = D(@(p)[® (1)) = Dm(p[ Ry o ®(n)) (8)

for a recovery map Ry, as defined in Theorem VI.3.
More recently, Carlen and Vershynina have shown (Corollary 1.7 in Ref. 17) that

Do) -~ DEPIEM) > (%) 1l IRseE) -l ©)
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where A, is the relative modular operator and £ is a conditional expectation that restricts a density to a matrix subalgebra. A recent work by
Gilyén et al. suggests a quantum algorithm that implements the Petz recovery map in special cases.'

For recovery’s applications to quantum field theory,"” it is desirable to extend finite-dimensional results to infinite-dimensional von
Neumann algebras, including type III factors that lack a finite or even semifinite trace. Applications of recovery appear in finite-dimensional
analogs of the Ads/CFT correspondence.” Recovery may underpin eventual proofs of ideas relating the Ryu-Takayanagi conjecture and analo-
gies to error correction, but field theories are widely believed to be type III, non-tracial algebras, in which much of the finite-dimensional
quantum information machinery remains conjecture. Two very recent works address the type III extension of recovery maps. One, by
Gao and Wilde, extends Egs. (5) and (9) to the von Neumann algebra setting, also addressing generalizations to optimized f-divergences.”’
Faulkner et al. proved an equation in the form of (6) for subalgebraic restriction/inclusion, with applications in high energy physics.”! In a
later work, Faulkner and Hollands extended these results to two-positive channels,”” and in a follow up, Hollands*’ derived a result in the form
of Eq. (8).

A. Primary contributions

In this work, we show how the multivariate trace inequalities of Ref. 1 still hold and apply in arbitrary von Neumann algebras, surprisingly
including the non-tracial types. This set of results consists of two inequalities, given as Theorems 1.1 and I1.2. These theorems are similar in
form to those of Ref. 23, but were derived independently. First, we show a generalized Araki-Lieb-Thirring inequality extending Ref. 1,
Theorem 3.2 to von Neumann algebras and slightly generalizing the form of Ref. 23, Corollary 1 to a range of Kosaki norms.

Theorem 1.1 (Araki, Lieb, and Thirring). Let p,n be normal, faithful states on von Neumann algebra M, p>1, ne N, w € [0,1], and
{xk}i1 © M be positive semidefinite, bounded operators,

n
[T

k=1

n
1+it
Xk
k=1

In (10)

< rfoodt[},(t)ln
Ly, pm) 7T

Ly (Mopny)
The technical version of this theorem appears as Theorem I.1. Here, the norms are Kosaki L, norms, given for an operator x € M by

Hx (1—w)/pxpw/PHLP(M). (11)

Ly (Mp) = [p

The norm || - |1, (ar) is the Haagerup L, space norm, bypassing the potentially traceless nature of the original algebra and reducing to the
usual L, norm for tracial algebras (see Sec. II B). The weight §, generalizing f3, as in Eq. (3), is given by
sin(76)
20(cosh(nt) + cos(mt))’

Bo(t) := (12)

We also derive an analog of the generalized Golden-Thompson inequality [Ref. 1, Corollary 3.2; Eq. (2) in this Introduction] with a
slightly different dependence on p. This inequality has a similar but not identical form to that of Ref. 23, Corollary 3.

Theorem 1.2 (Golden and Thompson). Let {Hy};_; € M be bounded Hermitian operators and p = exp(Ho) € Li(M) have full support.

Then,
exp(% +y Hk)

k=1

In (13)

< fR dtfo(t) In

Lp(M)

ﬁ exp((1 +it)Hy)
k=1

L, (Myp)

Almost immediately from the same argument, we obtain a generalization of Lieb’s theorem.

Remark 1.3. Let p be Hermitian such that exp(p) € Li(M). Then, the function f : M — M given by
F(X) = [ exp(p/p +1n X))

is concave on the positive definite cone.
We then rederive Eq. (8) for arbitrary von Neumann algebras. This result is identical to but derived independently from Ref. 23,
Theorem 1.

Theorem 1.4. Let D(p|n) denote the quantum relative entropy between normal states p and n and ® denote a quantum channel
(a completely positive, normal map). Let Dy (p| %) = sup ,cpovasPD(M(p) [ M(1)) denote the measured relative entropy. Then,

D(pln) = D(@(p)[@ (%)) 2 Du(p|Ryo o ©(p)), (14)

where ﬁq,q) isasin Eq. (7).
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Furthermore, we generalize the universal recovery map in the style of (6) to channels on all von Neumann algebras and for a
p-generalization of the fidelity similar to that of Liang et al’s in Ref. 24, Eq. (2.14), given by

folpsn) = /Al (15)

We denote a twirled recovery map in the equivalent form to Wilde’s,'” but parameterized by complex z,
Rio(p) = @' (7 pn =y, (16)
and a logarithmic, twirled p-fidelity of recovery given by

FR0(p) = —1In fi/re(z) (0@, R0 (p74?)). (17)

For convenience of notation, we may denote R; = Ry o when ; and @ are clear from context. Our notion of fidelity of recovery is closely
related to that considered earlier in the field** although we have included the logarithm in the quantity for convenience. Then, we show that
the following holds.

Theorem L1.5. Let ® : M — N be a normal, completely positive map from von Neumann algebra M to algebra N. Let p, o be densities
on M. Then,

D(plln) > D(@(p)[0() + 2p [ FR( " (p)Bo(e)de

forp>1.

As with Eq. (6), we can use the convexity of the p-fidelity and the negative logarithm to move the integral inside, constructing an explicit,
universal recovery map (see Theorem VI.1). Equation (6) follows as the p = 1 case. Theorem 1.5 follows a more general result for the p-fidelity
of recovery.

Theorem L.6. FR}, is subharmonic.

Theorem 1.6 is justified by Remark V.6 in Sec. V. Theorem 1.6 converts a mathematical comparison from complex interpolation theory
into a direct bound on physical quantities.

For p=2 and M c B(L,(M)) represented in the so-called standard form,”® we may always assume that p(x) = (\/dp,x\/d,) is
implemented by its natural ‘purification.” Then, we deduce (see Remark X.5) that

|dy/> = RY3(d))]3 < D(p|ln) - D(®(p) [0 (n)). (18)

This implies that
I = RY/a (d/*) [} < 4(D(pln) - D(@(p) |[@(1)))- (19)

Thus, using non-linear recovery maps enables us to obtain a quadratic error formula, which qualitatively resembles Eq. (9) and the results
in Ref. 20.
Using the same techniques, we prove a data processing inequality for p-fidelity and that for any quantum channel ® and pair of states

Jo(@(p), (1)) = fo(p, ). (20)

Finally, we derive a new condition for equality in data processing for states with shared support.

P 1

Theorem L.7 (introduction version of XIL5). Let p,  be states such that p < Ayj and ® : Li(M) — Li(M) be a quantum channel for von
Neumann algebras M, M. Then, the following conditions are equivalent.

(i) D(®(p)|©()) = D(p|n)- .
(ii)  There exist an n-conditioned subalgebra Mo c M and a completely positive L-isometry u : M — My such that

u(n) =@(n),  ulp) = 2(p).

Theorem XIL5 is intuitive for finite-dimensional channels with equivalent input and output spaces, for which perfect recoverability
for all states implies unitarity. In the infinite-dimensional situation and with different input and output spaces, Petz’s map gives a precise
recovery. However, Theorem XIIL.5 improves on Petz’s recovery map by providing a local lift from the state space of the output back to the
input, motivated by Kirchberg’s work. Assuming equality in an AdS/CFT correspondence, this amounts to an exact lift from boundary to bulk
states.
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A first, key realization in our method is that the Haagerup L, spaces as detailed in Ref. 27 can often serve as a substitute for the usual
trace. A second is that the interpolation spaces defined by Kosaki*® coincide with these Haagerup spaces. The trace inequalities in Ref. 1
actually follow two proof strategies: one using traditional information-theoretic techniques that mirror those of Ref. 29 and another using
the complex interpolation methods roots of Ref. 16. Kosaki’s interpolation results let us rederive the main trace inequalities of Ref. 1 with
minor adjustments based on the Kosaki analog of the basic interpolation theorem underlying them (stated as Ref. 1, Theorem 3.1 and, in our
case, as Theorem I1.8). These do not lead as quickly to Corollary .4 because the analyticity and definitions of functions such as the operator
logarithm are more subtle. Instead, we return to settings with finite trace and then apply the Haagerup approximation method of Ref. 27 via
the continuity results we derived previously in Ref. 30. This approach suggests the Haagerup approximation as a general method for entropy
inequalities beyond tracial settings.

Section II reviews the mathematical background of the rest of the text. In Sec. 1], we prove the generalized Araki-Lieb-Thirring
(Theorem I.1) and Golden-Thompson (Theorem I.2) inequalities. In Sec. I'V, we re-introduce the rotated recovery maps and show some
necessary L, inequalities for the recovery results. In Sec. V, we introduce the form of p-fidelity that will underlie one form of recovery inequal-
ity and prove results on differentiation of quantities that will yield the desired relative entropy comparisons. In Sec. VI, we show the finite
von Neumann algebra cases of the recovery theorems (Theorems 1.4 and 1.5). In Sec. VII, we show continuity bounds on relative entropy,
and in Sec. VIII, we prove the needed results to approximate relative entropy in type III by entropy in lower-type algebras and to remove
assumptions of states sharing support. In Sec. X, we present the technical versions and proofs of the recovery theorems (Theorems 1.4 and
L.5). In Sec. X, we show an analogous recovery bound for Hilbert space vectors. In Sec. X1, we show a data processing inequality for p-fidelity.
In Sec. XII, we prove the L;-isometry equivalence to saturation of data processing (Theorem 1.7). We conclude with Sec. XIII.

Il. BACKGROUND

By B(#), we denote the bounded operators on Hilbert space #, and we will consider general von Neumann algebras of the form
M < B(#), including infinite-dimensional and non-separable Hilbert spaces. By p,#, we commonly denote normal, positive semidefinite
states in the predual M., which in finite dimension would be density matrices. By 1, we denote the identity operator. By a factor, we refer to a
von Neumann algebra with a trivial center as the subalgebra of operators that commute with the whole algebra. Physically, we may think of a
center as a classical probability space attached to a potentially quantum system.

The von Neumann algebra factors may have type I, Ioo, II1; Iloo; IIlo, III), or III;. Type I; factors are subalgebras of the bounded
operators (matrices) on finite-dimensional Hilbert spaces, and type I arises from the straightforward d — oo limit. We denote the trace in
type I by tr. In I, tr(1) = co—here, the trace is semifinite in the sense of not being infinite on all elements of the algebra, but it is not finite.
Type 1I; factors are infinite dimensional with a finite, normalized trace tr such that tr(1) = 1. Algebras of type Il have the form M ® B(H)
for M of type II; and infinite-dimensional #. In type II, the trace tr is semifinite, and tr(1) = co.

Algebras of type III are non-tracial in that there is not even a semifinite trace. For a physically motivated review of how type III arises, see
the hyperfinite construction of II1, III), and III; factors in Ref. 19. Type III is nonetheless a relevant model of quantum field theory, matching
observed divergences of the trace and other features, such as divergent entanglement between spatial subregions.

A von Neumann algebra with a non-trivial center is a direct sum (or integral) of factors. While the full algebra may have mixed type,
each factor will have a type as described above. Hence, to show the results of this paper for general von Neumann algebras, it suffices
to show that our constructions and results hold consistently on factors of all types. For a thorough treatment of operator algebra theory,
see Ref. 31.

A. Basic modular theory

Starting from a von Neumann algebra M and state w, the GNS construction allows one to define an inner product given by

(xly)o = w(x"y) (1)

and via completion construct a corresponding Hilbert space and representation of operators in M. See Ref. 32 for an introduction with the
emphasis on physical relevance.

In full generality, a von Neumann algebra M may contain bounded operators from Hilbert space H to Hilbert space H'. Although one
may obtain a space of bounded operators between distinct Hilbert spaces, for our purposes, we will assume that 7 and ' are isomorphic,
ensuring closure under conjugation. Let |17) € H and |p) € H’ be a pair of normalized vectors for which |5) is

1. cyclicin that {a|n) : a € M} is dense in H and
2. separating in thatif a € M and aly) = 0, then a = 0.

The Tomita-Takesaki operator Sy, is given by S, ,al7) = a' |p). S, has a polar decomposition,
1/2
Sip = ]W’A’%/P’

where we call ], , the relative modular conjugation. A, is Hermitian and is called the relative modular operator. We define Ay, for pairs of
states (in the algebra sense) p, 7 € Mx, letting [p) = p'’* and |57) = "/ as canonical purifications. In finite dimension, A, (x) = p~'x7 for any
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xe M. Aﬁf,p is analogous to unitary time-evolution, leading to the interpretation of In A, ; as a modular Hamiltonian in quantum field theory.
For more information on modular theory in physics, see Refs. 19, 33, and 34.

B. Haagerup spaces

For a von Neumann algebra M on Hilbert space H, faithful state p, and group G, we denote by M x G = Mxq G the crossed product of
M by G with respect to the modular automorphism group ¢ = ¢°. Details of this construction appear in Ref. 27, Sec. 1.2, from which we take
all subsequent constructions in this subsection. M x G is the von Neumann algebra on L, (G, H) generated by 7,(x) for x € M and A(g) for
g € G, defined by

(70 (x)8) (h) = 0" (2)&(h), A()E) (h) = &(h~g)  for§ e L(G,H).heG. (22)

M xR is of type Il oo, so there exists a semifinite trace 7 on the crossed product. For the rest of this subsection, we will assume that G = R.
Let Ly(M » R, 7) denote the topological involutive algebra of all operators on L, (IR, ) that are measurable with respect to (M x R, 7). Let ¢
be the dual automorphism of ¢ given by

6:(A(t)) = €“A(t) fort e R, 6s(m(x)) = m(x) forx e M. (23)
We then have the Haagerup L, spaces, given as

Ly(M) = {x e L((M xR, 7) : 6;(x) = ¢ /Px Vs e R} (24)

In particular, Lo, (M) coincides with M. As we will recall in Sec. II E, Haagerup L, spaces defined for the same M but different p are
isometric, so we will not explicitly refer to p in denoting them. L,(M) is a linear subspace of M and an M-bimodule.
The map w ~ d,, which maps a state w € M to its unique, implementing density in L; (M), extends to a linear homomorphism from
M, to Li(M). Although M has no semifinite trace, L; (M) is equipped with a distinguished, contractive linear functional Tr, the Haagerup
trace, defined by
Tr(dy) = w(1) for w € M,. (25)

Here, d,, is fixed by the relation that w(x) = Tr(xd,) for any x € M. Hence, one may transfer the norm of M, to a norm on L; (M),
denoted as || - | 1, (ar). Consequently, | #]1 = Tr(|y|) for every n € L1 (M). It then holds, as expected, that

lalli, ey = Tr(laf’)'"?  and  Tr(ab) = Tr(ba) (26)

for aeLy(M), be Ly (M), and 1 =1/p+1/p" as Holder conjugates. The Holder inequality holds for Haagerup L, norms, and L,(M)*
=Ly (M) for 1 < p < co. Finally, for any a € Ly, there is a unique polar decomposition,

a-= u|dv\1/‘u, (27)

where u € M, y € My, and dy, implements y in L; (M).

