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Abstract: We consider relativistic plasma particles subjected to an external gravitation
force in a 3D half space whose boundary is a perfect conductor. When the mean free
path is much bigger than the variation of electromagnetic fields, the collision effect
is negligible. As an effective PDE, we study the relativistic Vlasov–Maxwell system
and its local-in-time unique solvability in the space-time locally Lipschitz space, for
several basic mesoscopic (kinetic) boundary conditions: the inflow, diffuse, and specular
reflection boundary conditions. We construct weak solutions to these initial-boundary
value problems and study their locally Lipschitz continuity with the aid of a weight
function depending on the solutions themselves. Finally, we prove the uniqueness of
a solution, by using regularity estimate and realizing the Gauss’s law at the boundary
within Lipschitz continuous space.
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Introduction

Plasma is themost abundant form of ordinarymatter in universe, beingmostly associated
with stars. The Sun, our nearest star, is composed of 92.1% hydrogen and 7.8% helium
by number, and 0.1% of heavier elements. At the central core, hydrogen burns into
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helium (so-called the p-p chain of reactions starting from the fusion of two protons into
a nucleus of deuterium), which is the major reaction that drives the sun’s radiance (see
the famous B2FH paper [2] for details).

At the upper atmosphere of the Sun (solar corona), electrons and protons escape
from the solar corona (upper atmosphere), while traces of heavier elements have been
identified [41,43,57]. This emission of plasma particles is called solar wind. The solar
corona can be decomposed according to the Knudsen number of plasma. At low altitude
the collision is dominant (Knudsen number� density scale height), and hence the parti-
cles are assumed to be in hydrostatic/hydrodynamic equilibrium of MHD-type systems.
Above this regime (exosphere), the collision rate between particles is assumed to be
negligibly small: Knudsen number is about the density scale height of the Sun, which
is an order of 100km. These two extreme Knudsen number regimes are separated by a
narrow transition regime which is called the exobase (see Fig. 1 adopted from [58]1).
Above the exobase, there have been extensive research activities on the solar wind us-
ing collisionless Boltzmann equation (e.g. linear steady Vlasov model), which has been
called the exospheric solar wind models. In the early 60s, Chamberlain suggested the
“solar breeze model” that the radial expansion of the solar corona results from the ther-
mal evaporation of the hot coronal protons out of the gravitational field of the Sun [11].
In this model the ambient polarization electric field is implemented as a well-known
Pannekoek-Rosseland (PR) electric field [56,60], which will be discussed at (0.11). In
this paper, we are interested in a kinetic description of the exospheric solar wind us-
ing the initial-boundary value problem of the full relativistic Vlasov–Maxwell system
subjected to ambient polarization electric field, geomagnetic field, and gravitation.

When the collision effect is negligible, the master equation describing dynamics of
two species plasma (an average of 95% of the solar wind ions are protons [57]) is the
relativistic Vlasov–Maxwell system (RVM)

∂t f± + v̂± · ∇x f± + F± · ∇v f± = 0, in R+ × � × R
3,

f±(0, x, v) = f0,±(x, v), in � × R
3.

(0.1)

Here f± = f±(t, x, v) ≥ 0 represents the density distribution functions for the proton
(+) and electron (−) respectively. The relativistic velocity is

v̂± = v√
m2± + |v|2/c2

, (0.2)

where m± is the magnitude of the masses of protons and electrons, and c is the speed of
light.

The Lorentz force F± consists of self-consistent field electromagnetic fields plus
given polarization electric field Eext, geomagnetic field Bext, and gravitation:

F± = e±
(

E + Eext +
v̂±
c

× (B + Bext)

)
− m±ge3, (0.3)

The self-consistent fields E(t, x), B(t, x) are coupled with f± through the inhomoge-
neous Maxwell equations

∂t E = c∇x × B − 4π J, ∇x · E = 4πρ, in R+ × �,

∂t B = −c∇x × E, ∇x · B = 0, in R+ × �,
(0.4)

1 Permission to use the figure granted by https://www.agu.org/Publish-with-AGU/Publish/Author-
Resources/Policies/Permission-policy#repository.
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Fig. 1. The different transition regions in a stellar ionized atmosphere [58]1

with initial conditions

E(0, x) = E0(x), B(0, x) = B0(x), in �. (0.5)

Here, the electric density and current are defined as

ρ =
∫

R3
(e+ f+ + e− f−)dv, J =

∫

R3
(v̂+e+ f+ + v̂−e− f−)dv. (0.6)

Due to its importance, there have been extensive studies on the global regularity
of the Cauchy problem of RVM. Here, we only overview papers relevant to our ap-
proach, and we refer to [16,44,45] for a more complete list of references. In a classical
solution context, Glassey and Strauss first studied a continuation criterion of the rel-
ativistic Vlasov–Maxwell system in the whole space R

3 in [27], using so-called the
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Glassey-Strauss representation, which is a crucial tool in our analysis of this paper. It
was shown that classical solution exists for all time as long as the velocity support of the
particle density function f is compact. Later Klainerman and Staffilani prove the result
using a different method in [36]. The work of [27] leads to substantial developments
in [24–26,29–31]. Notably in [24–26], Glassey and Schaeffer proved that in the two-
dimensional and two-and-a-half dimensional case, for regular initial data with compact
velocity support, the system has unique global in time solution. More recently, in [44]
Luk and Strain proved a new continuation criterion for the system by showing that the
classical solution exists for all time if the velocity support of f is bounded after pro-
jecting to any two-dimensional plane. Then in [45], they improve the result of [24–26]
the two-dimensional and two-and-a-half dimensional case by only requiring the initial
data to have polynomial decay in velocity space. In addition, they showed that in the
three-dimensional case, a regular solution can be extended by assuming a bound on a
certain moment of f . In a weak solution context, the global weak solutions of the RVM
system were obtained in [16] using a velocity averaging lemma, and the questions of its
uniqueness and global regularity are still open.

In many applications of plasma models, the particles are in contact with a different
phase through a sharp interface, which can be considered as a (either solid or moving)
boundary. In the solar wind model, under the top of exobase, the space is filled with fully
ionized plasma particles with a very short mean free path, which can be considered as a
perfect conductor. We set the altitude of the exobase x3 = 0 and consider the upper half
space

� = R
3
+ := {(x1, x2, x3) ∈ R

3 : x3 > 0}. (0.7)

At the top of the exobase, we assume a perfect conductor boundary condition for
the self-consistent electromagnetic fields. Denote by n the outward unit normal of
� (which is n = −e3 for our case); [V ] the jump of V across ∂�: [V ](x1, x2) =
limx3↓0 V (x1, x2, x3)− limx3↑0 V (x1, x2, x3). Then from ∂t B = −∇x × E and∇x · B =
0, we derive the jump conditions (see [13] for the details)

n × [E] = 0, n · [B] = 0.

In other words, the tangential electric fields E1, E2, and the normal magnetic field B3
are continuous across the interface ∂�. Therefore, we obtain boundary conditions for a
perfect conductor of the solutions (E, B) to (0.17)–(0.23).

E1 = E2 = 0, B3 = 0, on R+ × ∂�. (0.8)

The initial-boundary value problem of the Vlasov–Maxwell system with the perfect
conductor boundary condition has been studied by Guo in [18] for general domains
with boundary. By approximating the phase space via a sequence of domains and linear
systems and using the compactness result of [16], he establishes a global existence of
weak solutions for RVM with the perfect conductor boundary condition for various
boundary conditions of f . The regularity question is highly nontrivial since the stability
of the ballistic trajectory depends on the sign of the normal component of the field at the
boundary. As a matter of fact, in [19], he constructs an example of the RVM system such
that the solution immediately does not belong to C1. Under the favorite sign condition
of the field at the boundary, in [20], he constructs regular solutions for a 1Dmodel of the
Vlasov–Maxwell system on a half line. In the proof, he introduces an important weight
functionα and establishes a crucial velocity lemma. This techniquemotivates us to define
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the kinetic weight function in (0.15) and build a weighted regularity estimate for f along
with it for the RVM system with boundary. We will discuss the role of kinetic weight in
Definition 1 and its remarks. There are several interesting related research lines. Here we
only list some of them for readers’ convenience: stationary solutions of the RVM [59],
initial-boundary value problem of Maxwell system in time-dependent domains [14],
an inverse boundary value problem of Maxwell’s equations [55], a dielectric boundary
problem [3], and a non-perfect conductor boundary problem [15,51]. For other relevant
studies, we refer to [12,17,23,49,52,54,61] and the reference therein.

Now we consider the gravitation (and the gravitation constant g > 0), an ambient
polarization electric field Eext, and geomagnetic field Bext near the exobase. As we are
only interested in the dynamics near the exobase, we can assume that Eext and Bext take
forms of

Eext = Eee3 and Bext = Bee3, (0.9)

where Ee, Be are the magnitude of the fields, and e3 is a unit vector (0 0 1)T . In the
early 1920s Pannekoek and Rosseland independently calculated an electric potential of
a Sun-like gaseous star, which consists of fully ionized matter in isothermal equilibrium
(temperature= T ). Recall that, for the two-species model, we have e± and m± be
the charge and mass of negative/positive ions, respectively. Pannekoek and Rosseland
conclude that the gravitational constant g > 0 and the polarization electrical field Eext =
Ee(0 0 1)T satisfy the following condition at the exobase:

Ee

−g
= −m+ − m−

e+ + |e−| . (0.10)

For electron/proton gaseous star (m+ > 1800m− and e+ = 1 = −e−), this identity
implies that the polarization electrical field is upward. Moreover, from e+Ee = 1

2 (m+ −
m−)g, we derive the Pannekoek-Rosseland condition:

m+g > 2e+Ee. (0.11)

This condition crucially implies that the gravitation effect dominates ambient electro-
magnetic one so that the acceleration of particleswould be attractive to the boundary.We
will explain the importance of the Pannekoek-Rosseland condition qualitatively when
defining the kinetic weight in Definition 1 and its remarks. It might be worth mentioning
another important physical domain with boundary in plasma physics which is a fusion
reactor such as tokamak. In a lab on the earth fusion can happen above 100 million Cel-
sius (much higher than Sun’s temperature) and no boundary materials can effectively
withstand direct contact with such heat. To solve this problem, scientists have devised
plasma held inside a doughnut-shaped magnetic field: if a confining external magnetic
field is large enough, the plasma is localized away from the boundary. In other words,
the acceleration of particles due to this external electromagnetic field is repellent to
the boundary, which is the exact opposite effect of gravitation/polarization electric field
satisfying the Pannekoek-Rosseland condition. In some sense, one can reduce the initial-
boundary value problem to the Cauchy problem when the confining magnetic field is
dominant [34,64].

Finally we consider a boundary condition of density distribution of plasma particles
on the incoming phase boundary γ− := {(x, v) ∈ ∂� × R

3 : v3 > 0}. In addition let
γ+ := {(x, v) ∈ ∂� × R

3 : v3 < 0} and γ0 := {(x, v) ∈ ∂� × R
3 : v3 = 0} denote

the outgoing phase boundary and grazing phase boundary, respectively. In this paper we
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consider the following three simple physical boundary conditions, whichwere originally
proposed by James Clerk Maxwell [50]. An inflow boundary condition (inflow BC) is
given by a prescribed date g± : R+ × γ− → R:

f±(t, x, v) = g±(t, x, v), on R+ × γ−. (0.12)

A diffuse boundary condition (diffuse BC) takes the form of

f±(t, x, v) = 1

2πT 2
w

e− |v|2
2Tw

∫

u3<0
− f±(t, x, u)û±,3du, on R+ × γ−, (0.13)

where Tw(x) is a positive smooth prescribed boundary temperature. As we are interested
in a short-time dynamics from now on we assume the isothermal case Tw(x) = 1 for the
sake of simplicity. We also have a generalized diffuse boundary condition [10]. Finally,
a specular reflection boundary condition (specular BC) is given by

f±(t, x, v‖, v3) = f±(t, x, v‖,−v3) on R+ × γ−. (0.14)

For the diffuse BC and specular BC, the boundary conditions enjoy a null flux condition:∫
R3 f±(t, x, v)v̂±,3dv = 0 for x ∈ ∂�, which implies a conservation of mass for a
strong solution of RVM.

One of the advantages of kinetic theory is that we can devise different boundary
conditions from themicroscopic interaction lawof particles and boundaries. For example
in a recent solar wind model, a non-Maxwellian inflow boundary condition is used to
explain coronal heating phenomena [58].

Stability of the RVM system has also been studied extensively. Notably, in [46–48],
the authors study the spatially inhomogeneous equilibrium in domainswithout boundary.
A sharp criterion for spectral stability was given in [48] and the nonlinear stability is
studied in [47]. In the case of bounded domains, stability analysis of the system was
carried out in [53] when the domain is a 2D disk with perfect conducting boundary
which reflects particles specularly. And then later the authors consider the case when
the domain is a 3D solid torus. More recently, the stability analysis was generalized to
any axisymmetric domains in [63].

Main theorems. As a major goal of this paper, we construct a weak solution of RVM in
a locally Lipschitz space, in which we can guarantee a uniqueness! The major difficulty
is that the density distribution f± is singular at the grazing set γ0 in general. Notably,
a solution is discontinuous at the grazing set γ0 [37], and a derivative ∇x,v f± blows up
at γ0 [20,21]. If a trajectory emanating from the grazing set can propagate inside the
domain (either if the domain is not convex or the field is repellent to the boundary) then
such singularities propagate inside the domain and the regularity of solutions become re-
strictive [19,22,37,39]. In particular, following the proof of Guo-Kim-Tonon-Trescases
[21], we can deduce that a global H1(�) bound is not possible for solutions f± of
(0.17)–(0.23) & (0.24), in general. Unfortunately, such low regularity hardly guarantees
uniqueness due to the nonlinear term F± · ∇v f±. To overcome such obstacle, we adopt
a kinetic weight function α±(t, x, v) in the regularity estimate of a locally Lipschitz
space, inspired by [19,21].
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Definition 1 (Kinetic weight). Recall the Lorentz force F± in (0.19) with (Eext, Bext) in
(0.20). We define

α±(t, x‖, x3, v) :=
√

(x3)2 + (v̂±,3)2 − 2F±,3(t, x‖, 0, v)
x3

〈v±〉

=
√

(x3)2 + (v̂±,3)2 + 2

(
m±g − e±

(
E3 + Ee +

1

c
(v̂± × B)3

)
x3=0

)
x3

〈v±〉 ,

(0.15)

where we have used that (v̂± × Bext)3 = 0 for (0.20).