If we start with a tracial von Neumann algebra M and construct Haagerup L, spaces from (M, tr), then we will find that Tr = tr.
Hence, as seen via Eq. (26), this L, space coincides with the expected L, space or Schatten class on a tracial algebra, with the norm given as
|x[lp = tr(|xf) 1P With respect to the trace in M x R, every normalized density in L, (M) has the same singular numbers and, hence, the same
distribution, as shown in Ref. 35. Nonetheless, for quantities that depend on the L, norms rather than directly on the detailed spectrum of
densities, we are free to use the Haagerup construction everywhere.

Formally, one should distinguish between a state p € M} and its implementing density d, € L; (M). We will however often denote d, by
p such as in Eq. (11). As shorthand, we may denote || - |1, (ar) by | - [[, when the relevant von Neumann algebra is clear from context.

Remark IL1. Let 8 >0, let 7 € M be a normal, faithful state, and assume 8% < p < 8~ '#. The operator d’;,t is a unitary in M x G, not
necessarily in M. However, the function

Snp(it) = dydy "
satisfies 05(gyp (it)) = gyp(it) and, hence, does belong to 7(M) = M. In fact, for z = 6 + it, 6 < 1/2, we deduce from the fact that
20 _ (26 ;26
d, <6 7d,

that
0 ;-0 —0 20 ;-6 —26
Hdndp HZ = Hdp ds dp H <46 ?
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is bounded. This implies that on {z|0 < R(z) < 3}, the function

Gnp(2) = dydy”
is well-defined and analytic, thanks to
G:(gnp(2)) = (" dy) (e " dy) = gy, (2)
having values in M. As noted in Ref. 36, g, (it) intertwines the modular automorphisms of 77 and p. Forms of g, p(z) appear naturally and

usefully in modular theory.
The same argument applies to the modular semigroup,

ol (n(x)) = dyn(x)d, ",

which satisfies 6 (o] (n(x)) = o] (n(x)) and
gup(it) = 0" (n(1)) € m(M).

Moreover, let 07" be the unique linear extension of the modular group. Then,

Snp(2) = a’(1)eM

at least for 0 < R(z) < 1/2.

C. The Haagerup reduction

Like the Haagerup L, spaces, the reduction method starts with a crossed product. Instead of working with R, we use the discrete group
G =, 27"Z c R, constructing M = Mo G for some normal, faithful state 77 € M} . The advantage of using a discrete group is that we have a
conditional expectation £ : M — M given by

E(Z xg/l(g)) = Xo. (28)
<

£ is norm-preserving, and a well-known result by Marie Choda’"** implies that such a conditional expectation may not go from a von
Neumann algebra of lower type to one of higher type. Hence, M remains of type III and will not allow us to construct Haagerup spaces.
Instead, we rely on the following properties (see Ref. 27):

(Hi) Eand#j = 7o & are faithful.
(Hii) There exist an increasing family of subalgebras M; and normal conditional expectations Fy : M — M}, such that #Fj = .
(Hiii) limg [ Fi(y) — y], = 0 for every normal state y € M.
(Hiv) For every k, there exists a normal faithful trace 7;(x) = 7j(dy(x)) such that dy € (M;)} and a; < dy < a;' for some scalars a; € R*.
Hence, M is of type II;.

The Haagerup approximation then yields a method for proving results in type III: first, prove the result in type II; and then show convergence
in the limit as k — oo.

D. Complex interpolation

Within finite-dimensional matrix algebras, many of the desired entropy’” and trace' inequalities follow from identifying typical sets
of eigenvalues. One can easily imagine that these techniques encounter challenges for infinite-dimensional operators. As noted in Ref. 1,
however, the mathematical technique known as complex interpolation presents an alternate route to many of the same conclusions. Long-
studied in operator theory, complex interpolation has strong results that hold without finite-dimensional assumptions. In this chapter, we
review the basic tools of complex interpolation that power main results of this paper. For an in-depth treatment of the topic, the reader may
consult Ref. 39.

Two Banach spaces Ag and A, are compatible if both are subspaces of a Hausdorff topological space A. The sum space

Ag + Ay = {x = x0 + x1]x0 € Ag, X1 € A1}
is then a Banach space, equipped with norm
[xlagea, = _inf {[lxofa; + 21 ]a}-

X0€A0,X1 €A

Let S:= {z€ C:0<Re(z) <1} be the vertical strip on the complex plane. By F(A¢,A;), we denote the space of functions f:§
— Ap + A that are bounded and continuous on S and holomorphic on its interior such that
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{f(it)|t e R} c Ao, { f(1 +it)|t e R} c Ay.

F (Ao, Ay) is again a Banach space with norm
|.£11 7 = max{sup | £(it) [a;, sup | f(1 + it) .}

For 0 € [0, 1], we define the complex interpolation space
[Ao,Al]g = {XEA() +A1|x :f(9),fe ]:(A(),Al)} (29)

with norm

1%l tag.a,1 = inf{ |x] 7[£ (6) = x}. (30)
For interpolation spaces, we recall Stein’s interpolation theorem on norms of maps.

Theorem II.2 (Stein’s interpolation, Ref. 39). Let (Ao, A1) and (Bo, B1) be two couples of Banach spaces that are each compatible. Let
{T:|z € S} c B(Ao + A1, Bo + B1) be a bounded analytic family of maps such that

{Tit‘tER} CB(AO,B()), {T1+it‘tER} CB(AbBl).

Suppose Ao = sup, | Titl| s(a,,5,) and A1 = sup, | Ti+itl|sca, ) are both finite. Then, for 0 < 0 < 1, T¢ is a bounded linear map from (Ao, A1)e
to (Bo, B1)g and

1-0,6
||TeH]B((AOaAl)G;(BOaB[)G) < AO Al'

To derive most of the results of this paper, we will rely on a different form of complex interpolation, known as Hirschman’s strengthening
of Hadamard’s three line theorem.

Lemma I1.3 (generalized Hirshman/Hadamard, Refs. 40 and 41). Let g(z) : S — C be bounded and continuous on S and holomorphic on
its interior. Then, for 6 € [0,1],

nlg(0)| < [~ Inlg(i) “dpio(t) + [ nlg(1+ i) dBo(2)

Here, 3,(t)dt as in Eq. (3) is obtained as the pointwise limit of the measures 8,(t)dt, given in Eq. (12). For interpolation spaces, the same
idea appears as follows.

Lemma IL4. Let Ao, A1 be a pair of compatible Banach spaces and w = 6 + is.

1. Let F:S — M be an analytic function vanishing at infinity. Then,

I [F(@)pats < [, 10 1FE)] pao, 1o s (2).

2. pw(iR) =1-6, pu(1+iR) = 6.
3. Pulir = fOH" and Pw|1+iR = fLH" are absolutely continuous with respect to the one-dimensional Hausdorff measure Hy, and moreover,

"6 sin 76

fulit) = sin?(70) + (cos(nh) — e~m(s=))2

and
"7 sin 76
sin?(70) + (cos(nh) + e~(s=1))2"

fo(1+it) =

E. Kosaki spaces and norms

In Ref. 28, Kosaki constructed a family of spaces via complex interpolation, which coincide with the Haagerup spaces. In general, we will
denote the Kosaki L, norm of x € M for a pair of states p, 7 by implementing densities d,, d, € L| (M) by

[

L) = Hd;(,l’w)/}’xd;}/p||Lp(M) (31)
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for w € [0, 1]. Multiplication by powers of densities in L; (M) enforces that the normed element is in L,(M) even if x € M may not be. When
1 = p, we denote L (M, p) := L, (M, p,p). At p = oo, one can see that the Kosaki norm reduces to | - |;_(ar). By the left and right Kosaki
norms, we refer to, respectively, to the w = 0 and w = 1 cases.

Proposition I1.5. Let 2 < p < oo and d,, be the density of a normal faithful state and &, be the GNS vector representing w. Then, i,(x€,)

= xd/* extends to isometric isomorphism between [N,Ly(N)]y, and Ly(N). Moreover, the map 1o (x) = dél_w)/pxdff/? extends to an
isometry between [1,1(N), Li(N)]y/, and Ly(N).

Kosaki’s original construction starts with a von Neumann algebra M and faithful state p, constructs the space L»(M, p) as the closure of
M with respect to the inner product (a,b), = p(ab™) for a,b € M and resulting norm, and finally uses the first isomorphism of Proposition
IL5 to define Ly, ,. Kosaki proved a key isomorphism to the Haagerup spaces:

Theorem I1.6 (Kosaki). The map 1,(x) = xdg extends to a completely isometric isomorphism between L},(j\/’,p) and the complemented
subspace Ly(Ne) of the Haagerup L, spaces L,(N'). Here, e is the support of p.

It follows almost immediately that while the choice of the reference state in constructing the crossed product may change the map
w ~ d, the Haagerup spaces defined for different such choices are isometric.

For our purpose, we need a slight extension of Kosaki’s L, spaces for non-faithful states ¢ with support projection e. This can easily be
obtained by approximation. Let us assume that N is o-finite and y is a normal faithful state. Then,

D=dy,+(1-e)dy(l-e)
is a faithful normal density in L; (N). Note that D commutes with e.

Corollary IL.7. The norms ||x||L})(N),7) form an interpolation family on Ne for 1 < p < oo, as do ||x||Lg(M,,1) on eN.

Proof. Recall that

vy,

Il vy = I ™)

form an interpolation family and the space L,(N)e is complemented in the Haagerup L, space. Then, we observe that
p(x)e= xn'/? e = xen'? = xed,l/p = 1yp (xe).
This shows that R, (x) = xe extends to a contraction from L,(N,7) to L},(Ne, 7). [ ]

We then have a statement of Hirschmann’s lemma for Kosaki L, norms via the re-iteration theorem (see Ref. 39) and Lemma II.4.

LemmaIl.8. Let G:S — M be analytic, 2 < q,,q,, and 1/q(8) = (1 - 0)/q, + 0/q,. Then, for all 8 in the complex strip,

In |G(O) 12z, (atpny S(1—9)f1n |G(it) [ e vy Br-o () dt
+0 [ I G1+ it) |y g Bo(e) e

For a finite von Neumann algebra M with identity 1, ||x||L;u 1) = ||x] as the usual p-norm for any w € [0, 1] and x € M. When M lacks

finite trace, 1 ¢ L; (M) by definition. As shown in Sec. II G, it may at times be useful to take Kosaki spaces from finite von Neumann algebras,
such as for proving monotonicity of relative entropies. More broadly, rewriting norm inequalities with Kosaki spaces both gives weighted
generalizations and helps bypass the distinction between different algebraic types.

F. Quantum channels

A quantum channel is a general model of an open quantum process with an initially uncorrelated environment. In tracial settings, a
channel is a completely positive, trace preserving (in general, normal) map @ : L; (M) — L;(N). Recall that the anti-linear duality bracket

(x,p) = Tr(xp")
allows us to identify M, with L; (M) and, hence,
(@' (x),p) = Tr(x®(p)*)

defines a normal, unital, completely positive map ®' : N - M. As denoted, this construction may use the Haagerup trace.
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The usual, finite-dimensional Stinespring dilation is one of the core techniques of quantum information theory, rewriting any quantum
channel as an isometry followed by a partial trace. Even in semifinite von Neumann algebras, this Stinespring dilation may fail. We replace it
by a more general form. The following fact is well-known. Since it is crucial for all our arguments, we indicate a short proof.

LemmaIL.9. Let¥ : N — M be a normal completely positive unital map (the dual of a channel). Then, there exist a Hilbert space H normal
*-homomorphism 7 : N -~ B(H)®M and a projection e € B(H) such that

¥(x)=(e®)n(x)(e®1).

Proof. We will use the standard GNS construction; see Ref. 42 and 43. Let K = N ®¢ M be the Hilbert C*-module over M with the inner
product
(a®x,b®y) =x"¥(a"b)y.

Let K be the closure of K in the strong operator topology of the module (see Ref. 44). Then, K admits a module basis and, hence, is of the
form K = f(H & M) for some projection f € B(H)®M. The subspace 1 ® M c K is an M right module, and hence, the orthogonal projection
gonto (1® M) isin (M)’ = B(H)®M. We may define the *-representation (see Ref. 42),

n(a)(a®x) =aa @ x.

Then, we deduce that for e = g f, we have
Y(x) = en(x)e.

It remains to show that 7 extends to the strong closure of K and that 7 is normal. For simplicity, we assume that # is a normal faithful
state and define the Hilbert space L, (X, ) via the inner product,

(& @)y =n((&9))

Note that Lz(f(, ) = L,(K,7), and the inclusion K" c Ly(K, 1) is dense, faithful because # is faithful. Then, we see that for all a, b, x, y,
the function

Wapxy(@) = n(x"¥(a"ab)y)

is normal, thanks to ¥ being normal. By norm approximation, we deduce that 7 extends to a normal representation on £> (K, 1) = L2(K, 7).
Since this is true for all #, we see that 7 extends to a representation on the closure K. Finally, we observe that weak™ closure of the adjointable
maps on K satisfies

L(K) = e(B&M)e.

Since our map 7:N — Ly (f() is normal, we see that, after identification, 7: N — (B&M) is a normal, not necessarily unital
*-homomorphism. [ ]

G. Relative entropy

In any von Neumann algebra M, we define the relative entropy

D(pln) = (p'.1n Ayp'?), (32)

where the inner product is given by the GNS construction for an (algebra, state) pair (M, w) if needed. With a semifinite trace, there is an
equivalent form,

D(pln) = tr(p(log p — log 1)),

which is more familiar in quantum information.

We may write a wide variety of generalized Rényi entropies in terms of the Kosaki norms of g;){f ' where p’ is the Holder conjugate of p.
In particular, we recall the a-z Rényi entropies defined and analyzed in Refs. 45-48 for real a,z > 0, given (up to a constant from taking the
natural rather than the base two logarithm) by

_ 1 a/z _(1-a)/z\?
Daz(pln) = — In tr{ (p"0=5)’), (33)
We recall that when « = z, this form recovers the sandwiched Rényi relative a-entropy,” ' and when z = 1, this form recovers the
Petz-Rényi relative a-entropy.”” When « = z = 1, these forms coincide as the usual relative entropy. Through the Kosaki norm, we re-express
the a—z Rényi entropy for z > a > 1 as

z 2z
Daz(pln) = —— Ingy)

. L (Mop.n)> (34)
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where z' is the Holder conjugate of z. When M is a general von Neumann algebra, the Kosaki form is nonetheless a sensible expression. The
range of « and z may extend to &,z > 0 in finite dimension by formally interpreting Eq. (31) for w ¢ [0, 1] although it might not always be
valid to construct the Kosaki space on arbitrary von Neumann algebras. The Petz-Rényi relative a-entropy corresponds to the left Kosaki
norm, and the sandwiched relative entropy corresponds to the right Kosaki norm.

Kosaki L, spaces provide an extremely convenient tool to prove data processing inequalities for the sandwiched relative entropy. Data
processing for p > 1 was originally shown using other methods in Ref. 53. Here, we briefly sketch the Kosaki space argument. Let © : L (M)
— L1 (M) be a completely positive trace preserving map and # be a normal faithful sate, which we call the reference state. Let 7§ = ®(#) be
the image with support &. By continuity, ®(L;(M)) c £;(&Mé)é, and hence, we will assume & = 1. We obtain an induced map ®oo : M — M
given by

A1/2q) (x)i J1/2 d>(;11/2x111/2).
More generally, it is easy to show by interpolation that the map
@P(WI/ZP 1/217) Al/qu) (x)ﬂl/Zp
is a contraction. Of course, interpolation applies exactly because A, () = 7"/ My"" is dense in the image of the symmetric Kosaki map
5/ [P (M0, Ly (M) = Lp(M).
We refer to Ref. 54 for the fact that @ is indeed a normal completely positive unital map. Therefore, ®o. admits a Stinespring dilation,
Do (x) = en(x)e,

where 7 : M — L(Hy;) is obtained from the W*-module M ®¢_ M.
Lemma IL.10. Let2 < p < oo andy € M. Then,

I7 (el ey < I¥ly -

Indeed, for p = oo, this is obvious, and for p = 2, we have

I7(p)els = filen(y*y)e) = i(Peo (y*9)) = Tr(y " ®eo (y*y)7'/?)
= (@' Py yn') < Tr(n' P2y ).

Here, we only had to use the trace-reducing property of the original map ®@. In combination with Kosaki’s embedding result, we deduce

that
iy Py Py T = 00 ()
= ||n 0w ()0,
= ||”()’)e||igp(c,ﬁ)
< ||J’||i1 , (M)
=7y ' PPy = gy o

Thus, by density, we deduce the sandwiched p-Renyi data processing inequality.

Theorem II.11. Let y be faithful and 1 < p < oo. Then,

o)™ @)@ ()™ [y < |7 pr”

forall p e Li(M). Here, || - ||, may refer to Haagerup L, norms and vz’ may refer to the pseudoinverse on the support. In terms of sandwiched
Rényi entropy, the inequality is equivalent to

Dp(®(p)[©(17)) < Dp(pln)-

J. Math. Phys. 63, 122204 (2022); doi: 10.1063/5.0066653 63, 122204-11
Published under an exclusive license by AIP Publishing

90:2¥:22 €202 Jequisides 80



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

I1l. TRACE INEQUALITIES

From the Kosaki L, version of Hirschmann’s lemma (Lemma II.8) follows the Kosaki L, version of the two main results of Ref. 1 and
the extended Araki-Lieb-Thirring (ALT) and Golden-Thompson (GT) inequalities. First is a generalizing reproof of the former from Ref. 1,
Theorem 3.2.

Proof of Theorem 1.1. Assume for now that x; are positive definite for all k and that p, 1 are faithful. When r = 1, 8, (t) acts like a delta
distribution at 0, and the inequality follows trivially, so suppose r € (0,1). Let G(z) := [}, x;. Positive definiteness and boundedness of
xi forall k € 1...n ensure analyticity of G. We apply Lemma I1.8 with 6 = r, g, = 00, g, = p. Then, g, = p/r,

ﬁ 1+it
Xk

>

010 |G(1+ if) | gy = 7 In

k=1 Ly (Mop)
(1 - 6) In HG(it)Hquo (Mpy) = (1 - T) In xZ >
k=t Mlpw (M)
and
In HG(G)HL;‘/’r(M,p,n) =1In Hxlrc
k=t My (Mpa)

As [T, xi! is unitary and because the L% (M, p, 1) norm is essentially just the operator norm on M,

u it
In x;c =0,
k=t L (M)
completing the theorem.
If x;. is merely positive semidefinite, we interpret

LOReY - L+it
[T=™ - ll_l,n [TGx+en)™
k=1 L (Mp) k=1 Ly (Mpyp)

for some positive definite 1. Then, the inequality holds.
If p,  are not faithful, we interpret p = p + €(1 - ¢,)w, 7 = 7+ €(1 — e, )w for a faithful state w € M; and take the limit as ¢ - 0, where
e, and e, are the respective support projections of p and w. [ |

The generalized Golden-Thompson inequality from Ref. 1, Corollary 3.2 requires a generalized Kato-Lie-Suzuki-Trotter formula.
Unfortunately, this result is not so simple when we combine elements of a type III von Neumann algebra M with an unbounded element
of L (M). Instead, we use the Trotter formula in finite algebras with the Haagerup approximation method to extend to the desired result.

LemmalIlL1. Let {Hy}_, € M be a collection of bounded operators in M, p = exp(Ho) be such that p € L,(M) [equivalently, p’ € Li(M)],
and x;, = exp(Hy) for each k € 1...n. Then, we have the following.

L. a= (pr/sz/2 e x;/_zlx;x'/z x;/zp’/z)l/’ € Ly(M) and is bounded in the L, norm for r = 1/7: ¥ ¢ N.

n—1:"*

2. Let M be a finite von Neumann algebra and xj be bounded. Then,
}i_l)l(} ay = exp(Ho + zk: Hk).
Proof. By Holder’s inequality, we deduce that
lecr ||z, ary < [T Ikl oy lpllz, can)

and is thereby uniformly bounded. We use the embedding of L,(M) into Ly e (M x R, tr) so that all a, are indeed affiliated to M x R. Let
e be a spectral projection of p so that pe is bounded. Using that a < b implies a” < b", we deduce that ae is also bounded. By the Trotter
formula,”””° we deduce for the co norm that

hl’{)l a(ar)e = exp(Ho + ZHk)e.
r— k:l

This may not hold in the general L, spaces, where p € L1 (M) is unbounded. By extracting the exponential of a positive multiple of the
identity, we can make all Hy . . . Hy effectively negative operators, thereby satisfying the conditions of the Trotter formula. Hence, a, converges
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in the measure topology to exp(Ho + Y.;_; Hy). On the image of L,(M), the norm and the measure topology coincide, so a, converges in
L, and definitely weakly to exp(Ho + X Hy). Note that

os(exp(Ho + zk:Hk)) = exp(os(Ho) + zijk)

Since
o.(exp(Hy)) = ¢ /7 exp(Ho),

we deduce that s
O'S(Ho) = 7’7 +H().

This implies that

exp(os(Ho) + ZHk) =P exp(Ho + ZHk)
k k

In other words, the limit is in Ly. Then, weak converge already implies

fexp( o+ ot oy < im0
k r
This concludes the proof for the Haagerup L, space. [ |

Remark 111.2. exp(Ho + H) has to be interpreted very carefully. This can be done using the embedding of L1(N) into Li,co (N x R). Using
this formalism, the density for exp(Ho + H) is the unique positive functional y such that

8up(it) = (Dy : D), = exp(it(Ho + H)) exp(—itHo)

in the sense of Connes’ cocycle. (The actual densities are then obtained by analytic continuation or by a power series.) In Ref. 9, this object is

defined as «", provided that w(x) = tr(exp(Ho)x). Since the density exp(Ho) is Ly measurable, the logarithm H is actually well-defined by the
functional calculus. This construction is used in the description of relative entropy.

Due to the subtleties therein, the generalized Golden-Thompson inequality is stated as a theorem rather than a corollary.

Proof of Theorem I.2. First, we handle the finite case, in which the proof follows simply from that of the original, Ref. 1, Corollary 3.2.
Let x; = exp(2Hy) for k = 1...n. Theorem I.1 implies that

n Lit 1+it \ P
In || < [ dtB,(t)In tr(pl/ZPAlz LA ) . (35)
k=t WLy (ap)
For an operator y € Ly(M), it will hold generally that |y|, = ||}’*J’||;ﬁ. For the Kosaki norms,
* 2
I¥liycitey = 12"z, 0 = 10" 9 12 oy (36)
Hence,
n 2p/r
In ||T]xk =In tr( x;/z . .x;{zlxz/zpr/ZP‘ v )
k=t () (37)
T T r ror r T /r
=In tr((p /szl/z .. .xn/_zlx,,xn/_zl .. .xl/zp /ZP)p )

Compared with Ref. 1, Corollary 3.2, we must be more careful to show that the limit as » — 0 exists and converges to something that is
still in the correct Haagerup L, space. Now, we consider the family of operators as follows:

r/pr;/Z ) r/2 r r/2 x;/Zpr/Zp)l/r'

ar = (p X

We apply Lemma IIL1 to complete the finite case, substituting p'’? for p.
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Now, we consider the general theorem in arbitrary von Neumann algebras. Let us first indicate the proof for p = 2. We apply the Haagerup
construction for ¢(x) = tr(dx) and assume tr(d) = 1, i.e., ¢ is a normal faithful state. Then, N x G = Uy My and there exists conditional
expectation Ey : N x G such that E(x) converges strongly to x and Ey () converges in the L; norm. The good news is that My is a finite von
Neumann algebra with trace 7 and the new extended state ¢ satisfies the following.

(i) Ex(9) =9
(ii) The density dy = exp(Ho(k)) of ¢ with respect to 74 is bounded from above and below.

This allows us to define the new bounded elements Hj(k) = Ex(H;). In this context, Lemma 3.2 2 applies and we can use the
Lie-Trotter-Kato formula and deduce
< f dpo(1)

11exp(H02(k) + Zn:Ek(HJ))
j=1

Since Ej(Hj) converges to H; strongly and, hence, exp(itEx(H;) converges strongly (this series is uniformly absolutely convergence
because the elements are uniformly bounded), the dominated convergence implies convergence to the correct right-hand side in L,(N x G).
Applying the conditional expectation yields the correct upper bound.

Taking the limit for k — oo on the left-hand side is more problematic, but well known thanks to the work of Araki.”®

Let us denote by = 3.1, Ex(Hj). Then,

[Texp(1+ itEk(Hj))H .
L

dy exp(Ho(k) + b)"/? exp(Ho(k)/2)d,/* = exp (Ho(k) + b)'/*

is exactly the GNS vector implementing the functional ¢ (k) (x) = 7x(exp(Ho(k) + bi)x), and the relative modular group is given by

(Do(k) : D) = di."di".

This particularly simple formula here is due to the trace. However, the corresponding cocycle also makes sense in the not necessarily
finite von Neumann algebra N x G. Moreover, thanks to the work of Araki, there is a clear interpretation of the density obtained from a
bounded perturbation " by a bounded element h € N x G. More precisely, the implementing vector is given by (see, in particular, Ref. 36,
Proposition 4.12)

fexp(log(3+h)) = exp((logA +h)/2)(&).

Araki wrote down the explicit Feynman-Katz formula for this power series and the new density ¥ (%). In the semifinite case, there is no
need to use the modular operator A = L:/ ZR;I/ ? because the exponential function is additive for commuting operators. Now, we may apply

Proposition 4.1 of Ref. 36, which implies the strong convergence of ¥ (k) to ¥(h). This shows that

Eoxp(Hosy) = ‘I’(ZHJ/Z) = lim ‘I’(ZEk(Hj)) = lim &y k).
J J

Here, we use the conditional expectation of N x G — M to define the unique embedding on the L, space level. Thus, passing to the limit
for k — oo, the norm estimate remains true thanks to the dominated convergence theorem.

Finally, for other values of p, we may use Ricard’s estimate of the Mazur map”’ to show strong convergence on the L, level from rescaling
the bounded Hamiltonian and the density. This means that the estimate is only true for p > 1. [ |

Proof of Remark 1.3. This inequality is immediate in the finite case, following the arguments of Ref. 58. We then apply the continuity
argument from the Proof of 1.2 for exp(p/p + Y), where in this case Y = In X € M. [ ]

Remark II1.3. The generalization of the ALT and GT inequalities to unitarily invariant norms in Ref. 41 holds automatically in type I and
with small modifications in type II, where there is a semifinite trace. In non-tracial algebras, there may not exist unitarily invariant norms in this
sense.

Remark II1.4. Taking a Kosaki norm on a finite von Neumann algebra M, such as of finite dimension or type II1, we have that 1 € L,(M).
In this case, the Haagerup trace Tr coincides with the finite trace tr, and we may take the Kosaki norm | - HL;U (p1.1)- Doing so recovers the original

ALT and GT inequalities from Ref. 1.
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IV. L, ESTIMATES AND RECOVERY MAPS FOR QUANTUM CHANNELS

In this section, we present a priori estimates on L, spaces, which are required to formulate the recovery theorem in the von Neumann
algebra setting. The arguments are very closely related to the first author’s lecture notes for proving the data processing inequality for the
sandwiched entropy.

In the following, we will fix ® : L; (M) — Li(M), ¥ = ®' : M — M, e e B(H)&M = M, and the normal *-homomorphism 7 : M — M.

Lemma IV.1. Let ®(y) = j with support s(n), s(}), respectively. Then, for all 1 < p < oo,

I (es(m) s, ity < 1ys() |, iy
Proof. Since ® is trace preserving, we note that

In()el i) = Tr(dren(y"y)e) = Tr(dy¥(y"y))
= Tr(®(dy)y"y) = ¥,y

Thus, interpolation according to Lemma II.7 implies the assertion. [ |
Proposition IV.2. Let d € Li(N) be the density of a state n and d = ®(d), with support s = s(d) and § = s(d). Let 1 < p < oo. Then,

Ry(x) = AV ot (d—l/l.ﬂdi—l/ZP)dl/ZP

extends to a contraction from Ly(M) to Ly(M).