Remark 1. Clearly, α± is well-defined when −F±,3(t, x‖, 0, v) is positive. In this paper,
we assume this condition on the initial data at the boundary:

m±g − e±
(

E0,3(x) + Ee +
1

c
(v̂± × B0(x))3

)
x3=0

> c1, for some c1 > 0.

(0.16)

Remark 2. The condition (0.16) is not very restrictive under the Pannekoek-Rosseland
condition (0.11). Note that −F±,3(t, x‖, 0, v) equals

(
m±g − e±Ee

)
︸ ︷︷ ︸

x3
〈v±〉 − e±

(
E0,3 + (

v̂±
c

× B0)3

)
x3=0

x3
〈v±〉 .

If the Pannekoek-Rosseland condition (0.11) holds then the underlined coefficients of
the first term, which corresponds to the net force at the equilibrium, has lower bounds:

(
m+g − e+Ee

)
>

m+g

2
,

(
m−g − e−Ee

)
> |e−|Ee.

From (0.10), we know that both lower bounds are of the same size. If E0,3|x3=0 and
B0,1|x3=0, B0,2|x3=0 are smaller than such lower bounds then the condition (0.16) holds.
It is the case when the initial state of plasma is either close to the neutral state or vacuum
at the boundary.

Remark 3. Since being introduced in [20], such weight function α and its variants have
served important roles in the regularity analysis for various kinetic equationswith bound-
ary such as [4–6,8–10,21,32]. Notably in [21], an α-weighted C1 solution for the Boltz-
mann equation was constructed in convex domains. In [9], the authors used a different
version of kinetic weight to construct the global strong solution to the Vlasov-Poisson-
Boltzmann (VPB) system in convex domainswith diffuseBC. The result was generalized
to the two-species case in [5], and to the case of the presence of the external field in
[4]. A generalized diffuse boundary condition (namely the Cercignani-Lampis boundary
condition) for the VPB system is studied in [10]. A survey on the recent development in
this direction can be found in [8].

Although the problem has been set already (RVM system (0.1)–(0.6) under the per-
fect conductor boundary condition of electromagnetic field (0.8) ), we list them here
redundantly for the sake of the reader’s convenience: Let� the half space (0.7). We read
the RVM system

∂t f± + v̂± · ∇x f± + F± · ∇v f± = 0, in R+ × � × R
3,

f±(0, x, v) = f0,±(x, v), in � × R
3.

(0.17)
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with the relativistic velocity, Lorentz force, and the external fields

v̂± = v
/√

m2± + |v|2/c2, (0.18)

F± = e±
(

E + Eext +
v̂±
c

× (B + Bext)

)
− m±ge3, (0.19)

Eext = Eee3 and Bext = Bee3. (0.20)

The Maxwell’s equations solve

∂t E = c∇x × B − 4π J, ∇x · E = 4πρ, in R+ × �,

∂t B = −c∇x × E, ∇x · B = 0, in R+ × �, (0.21)

E(0, x) = E0(x), B(0, x) = B0(x), in �. (0.22)

where the electric density and current are defined as

ρ =
∫

R3
(e+ f+ + e− f−)dv, J =

∫

R3
(v̂+e+ f+ + v̂−e− f−)dv. (0.23)

Finally we impose the perfect conductor boundary condition

E1 = E2 = 0, B3 = 0, on R+ × ∂�, (0.24)

and consider the inflow BC, diffuse BC, and specular BC on the incoming boundary γ−:

f±(t, x, v) = g±(t, x, v) on R+ × γ−, (0.25)

f±(t, x, v) = 1

2πT 2
w

e− |v|2
2Tw

∫

u3<0
− f±(t, x, u)û±,3du on R+ × γ−, (0.26)

f±(t, x, v‖, v3) = f±(t, x, v‖,−v3) on R+ × γ−. (0.27)

We define a notation of weak solutions to this initial-boundary value problem.

Definition 2 (Definition 1.5 of [18]). Let f± ∈ L1
loc((0, T )×�×R

3)∩L1
loc((0, T )×γ+),

f0,± ∈ L1
loc(� × R

3), g ∈ L1
loc((0, T ) × γ−). Let E, B ∈ L1

loc((0, T ) × �), E0, B0 ∈
L1
loc(�). Then ( f±, E, B) is aweak solution of (0.17)–(0.23) under the perfect conductor

boundary condition of electromagnetic field (0.24) and different boundary conditions
for f± (0.25), (0.26), or (0.27), if for any test functions

φ(t, x, v) ∈ C∞
c ([0, T ) × � × R

3), with

supp φ ⊂ {[0, T ) × �̄ × R
3}\{({0} × γ ) ∪ (0, T ) × γ0}, and

	(t, x) ∈ C∞
c ([0, T ) × �̄; R

3), 
(t, x) ∈ C∞
c ([0, T ) × �; R

3),

we have
∫∫

�×R3
f0,±φ(0)dvdx +

∫ T

0

∫∫

�×R3
(∂tφ + ∇φ · v̂ + F± · ∇vφ) f±dvdxdt

=
∫ T

0

∫

γ+

φ f±v̂3dvd Sx +
∫ T

0

∫

γ−
φ f±v̂3dvd Sx

︸ ︷︷ ︸
(0.28)BC

,
(0.28)
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and
∫ T

0

∫

�

E · ∂t	dxdt −
∫

�

	(0, x) · E0dx

= −
∫ T

0

∫

�

(∇x × 	) · Bdxdt + 4π
∫ T

0

∫

�

	 · Jdxdt, (0.29)

∫ T

0

∫

�

B · ∂t
dxdt +
∫

�


(0, x) · B0dx =
∫ T

0

∫

�

(∇x × 
) · Edxdt, (0.30)

and

∇ · E = 4πρ, ∇ · B = 0 in the sense of distributions in (0, T ) × � × R
3. (0.31)

Here, the boundary term of (0.28) is determined by different boundary conditions:

(0.28)BC =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ T
0

∫
γ− φg±v̂3 dvd Sx , for the inflow BC (0.25),

∫ T
0

∫
γ+

(
− 1

2πT 2
w

∫
u3>0 e− |u|2

2Tw φ(t, x, u)û3du

)
v̂3 f± dvd Sx ,

for the diffuse BC (0.26),∫ T
0

∫
γ+

φ(t, x, v‖,−v3) f±v̂3 dvd Sx , for the specular BC (0.27).

Now we state the main theorems.

Theorem 1 (inflow BC). Suppose the initial datum f0,± satisfies, for some δ > 0,

‖〈v〉4+δ f0,±‖L∞(�×R3) + ‖〈v〉5+δ∇x‖ f0,±‖L∞(�×R3)

+ ‖〈v〉5+δα±∂x3 f0,±‖L∞(�×R3) + ‖〈v〉5+δ∇v f0,±‖L∞(�×R3) < ∞,
(0.32)

and the inflow boundary datum g± satisfies

‖〈v〉5+δ∂t g±‖L∞((0,∞)×γ−) + ‖〈v〉5+δ∇x‖ g±‖L∞(0,∞)×γ−)

+‖〈v〉5+δ∇vg±‖L∞((0,∞)×γ−) < ∞. (0.33)

Moreover, E0, B0, g satisfies (0.16), and the compatibility conditions

∇ · E0 = 4πρ0, ∇ · B0 = 0, in �,

E0,‖ = 0, B0,3 = 0, on ∂�,
(0.34)

and

‖E0‖C2(�) + ‖B0‖C2(�) < ∞. (0.35)

Then there exists a unique solution f±(t, x, v), E(t, x, v), B(t, x, v) for 0 ≤ t ≤ T with
T � 1 to RVM for the inflow BC (0.25) in the sense of Definition 2, such that,

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f±(t)‖L∞(�×R3) + ‖〈v〉5+δα±∂x3 f±(t)‖L∞(�×R3)

+ ‖〈v〉5+δ∇v f±(t)‖L∞(�×R3)

)
< ∞,

(0.36)

and

sup
0≤t≤T

(‖∇x E(t)‖L∞(�) + ‖∇x B(t)‖L∞(�)

)
< ∞. (0.37)
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Theorem 2 (diffuse BC). Suppose f0,± satisfies (0.32), and E0, B0, g satisfy (0.16),
(0.34), and (0.35). Then there exists a unique solution f±(t, x, v), E(t, x, v), B(t, x, v)

for 0 ≤ t ≤ T with T � 1 to RVM for the diffuse BC (0.26) in the sense of Definition 2,
such that both (0.36) and (0.37) hold.

Theorem 3 (specular BC). Suppose f0,± satisfies

‖〈v〉5+δe
C√

α±〈v〉 ∇x f0,±‖∞ + ‖〈v〉5+δe
C√

α±〈v〉 ∇v f0,±‖∞ < ∞, (0.38)

for some C > 0. E0, B0 satisfy (0.16), (0.34), and (0.35). Then there exists a unique
solution f±(t, x, v), E(t, x, v), B(t, x, v) for 0 ≤ t ≤ T with T � 1 to the RVM with
system (0.27) in the sense of Definition 2, such that

sup
0≤t≤T

(
‖〈v〉4+δ∇x f±(t)‖L∞(�×R3) + ‖〈v〉4+δ∇v f±(t)‖L∞(�×R3)

)
< ∞, (0.39)

and (0.37) holds.

Remark 4. A large class of functional spaces satisfy the condition (0.32). Indeed any
function, whose weak derivatives ∇x,v f are bounded in L∞(� × R

3), and decays fast
enough as |v| → ∞, belongs to the space of (0.32). Actually ∂x3 f0,± is allowed to be
singular at the grazing set γ0.

Remark 5. As far as the authors know, Theorem (1)–(3) provide the first unique solv-
ability of the RVM system when the physical boundary has a global effect (cf. [34,64]).
The time span T of existence depends on the size of the initial data f0, E0, B0 and their
derivatives, and c1 in (0.16).

Remark 6. We prove the weighted regularity estimate using a Lagrangian approach of
[21]. We take a direct differentiation to the Lagrangian solution along the generalized
characteristics. The generalized characteristics depend on the boundary condition.

Remark 7. Here we require that the initial data f0 to vanish exponentially fast towards
the grazing set (0.39). This allows us to establish the regularity estimate for specular BC
(0.39) with the W 1,∞ field. We prove this theorem in Sect. 7.

Difficulties and key ingredients The problem in this paper is a coupled system of hy-
perbolic equations and kinetic Vlasov equation with characteristic boundary condition:
the problem suffers a loss of derivative of wave equation (cf. [14]) and the boundary
singularity of Vlasov equation (cf. [20,21]) at the same time. The key difficulty in the
construction of a unique solutions of the RVM systemwith physical boundary conditions
is a control of the nonlinear term F± ·∇v f±. We overcome this difficulty by establishing
a regularity estimate for both the electromagnetic field E and B, and the density dis-
tribution f± using the Glassey-Strauss representation. We detail several key difficulties
along the road. In this section and the rest of the paper, for sake of simplicity, we will
consider the one-species relativistic Vlasov–Maxwell-system since the analysis of the
two-species case does not process essential difference from that of the one species case:

∂t f + v̂ · ∇x f + F · ∇v f = 0, in R+ × � × R
3,

f (0, x, v) = f0(x, v), in � × R
3,

(0.40)
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We also set all the charge and mass of the plasma f equal to one, so here v̂ = 1√
1+|v|2 ,

and

F =
(

E + Eext +
v̂

c
× (B + Bext)

)
− ge3, (0.41)

and E, B satisfies the Maxwell equations (0.21), with

ρ =
∫

R3
f dv, J =

∫

R3
v̂ f dv. (0.42)

•Wave equation and the Neumann BC From the Maxwell’s equations (0.21), we have
the inhomogenous wave equations for E and B:

∂2t E − �x E = −4π∇xρ − 4π∂t J, in R+ × �, (0.43)

∂2t B − �x B = 4π∇x × J, in R+ × �, (0.44)

with the boundary condition E1 = E2 = 0, B3 = 0 on ∂� in (0.24) and the initial
condition

E |t=0 = E0, ∂t E |t=0 = ∂t E0 := ∇x × B0 − 4π J |t=0, in �,

B|t=0 = B0, ∂t B|t=0 = ∂t B0 := −∇x × E0, in �.
(0.45)

The boundary conditions of E3, B‖ components are not a priori given, which causes
some trouble handling weak solutions based on the Glassey-Strauss representation. Of
course, if the fields E, B ∈ C2(�) ∩ C1(�̄), and ρ ∈ C1(�) ∩ C(�̄), then from the
Maxwell’s equations (0.21) and the perfect conductor boundary condition (0.24), we
deduce the Neumann boundary condition

∂3E3 = 4πρ, ∂3B1 = 4π J2, ∂3B2 = −4π J1 on R+ × ∂�. (0.46)

One of themain goals in this paper is to equip a solution space inwhichwe can realize the
Neumann BC (0.46) in a suitable sense and hence guarantee a unique solvability. Indeed
we can justify the Neumann boundary condition (0.46) in a weak solution formulation
testing against smooth test functions that do not vanish at the boundary ∂� in Lemma 1,
and prove the uniqueness of weak solution. We then carefully show in Lemma 5 that,
assuming the continuity equation

∇ · J + ∂tρ = 0,

and some compatibility conditions of the initial datum (0.34), the weak solution of wave
equations with boundary conditions (0.43)–(0.46) is indeed a solution to the Maxwell
equations. This equivalence allows us to solve the RVM system by looking for solutions
to the wave equations with boundary conditions (0.43), (0.44), which is the first step of
our analysis.
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•Glassey-Strauss representation in the half space The wave equations (0.43), (0.44)
suffer from the “loss of derivatives” of (E, B)with respect to the regularity of the source
terms ρ and J . As Glassey mentions in his book [28], the key idea of the Glassey-Strauss
representation is replacing the derivatives ∂t ,∇x by a geometric operator T in (0.48) and
a kinetic transport operator S in (0.49):

∂t = S − v̂ · T

1 + v̂ · ω
, ∂i = ωi S

1 + v̂ · ω
+

(
δi j − ωi v̂ j

1 + v̂ · ω

)
Tj , (0.47)

while, for ω = ω(x, y) = y−x
|y−x | ,

Ti := ∂i − ωi∂t, (0.48)

S := ∂t + v̂ · ∇x . (0.49)

Note that

Tj f (t − |y − x |, y, v) = ∂y j [ f (t − |y − x |, y, v)], (0.50)

which is a tangential derivative along the surface of a backward light cone [28]. On the
other hand, the Vlasov equation (0.40) implies that

S f = −∇v · [(E + Eext + v̂ × (B + Bext) − ge3) f ]. (0.51)

Therefore, in [27,28], they can take off the derivatives Tj , S from f using the integration
by parts within the Green’s formula of (0.43)–(0.44) by connecting the source terms to
f via (0.42).