Proof. Let us recall the abstract Marcinkiewicz interpolation theorem: Let (Ao, A1) c V, (AO,AI) cV be interpolation couples, and
T:Ag+ A1 —> Ap + A; be alinear map such that T(Ag) ¢ Ag and T(A;) c A;. Then,
OIT A - A"

|T:Ap— Ag| < |T: Ao — Ao

For the proof, one considers the analytic function G(z) = T(F(z)) and then takes the infimum over F such that F(0) = x. In our situation,
Ao = $M3 and Ay = 3Ly (M)3 and Ag = sMs, A, = sLy(M)s. The map is given by T(d/?xd*/?) = d"® (x)d"/>. We also use the map Too (x)
= s®'(x)s and observe the following commuting diagram:
W IS M
i Yipa
. R
S, (s s L(M) -

bd

i)’P',g’z ‘L)’p’,d
SL(M)S — Ly(M)

Here, ypyd(x) = d""xd"" is chosen such that Vpalpd = ha is the symmetric Kosaki embedding. We may think of Tc as a densely

defined map on 1 (§M3). Thus, it remains to show that 1 is indeed a contraction. By Hélder’s inequality, the map q: L,(M) ® L,(M)
— Li(M), q(x® y) = xy is a contraction and, indeed, a metric surjection because the adjoint g* : M — B(L,(M)) is isometric. The same
is true for §(x ® y) = Sxy% as a map §: $L>(M) ® Ly(M)3 — 3Li (M)3. Note that Md'/? is dense in L,(M). This shows that the set D; of
elements

2dPxyd?, A x)y < 1, |yd | <1

is dense in the unit ball of $L; (M)3. Then, we recall that

|n(y)ed" |3 = Tr(d@ (y*y)) = Tr(dy*y) = |yd |5

Taking *’s, we see that similarly |d"/?em(x) [ = |d"/*x|2. Let u € M be a contraction. Then, we deduce (where Tr is the Haagerup trace)
that
Tr(uT(ﬁl/zxyﬁl/z)) = Tr(ud'* 0! (xy)dl/z)
= Tr(udl/zen(xy)edl/z)
= (ﬂ(x)edl/z,n(y)edl/zu).
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Thanks to the right module property of L,(M), we deduce that
[rr(wr(dxyd" ) < [m(x)ed"” |y oy |7 ()ed ul g, i
< (e ed |y I Yed ", oy 1wl
= |ul|d"x]> [yd" ..

Taking the supremum over |u| < 1, we deduce that T(D,) belongs to the unit ball of L; (M), and hence, T extends to a contraction on
$L1(M)3. By the abstract Marcinkiewicz interpolation theorem, we deduce that R, is also a contraction and the continuous extension of the
map Ry(d/#xd"?) = d'/* of (x)d"/?. [}

As an application, we deduce the contraction property of the (twirled) Petz recovery maps on L.
Lemma IV.3. Let 1 be a state and 1§ = ®(n) be the image under n with support é. Then,
Ro(%) = 1 Pt (”n* /2 £ —2/2 ) }12/2

extends to a (completely) bounded operator on L,y (M) with values in Ly (M) for

1
—— =Re(2).
p(2)
Proof. First, we handle the semifinite case. Let A;p(;) = 1 1/20() N1 /%) be the image of the symmetric Kosaki map in Loz (eMe). We
consider Kosaki’s right-sided interpolation space,

Lop(zy = [M, La(M, 1) ]1/p(2)-
For an element, £ € Ly,(,y of norm <1. We can find an analytic function g(z) € Mé such that

lg(it) oo < 1,7(g(1 +it)"g(1+it)) < 1

for all t. This allows us to consider
G(z) = n(g(z))en € L(Hum)

and deduce that
1G(2) |,y e O) S 1

Indeed, this is obvious for z = it. For z = 1 + it, we note that
1GCL+ i) |7, ey = 02 G(L+ i) G(1+it)n' |

= Tr(y' 0 (g(z +it)*g(1 +it))y'*)
= Tr(®(n)g(1+it)"g(1+it)) = |g(1 +it) |, g < 1

There, we have shown that V; : L) (Me) - Lop(z) (L(Hm)),
Vo(377%) = n(#)en”®

extends to a contraction on LZP(Z)(Mé) with values in Ly,;)(L(Hum)). Now, we consider an element x ¢ Ap(z));,(M). Note that L,(M)
= Lyp(M)Lop(M), ice., we can write £ = %1 £, such that é%; = £; and %,é = %,. By the argument above, we know that

|R: 57 %;)

oo = H(V=ED) Vb)) ooy < V=00 ey < Ilpc2)

holds for j = 1, 2. Therefore,
IRz (%3%1) lpcz) < 1 (Vex2) " l2pe) | Ve (i) lapizy < 152 ]2pc) %1 [2pz)-

Taking the infimum over all such decompositions implies the assertion.
In Haagerup spaces, let z = 8 + it and p = 6", Then, we have a factorization

R, = UiRpatd.
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Here, we use the L, version of the modular group,

o (x) = e xe™.
Note that
Hs(oﬁi(x)) = Mgt IPy = o Py
Thus, by the definition of the Haagerup L, space, of is a contraction with inverse o%,. [ |

V. p-FIDELITIES AND INTERPOLATION

A main tool in our analysis of recovery maps will be given by a new definition of the p-fidelity from Ref. 24,

Ivyv/l

Fy(x,y) = ,
’ max |x[p, [,

and for x, y € Ly,

fo(%p) = Vx5 p-

Lemma V.1. Let 1 < p < oo and n be faithful. Let E : M — M be a conditional expectation and

p=poEf=nok
such that 1j is also faithful. Then,
K@) =",
Proof. We have to rewrite the fidelity by duality as follows:

folxy) = sup Tr(z"x'/?y'r)

el <1

12 % 1/2p 1/2y—1/2p)

= sup Tr(y

lay/7] <1

= sup  Tr(ay'”, A7 ().

lay ], <1

y

According to our assumption, M ¢ M and also M, (M) c M, (M). According to Connes’ 2 x 2 matrix trick (see Ref. 59), we know that
Ly(My(M)) c Ly(M,(M)). By approximation, we may assume that p and, hence, p are also faithful. Then, y(x) = w is a faithful
state on M,(M) and § = y o E is the corresponding extension. We also have a canonical embedding 1 : L, (M>(M)) — Ly(M(M)) given by
I (xd;/ 2) = xd}/ 2 (see Ref. 59). Moreover, we have the following commutation relation:

I © Gtw = 0';’7 1,

which implies
le’vZ, = A;;lz.

Let us also recall that for the matrix unit ej> = |1)(2|, we have
ez ® Apy(§) = Ay(er2 ® §).
In particular, tz(d,l/ 3= d%/ *and
) = a0 () = (8 (d)%).

1/2
i

507y < £ (M, 7P

Now, it is easy to conclude. The map 1 (ad,l/ ?) = ad:/* extends to an isometric embedding of Ly (M) c Ly (M), and hence,
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On the other hand, for a € M, we see that for x € M, we have
(ad;),xd)?) = (E(a)d)*, xd)/*).

Since the conditional expectation extends to a contraction Ey (ad; ) = E(a)d,l/ ?" | we also find the reverse inequality fp(pl/” i)
<fo(p'P,n'1?). u

A. Interpolation formula for comparable states

In the following, we will assume that 7 and p are densities in L, (M) such that
Sn<p<d'n

Formally, we should probably write d, for the density such that #(x) = tr(xd,) holds for all x, but we decided to follow Takesaki’s
convention. Let ® : L; (M) — L; (M) be a completely positive and (sub-)trace preserving map, i.e., the dual map ®' : M — M defined by

Tr(®' (x*)n) = Tr(x®(n))
is completely positive and (sub-)unital. Let us recall the Stinespring factorization,
' (x) = en(x)e,

for some normal *-homomorphism 7 : M — B(H)®M and some projection e € M’. We will use the notation M = e(B(H)®M e and f for
the support of 7 and f for the support of § = @ () or p = (p). Indeed, by positivity,

d0(n) < @(p) <8 'n(n)

shows that the support projections (both in M) coincide.

Lemma V.2. Let2 < q,,q, and q(—lg) = lq;f + g. Let B, as given in (12) represent 6 on the boundary of the strip {0 < R(z) < 1}. Then,

G(z) = n(p 0" e o™
is analytic in M.
(i) For all 0 in the complex strip,
I 1G(O) s, gy < (1) [ IG()1: (it fro(t)et

+6 / I | G(L+i6) 11 (31 Bo1)e.

) [ ~InG(L+it)]gBo(t)dt « —EDL0,
(i) [ —In[G(1+it)] g fo(t)dt <liminfy o —1%Dluo

Proof. Let us recall that y, is the unique measure such that
£(8)=(1-0) [ flityduro(t) + 0 [ F(1+it)du0) (39)

Therefore, (i) is a reformulation of Lemmas II.4 and II.8 so that

dug(1 +it) = éﬂg(t)di’, dpi_e(t) = ilgfjl_g(t)dt.

The analyticity of G follows from Remark II.1 and R(z) < 1. For z = it, the element p"% ™" is in M and a partial isometry, and the same
it 7 it

applies to #"p ™", and hence,
I1GG) 11 (aty.p) < Trp) < 1.
90
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Thus, In | G(it) | 4, < 0. Dividing by —6 yields (ii). The function h(t) = —In |G(1 + it)||q, is continuous, limg_,o % converges to 1/7,

and the measures f, are uniformly bounded by Ce M. Thus, the dominated convergence theorem implies the assertion (see Ref. 16 for the
calculation of ). [ ]

Let us fix 0 < g, < q, and
1 1-6 0

qe qo q1'

We note that ,
. it it 1
1G(0) 11y, (o = [7(gsi)egnep ™ lay < 1,
and recall Lemma I1.8. Hence,

[ 11601 i oye < W LEOuo

Our abstract recovery formula is summarized in the following equation:

~In|G(0
-fln HG(l+it)Hq,[30(t)dtglirglionfM.

0
Before we launch into more fidelity estimates, we need a few L, norm inequalities. These will allow us to more formally state and prove
the result.
Remark V.3.

(a) For semifinite von Neumann algebras, the L, continuity of
R(Z)(Je) _ rlz/Zq)T(ﬁ—z/Z —z/2)nz/2

is an immediate application of Stein’s analytic family interpolation theorem. However, for non-semifinite von Neumann algebras, this
map is not necessarily well-defined.
(b) Wehave

Rz(q)(l’])Re(z)) _ rIRe(z)

for all z in the strip {z]|0 < Re(z) < 1}.
(c) For z = 0 + it, we see that

R, = R@U 12

r/z

is indeed a rotated, generalized Petz recovery map.

Lemma V.4. Let z = 0+ it. Then, the twirled Petz map (with respect to n) satisfies

o o
G sty = igo (P R(@(p)")).
Proof. Let p = 1/6. Using the calculation in the Haagerup L, spaces, we deduce from the definition of R, that

|Gy tp) = 7277 en™ o™ 20 I iy = 107 G(2)* G(2)p 2

_ Hp1/2p Gp—zt/zn—rt/z +1/2pq)’((}11t/2 9/2/3611 G/ZA zt/z)rl+1/2p —zt/2p+1t/2p1/2p OH

le/ZP 1/2p q (DT(O' t2(A 0/2 HA—G/Z))WI/Zp I/ZPH

:mz(p‘“’),n”f’) :

90:2¥:22 €202 Jequisides 80

|
Corollary V.5. Let z = 0 + it. Then,
0 ]
fiye(n',R(®(p)7)) < 1.
[ |
Proof. By Holder’s inequality,
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We use the fact that tr(p) = 1 and the modular group extends to an isometry on L, and Proposition IV.2. [ |

The analyticity of G allows us to reformulate the interpolation formula for G as an interpolation of complex families of fidelities.

Remark V.6. Theorem 1.6 then follows from Lemmas V.4 and IV.3. We use Eq. (38) as a reformulation of Lemma I1.4 based on Lemma V.2,
after applying the re-iteration theorem (see Ref. 39 for more information and Fig 1 for illustration), which allows us to replace the boundaries of
the complex strip iR and 1 + iR by po + iR and p + iR.

Remark V.7. Within a finite-dimensional von Neumann algebra M, we may relate the Kosaki p-norm of G(z) to a p-norm expression in
terms of modular operators. For any p,
Az{PZ (Pl/p) _ pl/p—z/Zrlz/Z _ P_Z/Zpl/prlZ/Z;

and for any w and p,
G @ 1w, = (17 @ 1%)0(p7? ©17)|, = (A7} & 1%)0]),.

Hence,
z[2 2
1G(2) 00y = 1(AF7 @ 1)U |1y arp),

where U is the finite-dimensional Stinespring isometry with environment E. This is not clear in type III, where we lack the tracial property. G(z)
is a more useful form in type III due to the results we leverage from operator algebras. In particular, we have

G(2) = (&) egils

and we use in proving Lemma V.2 that g, andg . are, respectively, in M and M. As noted in Remark IL1, 8y, has good analytic and algebraic

properties that work well with the interpolation methods we require. The correspondence between G(z) and its finite- equivalent in terms of
modular operators may nonetheless merit future investigation.

B. Differentiation

For the twirled recovery map, we have to use a suitable differentiation result, first under the additional assumption of regularity oy < p
< 87'5. More generally, we differentiate Kosaki norms for smooth functions with values in the underlying von Neumann algebra.

Lemma V.8. Let (M, ) be a finite von Neumann algebra with trace 7. Let h : I - M be a differentiable function such that h(0) = 1. Let
1 be a faithful state. Let p be a differentiable function and p(0) > 1. Then, we have the following.

) &I ORO 2O | = limga 67 (IO RO [y~ 1) = 26D,

| J
z

iR po +iR  pp +R 1+4+R

FIG. 1. Using complex interpolation and the re-iteration theorem, we estimate the value of an analytic function at point z € {0 < Re(z) < 1} by the nearest points along the
lines po + R and p; + iR.
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—In Hﬂl/zp(f’)h(g)nllzp(ﬁ) HP(S)
0

= n(h'(0)).

(i) limg.

Proof. We consider g(6) = |n/*©@ n(g)n"/*® Hggg; and assume first that p(0) > 1. We may assume by continuity that 4(6) >0 in a

neighborhood of 6 = 0. Let H(t) = 4@ h(t0)""*® . Using the differentiation formula for p-norms and convexity, we get for fixed p = p(6)
that

§(6) = 1= [HI - [HO)I = p [ w07 H (1)
Iy
:pejo‘lr((H(t)IH fH(O)}H)ql/ZPh'(tG)nl/ZP)dt+p9f0IT(W’%]nl/ZPh'(te)nl/ZP)dt.

For the second term, we observe that
(7 o PoH (10)0 ) = <l (16))

and, hence,
20 o' 0 (100" Yt = pr(a(h(6) - h(0))),
As for the error (first) term, we observe that
[r(CH("™ = )™ ) H (0] < [ (H"™ = HOY )1 (1071,
by Holder’s inequality. Now, we may use the continuity of the Mazur map (see Ref. 57, Corollary 2.3) fora =p—1,p’ = P%l and deduce that
[P = H©O) ™)y < 3(p = DIH(®) - H(0) | max{|H(1) [, |H(0) o}~

<3(p~1)[(t0) = h(0) oo max{[|H(t) |, [H(0)[,}""*
<3(p— D)oo t@ max{|H(t) |5, [H(0) [}

We deduce that
! p-1 p—1y_ 1/2py7 1/2p
p [ ey =) ) PH 10y )
1
< [ ew3p(p = 1) [ max{LH()lpr [H(O) |} In'"*"H (t0)7"" | v6t
1
< [ <00 | oc3p(p = 10 [ max{ |H(0) | [H(0) )t

The faithfulness of # and fact that #(0) = 1 imply that |H(0)|, > 0 for all p, so the integral on the right-hand side remains finite. As
0 — 0, this term becomes 0. Thus, for p(0) > 1, we can find 6y such that p(6) — 1 > § for 0 < 6y and, hence,

. g(0) -1 _ ’
tim SO = p(0) (4 (0)).

Let us now define the function F(6, p) = g(#)"” in two parameters. We find that %F = —I%g(e)l/f’“g’(e) and Z—g = —;g(e)l/l’ In g(6).
As n is faithful, g(0) is non-zero when h(6) is always positive and not equal to zero. Hence, dF/dp is continuous and differentiable. To show

that dF(p, 6(p))/d6 is continuous and differentiable, we must also check the dF/d6 part, which involves g’ (0). We again apply separation of
variables. First,

d d
O R R OV Eoa P OV

The prefactor is continuous by the continuity of g(6) for p > 1. We now use a fact of Banach spaces that for any continuous, differentiable
function H(0) and p fixed,

d C( HGO) 4
a0 = (( HH(@)HP) ’deH(9)>'

90:2¥:22 €202 Jequisides 80
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Letting H(6) = |7"*@h(6)4"*?| p(0) the left-hand side of the bracket is again the Mazur map and, therefore, continuous. For the
right-hand side,

% (r]l/ZP(B)h(G)qI/ZP(e) ) = ql/ZPh'(G)nl/ZP.

We again see the continuity of this expression. Finally, positivity of 6 and the chain rule for the natural logarithm give us the continuity
of the entire expression. We still however must contend with the p derivative. Here, we apply the separation of variables yet another time,
writing

gm0y 18 = <L g h o+ L Py )
dp Pdp P dg Plp=q

First, we deal with the p-derivative, noting that the quantity inside of the norm is assumed p-independent. We obtain

o ) 41 = () = (Y o),

This is finite whenever 7"/27hy"/?1 > 0, so this derivative is continuous. For the q derivative,

d . 124, 1/2 d /245 1/2 124 1/2g\p-1 &, 1/2q; 1/2
el h qP = 2 ¢ a1, AV AR a1 q\p—1 = ap 9y,
qun "y i r((n " hy 7Y = p(n ) dq(fv n'™)

Since we only care about the continuity and will not rely here on explicitly evaluating this derivative, we merely note that the product
rule allows us to differentiate the remaining factor and that #"*7™" is finite by the positivity of #. This term is therefore continuous.
Hence, F is differentiable, and

d L el 1p(0) | dp(@)
@F(Q»P(Q)) ——p(e)zg(e) P (0) - (0 )g(e) P n g(0) =22

For 0 = 0, we deduce from g(0) = 1 that

SFOP(O) oo = (K (0),

This concludes the proof of (i) in this case. For (ii), we note that

In 7" #Pn0)n"* P ey 1 1Ing(6)
] IO

Using 4 51n g(8)]o=0 = (0)),we deduce, indeed, (ii). [ ]

Theorem V.9. Let dn<p <& 'pand1 < p< oo. Then,

/R(’ln.ﬁ?(PI/P»R% ((D(p)l/P)))ﬁo(t)dt < D(p|n) _Déf(P)”cD(W))_

Proof. Letq>1and g, > 2. We define (9) {Te g Then, we may apply Lemma V.2 for

Gy(2) = G(z/q) = n(p™™ 5~ )efr*p™™,
which remains analytic as long as q > 1. Using | G4(it) |4, < 1, we deduce as in Lemma V.2 that

In |G4(6) | ac0»
lim——— 1 < fln Gy(1 + it) |12 o()dt.

0—0

Let us recall that, according to Lemma V.4, we have

IGq(1 + it)”L}] :fq(Pl/q,R% (@(p)l/q)).
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However, we have used the dominated convergence theorem to interchange integral and limit, which is possible thanks to the continuity

of interpolated fidelity, proved in Sec. VIII. We are left to calculate the limit. We may introduce p(0) = @ so that p(0) > 1. Then, we see
that

0) — 0 0 ”— 0) 0) A— 0 0) - 0 0
1G,4(6) Hij’(‘” - le/q( )p 1/24( )ﬂl/Zq( )<DT(;1 1/24( )pl/q( ),7 1/24( )),11/2q( )P 1/24( )pl/q( )”P(9)

= 10"/ @y (0)p"* @ )
holds for

o (8) = p 12O /20O of (112000 51/a(0) 5 =1/20(0)y120(6) 1/ 20(0) _ h( 2 )

For g = 1, our derivative of
h(6) = p—e/z ,16/2@1 (4 —e/zp 6/2 7 —6/2 ) ne/2p76/2

satisfies
H(0)=-Inp+Iny+® (In p) - ®'(In #).

This implies
tr(ph’ (0)) = ~tr(p In p) + tr(p In(n)) + tr(®(p) In ®(p) ~In ®(y)) = ~D(p|n) + D(®(p)|D(1))-

Using the chain rule, we get
I
=qtr(phy(0)) = D(p[n) = D(®(p)|®(n))-

Remark V.10. In a type I situation, it is better to write

0, 0, * 2 0, 0,
h(6) = AJ o (AT AV AL

and, hence,
K (0) = —In Apy + @' (In Ay ).

This implies again

tr(ph'(0)) = ~(p'*1n Bpyp'?) + tr(D(p) ', Doy, 00 @(p)'?)
= -D(p|n) + D(®(p)|D(n))-

VI. PROOFS OF RECOVERY RESULTS IN FINITE ALGEBRAS

At this point, Theorem V.9 may appear to have nearly finished the proof of a universal recovery theorem. The remaining technical step
is to remove the condition that 817 < p < §~'#, which absolves our analytic machinery from needing to handle infinite relative entropy. Within
the finite-dimensional setting, this follows from a straightforward continuity argument. Infinite dimensions introduce additional subtleties
with the continuity arguments, and it is not so simple to show that we can drop the restriction that 8¢ < p < §'#. Section VII resolves these
issues, extending recovery to type II;. Since the finite-dimensional case is subsumed by these continuity results, we will not include another
explicit proof of continuity for the finite case. Instead, we state the following result.

Corollary VI.1. Let 1< p < oco. Then,

1
S (510 R (02 ) B0t < 5 (DUpI) = (@RI @(0)))
Moreover, the (generally non-linear) universal recovery map
. p
By () = ( f Roule") )

satisfies

“1n ,(p. Ry (@(p))) < %(D(pHﬂ) ~ D(0(p)|®(n))).
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The same holds for the general von Neumann algebra version in Sec. IX.

Proof. We refer to Secs. VII and VIII for the discussion that assuming p < Ay is enough to justify the differentiation lemma. For the
“moreover” part, we recall that In is concave and f, is jointly concave, and hence,

/ In £y (p, Ry (p/7)")du(t)
<In / £(psRot (p1PY"Ydu(t)

<tn ([ pdu(o), [ R (o))
~In (0. By 7).
|

A. Measured entropy recovery

Although Corollary VI.1 generalizes 6 to infinite dimensions, it does not immediately subsume the strengthened form of Eq. (8) from
Ref. 1. As this entropy inequality follows from trace inequalities, we recall this original form of proof and port it to the general von Neumann
algebra setting using Theorem I.2. In the infinite-dimensional setting, we define

Du(pln) = sup  D(@(p)|®(n)),

Ly (M)—£,

replacing the POVM by an arbitrary channel from the Haagerup space L; (M) to the space ¢, of probability measures. In the finite case, this
definition would coincide with that using arbitrary POVMs. We use the variational forms of relative entropy (see Refs. 60 and 61),

D(pl#n) = sup tr(p log w) + 1 - tr(exp(log 1 +log w)), (39)
w>0

and of the measured entropy,
Du(p|n) =suptr(p log w) + 1 — tr(nw). (40)
>0

Applying the Golden-Thompson inequality to the final term shows that the measured relative entropy is at most equal to the relative
entropy, as does data processing. To justify that, this form indeed equals the measured relative entropy as defined.

Lemma VI.2. For states p,n on a von Neumann algebra M, where M, denotes the subspace of self-adjoint operators in M,

Du(pln) = Sup p(log(w)) + 1 - n(w).

€ sa

Proof. Let w be a self-adjoint element and 7 : Leo (0(@), 4) — M be the normal *-homomorphism. Let E(-) denote the expectation of
the trace of an expression over values of w. Then, 7z« : L; (M) — L, (y) is a quantum-classical channel. We deduce that

D(@(p)|@(n)) = s?pE(GD(p) log f) + 1 -E(exp(n(n) +f))
= Sl;PE((D(P) log f) + 1 - E(@(n)f)

= s?p tr(p(log f(w)) + 1 - tr(nf(w)).

For f(z) = z, we deduce that Dy is bigger than the right-hand side, by the approximation of L, by finite o-algebras. For the converse, we
consider the channel @ : L; (M) — ¢{" and ®* : £, — M, which is unital and completely positive. Let ®*(¢;) = f;. Then, we find that

D(0(p)|®(n)) = Sgpz (¢ ®@(p)) log ;) + 1= > (e @ (1))
i J
= tr(pij log ﬁj) +1- tr(ﬂijﬂj)
J J

< tr(p log(Zﬁﬂj)) +1 —gt’(WZfi/’)j)

thanks to the operator concavity (with respect to unital, completely positive maps) of the logarithm. [ ]
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Through Lance’s Stinespring dilation (see Lemma I1.9 and Ref. 42), a quantum channel @ : L; (M) — L;(N) has the adjoint form
' (x) = en(x)e (41)

for some normal *-homomorphism 7: N - B(L)®M and projection e, where e = e1; ® 1y and ® is the von Neumann algebra tensor
product. It also holds for states p, # when M is finite that

tr(®(p) In @ (1)) = tr(p®" (In ©(1)))
= Tr(pen(In(®(n)))e) = tr(pe In((P(7n)))e).
When M is not finite, B(l,)®M is not even semifinite, and the above equality may not have meaning. Here, we show an entropy bound

in the style of the desired recovery inequality [Eq. (8)], but where we perturb the quantum states to ensure faithfulness and set up for use in a
crossed product M x G.

(42)

Theorem VL.3. Given p,n € M; as states on semifinite von Neumann algebra M and a channel ® : Li (M) — Li(N),

D(p[n) - D(®(p)|®(n)) = fRﬁo(t)DM(PHRZ,@ o ®(17))dt 2 Dy(p|Ryo o @(1)),

where | | | |
R;)m(w) - ,7(1+zt)/2q)1‘((D(ﬂ)(lﬂt)/Zq)T(w)q)(rl)(l—zt)/z)n(l—zt)/z

and
Ryo(@) = [ Bo(t)Ry0(w)dt
Here is the same rotated Petz map as in Ref. 15, and R, is the integrated, rotated Petz recovery map as in Refs. 1 and 16.

Proof. Letye (1-e)(B(L)®M)(1 - e) be a faithful state such that

tr(y(In(7(®(7))) — In(7(®(p))))) < eo,
€>0,and
p n
Pe=ptey= ] Ne=H+ey= ‘
0 ey 0 ey
Let pe = pe/tr(pe), fie = neftr(ne). We define

cir = tr(pe) = tr(ne) = 1+ etr((1 —e)y(1 —e)).

We then have that ¢, D(pe| fje) = D(pe | #e). Through the block diagonal form, D(p,.|#,) = D(p|#).
We consider

I:= %"D(pe lexp(In pe —In 5e = In 7(P(p)) +In m(P(n))))

= ln tr(pe(In pe —In e —In 7(®(p)) + (D (17))))-

cr
We then use the variational form

el = sup tr(pe In w) + 1 —tr (exp(In w + In(7(®(x)))) — In(n(P@(p))) —1In 7e)). (43)
weB () @M:w>0

To use Eq. (43), we apply the four-term version of the generalized Golden-Thompson inequality for p = 2, which states for real, faithful
exp(Ho) € M and Hermitian Hy, H,, H3 that

tr(eXp(Ho/Z +H; + Hy + H3))
< f dtBo(t) In Tr(exp(Ho/2) exp((1 +it)H1/2) exp((1 + it)H>/2) (44)
x exp(Hs) exp((1 —it)H,/2) exp((1 — it)H;/2) exp(Ho/2))
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using Eq. (36). We identify
Ho/2«<Inw, H «<-lnn, H «<Inn(®(n)), Hs;< —Inn(d(p)). (45)

Through the supremum and positivity of w, we can replace w by /w or w® in Eq. (43) without changing the value. Hence,

col > sup tr(pe In w) +1 - / dtpo(t) In tr(ngun)/zn((b(n))(1+it)/2ﬂ(q)(P))ﬂ(q)(n))(1,it)/2’7§17it)/2w).

w>0

As 7 is a homomorphism,

...=suptr(pe In w) +1- / dtBo(t) In tr(11£1+it)/271<<D(11)(Hit)/zd)(p)@(q)(lfir)/z)qglfit)/zw).

w>0

Through the supremum over w, this expression only decreases if we assume that w = ede for some @, and observing that [e, 7] = 0, we
have

.>suptr(plnd) +1- f dtBo(t) In tr(n(mt)/z(b’r((D(n)(1+it)/2®(p)q)(,1)(1,it)/2)’7(1,1‘0/2(2)).

@>0

This step conveniently takes care of both eliminating the ey corrections and resulting in a recovery map form. We may compare directl
P y g Y g y map y p y
to R;@ and to Eq. (40) to see that

o= [Bo(Du(pl Ry o ©(p) )

as sought on the right-hand side of the recovery inequality. We may also use the concavity of the logarithm to move the integral inside the
logarithm, obtaining the sought form in terms of Ryo.
For the left-hand side, using Eq. (42) and the fact that p = epe and that D(p| %) = tr(p(Inp — In7)),

el = tr(pe(In pe —In 5e — In(7(@(p))) + In(7(P(17)))))

= D(pe[ne) = D(@(p) [@(1)) + etr(y(In(m(D(n7))) — In(n(D(p))))) (46)
=D(p[n) = D(®(p)[®(n)) + etr(y(In(7(P(n))) — In((P(p)))))-
Then, we note that as € — 0, the correction term that is linear in € vanishes. This limit completes the theorem. [ ]

The obvious barrier in type III is the lack of a trace. Were this the only barrier, the Haagerup L, spaces and corresponding trace would
suffice. The deeper problem is that the differentiability of #(6) as used in Lemma V.8 and the continuity of the trace of the operator logarithm
are not clear without a finite trace. Hence, we must approximate the crossed product by finite von Neumann algebras in Sec. VIII, our main
use of the techniques of Ref. 27.