For our problem, we derive the Glassey-Strauss representation in the presence of
a boundary. For E‖ and B3, to solve the wave equation with the Dirichlet boundary
condition (0.24), we employ the odd extension of the initial data and the forcing term
into the lower half space R

3− := {(x1, x2, x3) ∈ R
3 : x3 < 0}. Solving the whole space

wave equation with the oddly extended data gives us the solution that satisfies (0.24). On
the other hand, for E3 and B‖, we decompose the solution into two parts: one with the
Neumann boundary condition of (0.46) and the zero forcing term and initial data, and
the other part satisfying (0.43)–(0.45) with the zero Neumann boundary condition. For
the first part, we find out the expression using the fundamental solution of the Helmholtz
equation. And for the second part, we use the even extension to get the solution with the
zero Neumann boundary condition.

For the expression in the lower half space, we introduce

ω̄ = [
ω1 ω2 −ω3

]T
, (0.52)

and

T̄3 f = −∂y3[ f (t − |y − x |, y‖,−y3, v)] = ∂y3 f − ω̄3∂t f,

T̄i f = ∂yi [ f (t − |y − x |, y‖,−y3, v)] = ∂yi f − ω̄i∂t f for i = 1, 2.
(0.53)

Then through direct calculation we obtain an explicit expressions of E and B by solving
the wave equations (0.43)–(0.45) under the boundary condition (0.24) and (0.46) in
Proposition 1 and Proposition 2 respectively.
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•Weighted W 1,∞ estimate of f and the regularity of the fields An intrinsic feature of the
transport equation in domains with boundary is the singular behavior of its derivatives:
the solution of a linear transport equation with physical boundaries is known to not
have high regularity [21]. However, to get the unique solvability, one must control ∇v f
effectively. This in turn requires the control of spatial derivatives of the distribution
function and the spatial derivatives of electromagnetic fields. But due to the characteristic
boundary, f does not have high enough regularity to achieve the required regularity for
E and B directly from the hyperbolic equations. We explain the ideas of the paper and
the methods we use to overcome the difficulties in the rest of this section and the next.

Let’s consider a solution of the RVMsystemwith inflowboundary data (0.40)–(0.42),
(0.25). The characteristics (trajectory) is determined by the Hamilton ODEs,

d

ds
X (s; t, x, v) = V̂ (s; t, x, v),

d

ds
V (s; t, x, v) = F(s, X (s; t, x, v), V (s; t, x, v)).

(0.54)

We define the backward exit time tb(t, x, v) as

tb(t, x, v) := sup{s ≥ 0 : X (τ ; t, x, v) ∈ � for all τ ∈ (t − s, t)}. (0.55)

Furthermore, we define xb(t, x, v) := X (t − tb(t, x, v); t, x, v), and vb(t, x, v) :=
V (t − tb(t, x, v); t, x, v). We can solve the Vlasov equation (0.40) with the inflow
boundary condition (0.25) as

f (t, x, v) = g(t − tb(t, x, v), X (t − tb(t, x, v); t, x, v),

V (t − tb(t, x, v); t, x, v)) for t ≥ tb(t, x, v).

From some direct computations (see (5.8) and (5.9)), the derivatives of f have a bound
in general as

∇x f (t, x, v) ∼ ∇x tb(t, x, v),

which can be further bounded from the direct computation of the characteristics (see
(5.5)) as

∇x tb(t, x, v) �
1 + sup0≤s≤t ‖∇xF(s)‖∞

v̂b,3
. (0.56)

The formation of such singularity motivates us to introduce the following notion. As a
first order approximation of v̂b,3(t, x, v), we define the kinetic weight

α(t, x‖, x3, v) :=
√

(x3)2 + (v̂3)2 − 2F3(t, x‖, 0, v)
x3
〈v〉

=
√

(x3)2 + (v̂3)2 − 2
(
E3(t, x‖, 0) + Ee + (v̂ × B)3(t, x‖, 0) − g

) x3
〈v〉 .

(0.57)

Note that α = v̂3 on ∂�. Crucially α is effectively invariant along the characteristics,
thanks to the velocity lemma (Lemma 8). This allows us to prove an α-weighted bound
on the derivatives of f , more specifically, we prove that for any 0 < δ < 1,

〈v〉5+δα∇x f (t) ∈ L∞(� × R
3), for 0 < t < T . (0.58)
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On the other hand, due to the generic singularity (0.56), to close the estimate we need
to bound ∇x E , ∇x B by 〈v〉5+δα∇x f in the generalized Glassey-Strauss representation.
By taking the derivatives directly to the formulas of E and B, in Lemma 7 we achieve
the bound

|∇x E | + |∇x B| � “ initial data ”

+ sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t)‖∞
∫

�∩{|x |<T }

∫

R3

1

〈v〉4+δα(t, x, v)
dvdx .

Then from the local-to-nonlocal estimate (Lemma 9), we derive

∫

R3

1

〈v〉4+δα(t, x, v)
dv � ln(1 +

1

x3
) ∈ L1

loc(�),

and we are able to close the estimate and conclude E, B ∈ W 1,∞((0, T ) × �).

In the construction of solution, we study a sequence of solutions ( f �, E�, B�) and
pass the limit. To achieve a uniform estimate, we use a weight α�(t, x, v), which is the
same form of (0.57) with exchanging E, B to E�, B�. Since α� depends on E�, B� and
hence f �, when passing the limit of the sequence {α�−1∂x3 f �}∞�=1, we need to verify
that

α�−1∂x3 f � ∗
⇀ α∂x3 f in L∞((0, T ) × � × R

3). (0.59)

Obviously this convergence is nontrivial since the norm itself is nonlinear. To obtain
this, we observe that since we can bound ∇E�,∇B� pointwisely, they have traces and
a strong convergence

E�|∂� → E |∂�, B�|∂� → B|∂�.

Thus we can prove that a strong convergence α�−1 → α in L∞. On the other hand,
using a positive lower bound of α� away from the grazing set, we obtain a upper uniform
bound of ∂x3α

�−1 − ∂x3α locally. We then achieve the desired convergence (0.59) using
uniform bound of f �.

Among other boundary conditions, we find that the specular boundary condition
suffers most. Due to the lack of higher regularity of the fields (e.g. compare to [6] where
the field is C2), we can only derive an exponential-in-α singularity of the derivative of
trajectory

|∂e Xcl(s; t, x, v)| ≤ C1〈v〉e
C1√

α(t,x,v)〈v〉 ,

|∂eVcl(s; t, x, v)| ≤ C1〈v〉e
C1√

α(t,x,v)〈v〉 .
(0.60)

Clearly, such a strong singularity can be harmful in our analysis based on the Glassey-
Strauss representation. We study the specular BC problem with great care. Details are
presented in Sect. 7.
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•A Priori L∞ estimate of ∇v f and uniqueness A simple Gronwall’s inequality implies

‖〈v〉4+δ( f − g)(t)‖∞ � ‖〈v〉4+δ( f − g)(0)‖∞

+ sup
0≤t≤T

‖〈v〉4+δ∇v f (t)‖∞
∫ t

0
‖(E f − Eg + B f − Bg)(s)‖∞.

(0.61)

For constructing a solution and proving its uniqueness, we establish an effective stability
estimate of the difference of solutions f − g, and E f − Eg , B f − Bg . To control the
nonlinear term of the equation of f − g, (E f − Eg + B f − Bg) · ∇v f , we establish an
estimate of ∇v f . From the Lagrangian view point along the characteristics (0.54), we
have

∇v f (t, x, v)

∼ ∇x f0(X (0; t, x, v), V (0; t, x, v)) · ∇v X (0; t, x, v)

+ ∇v f0(X (0; t, x, v), V (0; t, x, v)) · ∇vV (0; t, x, v).

Clearly effective control of ∇x E , ∇x B is necessary. Now we crucially use our estimate
of α∂x3 f to obtain bounds for ∇x E , ∇x B in the Glassey-Strauss representation, which
in turn gives the a priori L∞ estimate of ∇v f . Using this ∇v f -bound and a pointwise
bound from the Glassey-Strauss representation (Lemma 6)

‖E f −g(t)‖∞ + ‖E f −g(t)‖∞ � sup
0≤s≤t

‖〈v〉4+δ( f − g)(s)‖∞,

we achieve an L∞ stability as sup0≤s≤t ‖〈v〉4+δ( f − g)(s)‖∞ � eCt‖〈v〉4+δ( f −
g)(0)‖∞.

1. Uniqueness of the Maxwell Equations

In this section, we consider the uniqueness of solution to the Maxwell equations in
(0, T ) × � in a presence of free charge:

∂t E = ∇x × B − 4π J, (1.1)

∂t B = −∇x × E, (1.2)

∇x · E = 4πρ, (1.3)

∇x · B = 0, (1.4)

with initial condition:

E(0, x) = E0(x), B(0, x) = B0(x) in �, (1.5)

and the perfect conductor boundary condition:

E1 = E2 = 0 on ∂�, B3 = 0 on ∂�. (1.6)

It is worth to recall that the boundary conditions for E3 and B1, B2 are not given origi-
nally.
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Definition 3. For given E0, B0, ρ, j , we say functions

E(t, x), B(t, x) ∈ W 1,∞((0, T ) × �), (1.7)

is a solution to the equations (1.1)–(1.6) if (1.1)–(1.4) holds almost everywhere in
(0, T ) × �, and (1.5), (1.6) holds in the sense of trace.

Remark 8. Traces of W 1,∞((0, T ) × �) are well-defined in a classical sense since any
uniformly continuous function in space and time can be extended up to [0, T ] × �̄.

The goal of this section is to prove the following uniqueness result:

Theorem 4. Suppose E0(x), B0(x) ∈ W 1,p(�), and ∇xρ,∇x J, ∂t J ∈ L∞((0, T );
L p

loc(�)) for some p > 1, and

∇ · J = −∂tρ. (1.8)

Then a solution E(t, x), B(t, x) ∈ W 1,∞((0, T ) × �) to the equations (1.1)–(1.6) in
the sense of Definition 3 is unique.

The key of proof is to realize E3, B1, B2 as weak solutions of inhomengenous wave
equations with the Neumann boundary condition from a weak solution of Maxwell
equations in the sense of Definition 3. For the general theory of hyperbolic equations
with boundary, we refer to [33,40,42].

Definition 4. Given any u0, u1 : � → R, G : (0, T )×� → R, and g : (0, T )×∂� →
R, we define a function u(t) ∈ W 1,p(�) for t ∈ (0, T ), p > 1 to be a weak solution of
the inhomengenous wave equation with Neumann boundary condition:

∂2t u − �x u = G, −∂x3u(t, x)|∂� = g,

u(0, x) = u0, ∂t u(0, x) = u1,
(1.9)

if for any φ ∈ C∞
c ([0, T ) × �̄), we have

〈u, φ〉N :=
∫

�

(u1(x)φ(0, x) − u0(x)∂tφ(0, x))dx

+
∫ T

0

∫

�

u(t, x)
(
∂2t φ(t, x) − �xφ(t, x)

)
dxdt

−
∫ T

0

∫

∂�

u(t, x‖, 0)∂x3φ(t, x‖, 0)dx‖dt

+
∫ T

0

∫

∂�

g(t, x‖)φ(t, x‖, 0)dx‖dt −
∫ T

0

∫

�

Gφ dxdt = 0, (1.10)

and each terms in (1.10) are all bounded. Note that since u(t) ∈ W 1,p(�), it has a trace
u(t)|∂� ∈ L p(∂�). Also, note that supp(φ) ⊂ [0, T ) × �̄ is compact, but φ|t=0 �= 0,
and φ|∂� �= 0 in general.

We also define a weak solution of the Dirichlet boundary problem:

∂2t u − �x u = G, u(t, x)|∂� = g,

u(0, x) = u0, ∂t u(0, x) = u1,
(1.11)
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if for any φ ∈ C∞
c ((0, T ) × �̄), with φ|∂� = 0, we have

〈u, φ〉D :=
∫

�

(u1(x)φ(0, x) − u0(x)∂tφ(0, x))dx

+
∫ T

0

∫

�

u(t, x)
(
∂2t φ(t, x) − �xφ(t, x)

)
dxdt

−
∫ T

0

∫

∂�

g(t, x‖)∂x3φ(t, x‖, 0)dx‖dt −
∫ T

0

∫

�

Gφ dxdt = 0,

(1.12)

and each terms in (1.12) are all bounded.