VII. CONTINUITY FOR FIDELITY OF RECOVERY

In this section, we show some continuity results for the fidelity of recovery, which are not immediate in infinite dimension. We continue
to use our standard assumptions on 7, p, and ®.

Lemma VILI. Let A be a (possibly unbounded) positive operator on a Hilbert space H, & in the domain of A"*, and f, : R - R be a
sequence of functions such that

fu(x)| < C(1+ [x['7?)

and limy, f,(x) = f(x) for all x. Then,
lim|(fu(A) =£(A))(§) [ =0,

where f, extends to operators by the elementary functional calculus.

Proof. Let dy;(x) be the spectral measure of 4, i.e.,

ESE = [ f)due()
for all measurable f. Then, we observe by the triangle inequality that |f,(x) — f(x)[* < 16C*(1 + |x|) holds for all n € N, and moreover,

14 = (A6 AT = [ nldue),
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Since ¢ has a finite norm, we deduce that x — (1 + |x]) is in L1 (#;). By the dominated convergence theorem, we deduce that

tim] (5, (4) F (A& = tim [ 1f(3) = £ () Pae(x) = 0.

Proposition VIL2. Let 8 < p < 8 'p. Then, the function
R R
F(2) = fre(o (07, Re(@(p) 7))
is continuous in z on {z|0 < Re(z) < 1}.

Proof. Here, we recall Lemma VII.1 as a general fact.
Let p and 7 be states and y(x) = w be the corresponding positive functional on M, (M) considered by Connes.®” Then,

/2 /2 0 Pl/2

1 1

=A =A

n ne(P7) W((O 0 ))

lim | A7 - 8y (J1){2 ®p'*)] = 0

belongs to the domain of Ai,/ ?_In addition, hence,

as long as R(z), R(w) < 1/2. Note that thanks to the calculation in the core M x R, we know that
—2/2 1/2 _ _z[2 1/2 —z[2 _ z[2, 1/2 1/2
n2p 2p 2 =y 2p P p = AT (01 = Ay (1) (2] @ p).
This means that we have the L, convergence in z for 0 < R(z) < 1. Using Kosaki’s interpolation result, we deduce that

” (nz/Zp—z/Z _ r]w/l —w/z)p

Therefore, we deduce that 0 < R(z), R(w) < 1 and we have that

I/ZPH < |(’1Z/2 —z/2 w/2 711)/2)H1 l/pH(’/IZ/Z —z/2 w/2 7w/2)P1/2H;/p

-n -nop

lim | ("%p % = 2p™ ) = 0

holds uniformly on compact sets.
Now, it is time we address the fidelity. We will use the functional calculus and observe that

nz/zp—z/Z _ r]w/ZP—w/Z _ ,12/2(1 w— 2/2 (z—w)/z

—-z/2

)p
Let us define the * homomorphism 7 : C(R*) - B(L,(M)) given by n(F; ® F,) = Ly, () RE, (- Using |e” — 1] < ael?l, we observe that

[Gefy)™ = CGely)] = (7 (w = 2) = 1) (x/p)| < fw = 2| In (/)| (/)7
Let § < D < 6! be a bounded operator. Using |e* — 1| < xe! and the functional calculus, we deduce that

D" = DF| = (™ P = 1)D| < fuo ~ 2l n o)™ GO < o — g (67
This allows us to estimate
16(2) = G(w) | = (A5 - m(a ) a0
<2(8 )‘w Al |y — ).
Let us now consider the case p < p, where + = Re(w), Re(z) = =-. Then, we find that
1G(W) L, (cGepye) < 1G(w) = G(2) HLP(L(HM),p) + [ G(2) L, (c0tr0) )
<C(8,w,2)|lw — 2|+ |G(2) 1, (£Crpg)0)-

Since C(8,w, z) is bounded in bounded regions of C, we deduce the continuity for Re(w) > Re(z). More precisely, we have continuity
for fixed Re(z), and moreover,
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F(w) < lim inf F(z) < lim su F(z), 47
( ) z—w,Re(w)2Re(2) ( ) zew,Re(w)fRe(z) ( ) @
limsup  F(z) < F(w). (48)

z—w,Re(z)>Re(w)

To prove the missing inequality in (47), we may assume Im(z) = Im(w) = 0. Let us now assume that Re(w) = 1% > Re(z) = p%’ ie,p, >p
for fixed p. Let p, > 1. Then, we can find € such that PLI = % + .- We use that standard interpolation estimate and deduce from 1G(1/p,)| <1
that

1601l = [ o (o (0 7))

1_1_ 1
Here, ;=5 =5
Ref. 39, p. 93),

. We may now send € — 0. Thanks to the continuity in the imaginary part and the explicit form of the measure (see

e ™ sin me
(1 - €)(sin? e + (cos me — e)?2)’

due(t) = he(t)dt, he(t) =
we deduce that
1/ 1/, 1-€
limSJIPHG(l/Pl(G))”pl(g) Slimsyp(Aﬁ(p P,R%(d)(p) P))ﬁe(t)dt)

5" Ru (@)™

This shows that
limsup  F(z) < F(w).

z—w,Re(z)>Re(w)
Similarly, we prove the missing inequality
F(w) < liminf  F(z).
z—w,Re(z)>Re(w)

in (48) using the uniform continuity in the imaginary axes. All four inequalities together then yield continuity. [ |

Lemma VIL3. Let2 < p < oo. The function
h(z) = gnp(2)

is continuous in L,(M, p).

Proof. We will first prove the assertion for p = 2. Following Connes, we consider M(N) and the state y(x) = 5 (7(x11) + p(x22)). Let
eij = |i)(j| be the matrix units in M. Then, we see that

Ay(en®8) = e ®@nép " = er2 ® Ay (£).

1/2) _ ’11/2

Moreover, A"?(p shows that e;» ® p'* belongs to the domain. Note, however, that thanks to the calculation in the core M x R,

we have

(2P = 2o = R (01,

Let lim, z, = z such that 0 < R(z,) < 1. Then, f,(x) = x*/* and f(x) = x*? satisfy the assumption of Lemma VIL1, and hence, we have
convergence. For 2 < p < oo, we deduce from Kosaki’s interpolation theorem that we also have

1-0) 6
laly < lalz;"lafe

provided that a is bounded and 117 = %9. We apply this to a = g, ,(zx) - g, ,(2), which is uniformly bounded; see Remark IL1. Therefore,
convergence in L, implies convergence for all 2 < p < co. [ |

Lemma VIL4. Let a € M. Then,
h(p) = Ha||L;(p)

is continuous.
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Proof. Letp < q < p,and 6(q) such that
1 1-6 . 6

a pr P
Then, we deduce from Kosaki’s interpolation theorem that
1-6 0
lallp < llalq < al; " Jal -
Note that g converges to p iff 6(gq) converges to 0. This implies the assertion.
Proof (VIL2). Let us consider G1(z) = 7(g5.7(z/2))e and Gy(z) = gw(z/Z) such that

G(2) = Gi1(2)Ga(2).

Let the notation ﬁ = R(z). From the triangle inequality, we deduce that

1G(2)l2p(z) = 1G(wW)l2p(uy| < 11G(2) [2pzy = 1G(w) 22| + 1 G(w)[2p(z) = [G(w)[l2p(ury]

< 16(2) = G(w) [2p(z) +11G(w) 2p(z) = [G(w) l2p()

A glance at the Proof of Lemma VII.4 shows that because | G(w)| < M uniformly for Re(w) < 1 (see Remark II.1), we do have

B[ G(w) |y~ [16() |apgap] = 0
For the first part, we use Kosaki’s interpolation result and get
1-R
|G(2) = G(w) |3y < [G(2) = Glaw) ;.
Thus, for Re(z) > 0, it suffices to show the L, estimate. Then, we observe that

1G(2) = G(w)]2 = [Gi(2)G2(2) = Gi(w)Ga(w)]2
<[1G1(2)(G2(2) = Go(w)) |2 + [(Gi(2) = Gi(w))Ga(w)]2

< |G1(2) ool gnp (2/2)p"* = gnp(w/2)p'* |2 + [ (Gi (2) = G1 (w)) Ga(w)] -

Thanks to Remark II.1, we deduce the convergence for the first of the two terms from Lemma VII.3. Let us consider the remaining term

and w = 1/q + it. Then, we deduce from Hélder’s inequality and interpolation that

laGa(w)2 = [anp" >~ 5 = an'/*1y"2p~ P p!2 7M1

1/2 1-1 1/21
< llan')2q < al " an' > 3/,

p

Therefore, we are left with an L,-norm estimate. In our case, a = 7(Gi(z) — Gi1(w))e, and hence, for b = G1(z) — G1(w), we find that

lan'? 13 = Tr(n'* 0" (b"0)4'?) = Tr(ii(6*b))

_ [)z/Zﬁ—z/Zﬁ /2 pw/zﬁ—w/zﬁ 1/2 ”§

Therefore, Lemma VII.3 concludes the proof.

VIil. APPROXIMATION OF RELATIVE ENTROPY

In this section, we will work with Lindblad’s definition of relative entropy,
Diin(pln) = (\/p>log Aoy (\/P)) + (1) — p(1).

Indeed, Diiy, is the unique homogeneous joint extension of the relative D entropy, i.e., we have the following.

(i)  Duin(tp[n) = tDLin(pln)-
(i) Dun(pln) = D(p|n) if p(1) = #(1) = 1.
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A. Finite von Neuman algebras

Proposition VIILI. Let (N,t) be a finite von Neumann algebra and a<d,<a'. Let dy be a density of a state y. Then, dys
= Lo (dy)dy + 8dy satisfies

(0) 8dy <dyp < (a+90)dy,
(i) limp—oo lims_g ||dys — dm|1 = 0, and
(11) limM_>o<, lim(g‘,() DLin(dM,Blldn) = D(deq)

Proof. In the tracial setting, we have (see Ref. 19) that
D(y|n) = D(dy||dy) = 7(dy In dy) — 7(dy In dy) = Duin(dy| dy).

For fixed M, we denote by dy = 1jo.m)(dy )dy the density obtained by the functional calculus. Then, dys = dy + 0d, converges in the
operator norm and L; norm to dy. Therefore, the continuity of f(x) = xInx implies that

%in(} 7(dym + 0dy In dy + 8dyy) — v((dy + 8dy) In dy) + 1(dy) — 1(dm + 8dy) = Drin(du | dy).

Here, we use that d,, is bounded below and above, and hence, In d,, is in Leo (N). Using this fact again, we deduce from Fatou’s lemma
that
7(dy In dy) — 7(dy In dy) + 7(dy) — 7(dy) = Mlim 7(dy In dy) — 7(dm In dyy) + 7(dy) — 7(dm).

Note here that D(dy||dy) is finite iff 7(dy In dy ) is finite. [ ]

For the convenience of the reader, let us briefly review how to transition from trace free definition to the one using trace. Indeed, in
L2( N, T), the vector \/dy, the purification of the state 7, implements the GNS representation with respect to the usual left-regular represen-

tation 7(x)\/dy = x\/dy for x € N. We will use 7 again in the Haagerup construction, Sec. VIII B. Moreover, using Connes’ 2 x 2 matrix trick
(see, e.g., Ref. 62), we know for & € L,( N, 7) that

Aw(f) = dnfd;

and, hence,
it it —it
A:M (x) = di,,xdﬂl .

This implies that
In Ay, (dy?) = In dyd}/* - dy* In d,,

Taking the inner product, we find

(/10 By (%)) = 7(dy In dy) = 7(dy In dy) = Dr(dy | dy).

B. Haagerup construction

Haagerup’s construction for type III algebras provides a convenient tool to deduce properties of type III algebras from finite von
Neumann algebras.

Remark VIIL2. Let us recall two possible ways to represent the crossed product M x G for an action « of a discrete group on Hilbert
space. We may assume that M c B(H) and consider ¢,(G, H). Then, M x G = (Ax(G), n(M)) is generated by a copy of A(G), the left regular
representation of G, and 7(M). Here, we may assume that

n(x) = 3 lghgl ® ag1 (x)
g

is given by a twisted diagonal representation and A (g) = A(g) ® 1x. Alternatively, we may choose 7#(x) = 1 ® x and Au(g) = M(g) ® ug such
that ug xug = a1 (x). Both of these representations are used in the literature, and their equivalence is used in the proof of Takai’s theorem.
For the equivalence, we note that

A (g)” m(0)Au(g) = m(ag (x)).

Similarly, A(g) ™' ® u;' (1 ®x)A(g) ® uy = 1 ® a ' (x). This shows that the algebraic relations of these two representations coincide. Using a
GNS construction, this extends to the generated von Neumann algebras.

90:2¥:22 €202 Jequisides 80

J. Math. Phys. 63, 122204 (2022); doi: 10.1063/5.0066653 63, 122204-30
Published under an exclusive license by AIP Publishing



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Lemma VIIL3. Let p,1 be states on the von Neumann algebra M with corresponding p, #j in M. Then, D(p|$) = D(p|¢).

Proof. We consider the Hilbert space H = £2(G, L2(M) ) and still use the symbol A(g) instead of A1, (1) (g). Our first goal is to calculate the
modular operator for an analytic state # with density d in L; (M) and 7 = o E, E : M x G — M being the canonical conditional expectation.
Then, & = |1) ® d"* implements the state 7j on the crossed product. In order to calculate the modular operator A = §*S, we recall that

06 AxE)) = (" E,578).
We start with finitely supported y = Zg)t(g)ﬂ(yg),z = X gA(g)m(zg) and observe that

(6,28) = (Zlgwgd” %S lg)zed" 2) = 21 xe).
8 8 8

On the other hand, we find that
(x"Ey"E) = (Z|g“>ag<x;>d”2, 2|g‘1>ag<y;>d”2) = > on(ag(xgy;))-
g g g

Let dg = ocgl (d). Then, we see that

n(ag(xgyg)) = tr(de-1xgy; ) = tr(dl/zy;dg*Ing_ldl/z) = (ygdl/z, dg*ngd_ldl/z).
This means that the diagonal operator Ay (&) = Ag_ aisa good candidate for the modular operator and is indeed well-defined for finitely
supported sequences of 0;_1(,’) ,-analytic elements, which are dense. Now, it is easy to identify the polar composition using the isometry
(),

J(2,18Y8) = 3 lg™ Yoy (&) on £2(G,Lo(M)) because a, extends to an isometry on Ly(M). This formula § = JAY? follows by calculation.
Finally, we use Connes’ 2 x 2 matrix trick for two states #, ¥ and the diagonal state 7(x,,) = 7(x11) + ¥(x22). Note that M»(M) x G = M,
(M x G), and hence, A ; is the 1,2 entry given by the G-diagonal operator Dozt () This implies that

D(7i[§) = (§-log Ag(8)) = (/% Acr (4 (%))
= ()%, 10g Ayy (/%)) = D(nlly).