Lemma 1. Suppose E(t, x), B(t, x) ∈ W 1,∞((0, T )×�) is a solution to the equations
(1.1)–(1.6) in the sense of Definition 3, and E0(x), B0(x) ∈ W 1,p(�), ∇xρ,∇x J, ∂t J ∈
L∞((0, T ); L p

loc(�)) for some p > 1. Then E1, E2, B3 solve the wave equation with
the Dirichlet boundary condition (1.11) in the sense of (1.12) with

u0 = E0,i , u1 = ∂t E0,i := (∇x × B)i − 4π J0,i ,

G = −4π∂xi ρ − 4π∂t Ji , g = 0, for Ei , i = 1, 2, (1.13)

u0 = B0,3, u1 = ∂t B0,3 := −(∇x × E0)3, G = 4π(∇x × J )3, g = 0, for B3,

(1.14)

respectively.
Moreover, E3, B1, B2 solve the wave equation with the Neumann boundary condition

(1.9) in the sense of (1.10) with

u0 = E0,3, u1 = ∂t E0,3 := −∂2B0,1 + ∂1B0,2 − 4π J0,3,

G = −4π∂x3ρ − 4π∂t J3, g = −4πρ, for E3, (1.15)

u0 = B0,i , u1 = ∂t B0,i := −(∇x × E0)i , G = 4π(∇x × J )i ,

g = (−1)i+14π Ji , for Bi , i = 1, 2, (1.16)

respectively.

Proof. We omit the proof. For a proof, see [7]. ��
Next,weprove the uniqueness ofwave equationwithNeumannBC (1.9) andDirichlet

BC (1.11).

Lemma 2. Suppose u(t, x), ũ(t, x) are weak solutions with the Neumann BC (1.9) with
the same u0, u1, G, and g in the sense of weak formulation (1.10). Then u(t, x) = ũ(t, x).

Proof. It suffices to show that if u is the solution of (1.9) with

u0 = u1 = G = g = 0, (1.17)

in the sense of (1.10), then for any ψ ∈ C∞
c ((0, T ) × �),

∫ T

0

∫

�

u(t, x)ψ(t, x)dxdt = 0. (1.18)
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Let ψ̃(t, x) = ψ(T − t, x), then ψ̃ ∈ C∞
c ((0, T ) × �). We consider the function

ṽ(t, x) : (0, T ) × R
3 → R given by

ṽ(t, x) := 1

4π

∫

B(x;t)∩{y3>0}
ψ̃(t − |y − x |, y‖, y3)

|y − x | dy

+
1

4π

∫

B(x;t)∩{y3<0}
ψ̃(t − |y − x |, y‖,−y3)

|y − x | dy.

(1.19)

Then the function ṽ(t, x) is a weak solution of the wave equation in (0, T ) × R
3

(∂2t − �x )ṽ(t, x) = 1x3>0ψ̃(t, x) + 1x3<0ψ̃(t, x̄)

ṽ(0, x) = 0, ∂t ṽ(0, x) = 0,
(1.20)

where x = (x1, x2,−x3). And since ψ ∈ C∞
c ((0, T ) × �), the function 1x3>0ψ̃(t, x) +

1x3<0ψ̃(t, x̄) is smooth in (0, T ) × R
3. Thus ṽ is smooth. Moreover, for some small

δ > 0,

ṽ(s, x) = 0 for s ∈ [0, δ), (1.21)

and a direct computation yields

∂x3 ṽ = 0 on (0, T ) × ∂�. (1.22)

Now, let v(t, x) : [0, T ) × �̄ → R
3 be given by

v(t, x) = ṽ(T − t, x). (1.23)

Then v(t, x) is smooth, and by (1.21), v(t, x) ∈ C∞
c ([0, T )×�̄).Moreover, from (1.20),

(1.22),

(∂2t − �x )v(t, x) = ψ̃(T − t, x) in (0, T ) × �,

∂x3v(t, x) = 0 on (0, T ) × ∂�.
(1.24)

Now, since u is the solution of (1.9) with u0 = u1 = G = g = 0, and v(t, x) ∈
C∞

c ([0, T ) × �̄), ∂x3v|∂� = 0, from (1.10) we have

0 =
∫

�

(u1(x)v(0, x) − u0(x)∂tv(0, x))dx

+
∫ T

0

∫

�

u(t, x)
(
∂2t v(t, x) − �xv(t, x)

)
dxdt

−
∫ T

0

∫

∂�

u(t, x‖)∂x3v(t, x‖, 0)dx‖dt

+
∫ T

0

∫

∂�

g(t, x‖)v(t, x‖, 0)dx‖dt −
∫ T

0

∫

�

Gv dxdt

=
∫ T

0

∫

�

u(t, x)ψ̃(T − t, x)dxdt =
∫ T

0

∫

�

u(t, x)ψ(t, x)dxdt.

(1.25)

Thus, we proved (1.18) and this conclude the lemma. ��



Lipschitz Continuous Solutions of the Vlasov–Maxwell Systems

We also prove a similar version of the lemma that will be used later.

Lemma 3. Let u : (0, T )×� → R be a function such that for any φ ∈ C∞
c ([0, T )×�̄),

with ∂x3φ|∂� = 0,

∫ T

0

∫

�

u(∂2t − �x )φdxdt = 0, (1.26)

then u = 0.

Proof. Take anyψ ∈ C∞
c ((0, T )×�). Let ψ̃(t, x) = ψ(T − t, x), and define ṽ(t, x) in

the sameway as (1.19). Then define v(t, x) as in (1.23). Then, as showed in (1.19)–(1.24),
v(t, x) ∈ C∞

c ([0, T ) × �̄),

(∂2t − �x )v(t, x) = ψ(t, x) in (0, T ) × �, and ∂x3v|∂� = 0.

Therefore, from (1.26), we have
∫ T
0

∫
�

uψdxdt = ∫ T
0

∫
�

u(∂2t − �x )vdxdt = 0. Thus
u = 0. ��
Lemma 4. Suppose u(t, x), ũ(t, x) are weak solutions with the Dirichlet BC (1.11) with
the same u0, u1, G, and g in the sense of weak formulation (1.12). Then u(t, x) = ũ(t, x).

Proof. It suffices to show that if u is the solution of (1.11) with

u0 = u1 = G = g = 0, (1.27)

in the sense of (1.12), then for any ψ ∈ C∞
c ((0, T ) × �),

∫ T

0

∫

�

u(t, x)ψ(t, x)dxdt = 0. (1.28)

Now, let ψ̃(t, x) = ψ(T − t, x), and define the function w̃(t, x) : (0, T ) × R
3 → R

3

as

w̃(t, x) := 1

4π

∫

B(x;t)∩{y3>0}
ψ̃(t − |y − x |, y‖, y3)

|y − x | dy

− 1

4π

∫

B(x;t)∩{y3<0}
ψ̃(t − |y − x |, y‖,−y3)

|y − x | dy, (1.29)

and let w(t, x) : [0, T ) × �̄ → R
3 be given by

w(t, x) = w̃(T − t, x). (1.30)

Then from direct computation and using the same argument as (1.19)–(1.24), we get
w(t, x) ∈ C∞

c ([0, T ) × �̄), and

(∂2t − �x )w(t, x) = ψ̃(T − t, x) = ψ(t, x) in (0, T ) × �,

w(t, x) = 0 on (0, T ) × ∂�.
(1.31)

Therefore from (1.12) and (1.27), we have 0 = ∫ T
0

∫
�

u(∂2t − �x )wdxdt = ∫ T
0∫

�
uψdxdt. This proves (1.28). ��
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Next, we show that the Lipschitz solutions of the wave equations solves the Maxwell
equations if the continuity equation conteq and some initial compatibility condition are
satisfied.

Lemma 5. Suppose E(t, x), B(t, x) ∈ W 1,∞((0, T ) × �), ∇xρ, ∂t J,∇x J ∈
L∞((0, T ); L p

loc(�)), with

∇ · J = −∂tρ. (1.32)

Assume

E1, E2 solves (1.11) with (1.13), and E3 solves (1.9) with (1.15),

B3 solves (1.11) with (1.14), and B1, B2 solves (1.9) with (1.16).
(1.33)

Further we assume compatibility conditions

∇ · E0 = 4πρ0, ∇x · B0 = 0, in �, (1.34)

E0,1 = E0,2 = B0,3 = 0 on ∂�. (1.35)

Then we have

∂t E = ∇x × B − 4π J, ∇x · E = 4πρ,

∂t B = −∇x × E, ∇x · B = 0.
(1.36)

Proof. We provide the detailed proof of ∇ · E = 4πρ, and ∂t E = ∇x × B − 4π J . The
proof of ∂t B = −∇x × E , and ∇x · B = 0 is similar.

In the view of Lemma 4, it suffices to show that for any φ(t, x) ∈ C∞
c ([0, T ) × �̄)

with φ|∂� = 0, we have

∫ T

0

∫

�

(∇ · E − 4πρ)(∂2t − �x )φdxdt = 0. (1.37)

Now by direct computation with integration by parts, we have

∫ T

0

∫

�

(∇ · E − 4πρ)(∂2t − �x )φdxdt

=
∫

�

(−∂t E0 · ∇φ(0, x) + E0 · ∇∂tφ(0, x))dx + 4π
∫ T

0

∫

�

∇ · J∂tφdxdt

+ 4π
∫

�

J0 · ∇φ(0, x)dx − 4π
∫ T

0

∫

�

ρ∂2t φdxdt

where in the second equality we’ve used (1.33).
Now, using ∇ · J = −∂tρ, (1.34), and integration by parts we obtain

∫ T

0

∫

�

(∇ · E − 4πρ)(∂2t − �x )φdxdt

=
∫

�

(−∂t E0 + 4π J0) · ∇φ(0, x)dx −
∫

�

(∇ · E0 − 4πρ0)∂tφ(0, x))dx

=
∫

�

−(∇x × B0) · ∇φ(0, x)dx = 0.
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This proves (1.37).
Next, let’s show that ∂t E1 = (∇x × B)1−4π J1. It suffices to prove for any φ(t, x) ∈

C∞
c ([0, T ) × �̄) with φ|∂� = 0, we have

∫ T

0

∫

�

(∂t E1 − (∇x × B)1 + 4π J1)(∂
2
t − �x )φdxdt = 0. (1.38)

Using (1.33) and integration by parts, we compute

∫ T

0

∫

�

(∂t E1 − (∇x × B)1 + 4π J1)(∂
2
t − �x )φdxdt

= −
∫

�

∂t E0,1∂tφ(0, x)dx +
∫

�

4πρ0∂1φ(0, x)dx +
∫ T

0

∫

�

4π∂tρ∂1φdxdt

−
∫

�

4π J0,1∂tφ(0, x)dx +
∫

�

E0,1�xφ(0, x)dx

−
∫ T

0

∫

�

4π J1�xφdxdt +
∫

�

(B0,2∂t∂3φ − B0,3∂t∂2φ(0, x))dx

−
∫

�

(−∂t B0,3∂2φ(0, x) + ∂t B0,2∂3φ(0, x))dx

+
∫ T

0

∫

�

4π(−J2∂1∂2φ + J1∂
2
2φ − J3∂1∂3φ + J1∂

2
3φ)dxdt

+
∫ T

0

∫

∂�

4π J1∂3φdx‖dt −
∫ T

0

∫

∂�

4π J1∂3φdx‖dt.

Then from (1.8) and integration by parts,

∫ T

0

∫

�

4π∂tρ∂1φdxdt −
∫ T

0

∫

�

4π J1�xφdxdt

+
∫ T

0

∫

�

4π(−J2∂1∂2φ + J1∂
2
2φ − J3∂1∂3φ + J1∂

2
3φ)dxdt

=
∫ T

0

∫

�

4π(J1∂
2
1φ + J2∂2∂1φ + J3∂3∂1φ)dxdt −

∫ T

0

∫

�

4π J1�xφdxdt

+
∫ T

0

∫

�

4π(−J2∂1∂2φ + J1∂
2
2φ − J3∂1∂3φ + J1∂

2
3φ)dxdt = 0.

Thus,

∫ T

0

∫

�

(∂t E1 − (∇x × B)1 + 4π J1)(∂
2
t − �x )φdxdt

=
∫

�

((−∂t E0,1 − 4π J0,1)∂tφ(0, x) + B0,2∂3∂tφ(0, x) − B0,3∂2∂tφ(0, x))dx

+
∫

�

(−4π∂1ρ0φ(0, x) + E0,1�xφ(0, x) + ∂t B0,3∂2φ(0, x) − ∂t B0,2∂3φ(0, x))dx .

(1.39)
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From (1.33), we have −∂t E0,1 −4π J0,1 − ∂3B0,2 + ∂2B0,3 = 0, and ∂t B0 = −∇x × E0.
Together with (1.34), (1.35), we use integration by parts to get

∫

�

((−∂t E0,1 − 4π J0,1)∂tφ(0, x) + B0,2∂3∂tφ(0, x) − B0,3∂2∂tφ(0, x))dx

+
∫

�

(−4π∂1ρ0φ(0, x) + E0,1�xφ(0, x) + ∂t B0,3∂2φ(0, x) − ∂t B0,2∂3φ(0, x))dx = 0.

Thus, we conclude (1.38). And from the same argument we can show that ∂t E2 =
(∇x × B)2 + 4π J2.

Next, let’s prove ∂t E3 = (∇x × B)3 − 4π J3. In the view of Lemma 3, it suffices to
show that for any ψ ∈ C∞

c ([0, T ) × �̄) with ∂x3ψ |∂� = 0, we have

∫ T

0

∫

�

(∂t E3 − (∇x × B)3 + 4π J3)(∂
2
t − �x )ψdxdt = 0. (1.40)

Using (1.33) and integration by parts, we compute

∫ T

0

∫

�

(∂t E3 − (∇x × B)3 + 4π J3)(∂
2
t − �x )ψdxdt

= −
∫

�

∂t E0,3∂tψ(0, x)dx +
∫ T

0

∫

�

4π∂tρ∂3ψdxdt

+
∫

�

4πρ0∂3ψ(0, x)dx −
∫

�

J0,3∂tψ(0, x)dx

+
∫

�

E0,3�xψ(0, x)dx +
∫

∂�

4πρ0ψ(0, x‖)dx‖

−
∫ T

0

∫

�

4π J3�xψdxdt +
∫

�

(∂1B0,2 − ∂2B0,1)∂tψ(0, x)dx

+
∫

�

(−∂t B0,1∂2ψ(0, x) + ∂t B0,2∂1ψ(0, x))dx

+
∫ T

0

∫

�

4π(J3∂
2
2ψ − J2∂3∂2ψ − J1∂3∂1ψ + J3∂

2
1ψ)dxdt.

From (1.8) and integration by parts,

∫ T

0

∫

�

4π∂tρ∂3ψdxdt −
∫ T

0

∫

�

4π J3�xψdxdt

+
∫ T

0

∫

�

4π(J3∂
2
2ψ − J2∂3∂2ψ − J1∂3∂1ψ + J3∂

2
1ψ)dxdt

=
∫ T

0

∫

�

4π(J1∂1∂3ψ + J2∂2∂3ψ + J3∂
2
3ψ)dxdt −

∫ T

0

∫

�

4π J3�xψdxdt

+
∫ T

0

∫

�

4π(J3∂
2
2ψ − J2∂3∂2ψ − J1∂3∂1ψ + J3∂

2
1ψ)dxdt = 0.
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Thus,

∫ T

0

∫

�

(∂t E3 − (∇x × B)3 + 4π J3)(∂
2
t − �x )ψdxdt

=
∫

�

(−∂t E0,3 − 4π J0,3 + ∂1B0,2 − ∂2B0,1)∂tψ(0, x)dx

+
∫

�

(−4π∂3ρ0ψ(0, x) + E0,3�xψ(0, x) − ∂t B0,1∂2ψ(0, x) + ∂t B0,2∂1ψ(0, x))dx .

(1.41)

From (1.33), we have −∂t E0,3 −4π J0,3 + ∂1B0,2 − ∂2B0,1 = 0, and ∂t B0 = −∇x × E0.
Together with (1.34), (1.35), we use integration by parts to get
∫

�

(−∂t E0,3 − 4π J0,3 + ∂1B0,2 − ∂2B0,1)∂tψ(0, x)dx

+
∫

�

(−4π∂3ρ0ψ(0, x) + E0,3�xψ(0, x) − ∂t B0,1∂2ψ(0, x) + ∂t B0,2∂1ψ(0, x))dx

= 0.

This concludes (1.40). ��
Now we are ready to prove Theorem 4.

Proof of Theorem 4. Theproof is a direct consequenceof previous lemmas.Let (E, B) ∈
W 1,∞((0, T ) × �), and (Ẽ, B̃) ∈ W 1,∞((0, T ) × �) be two solutions of (1.1)–(1.6).

We consider E1 − Ẽ1, E2 − Ẽ2, and B3 − B̃3. From Lemma 1, both Ei and Ẽi satisfy
(1.13) for i = 1, 2, and both B3 and B̃3 satisfy (1.14). Therefore, from Lemma 4, we
have

E1 = Ẽ1, E2 = Ẽ2, B3 = B̃3. (1.42)

And for E3 − Ẽ3, B1 − B̃1, and B2 − B̃2. From Lemma 1, we have both E3 and Ẽ3
satisfy (1.15), and both Bi and B̃i satisfy (1.16) for i = 1, 2. Therefore, from Lemma 2,
we deduce that

E3 = Ẽ3, B1 = B̃1, B2 = B̃2. (1.43)

Thus, we get E = Ẽ , B = B̃, and this concludes the uniqueness of the solution. Now
this solution should solve the Maxwell equation by Lemma 5. ��

2. Glassey-Strauss Representation of E and B

In this section, we give a representation of the field E and B by solving the wave
equations (0.43), (0.44), under the boundary condition (0.24) and (0.46).

We first consider the electronic field E . The tangential component E‖ = (E1, E2)

satisfies

∂2t E‖ − �x E‖ = G‖ := −4π∇‖ρ − 4π∂t J‖,
E‖|t=0 = E0‖, ∂t E‖|t=0 = ∂t E0‖, (2.1)

E‖ = 0 on ∂�. (2.2)
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Define

x̄ = (x‖,−x3) for x = (x‖, x3) = (x1, x2, x3). (2.3)

To solve the Dirichlet boundary condition, we employ the odd extension of the data: for
i = 1, 2, and x ∈ R

3,

Gi (t, x‖, x3) = 1x3>0Gi (t, x) − 1x3<0Gi (t, x̄),

E0i (x‖, x3) = 1x3>0E0i (x) − 1x3<0E0i (x̄),

∂t E0i (x‖, x3) = 1x3>0∂t E0i (x) − 1x3<0∂t E0i (x̄).

(2.4)

Then the weak solution of E‖(t, x) to (2.1) with data (2.4) in the whole space R
3 takes

a form of, for i = 1, 2,

Ei (t, x) = 1

4π t2

∫

∂ B(x;t)∩{y3>0}
(t∂t E0i (y) + E0i (y) + ∇E0i (y) · (y − x)) d Sy

+
1

4π t2

∫

∂ B(x;t)∩{y3<0}
(− t∂t E0i (ȳ) − E0i (ȳ) − ∇E0i (ȳ) · (ȳ − x̄)

)
d Sy

+
1

4π

∫

B(x;t)∩{y3>0}
Gi (t − |y − x |, y)

|y − x | dy (2.5)

+
1

4π

∫

B(x;t)∩{y3<0}
−Gi (t − |y − x |, ȳ)

|y − x | dy, (2.6)

where B(x, t) = {y ∈ R
3 : |x − y| < t} and ∂ B(x, t) = {y ∈ R

3 : |x − y| = t}. The
above form is then a (weak) solution of (2.1) and (2.2). Next, we express (2.5) and (2.6)
using the Glassey-Strauss representation [27] in �. Define

∂t = S − v̂ · T

1 + v̂ · ω
, ∂i = ωi S

1 + v̂ · ω
+

(
δi j − ωi v̂ j

1 + v̂ · ω

)
Tj , (2.7)

while, for ω = ω(x, y) = y−x
|y−x | ,

Ti := ∂i − ωi∂t, (2.8)

S := ∂t + v̂ · ∇x . (2.9)

Note that

Tj f (t − |y − x |, y, v) = ∂y j [ f (t − |y − x |, y, v)], (2.10)

and the Vlasov equation (0.40) implies that

S f = −∇v · [(E + Eext + v̂ × (B + Bext) − ge3) f ]. (2.11)

From (0.42) and (2.7),

(2.5) = −
∫

B(x;t)∩{y3>0}
(∂iρ + ∂t Ji )(t − |y − x |, y)

|y − x | dy

= −
∫

B(x;t)∩{y3>0}

∫

R3
(∂i f + v̂i∂t f )(t − |y − x |, y, v)dv

dy

|y − x |
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= −
∫

B(x;t)∩{y3>0}

∫

R3

ωi + v̂i

1 + v̂ · ω
(S f )(t − |y − x |, y, v)dv

dy

|y − x |
−
∫

B(x;t)
∩{y3>0}

∫

R3

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
Tj f (t − |y − x |, y, v)dv

dy

|y − x | .

Here, we followed the Einstein convention (when an index variable appears twice, it
implies summation of that term over all the values of the index) and will do throughout
this section.

Then replace Tj f with (2.10) and apply the integration by parts to get the last term
equals

−
∫

∂ B(x;t)∩{y3>0}
ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
f (0, y, v)dv

dSy

|y − x |
+
∫

B(x;t)∩{y3=0}

∫

R3

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

)
f (t − |y − x |, y‖, 0, v)dv

dy‖
|y − x |

+
∫

B(x;t)
∩{y3>0}

∫

R3

(|v̂|2 − 1)(v̂i + ωi )

(1 + v̂ · ω)2
f (t − |y − x |, y, v)dv

dy

|y − x |2 .

(2.12)

where we have used that, from [27,28],

∂

∂y j

[
1

|y − x |
(

δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)]
= (|v̂|2 − 1)(v̂i + ωi )

|y − x |2(1 + v̂ · ω)2
.

In order to express (2.6) in the lower half space wemodify the idea of Glassey-Strauss
slightly. Define

ω̄ = [
ω1 ω2 −ω3

]T
. (2.13)

We use the same S of (2.9) but

T̄3 f = −∂y3 [ f (t − |y − x |, y‖,−y3, v)] = ∂y3 f − ω̄3∂t f,

T̄i f = ∂yi [ f (t − |y − x |, y‖,−y3, v)] = ∂yi f − ω̄i∂t f for i = 1, 2.
(2.14)

Then we get

∂t = S − v̂ · T̄

1 + v̂ · ω̄
, (2.15)

∂yi = T̄i + ω̄i
S − v̂ · T̄

1 + v̂ · ω̄
= ω̄i S

1 + v̂ · ω̄
+ T̄i − ω̄i

v̂ · T̄

1 + v̂ · ω̄
. (2.16)

Therefore, we derive

∂i + v̂i∂t = ω̄i + v̂i

1 + v̂ · ω̄
S +

(
δi j − ω̄i v̂ j + v̂i v̂ j

1 + v̂ · ω̄

)
T̄ j . (2.17)

Now we consider (2.6). From (2.17),

(2.6) =
∫

B(x;t)∩{y3<0}

∫

R3
(∂i f + v̂i∂t f )(t − |y − x |, ȳ, v)dv

dy

|y − x |
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=
∫

B(x;t)∩{y3<0}

∫

R3

ω̄i + v̂i

1 + v̂ · ω̄
(S f )(t − |y − x |, ȳ, v)dv

dy

|y − x |
+
∫

B(x;t)
∩{y3<0}

∫

R3

(
δi j − ω̄i v̂ j + v̂i v̂ j

1 + v̂ · ω̄

)
T̄ j f (t − |y − x |, ȳ, v)dv

dy

|y − x | .

Applying (2.14) and the integration by parts, we derive that the last term equals

∫

∂ B(x;t)∩{y3<0}

∫

R3
ω̄ j

(
δi j − ω̄i v̂ j + v̂i v̂ j

1 + v̂ · ω̄

)
f (0, ȳ, v)dv

dSy

|y − x |
+
∫

B(x;t)∩{y3=0}

∫

R3
ι3

(
δi3 − ω̄i v̂3 + v̂i v̂3

1 + v̂ · ω̄

)
f (t − |y − x |, y‖, 0, v)dv

dy

|y − x |
−
∫

B(x;t)∩{y3<0}

∫

R3

(|v̂|2 − 1)(v̂i + ω̄i )

(1 + v̂ · ω̄)2
f (t − |y − x |, ȳ, v)dv

dy

|y − x |2 ,

(2.18)

where we have utilized the notation

ιi = +1 for i = 1, 2, ι3 = −1, (2.19)

and the direct computation

ι j
∂

∂y j

[
1

|y − x |
(
δi j − ιiωi v̂ j + v̂i v̂ j

1 + v̂ · ω̄

)]
= (|v̂|2 − 1)(v̂i + ω̄i )

|y − x |2(1 + v̂ · ω̄)2
. (2.20)

Next, we consider the normal components of the Electronic field E3. From (0.43),
(0.45), and (0.46), we have

∂2t E3 − �x E3 = G3 := −4π∂3ρ − 4π∂t J3,

E3|t=0 = E03, ∂t E3|t=0 = ∂t E03, (2.21)

∂3E3 = 4πρ on ∂�. (2.22)

It is convenient to decompose the solution into twoparts: onewith theNeumannboundary
condition of (2.21) and the zero forcing term and initial data

∂2t w − �xw = 0 in �,

w|t=0 = 0, ∂tw|t=0 = 0 in �,

∂3w = 4πρ on ∂�,

(2.23)

and the other part Ẽ3 with the initial data of (2.21) and the zero Neumann boundary
condition. We achieve it by the even extension trick. Recall x̄ in (2.3). For x ∈ R

3,
define

G3(t, x) = 1x3>0G3(t, x) + 1x3<0G3(t, x̄),

E03(x) = 1x3>0E03(x) + 1x3<0E03(x̄),

∂t E03(x) = 1x3>0∂t E03(x) + 1x3<0∂t E03(x̄).