Here, we use the fact that the relative entropy can be calculated on any representing Hilbert space. However, the representation of M x G
is in the standard form, which may be used as a definition of the relative entropy. [ |

A similar result holds for the fidelity.

Theorem VIIL4. Let 1 be a faithful state. Then, there exists a sequence of states p, such that

(i) 8an < pa < 8;111forsome 80 >0,
(ii) limg Py =P and
(iii)  D(p|ln) =lima D(p, 1)

Proof. Let us define y; = F(p). Thanks to the Haagerup construction, we know that limy yy = p. We may apply Proposition VIII.1 and
find di s = Qs (1[o,m] (dy ) dy, + 8dy, ), where a5 is chosen such that dy,,,5 has trace 1. Denote by y{,, 5 the corresponding state on M
and Yy s = 1//,2,,"16 o Fy. Let p;,, s be the restriction to M. Certainly, we find condition (i). Moreover, by the data processing inequality (see
Witten’s notes'”),
D(pimsln) < D(Yims ),

and hence,

limsup — D(pims|n) < lim sup D(yx|7)

k—00,m—00,6-0
< D(pl7) = D(pn)-
However, we deduce from (iii) and Proposition VIII.1 that
lilzn liyinlign Yims = P-

Taking the conditional expectation £ by restricting these states to M preserves this property. Thus, by the semicontinuity of Dyin, we
deduce that
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D(plin) < tim inf D(pimol ) < 1im sup D(yims|[7) < Dlpln).
This allows us to find a suitable convergent subsequence. [ ]

IX. RECOVERY RESULTS

Finally, we are ready to show the general recovery results of this paper. In the following diagram, we illustrate the relationship of densities
on the original algebra, crossed product, and approximating finite algebras used to derive the final result,

O: Li(M) - Li(N)

1l LeL
Li(MxG)  Li(NxG). (49)
ref bl

q)j,kt Ll(M]) - Ll(Nk)

Here, 7, my are inclusion maps in the Haagerup approximation, and €y, & are conditional expectations. We define an approximating
sequence of quantum channels @; : L; (M;) — L1 (Ny) in the finite von Neumann algebras and apply Theorem VI.3. Lemma IX.2 shows that
the relative entropies in the crossed product converge to that of the original relative entropy in the von Neumann algebra with which we
started. Theorem VIII.4 shows that we can construct an increasing sequence L1 (M;) and L1 (Ny)) in the finite algebras that converges to the
relative entropy in the crossed product. We also may check that lim; Ry,@,, — Ry,e. These steps follow those of Ref. 30, introducing no new
concepts, so we do not repeat them in detail here.

For the p-fidelities, we have the following.

Theorem IX.1 (technical version of 1.5). Let  and p be states such that the corresponding support projections satisfy e, < e;. Let dy,d,

denote their densities in Li(M). Let ® : Li(M) — Ly (M) be a complete positive trace preserving map with adjoint ®'. Then, it holds for
1<p<oo,

~2p In |2y P 0T (@ ()P0 () P ()P P p 2 | + D(@(p) (1)) < D(plln).

Proof. Let p, be as in Theorem VIIL4. We also need to fix k and consider Fy(p) together with states dy ,, 5 and the density #; = F(7) on
the My. Then, dy .5 and 7y satisfy the assumptions and keep the notation of the Proof of Theorem VIIL.4. Moreover, the map ®; = ® o Eo Fy :
Ly (My) — Li(M) is completely positive and trace preserving. This allows us to apply Theorem V.9 and deduce

D(Ok(dim) [Pk (1)) = 20 In fy(d? 5, Ryyp (P (dims) 7)) < D(dims 18- (50)

Using the lower semi-continuity, we deduce that
D(@(p)[ (1)) <l inf D@ ()| D))

We also know that limy 5 D(dims|7,) = D(p||7). Note that limy,,s dims = p. Thus, by the norm continuity of the map Ry, and the
Mazur map, we deduce that

Jim fo(d}? R (@) ")) = (1, Rip(@5)).

By the definition of R/, and Lemma V.1, we deduce that
Jolp" 0™ = lim (5 Ragp(@i(dina) ™).

Thus, taking the limit in (50) implies the assertion. [ ]

Here, we recall a shortened and slightly modified version of Lemma VIII.3, which uses the Haagerup approximation method to relate the
semifinite and type III relative entropies.

Lemma IX.2. Let G be a discrete group and N be a von Neumann algebra such that E: N x G — N is a conditional expectation. Let
O =woEandp=poE. Then,

Du(p[¢) = Du(pllg)-

Proof. Since N c N x G, we deduce that
Du(ple) < Du(pl9).
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For the converse, consider @ : L1 (N x G) — £ and the ucp-map ®” : £, - N x G. The relative entropy is calculated with the help of the
coefficients

aj = p(®" (¢)) = p(EQ” (g;))
and Bj = p(E(®*(e;)) . Since E®™ : £ — N is a normal ucp map, we deduce the assertion. [ ]
We also recall Theorem VIIL4.

Corollary IX.3. Let p,n € My be a pair of states on a von Neumann algebra M, and let ® be a quantum channel. Then,
D(p[n) - D(®(p)|®(n)) = fRﬁo(t)DM(PHRZ,o o ®(17))dt 2 Du(p|Ryo o D(1)).
Corollary IX.3 is the technical version of Theorem VI.3.

X. RECOVERY OF POSITIVE VECTORS

In this section, we explain how to recover certain vectors in a Hilbert space from a Petz recovery map. Our starting point is the representa-
tion of a von Neumann algebra M c B(H) and a separating vector h € M, i.e., the map x — xh is injective. This implies that the corresponding

normal state 7(x) = (h, xh) has full support in M. Then, we may apply the GNS construction and a partial isometry U : Mh — Ly(M) via
U(xh) = xr/l/z.

Indeed, " i
(U(xh), U(yh)) = Tr(n'"*x*yy'"?) = n(x"y) = (xh, yh)

shows that U extends to an isometry between Mh and L, (M ). Recall that the inclusion M c B(L;(M)) is in the standard position. This means
that there is a real subspace Ly(M)+ c L(M) and partial isometry J such that J|1, ), = id. In fact, all these objects can be constructed by

Tomita-Takesaki theory and J, = U"JU is indeed the anti-linear part of S = JAY in the polar decomposition of S(xk) = x*h. Of particular
importance here is the real subspace,
H, = U"(L,(M)4).

The space of positive vectors is the range of Mazur map. Let us be more precise. For every norm one vector k € H, we may consider the
state

wi(x) = (k,xk),

which admits a density dy, € L, (M) such that
wi(x) = Tr(dx).

Thanks to Stermer’s inequality, the map dj — d]i/ ? is continuous and hence
k| = U*d)> ¢ H..
This allows us to reformulate the usual polar decomposition theorem.
Proposition X.1. Let h be a separating vector and H, = Mh. Then, every element k € Mh admits a polar decomposition,
k = vk,

where v € M is a partial isometry, uniquely determined by v*v = supp(wy).

Remark X.2. Since U* : Ly(M) — Mh, we can also work with polar decomposition for the adjoint
U(k) =U(k)"|w = R ([U(K)"),
where w belongs to M and R, is the right multiplication, and hence,
k=U"R,UU*(JU(k)*) e M'H,
admits a polar decomposition with respect to the commutant. In this form, the theorem extends to all of H. Indeed, let

H=>Mh;
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be a direct sum of irreducible subspaces with projections e;H = Mh; in M'. Then, Mh; = L,(M) f; for some projection f; corresponding to the
support of h;. Using an isomorphism V between H and @;L, (M) f;, we see that M'(Mh) = M'h is dense in H. Using this isomorphism, we
now deduce that

k=wV* (VR

admits a polar decomposition with a partial isometry w € M and V*(|V(k)*|) € H-.

For 1 < p < oo, we may now consider the Kosaki interpolation space L; (M, wy,) as embedded in H. Indeed, we have already the inclusion

Loo (M, wp,) = Mh ¢ H 2 Ly(M, wp),

and by interpolation, we find an injective map,
Uy : Ly(M, wy) — H.

This allows us to define the corresponding p-norm
Illp = sup{|(ah, )| aw," [, < oo}

for 1 < p < oo.For 1 < p <2, the space
H” = {k|[K[, < o0}

is dense in H and isomorphic L,(M). Therefore, we find natural cones
HY =H’ nH,

as the range of U* (L,(M)+ ). Let us explain how these cones appear naturally in the context of Petz maps. We will assume that @ : L1 (M)
— L1 (M) is a completely positive trace preserving map and, for simplicity, that 5 and 7 = ®(#) have full support. Then, the Petz map

Ryjp : Ly (M) = Ly (M), Ry p (7127 = !PT ('
is a contraction and sends L,(M)+ to L,(M). Therefore, we also find a contraction
Ryyp: lflijr - HP.
Let us describe this map more explicitly by assuming that wy < Cwy, and hence, as above,
a(z) = wi/zw;dz, a(z) = Az/z . —z/2
are well defined. Then, we find that
Ry (@) = 0,/ 0" (a(1/2p) a(1/2p) ), *
= A4 (7 (a(1/2p)"a(1/2p)) ).
If we define b = ®T(a(1/2p)*a(1/2p)), we see that
Ry, (0}7) = AL (bh) € HE.
On the other hand, we see that k € HY, is represented U(k) = c”u]l(/ b LD;I/ b tb:l/ P This implies that
a(1/2p) (1 /2p) = & Pl a1 = A ()

Let us recall the map
o} (b)) = o' (b)),

which we extend to a densely map on H), as follows:
@} (bh) = O (b)h.

Then, we can combine the calculations above and find that

J. Math. Phys. 63, 122204 (2022); doi: 10.1063/5.0066653 63, 122204-34
Published under an exclusive license by AIP Publishing

90:2¥:22 €202 Jequisides 80



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Ryjp = AP @p A (51)
Our fidelity result can be formulated as follows.

Corollary X.3. Let h be a separating vector for M with associated vector state wy,, and let ®' : M — M be a normal, unital completely
positive map, and let &y, = wy o ®' be the associated vector state. Then, map R, : Hy — Hy,

Ry, = APOIA?

oy
extends to a contraction and satisfies
? 1 A1l A
=In fo(k, Ryyp (k) < g(D(wkllww - D(a]on))
for every k € HY.

Our next application tells us that if we use the standard form of representing a state on von Neumann algebras, then we may recover the
implementing vector.

Corollary X.4. Let H = Ly(M). Then, implementing vectors §, for p and &, satisfies

1§ = Ruj2(8) 5 < D(pln) = D(@(p) [ @(n)).
Proof. Let us first consider a,b € L,(M)+ of norm 1 and h = b — a. Then,
0= ]~ [al* = a+h[* - [a]* = 2(a,h) + h]*
On the other hand,
1= fo(a,b)" = [a]* ~ a3 = tr(a’) - tr(ab) = tr(a(a ~ b))

[y
—(a,h) = *——.
(@)= 1"
Then, In(1 + x) < x implies for a = p"’* and b = Rl/z(ﬁl/z) that

la-b]3

~In fo(a,b)* = —In(1 - (1 - fo(a,b)*)) > (1 - fo(a, b)*) > —

The assertion then follows from Theorem V.9. [ ]
Remark X.5. The proof of Eqs. (18) and (19) in the Introduction follows via the triangle and Cauchy-Schwarz inequalities.

As an illustration, we will now assume that M ¢ M is a subalgebra and that there exists a normal conditional expectation E : M — M such
that

wp = wh|M oE.

In this case, ®' = 1 is just the inclusion map M c M, and moreover, ®' commutes with the modular group (see Ref. 59). Then, E extends
tomap E: Ly(M) 4+ — Ly(M)+ via

E(xw;/z) = E(x)&);/z.

Under these additional assumptions, we see that Ry, : H? — HP is simply the inclusion map. In this particular case, the fidelity can also
be expressed easily. Indeed, according to the Proof of Lemma V.1, we know that

Sk k) = sup |(ak, AP (k)]

llak|,» <1

The case p = 2 is particularly interesting and gives the self-polar form,

flxy) = [5G = Tr( 2y ).
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1/2

A )y = U(bw,lq/z). This means that

For elements k, k' € H,, we may assume k = aw;/z and k' = bw;/z and x'/? = U(aw

f(x%y) = Tr(wpb™a) = (h,b"ah) = (bh,ah) = (K, k).

Corollary X.6. In addition to the assumption of X.3, assume that wy, = &y, o E holds for a normal conditional expectation. For k € H,

—In(k,E(k)) < D(wp|wx) — D(&p | dx).

Remark X.7. Without assuming the existence of E, we can still describe the Petz map for L, in this special case. Indeed, let us assume
that M ¢ M and denote by i : Mh — Mh the canonical inclusion map. We will assume that k € H, (M) and w; < Cwy, (which implies that
@y < Cy,). Then,

W1/2 a1/2 4=1/2 ,1/2

W =@ @, " Wy
implies

1/2.-1/2
k=& @, ""h
and
Ayy(K) = Ayyu(@o* @, ).
Thanks to (51), this implies
'f = Rl/z(k) = A1/4(2((A—1/4(k)))~

Let Pyy4 be the orthogonal projection onto the rotated space H; /e =0y (Mh). Then, £ € H, /4 implies

(k1,€) = (Payalkl, &) = [ PryalkI N[ €] < [Py yalK]

Therefore, we deduce that
=In [Py k|| < D(wp|lwi) — D(on

).

In particular, if the relative entropy difference is small, then Pyj4|k| ~ |k| implies that U(|k|) almost commutes with wy,.

XI. DATA PROCESSING INEQUALITY FOR p-FIDELITY

Theorem XI.1. Let @ : L (M) — L1 (M) be a channel. Then,

Jo(®(p), ©(0)) = fo(p, 0).
We need the following L, norm inequality.

Proposition XL.2. Let ®' be a normal, unital, completely, positive adjoint map of a channel ® and n be a normal state on M such that
®(#n) = 1A. Then, ®p : Ly(M) — L,(M) given by
@p(x) = 70! (/i Vg

is a completely positive contraction.

Proof. We may assume that the density # of a given state has full support; let & be the support of # so that we may assume that @, is
defined on &L, (M) ). This allows us to use the Kosaki isomorphism L,(M) = Ly(M, /7). With the help of this automorphism, we consider
the densely defined map,

(i) = 120 ()2,
Since @' : M » Misa contraction, we see that

[T oo <[] -

On the other hand, let us assume that x = ab. Then, we see deduce from the Cauchy-Schwarz inequality for completely positive maps
that
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|77 abip' )| = [/ ® (ab)y' |1 < |7® (aa* )y} 10" (b* )y,
= tr(n®' (aa*))Ptr(®T (b7 b))
=tr(4 (aal*))l/ztr(ﬁh*b)l/2
= |ial|ba]».

By the density of M# /2 in L,(M)#, we deduce that

ITER) 1 < El2l]2

for any & and ¢. Thus, T extends to a completely positive contraction on &L; (M)é. By the general Riesz-Thorin theorem (see Ref. 39), we
deduce that T : L,(M, #§) — L,(M, 1) is a contraction. By Kosaki’s theorem, this completes the proof. [ |

Corollary XI1.3. Let 1, p be two densities of states. Then,
Tg”’(x) _ ;71/2"<DT (ﬁ—l/szp—l/zp)pl/Zp

extends to a contraction from Ly(M) to Ly(M).

0
Proof. We use Connes’ matrix trick and consider ¢ = ( P 0 ) on M,(M) for @, = idy, ® @. The assertion follows from applying
. 0 x
Proposition XI.2 to y = 0ol |

Proof of XL1. Letx = '/%)"/% Then, we deduce that

Tg’p(ﬁl/ZPﬁl/ZP) _ ,71/2p 1/2p.

P

Since T;’p is a contraction, we deduce that

folmp) = 17202,

< 4"7%p P, = £, (11 9)-

Corollary XI.4. If D(p|n) = D(®(p)| @ (7)) for a channel ® : Ly (M) — Li(M), then
1" (a!) = ol (p"")

holds for all 1<p<oco and seR. Moreover, there exists a modular group intertwining channel ¥ :L(M) — Li(M) such that
Ty(x) = '/t (672 x5 71/ 6!/ satisfies
Tpp"") = p'"

and
¥(p) = @(p).

Proof. In this case,
~In fy(p Rpu(p 7)) = 0
holds y almost everywhere. By continuity, this holds for all t. In other words, thanks to the Mazur map, we get
p1/2p01—it/2pq)T (& —(1-it/2p p 1/pa, —(1+it)/2p)a(1+it)/2pp1/2p _ pz/p

for all ¢. This implies
0 (0i(s)(p 7)) = oy (s)p'"”
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for all 5. For the moreover part, we consider the family R,(x) = &/ %' @(6"% x6"/*")6'/% . Thanks to data processing inequality for
sandwiched relative entropy, this map is a contraction, and hence,

. T ds
a(x) = lim [ a(5)@a(a(=5) (1)) 3
exists as a bounded operator on L. By the density of L, in L;, we deduce that
w1y = (00 = tim [ ()@ (-5) () o
rud-r" 1 2T
is a completely positive map on L; (M). Its adjoint ‘I’}L is a normal, unital completely positive map, defined as a point weak™ limit of averages.
Hence, our assumption shows that T (x) = n'/2W! (4712 x5y 71/%) y'/?* also satisfies
1,51 =
for 1 < p < oo. For the final assertion, we have to establish a simple duality relation. Using Kosaki L, spaces, we see that the family of maps
Dp = D, (1, (M)
is really the same map through the topological embedding 1, (x) = 1"*xy"/*. Similarly,
}11/2})' Tp (ﬁ 1/2px’11/2p)’11/2p' - T (17 l/zxﬁ 1/2)

shows that T, = T} \ (L) is also the same map. Moreover,

Tr(q)(ﬂl/zxnl/zy)) - t’(ﬂl/zxnm@T(y)) _ tr(le(él/zyél/z))

shows that T, = d);, by density. The same holds for T} = ‘I/;,. Now, it is easy to conclude. Our assumption implies

1= Tr(pMp ) = Tr(p P Ty (1))
= ("), T (1 (p7)))
= (¥ (p' )ty (1))
= Tr(¥,(p'7)p'").

By the uniform convexity of L,, we deduce that

¥y (p'?) = p'? = o (p)'".

For p — 1, we deduce the assertion. |

Xll. L, ISOMETRIES

In the theory of von Neumann algebras, completely isometric embeddings of L (N) into L; (M) are completely characterized (see Ref. 63
for more information on the crucial work by Kirchberg). Indeed, a map u : Li (N) — L1 (M) is completely isometric iff there exists a normal
conditional expectation E : M — N c Ny, an *-homomorphism 7 : M — Ny, and ] € Nj such that

u(n'Pxy'?) = fr(x)4.

Such a map is completely positive if J is completely positive. Moreover, the inverse u™' extends to L; (M). Let us formulate a simple
consequence of the data processing inequalities.

Lemma XIL1. Let u be a completely positive complete isometry u : L1 (N) — L1 (N). Then,

D(u(n) |u(p)) = D(nlp),

provided that they are finite. Moreover,

fo(up), u(n)) = fo(p. 1)
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Lemma XI.2. Let M and N be semifinite and ® : L (M) — L1 (M), p < Cn such that

D(p[n) = D(®(p)[®(7))-

Then, there exists completely positive Li-isometry u such that 7 = u(n) and p = u(p).
Proof. Let W' : M — N be the averaged map. Then, we see that
¥(p) = p!"

and, hence,
p=¥' (") (p'?) < ¥ (p) = p.

Thus, we find equality in Kadison’s inequality, and p belongs to the (extended) multiplicative domain m c M. Since ¥ is normal and
invariant under oy, we see that the multiplicative domain m admits an #-invariant conditional expectation E : M — m such that AE = ; see,
e.g., Ref. 62 and also Ref. 59. In particular, we have completely isometric and completely positive inclusion ¢ : Ly () — L; (M) such that

1(ﬁ1/2xﬁ 1/2) _ ﬁl/zxﬁ 12

Let us denote by M(p,#) c m the smallest von Neumann algebra generated by C*(p) and aﬁ , which remains 7j-complemented. Let
f :R - Rbe abounded function. Then, we deduce that

¥ (£(p)) = f(p) ¥ (0i(1) (f(p))) = 0f (p)-
This means that W' extends to a natural isomorphism between M(p, %) and M(p, ) such that
tr(n¥' (x)) = tr(¥(n)x) = tr(d(x)).

The adjoint of u = (¥ |M(p,ﬁ))T satisfies u(#) = { and

tr(u(p)x) = r(p¥' (x)) = r(p(x)).
Since M(p, 1) is also 5-conditioned, we deduce the assertion. [ |
Remark XII.3. Tt follows easily that
u(m) =40

and . 1
u(p)”" = p*"”

hold for all 1 < p < co under the assumptions above.
We want to extend this result to type III von Neumann algebras. For this, we need the notion of the multiplicative domain. For a
completely positive unital map ® : M — N with Stinespring dilation ®(x) = V*7(x)V, we recall that x belongs to the right domain if
O(x)"D(x) = D(x"x) (52)
or, equivalently, V*7(x)(1 - VV*)r(x)V = 0. If x and x* satisfy (52), then [V, (x)] = 0 holds for a minimal Stinespring dilation. The set
mdom(®@) = {x|[V,7(x)] = 0} = {4]®(x")D(x) = P(x"x) and @(x)O(x")=D(xx")}
is a sub-C* -algebra of M, and for normal ® and, hence, normal 7 (see Refs. 44 and 54), this is even a sub-von Neumann algebra.

Lemma XIL4. Let ®, : M — M be a sequence of normal completely positive maps such that we have the following.

(i) The weak® limit
Doo(x) = im Oy (x).

(i) @ (0) = 6 for normal faithful states o and 6.
(iii) (UI/Z(DV! (x), D (}’)01/2) = (OI/Z(Dmin(n,m) (%) Prnin(nm) (}’)01/2)'

90:2¥:22 €202 Jequisides 80

J. Math. Phys. 63, 122204 (2022); doi: 10.1063/5.0066653 63, 122204-39
Published under an exclusive license by AIP Publishing



Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Let (an) be a bounded sequence in the multiplicative domain of ®,, converging strongly to a. Then, a belongs to the multiplicative domain
of ®.

Proof. We follow Kirchberg and use the C*-algebra C(M) of all bounded sequences (a,) such that a, converges in the strong and
strong *-algebra. Similarly, we consider C(M) and the corresponding quotient maps § and g : C(M) — M given by q((a)) = w* lim, a,.
We claim that ® C(M) c C(M). Indeed, assume that lim,a, — a converges to 0 strongly. Then, a, — aé converges to 0 in L, (M). Let us fix
n < mm. We find that

1(@n(an) = Pm(am))o? |2 = Tr(a"*®u(a)an)6"?) + Tr(o*®p(afam)s?)
— Tr(0"*®p(a} )P (am)o'?) = Tr(c D p(am) Oulan)d'’?)
= Tr(®; (0)(azan)) + Tr(Dp(0) (amam)) = Tr(®, (o) (azam)) = Tr(®; () (aman))
= Tr(6(a,an + apam — G am — Apan))
= |(an - am)5]2.

Since o is faithful and (®,(a,)) is bounded, we deduce that ®,(a,) is also strongly convergent.
Let M, c M be the multiplicative domain of A = {(x,)|x,» € M, }, be the corresponding subalgebra of £o, (M). Then, @ : A — Lo (M)
is an *-homomorphism, and we may define A = C(M) n A. Then,

OT[4: A > C(M)

is a C*-homomorphism. Let f ¢ C(M) be the kernel of the quotient map §. Since @ preserves strong convergence, we deduce that ®* (f) c J,
where ] is the kernel g. We deduce that there exists an *-homomorphism 7 : §(A) ¢ C(M)/] = M to M = C(M)/] such that

a0 (an) = 0(q(an)).

Note that ¢ is the restriction of the completely positive map @ : C(M)/J - C(M)/]. By applying this map to the constant sequence
(bn) = b, we deduce that @ = ©@*. Thus, for every strongly convergent sequence in A, we deduce that a = lim, a, belongs to the multiplicative
domain of ®* because g(a*a) = 0(a)*o(a) and o(a)*o(a) = o(aa™). [ ]

Theorem XIL5 (technical version of Theorem 1.7). Let p < Ayj for some A > 0, and @ : Ly (M) — Ly (M). Then, the following conditions
are equivalent:

() D(®(p)[®(7)) = D(pln).

(ii) There exist an n-conditioned subalgebra Mo c M and a completely positive Ly-isometry u such that
u(n) =@@n),  ulp) = 0(p).

Proof. Thanks to Lemma XII.1, we only have to prove (i) = (ii). In view of Corollary XI.4, we may assume that ® = ¥ intertwines o,; and
0. Let G = U2 *Z. Since V¥ is o-invariant, we know that W = ¥ x G extends to the cross product. Recall that o =noEgandp, =pokEg
naturally extend to the discrete crossed product. Let us recall that ¥ extends to a map TV : L, (Mg) — Li(Mg) via

Te(hd xAd”) = nil> oL,

Since D(pg 1) = D(pl) and D(¥6(p)|¥6 (1)) = D(¥(p) ¥ (n)), we deduce that
Ti (pa) = pa.
Let &, be the conditional expectation given by the Haagerup construction. Note that TUE, = E, T{ follows from the fact that ¥ commutes
with the modular group. Thus, for every n € N, we may apply Lemma XIL.2 and find A, = M, (Ex(pc)), Ex(#G)) in the multiplicative domain,

which is modular group invariant.
Let us now assume that p = #'2h#"’? for a bounded 4 and, hence (using the map ¥ instead of ®), that

p=1"hi,  po = iichi.
Let d, and d,, be the densities of ig| a1, and 7 |an), respectively. Recall that d, and d,, belong to the center of M(n) and M(n). Then,

Ea(pc) = dy*Ea(h)d)?
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implies that h, = E,(h) also belongs to the multiplicative domain of ¥}, = ¥'E,,. In order to apply the lemma, we recall that 1 and g are E,
invariant. Since M, are increasing, we deduce that for n < m,

Tr(nd*En¥' (a)En(D)n”) = Tr(ne ¥ (Ba(@)En(D))n”)
= Tr(¥(16)Em(En(a)b)) = Tr(fjc(En(a)b))
= Tr(ii6(En(a)Ea(b))) = Tr(nd Es¥ () En(b)1cl”).
Note that for @, = ‘I’I;En, we have ®o = ¥' and, hence, k= lim,, lAcn belongs to the multiplicative domain of ‘I’I; and, hence, to the

multiplicative domain of ¥. Indeed, we may consider anky/*. Then, aa, converges weakly to kif a, — k2 converges strongly to 0. Using

En(pe) = A En(k)ied’,

we deduce the weak-convergence from the crucial inequality

lim| E, (p) - pols

Varkdl - e ay

because d, belongs to the center of M(n), which allows us to use Stormer’s inequality. Since the multiplicative domain of ®' is invariant

in the Haagerup construction. Note also that

under the modular group of # and k belongs to the smallest modular group invariant von Neumann subalgebra My, which is mapped to M,
the smallest modular group invariant generated by 4, we can now conclude as in Lemma XII.2. [ |

Xlll. CONCLUSIONS AND OUTLOOK

The proofs in Ref. 29 and more traditionally information-theoretic proofs in Ref. | use an approach called the method of types®* (not to be
confused with von Neumann algebra types). Classically, the key innovation of typicality in Shannon theory turns many copies of a complicated
vector of different probabilities into a distribution that is nearly uniform on a set of typical outcomes and nearly unsupported elsewhere. The
number of distinct eigenvalues of many copies of a density matrix grows only polynomially, while the dimension grows exponentially. The
method of types is thereby powerful on quantities that scale linearly with tensored copies of a matrix.

A more mathematical approach to entropy bounds, used in Refs. 15, 16, and 65 and in the second proof style of Ref. 1, uses complex
interpolation to compare entropies as limits and logarithms of p-norms. These techniques are further from classical intuition, can lead to
breakthroughs on problems that had resisted traditional information theoretic techniques, and often yield automatic p-Rényi generalizations.
Furthermore, they naturally generalize to Kosaki spaces and do not rely on finite-dimensional assumptions.

Apparent in Ref. 1 are direct correspondences between some information-theoretic methods and their interpolation analogs. Deeper
work on this analogy may lead to a more intuitive understanding or mathematical duality. A renewed understanding of Shannon theory
through analysis on operator algebras helps escape classical intuition and generalizes beyond finite dimension, while the Shannon-theoretic
analogy of results on operators may help clarify the physical justification of obtained inequalities. The Haagerup approximation method and
Kosaki interpolation spaces add to the understanding of this connection.

Holography in high energy physics proposes duality between entropy and geometry, suggesting spatial correspondences and the intuition
for famous entropy inequalities””"” and operational techniques, such as error correction.””*” Many of these connections would manifest
physically in field theories modeled as type III von Neumann algebras. The theory of entropy in holography will therefore benefit from an
intuitive method of traceless entropy results.
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