(2.24)



Lipschitz Continuous Solutions of the Vlasov–Maxwell Systems

The weak solution Ẽ3 to (2.21) with the data (2.24) in the whole space R
3 take a form

of

Ẽ3(t, x) = 1

4π t2

∫
∂ B(x;t)
∩{y3>0}

(t∂t E03(y) + E03(y) + ∇E03(y) · (y − x)) d Sy

+
1

4π t2

∫
∂ B(x;t)
∩{y3<0}

(
t∂t E03(ȳ) + E03(ȳ) + ∇E03(ȳ) · (ȳ − x̄)

)
d Sy

+
1

4π

∫
B(x;t)

∩{y3>0}

G3(t − |y − x |, y)

|y − x | dy (2.25)

+
1

4π

∫
B(x;t)

∩{y3<0}

G3(t − |y − x |, ȳ)

|y − x | dy. (2.26)

Following the same argument to expand (2.5) and (2.6), we derive that

(2.25) = −
∫

B(x;t)∩{y3>0}

∫

R3

ω3 + v̂3

1 + v̂ · ω
(S f )(t − |y − x |, y, v)dv

dy

|y − x |
+
∫

B(x;t)∩{y3>0}

∫

R3

(|v̂|2 − 1)(v̂3 + ω3)

(1 + v̂ · ω)2
f (t − |y − x |, y, v)dv

dy

|y − x |2

−
∫

∂ B(x;t)∩{y3>0}
ω j

(
δ3 j − (ω3 + v̂3)v̂ j

1 + v̂ · ω

)
f (0, y, v)dv

dSy

|y − x |
+
∫

B(x;t)∩{y3=0}

∫

R3

(
1 − (ω3 + v̂3)v̂3

1 + v̂ · ω

)
f (t − |y − x |, y‖, 0, v)dv

dy‖
|y − x | ,

(2.27)

(2.26) = −
∫

B(x;t)∩{y3<0}

∫

R3

ω̄3 + v̂3

1 + v̂ · ω̄
(S f )(t − |y − x |, ȳ, v)dv

dy

|y − x |
+
∫

B(x;t)∩{y3<0}

∫

R3

(|v̂|2 − 1)(v̂3 + ω̄3)

(1 + v̂ · ω̄)2
f (t − |y − x |, ȳ, v)dv

dy

|y − x |2

−
∫

∂ B(x;t)∩{y3<0}

∫

R3
ω̄ j

(
δ3 j − ω̄3v̂ j + v̂3v̂ j

1 + v̂ · ω̄

)
f (0, ȳ, v)dv

dSy

|y − x |
+
∫

B(x;t)∩{y3=0}

∫

R3

(
1 − (ω̄3 + v̂3)v̂3

1 + v̂ · ω̄

)
f (t − |y − x |, y‖, 0, v)dv

dy

|y − x | .
(2.28)

Note that the weak derivative ∂3 to the form of Ẽ3 solves the linear wave equation (2.21)
with oddly extended forcing term and the initial data in the sense of distributions. Thus
it satisfies

∂3 Ẽ3 = 0 on ∂�. (2.29)

Nowfor (2.23), usingLaplace transformation and solving the correspondingHelmholtz
equation with the Neumann boundary conditions (Lemma 4.1, 4.2 in [13]), we obtained
that the solution w of (2.23) has the form:

w(t, x) = −2
∫
√

|y‖−x‖|2+x23<t

ρ(t −
√

|y‖ − x‖|2 + x23 , y‖)√
|y‖ − x‖|2 + x23

dy‖. (2.30)
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Collecting the terms, we conclude the following formula:

Proposition 1.

Ei (t, x) = 1

4π t2

∫

∂ B(x;t)∩{y3>0}
(
t∂t E0,i (y‖, y3) + E0,i (y‖, y3) + ∇E0,i (y‖, y3) · (y − x)

)
d Sy

(2.31)

+
1

4π t2

∫

∂ B(x;t)∩{y3<0}
ιi
(− t∂t Ei (0, y‖,−y3) − Ei (0, y‖,−y3)

− ∇‖ Ei (0, y‖,−y3) · (y‖ − x‖) + ∂3Ei (0, y‖,−y3) · (y3 − x3)
)
d Sy (2.32)

+
∫

B(x;t)∩{y3>0}

∫

R3

(|v̂|2 − 1)(v̂i + ωi )

|y − x |2(1 + v̂ · ω)2
f (t − |y − x |, y, v)dvdy (2.33)

−
∫

B(x;t)∩{y3<0}

∫

R3
ιi

(|v̂|2 − 1)(v̂i + ιi ωi )

|y − x |2(1 + v̂ · ω−)2
f (t − |y − x |, y‖,−y3, v)dvdy (2.34)

−
∫

B(x;t)∩{y3>0}

∫

R3

ωi + v̂i

1 + v̂ · ω
(S f )(t − |y − x |, y, v)dv

dy

|y − x | (2.35)

+
∫

B(x;t)∩{y3<0}

∫

R3
ιi

ιi ωi + v̂i

1 + v̂ · ω− (S f )(t − |y − x |, y‖,−y3, v)dv
dy

|y − x | (2.36)

+
∫

B(x;t)∩{y3=0}

∫

R3

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

)
f (t − |y − x |, y‖, 0, v)dv

dy‖
|y − x | (2.37)

−
∫

B(x;t)∩{y3=0}

∫

R3
ιi

(
δi3 − ιi ωi v̂3 + v̂i v̂3

1 + v̂ · ω−

)
f (t − |y − x |, y‖, 0, v)dv

dy‖
|y − x | (2.38)

−
∫

∂ B(x;t)∩{y3>0}

∫

R3

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
f (0, y, v)dv

dSy

|y − x | (2.39)

+
∫

∂ B(x;t)∩{y3<0}
ιi

∫

R3

∑
j

ι j ω j

(
δi j − ιi ωi v̂ j + v̂i v̂ j

1 + v̂ · ω−
)

f (0, y‖,−y3, v)dv
dSy

|y − x | (2.40)

− δi3

∫

B(x;t)∩{y3=0}

∫

R3

2 f (t − |y − x |, y‖, 0, v)

|y − x | dvd Sy . (2.41)

Next, we solve for B. For B1, B2 we have, for i = 1, 2,

∂2t Bi − �x Bi = 4π(∇x × J )i := Hi in �,

∂x3 B1 = 4π J2, ∂x3 B2 = 4π J1 on ∂�,

Bi (0, x) = B0i , ∂t Bi (0, x) = ∂t B0i in �.

(2.42)

To solve (2.42) we write Bi = B̃i + Bbi with B̃i satisfies the wave equation in
(0,∞) × R

3 with even extension in x3:

∂2t B̃i − �x B̃i = 1x3>0Hi (t, x) + 1x3<0Hi (t, x̄),

B̃i (0, x) = 1x3>0B0i (x) + 1x3<0B0i (x̄),

∂t B̃i (0, x) = 1x3>0∂t B0i (x) + 1x3<0∂t B0i (x̄).

(2.43)

And Bbi satisfies

∂2t Bbi − �x Bbi = 0 in �,

Bbi (0, x) = 0, ∂t Bbi = 0 in �,

∂x3 Bb1 = 4π J2, ∂x3 Bb2 = −4π J1 on �.

(2.44)
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On the other hand, B3(t, x) satisfies

∂2t B3 − �x B3 = 4π(∇x × J )3 := H3 in �,

B3(0, x) = B03, ∂t B3(0, x) = ∂t B03 in �,

B3 = 0 on ∂�.

Using the odd extension in x3:

H3(t, x) = 1x3>0H3(t, x) − 1x3<0H3(t, x̄),

B03(x) = 1x3>0B03(x) − 1x3<0B03(x̄),

∂t B03(0, x) = 1x3>0∂t B03(x) − 1x3<0∂t B03(x̄),

Using a similar argument as for the representation of E (we refer [13] for details),
we obtain the following formula for B:

Proposition 2.

Bi (t, x) = 1

4π t2

∫

∂ B(x;t)∩{y3>0}
(
t∂t B0,i (y‖, y3) + B0,i (y‖, y3)

+ ∇ B0,i (y‖, y3) · (y − x)
)
d Sy

+
ιi

4π t2

∫

∂ B(x;t)∩{y3<0}
(
t∂t B0,i (y‖,−y3) + B0,i (y‖,−y3) (2.45)

+ ∇‖ B0,i (0, y‖,−y3) · (y‖ − x‖) − ∂3B0,i (0, y‖,−y3) · (y3 − x3)
)
d Sy (2.46)

+
∫

B(x;t)∩{y3>0}

∫

R3

(ω × v̂)i
(
1 − |v̂|2)

(1 + v̂ · ω)2|y − x |2 f (t − |y − x |, y‖, y3, v)dvdy (2.47)

+
∫

B(x;t)∩{y3<0}

∫

R3
ιi

(ω− × v̂)i
(
1 − |v̂|2)

(1 + v̂ · ω−)2|y − x |2 f (t − |y − x |, y‖,−y3, v)dvdy (2.48)

+
∫

B(x;t)∩{y3>0}

∫

R3

(ω × v̂)i

1 + v̂ · ω
S f (t − |y − x |, y‖, y3, v)dv

dy

|y − x | (2.49)

+
∫

B(x;t)∩{y3<0}

∫

R3
ιi

(ω− × v̂)i

1 + v̂ · ω− S f (t − |y − x |, y‖,−y3, v)dv
dy

|y − x | (2.50)

+
∫

B(x;t)∩{y3=0}

∫

R3

(
−(e3 × v̂)i +

(ω × v̂)i v̂3

1 + v̂ · ω

)
f (t − |y − x |, y‖, 0, v)dv

dy‖
|y − x |

(2.51)

+
∫

B(x;t)∩{y3=0}

∫

R3
ιi

(
−(e3 × v̂)i +

(ω− × v̂)i v̂3

1 + v̂ · ω−

)
f (t − |y − x |, y‖, 0, v)dv

dy‖
|y − x |
(2.52)

+
∫

∂ B(x;t)∩{y3>0}

∫

R3

(
(ω × v̂)i

1 + v̂ · ω

)
f (0, y‖, y3, v)dv

d Sy

t
(2.53)

+
∫

∂ B(x;t)∩{y3<0}

∫

R3
ιi

(
(ω− × v̂)i

1 + v̂ · ω−

)
f (0, y‖,−y3, v)dv

d Sy

t
(2.54)

+ (−1)i2(1 − δi3)

∫

B(x;t)∩{y3=0}

∫

R3

v̂i f (t − |y − x |, y‖, 0, v)

|y − x | dvd Sy . (2.55)



Y. Cao, C. Kim

3. Regularity Estimate of the Field

With the formula for E as in (2.31)–(2.41), and B as in (2.45)–(2.55), we have the
estimate of the fields.

Lemma 6. There exists a 0 < T � 1 such that for any t ∈ [0, T ], we have

‖E(t)‖∞ + ‖B(t)‖∞ � ‖E0‖∞ + ‖B0‖∞

+t

(
sup

0≤t≤T
‖〈v〉4+δ f (t)‖∞ + ‖E0‖C1 + ‖B0‖C1

)
. (3.1)

Proof. The proof is similar to (and easier than) the proof of the estimate of the derivatives
of E and B in Lemma 7. We therefore omit the proof here for sake of avoiding redunda
ncy. ��

We focus on the proof of the estimate of the derivatives of the fields:

Lemma 7. With the formula E(t, x) as in (2.31)–(2.41), and B(t, x) as in (2.45)–(2.55),
there exists a T � 1 such that for any t ∈ [0, T ],

‖∇x‖ E(t)‖∞ + ‖∇x‖ B(t)‖∞ � ‖E0‖C2 + ‖B0‖C2 + sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖∞

)

+ sup
0≤t≤T

‖〈v〉4+δ f (t)‖∞, (3.2)

‖∂x3 E(t)‖∞ + ‖∂x3 B(t)‖∞ � ‖E0‖C2 + ‖B0‖C2

+ sup
0≤t≤T

(
‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉4+δ∇x‖ f (t)‖∞

)

+ sup
0≤t≤T

‖〈v〉4+δ f (t)‖∞, (3.3)

‖∂t E(t)‖∞ + ‖∂t B(t)‖∞ � ‖E0‖C2 + ‖B0‖C2

+ sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞

)

+ sup
0≤t≤T

‖〈v〉4+δ f (t)‖∞. (3.4)

Proof. We take derivative to ∂
∂xk

Ei (t, x) in (2.31)–(2.41) and estimate each term.

First, by using the change of variables z = y − x and spherical coordinate for z, we
have

(2.31) = 1

4π t2

∫

{|z|=t,x3+z3>0}
(
t∂t E0,i (x + z) + E0,i (x + z) + ∇E0,i (x + z) · z

)
d Sz

= 1

4π t2

∫

{t cosφ>−x3}

∫ 2π

0

(
t∂t E0,i (x + z) + E0,i (x + z)

+∇E0,i (x + z) · z
)

t2 sin φdθdφ.

(3.5)
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Thus

∂

∂xk

(2.31) = 1

4π t2

∫

{|z|=t,x3+z3>0}
(
t∂xk ∂t E0,i (x + z) + ∂xk E0,i (x + z)

+∇∂xk E0,i (x + z) · z
)

d Sz

+
1

4π t
δk3

∫ 2π

0
(t∂t E0,i (x‖ + z‖, 0) + E0,i (x‖ + z‖, 0)

+ ∇E0,i (x‖ + z‖, 0) · z)dθ.

(3.6)

For i = 1, 2, E0,i (x‖ + z‖, 0) = 0, thus we have

| ∂

∂xk

(2.31)i=1,2| � t‖∇x∂t E0‖∞ + ‖∇x E0‖∞ + t‖∇2
x E0‖∞

+‖∂t E0‖∞ + ‖∇x E0‖∞ � ‖E0‖C2 .

And we apply the same estimate for ∂
∂xk

(2.32)i=1,2 to obtain

| ∂

∂xk

(2.31)i=1,2| + | ∂

∂xk

(2.32)i=1,2| � ‖E0‖C2 .

For i = 3, we use the cancellation for ∂
∂xk

(2.31)i=3 + ∂
∂xk

(2.32)i=3 at y3 = 0 to get

∂

∂xk

(2.31)i=3 +
∂

∂xk

(2.32)i=3

= 1

4π t2

∫

{|z|=t,x3+z3>0}
(
t∂xk ∂t E0,3(x + z) + ∂xk E0,3(x + z) + ∇∂xk E0,3(x + z) · z

)
d Sz

+
1

4π t2

∫

{|z|=t,x3+z3<0}
ιk
(
t∂xk ∂t E0,3(x + z) + ∂xk E0,3(x + z)

+∇‖∂xk E0,3(x + z) · z‖ − ∂x3∂xk E0,3(x + z) · z3
)

d Sz

+
2

4π t2
δk3

∫ 2π

0

(
∂x3 E0,3(x‖ + z‖, 0)

) −x3
t

t2dθ.

(3.7)

Thus | ∂
∂xk

(2.31)i=3| + | ∂
∂xk

(2.32)i=3| � ‖E0‖C2 , and therefore

| ∂

∂xk

(2.31)| + | ∂

∂xk

(2.32)| � ‖E0‖C2 . (3.8)

Next, using the change of variables z = y − x we have

∂

∂xk

(2.33) =
∫

{|y−x |<t}∩{y3>0}

∫

R3

(|v̂|2 − 1)(v̂i + ωi )

|y − x |2(1 + v̂ · ω)2
∂xk f (t − |y − x |, y, v)dvdy

︸ ︷︷ ︸
(3.9)1

+ δk3

∫

{(|y‖−x‖|2+|x3|2)1/2<t}

∫

R3

(|v̂|2 − 1)(v̂i + ωi )

(|y‖ − x‖|2 + x23 )(1 + v̂ · ω)2
f (t − |y − x |, y‖, 0, v)dvdy‖

︸ ︷︷ ︸
(3.9)2

.

(3.9)

From [30] we have

1

1 + v̂ · ω
≤ 2(1 + |v|2)

1 + |v × ω|2 ≤ 2(1 + |v|2), and |ω + v̂|2 ≤ 2(1 + v̂ · ω), (3.10)
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and since 1 − |v̂|2 = 1
1+|v|2 ,

| (|v̂|2 − 1)(v̂i + ωi )

(1 + v̂ · ω)2
| ≤

√
2

1 + |v|2
1

(1 + v̂ · ω)3/2
≤ 4

√
1 + |v|2. (3.11)

Using (3.11), we have for k = 1, 2,
∫

{|y−x |<t}∩{y3>0}

∫

R3

(|v̂|2 − 1)(v̂i + ωi )

|y − x |2(1 + v̂ · ω)2
∂xk f (t − |y − x |, y, v)dvdya

� sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖∞
∫

{|y−x |<t}

∫

R3

1

|y − x |2 (1 + |v|)−3−δdvdy

� sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖∞.

(3.12)

For k = 3, we have for any 1 < p < 3
2 , from (3.11), and Lemma 9 which will be proved

in the next section,
∫

{|y−x |<t}∩{y3>0}

∫

R3

(|v̂|2 − 1)(v̂i + ωi )

|y − x |2(1 + v̂ · ω)2
∂x3 f (t − |y − x |, y, v)dvdy

� sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t)‖∞
∫

{|y−x |<t}∩{y3>0}

∫

R3

1

|y − x |2
(1 + |v|)−4−δ

α(t − |y − x |, y, v)
dvdy

� sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t)‖∞.

(3.13)

We leave the estimate of (3.9)2 together with the estimate of ∂xk (2.37) later.
Next, from the equation (0.40) and the definition of S f , we have

S f = −(E + Eext + v̂ × (B + Bext) − ge3) · ∇v f.

From integration by parts in v and the fact that ∇v · (v̂ × (B + Bext)) = 0,

(2.35) =
∫

B(x;t)∩{y3>0}

∫

R3
SE

i (v, ω) · (E + v̂ × (B + Bext) − ge3)

f (t − |y − x |, y, v)dv
dy

|y − x | ,
(3.14)

where

SE
i (ω, v) = ∇v

(
ωi + v̂i

1 + v̂ · ω

)
= (ei − v̂i v̂)(1 + v̂ · ω) − (ωi + v̂i )(ω − (ω · v̂)v̂)

〈v〉(1 + v̂ · ω)2
.

(3.15)

By writing

ω − (ω · v̂)v̂ = ω(1 + v̂ · ω) − (v̂ · ω)(ω + v̂), (3.16)

we have from (3.10),

|SE
i (ω, v̂)| ≤ | (ei − v̂i v̂)

〈v〉(1 + v̂ · ω)
| + | ω(ωi + v̂i )

〈v〉(1 + v̂ · ω)
| + | (ωi + v̂i )(v̂ · ω)(ω + v̂)

〈v〉(1 + v̂ · ω)2
|
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≤ 2
√
1 + |v|2 + 2

√
1 + |v|2 + +8

√
1 + |v|2 = 12

√
1 + |v|2. (3.17)

From (3.14), and using the change of variables z = y − x and taking ∂
∂xk

derivative to

(2.35) we have

∂

∂xk

(2.35) =
∫

B(x;t)∩{y3>0}

∫

R3
SE

i (v, ω) · (∂xk E + v̂ × ∂xk B) f (t − |y − x |, y, v)dv
dy

|y − x |
+
∫

B(x;t)∩{y3>0}

∫

R3
SE

i (v, ω) · (E + v̂ × (B + Bext)

− ge3)∂xk f (t − |y − x |, y, v)dv
dy

|y − x |
+ δk3

∫

B(x;t)∩{y3=0}

∫

R3
SE

i (v, ω) · (E + v̂ × (B + Bext)

− ge3) f (t − |y − x |, y‖, 0, v)dv
dy‖

|y − x | .

(3.18)

Thus for k = 1, 2, from (3.17) we have,

|
∫

B(x;t)∩{y3>0}

∫

R3
SE

i (v, ω) · (∂xk E + v̂ × ∂xk B) f (t − |y − x |, y, v)dv
dy

|y − x | |

� t2 sup
0≤t≤T

‖(1 + |v|4+δ) f (t)‖∞

(
sup

0≤t≤T
‖∇x‖ E(t)‖∞ + sup

0≤t≤T
‖∇x‖ B(t)‖∞

)
.

(3.19)

Similarly, for k = 3,

|
∫

B(x;t)∩{y3>0}

∫

R3
SE

i (v, ω) · (∂xk E + v̂ × ∂x3 B) f (t − |y − x |, y, v)dv
dy

|y − x | |

� t2 sup
0≤t≤T

‖(1 + |v|4+δ) f (t)‖∞

(
sup

0≤t≤T
‖∂x3 E(t)‖∞ + sup

0≤t≤T
‖∂x3 B(t)‖∞

)
,

(3.20)

for any 0 < δ � 1. Thus for t � 1, the terms from (3.19), (3.20) will be absorbed into
the LHS. From (3.17), we have for k = 1, 2,

|
∫

B(x;t)∩{y3>0}

∫

R3
SE

i (v, ω) · (E + Eext + v̂ × (B + Bext)

− ge3)∂xk f (t − |y − x |, y, v)dv
dy

|y − x | |

�
(

sup
0≤t≤T

‖E(t)‖∞ + sup
0≤t≤T

‖B(t)‖∞ + |Be| + g

)
sup

0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖∞

)
.

(3.21)

And, for k = 3,

|
∫

B(x;t)∩{y3>0}

∫

R3
SE

i (v, ω) · (E + Eext + v̂ × (B + Bext)
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−ge3)∂x3 f (t − |y − x |, y, v)dv
dy

|y − x | |

�
(

sup
0≤t≤T

‖E(t)‖∞ + sup
0≤t≤T

‖B(t)‖∞ + |Be| + Ee + g

)
sup

0≤t≤T

(
‖〈v〉5+δα∂x3 f (t)‖∞

)

×
∫

B(x;t)∩{y3>0}

∫

R3

1

|y − x |
( 〈v〉−4−δ

α(t − |y − x |, y, v)

)
dvdy

�
(

sup
0≤t≤T

‖E(t)‖∞ + sup
0≤t≤T

‖B(t)‖∞

)
sup

0≤t≤T

(
‖〈v〉5+δα∂x3 f (t)‖∞

)
. (3.22)

And

|
∫

B(x;t)∩{y3=0}

∫

R3
SE

i (v, ω) · (E + Eext + v̂ × (B + Bext)

−ge3) f (t − |y − x |, y‖, 0, v)dv
dy‖

|y − x | |

�
(

sup
0≤t≤T

‖E(t)‖∞ + sup
0≤t≤T

‖B(t)‖∞ + |Be| + Ee + g

)
sup

0≤t≤T
‖〈v〉4+δ f (t)‖∞

×
∫

{(|y‖−x‖|2+|x3|2)<t2}
1

(|y‖ − x‖|2 + x23 )
1/2

dy‖

�
(

sup
0≤t≤T

‖E(t)‖∞ + sup
0≤t≤T

‖B(t)‖∞ + |Be| + Ee + g

)
sup

0≤t≤T
‖(1 + |v|4+δ) f (t)‖∞.

(3.23)

Thus combining (3.18), (3.19), (3.20), (3.21), (3.22), (3.23), we get

|∇x‖(2.35)| � t2
(

sup
0≤t≤T

‖∇x‖ E(t)‖∞ + sup
0≤t≤T

‖∇x‖ B(t)‖∞

)
+ ‖〈v〉4+δ∇x‖ f (t)‖∞

| ∂

∂x3
(2.35)| � t2

(
sup

0≤t≤T
‖∂x3 E(t)‖∞ + sup

0≤t≤T
‖∂x3 B(t)‖∞

)

+ sup
0≤t≤T

(
‖〈v〉5+δα∂x3 f (t)‖∞

)
+ sup

0≤t≤T
‖(1 + |v|4+δ) f (t)‖∞.

By the same argument we get the same estimate for | ∂
∂xk

(2.36)|. Therefore

|∇x‖ (2.35)| + |∇x‖ (2.36)| � t2
(

sup
0≤t≤T

‖∇x‖ E(t)‖∞ + sup
0≤t≤T

‖∇x‖ B(t)‖∞

)
+ ‖〈v〉4+δ∇x‖ f (t)‖∞

| ∂

∂x3
(2.35)| + | ∂

∂x3
(2.36)| � t2

(
sup

0≤t≤T
‖∂x3 E(t)‖∞ + sup

0≤t≤T
‖∂x3 B(t)‖∞

)

+ sup
0≤t≤T

(
‖〈v〉5+δα∂x3 f (t)‖∞

)
+ sup

0≤t≤T
‖(1 + |v|4+δ) f (t)‖∞.

(3.24)

Next, using the change of variables z‖ = y‖ − x‖ we have

∂

∂xk

(2.37)



Lipschitz Continuous Solutions of the Vlasov–Maxwell Systems

= ∂

∂xk

(∫
√

t2−|z‖|2>x3

∫

R3

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

)

f (t − (|z‖|2 + x23 )
1/2, z‖ + x‖, 0, v)dv

dz‖
(|z‖|2 + x23 )

1/2

)

= (1 − δk3)

∫
√

t2−|z‖|2>x3

∫

R3

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

)
∂xk

f (t − (|z‖|2 + x23 )
1/2, z‖ + x‖, 0, v)dv

dz‖
(|z‖|2 + x23 )

1/2

+δk3

∫
√

t2−|z‖|2>x3

∫

R3
∂x3

(
1

(|z‖|2 + x23 )
1/2

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

))

f (t − (|z‖|2 + x23 )
1/2, z‖ + x‖, 0, v)dv dz‖

+δk3

∫
√

t2−|z‖|2>x3

∫

R3

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

)
∂t

f (t − (|z‖|2 + x23 )
1/2, z‖ + x‖, 0, v)dv

−x3
(|z‖|2 + x23 )

dz‖

−δk3

∫
√

t2−|z‖|2=x3

∫

R3

(
δi3

(ωi + v̂i )v̂3

1 + v̂ · ω

)

f (0, z‖ + x‖, 0, v)dv
x3√

t2 − x23

(
z‖√

t2 − x2
· z‖
|z‖|

)
dSz‖

t
. (3.25)

The first term is only contribute as the tangential derivative, from (3.10),

| (ωi + v̂i )

1 + v̂ · ω
| ≤ 2

√
1 + |v|2. (3.26)

Thus from (3.26),

|(1 − δk3)

∫
√

t2−|z‖|2>x3

∫

R3

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

)
∂xk

f (t − (|z‖| + x23 )
1/2, z‖ + x‖, 0, v)dv

dz‖
(|z‖|2 + x23 )

1/2
|

� sup
0≤t≤T

‖(1 + |v|4+δ)∇x‖ f (t)‖∞
∫

r2+x23<t2

r

(r2 + x23 )
1/2

dr

� sup
0≤t≤T

‖(1 + |v|4+δ)∇x‖ f (t)‖∞.

(3.27)

For the second term, recall (3.9)2 using the identity [13]

(|v̂|2 − 1)(v̂i + ωi )

(|y‖ − x‖|2 + x23 )(1 + v̂ · ω)2
=

3∑
j=1

∂

∂y j

[
1

|y − x |
(

δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)]∣∣∣∣∣∣
y3=0

,
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we have

|(3.9)2 +
∫
√

t2−|z‖|2>x3

∫

R3
∂x3

(
1

(|z‖|2 + x23 )
1/2

(
δi3 − (ωi + v̂i )v̂3

1 + v̂ · ω

))

f (t − (|z‖|2 + x23 )
1/2, z‖ + x‖, 0, v)dv dz‖|

= |δk3

∫

{(|y‖−x‖|2+|x3|2)1/2<t}

∫

R3

2∑
j=1

∂

∂y j

[
1

(|y‖ − x‖|2 + x23 )
1/2

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)]

× f (t − (|y‖ − x‖|2 + x23 )
1/2, y‖, 0, v)dvdy‖|, (3.28)

where we’ve used the cancellation ∂
∂y3

[
1

|y−x |
(
δi3 − (ωi+v̂i )v̂ j

1+v̂·ω
])∣∣∣

y3=0
=

−∂x3

(
1

(|y‖−x‖|2+x23 )1/2

(
δi3 − (ωi+v̂i )v̂3

1+v̂·ω
))

. Thus from integration by parts and (3.10),

|δk3

∫

{(|y‖−x‖|2+|x3|2)1/2<t}

∫

R3

2∑
j=1

∂

∂y j

[
1

|y − x |
(

δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)]

f (t − |y − x |, y, v)dvdy‖|

� |
∫

{(|y‖−x‖|2+|x3|2)1/2<t}

[
||y‖ − x‖|

(|y‖ − x‖|2 + x23 )

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)]
∂t

f (t − |y − x |, y, v)dvdy‖|
+ sup

0≤t≤T
‖(1 + |v|4+δ)∇x‖ f (t)‖∞ + ‖(1 + |v|4+δ) f0‖∞.

(3.29)

Now from (0.40), we write ∂t f = −v̂ ·∇x f −(E +Eext + v̂×(B+Bext)−ge3) ·∇v f .
Then using α = v̂3 on ∂�, integration by parts in v, and that ∇v · (v̂ × B) = 0, we get

|
∫
√

t2−|z‖|2>x3

∫

R3

(ωi + v̂i )v̂3

1 + v̂ · ω
∂t f (t − (|z‖| + x23 )

1/2, z‖ + x‖, 0, v)dv
x3

(|z‖|2 + x23 )
dz‖|

� sup
0≤t≤T

(
‖(1 + |v|5+δ)α∂x3 f (t)‖∞ + ‖(1 + |v|4+δ)∇x‖ f (t)‖∞

)

+ sup
0≤t≤T

‖(1 + |v|4+δ) f (t)‖∞,

(3.30)

where we’ve used from (3.15), (3.17), and (3.26) that
∣∣∣∣∇v

(
(ωi + v̂i )v̂3

1 + v̂ · ω

)∣∣∣∣ =
∣∣∣∣SE

i (ω, v̂)v̂3 +
(ωi + v̂i )

1 + v̂ · ω
∇vv̂3

∣∣∣∣ ≤ 14
√
1 + |v|2.

By the same argument we have

|
∫

{(|y‖−x‖|2+|x3|2)1/2<t}

[
||y‖ − x‖|

(|y‖ − x‖|2 + x23 )

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)]
∂t f (t − |y − x |, y, v)dvdy‖|

� sup
0≤t≤T

(
‖(1 + |v|5+δ)α∂x3 f (t)‖∞ + ‖(1 + |v|4+δ)∇x‖ f (t)‖∞

)

+ sup
0≤t≤T

‖(1 + |v|4+δ) f (t)‖∞.

(3.31)
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We also have

|
∫
√

t2−|z‖|2=x3

∫

R3

(ωi + v̂i )v̂3

1 + v̂ · ω
f (0, z‖ + x‖, 0, v)dv

x3√
t2 − x23

⎛
⎝ z‖√

t2 − x23

· z‖
|z‖|

⎞
⎠ dSz‖

t
|

� ‖〈v〉4+δ f0‖∞
∫

|z‖|=
√

t2−x23

∫

R3
(1 + |v|3+δ)−1 x3√

t2 − x23

dv
dSz‖

t

� ‖〈v〉4+δ f0‖∞
( x3

t

)
� sup

0≤t≤T
‖〈v〉4+δ f (t)‖∞.

(3.32)

Thus from (3.25), (3.27), (3.28), (3.29), (3.30), (3.31), (3.32), and together with (3.9)–
(3.13), we have

|∇x‖(2.33) + ∇x‖(2.37)| � sup
0≤t≤T

{
‖〈v〉4+δ∇x‖ f (t)‖∞

}
,

| ∂

∂x3
(2.33) +

∂

∂x3
(2.37)|

� sup
0≤t≤T

{
‖〈v〉4+δ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉4+δ∇x‖ f (t)‖∞

}
.

By the same argument we get the same estimate for ∂
∂xk

(2.34) + ∂
∂xk

(2.38). Thus

|∇x‖(2.33) + ∇x‖(2.37)| + |∇x‖(2.34) + ∇x‖(2.38)| � sup
0≤t≤T

{
‖〈v〉4+δ∇x‖ f (t)‖∞

}
,

| ∂

∂x3
(2.33) +

∂

∂x3
(2.37)| + | ∂

∂x3
(2.34) +

∂

∂x3
(2.38)|

� sup
0≤t≤T

{
‖〈v〉4+δ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉4+δ∇x‖ f (t)‖∞

}
.

(3.33)

Next, by using the change of variables z = y − x and spherical coordinate for z, we
have

(2.39) =
∫

t cosφ>−x3

∫ 2π

0

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
f (0, z + x, v)dv

t2 sin φ dθdφ

t
. (3.34)

Thus
∂

∂xk

(2.39)

= −
∫

t cosφ>−x3

∫ 2π

0

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
∂xk f (0, z + x, v)(t sin φ) dvdθdφ

− δk3

∫ 2π

0

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
f (0, z‖ + x‖, 0, v)

−1√
1 − ( x3

t

)2
−1

t

(
t

√
1 −

( x3
t

)2)
dvdθ.

(3.35)

So from (3.26), for k = 1, 2,

|
∫

t cosφ>−x3

∫ 2π

0

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
∂xk f (0, z + x, v)(t sin φ) dvdθdφ|

� ‖〈v〉4+δ∇x‖ f0‖∞
∫

t cosφ>−x3

∫ 2π

0

∫

R3
〈v〉−4−δ(t sin φ) dvdθdφ � ‖〈v〉4+δ∇x‖ f0‖∞.

(3.36)
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And for k = 3,

|
∫

t cosφ>−x3

∫ 2π

0

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
∂x3 f (0, z + x, v)(t sin φ) dvdθdφ|

� ‖〈v〉5+δα∂x3 f0‖∞
∫ t+x3

0
| ln(s)|ds � ‖〈v〉5+δα f0‖∞,

(3.37)

and

|
∫ 2π

0

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
f (0, z‖ + x‖, 0, v)

−1√
1 − ( x3

t

)2
−1

t

(
t

√
1 −

( x3
t

)2)
dvdθ |

= |
∫ 2π

0

∑
j

ω j

(
δi j − (ωi + v̂i )v̂ j

1 + v̂ · ω

)
f (0, z‖ + x‖, 0, v) dvdθ | � ‖〈v〉4+δ f (0)‖∞.

(3.38)

Therefore, we have

|∇x‖(2.39)| � ‖〈v〉4+δ∇x‖ f0‖∞, | ∂

∂x3
(2.39)| � ‖〈v〉5+δα∂x3 f0‖∞ + ‖〈v〉4+δ f (0)‖∞.

And by the same argument we have the same estimate for ∂
∂xk

(2.40). Thus

|∇x‖(2.39)| + |∇x‖(2.40)| � ‖〈v〉4+δ∇x‖ f0‖∞,

| ∂

∂x3
(2.39)| + | ∂

∂x3
(2.40)| � ‖〈v〉5+δα∂x3 f0‖∞ + ‖〈v〉4+δ f (0)‖∞.

(3.39)

Finally, we estimate ∂
∂xk

(2.41). We have

| ∂

∂xk
(2.41)| � (1 − δk3)

∫
√

t2−|z‖|2>x3

∫

R3
|∂xk f (t − (|z‖|2 + x23 )

1/2, z‖

+ x‖, 0, v)|dv dz‖
(|z‖|2 + x23 )

1/2

+ δk3

∫
√

t2−|z‖|2>x3

∫

R3
| f (t − (|z‖|2 + x23 )

1/2, z‖

+ x‖, 0, v)dv ∂x3

(
1

(|z‖|2 + x23 )
1/2

)
|dz‖

+ δk3

∫
√

t2−|z‖|2>x3

∫

R3
|∂t f (t − (|z‖|2 + x23 )

1/2, z‖

+ x‖, 0, v)dv
−x3

(|z‖|2 + x23 )
|dz‖

− δk3

∫ 2π

0

∫

R3
| | f (0, z‖ + x‖, 0, v)|

t
dv

x3√
t2 − x23

√
t2 − x23dθ.
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Similar to the estimate in (3.25)–(3.32), we get

|∇x‖(2.41)| � sup
0≤t≤T

{
‖〈v〉4+δ∇x‖ f (t)‖∞

}
,

| ∂

∂x3
(2.41)| � sup

0≤t≤T

{
‖〈v〉4+δ f (t)‖∞ + ‖〈v〉5+δα∇x f (t)‖∞ + ‖〈v〉4+δ∇x‖ f (t)‖∞

}
.

(3.40)

Next, we estimate the ∂xk derivatives to B. Using the same argument as in (3.5)–(3.8),
we get

| ∂

∂xk

(2.45)| + | ∂

∂xk

(2.46)| � ‖E0‖C2 . (3.41)

Next, From (3.10) we have

| (ω × v̂)
(
1 − |v̂|2)

(1 + v̂ · ω)2
| ≤ 2| ω × v

(1 + |v|2)3/2(1 + v̂ · ω)2
|

≤ 8
|ω × v|√1 + |v|2
(1 + |ω × v|2)2 ≤ 8

√
1 + |v|2. (3.42)

Following the same argument as in (3.9)–(3.13), and (3.25)–(3.33), we obtain

|∇x‖(2.47) + ∇x‖(2.51)| + |∇x‖(2.48) + ∇x‖(2.52)| � sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖∞

| ∂

∂x3
(2.47) +

∂

∂x3
(2.51)| + | ∂

∂x3
(2.48) +

∂

∂x3
(2.52)|

� sup
0≤t≤T

‖(1 + |v|5+δ)α∂x3 f (t)‖∞ + sup
0≤t≤T

‖〈v〉4+δ f (t)‖∞|.
(3.43)

Next, from (3.44) we have

∂

∂xk
(2.49) = ∂

∂xk

(∫

B(x;t)∩{y3>0}

∫

R3
SB

i (v, ω) · (E + Eext + v̂

×(B + Bext) − ge3) f (t − |y − x |, y, v)dv
dy

|y − x |
)

,

(3.44)

where by direct calculation we have

SB
i (v, ω) = ∇v[(ω × v)i ]√

1 + |v|2(1 + v̂ · ω)
+

(ω × v)i (v̂ + ω)

(
√
1 + |v|2(1 + v̂ · ω))2

. (3.45)

Then applying the same argument as in (3.18)–(3.24), we obtain

|∇x‖ (2.49)| + |∇x‖ (2.50)| � t2
(

sup
0≤t≤T

‖∇x‖ E(t)‖∞ + sup
0≤t≤T

‖∇x‖ B(t)‖∞

)

+ ‖〈v〉4+δ∇x‖ f (t)‖∞

| ∂

∂x3
(2.49)| + | ∂

∂x3
(2.50)| � t2

(
sup

0≤t≤T
‖∂x3 E(t)‖∞ + sup

0≤t≤T
‖∂x3 B(t)‖∞

)

+ sup
0≤t≤T

(
‖〈v〉5+δα∂x3 f (t)‖∞

)
+ sup

0≤t≤T
‖(1 + |v|4+δ) f (t)‖∞.

(3.46)
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Next, using the same argument as in (3.34)–(3.39), we have

|∇x‖(2.53)| + |∇x‖(2.54)| � ‖〈v〉4+δ∇x‖ f0‖∞,

| ∂

∂x3
(2.53)| + | ∂

∂x3
(2.54)| � ‖〈v〉5+δα∂x3 f0‖∞ + ‖〈v〉4+δ f (0)‖∞.

(3.47)

Finally, similar (3.40), we have

|∇x‖(2.55)| � sup
0≤t≤T

{
‖〈v〉4+δ∇x‖ f (t)‖∞

}
,

| ∂

∂x3
(2.55)| � sup

0≤t≤T

{‖〈v〉4+δ f (t)‖∞(1 + sup
0≤t≤T

(‖E(t)‖∞ + ‖B(t)‖∞))

+ ‖〈v〉5+δα∇x f (t)‖∞ + ‖〈v〉4+δ∇x‖ f (t)‖∞
}
.

(3.48)

Collecting (3.9), (3.24), (3.33), (3.39), and (3.40), and (3.8)–(3.48), and letting T �
1, we get

‖∇x‖ E‖∞ + ‖∇x‖ B‖∞ � ‖E0‖C2 + ‖B0‖C2 + sup
0≤t≤T

〈v〉4+δ∇x‖ f (t)‖∞.

‖∂x3 E‖∞ + ‖∂x3 B‖∞ � ‖E0‖C2 + ‖B0‖C2

+ sup
0≤t≤T

‖
(
〈v〉5+δα∂x3 f (t)‖∞ + 〈v〉4+δ∇x‖ f (t)‖∞

)

+ sup
0≤t≤T

‖〈v〉4+δ f (t)‖∞. (3.49)

This concludes (3.2) and (3.3).
For ∂t E , and ∂t B, from theMaxwell equations (0.21), we have ‖∂t E‖∞ ≤ ‖∇x B‖∞+

‖〈v〉4+δ f ‖∞, ‖∂t B‖∞ ≤ ‖∇x E‖∞. So from (3.2), (3.3), we get (3.4). ��

4. Estimates on Trajectories

We have the following crucial lemma [38]:

Lemma 8 (Velocity lemma). Let α be defined as in (0.57). Suppose

sup
0≤t≤T

(‖E(t)‖∞ + ‖B(t)‖∞

+ ‖∂t E3(t)‖∞ + ‖∂t (v̂ × B)3(t)‖∞
+‖∇x E3(t)‖∞ + ‖∇x (v̂ × B)3(t)‖∞

)
+ g + Be < C.

(4.1)

And for all t, x‖,

g − Ee − E3(t, x‖, 0) − (v̂ × B)3(t, x‖, 0) > c0 for some c0 > 0. (4.2)

Then for any (t, x, v) ∈ (0, T )×�×R
3, with the trajectory X (s; t, x, v)and V (s; t, x, v)

satisfies (0.54),

e
−10 C

c0
|t−s|

α(t, x, v) ≤ α(s, X (s; t, x, v), V (s; t, x, v)) ≤ e
10 C

c0
|t−s|

α(t, x, v).

(4.3)
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Proof. Note that

∂v̂3

∂v3
= 1

〈v〉 − (v̂3)
2

〈v〉 , ∇v

(
1

〈v〉
)

= − v̂

〈v〉2 .

By direct computation,

[∂t + v̂ · ∇x + F · ∇v](α2)

= −2
v̂3

〈v〉F3(t, x‖, 0, v) + 2
v̂3

〈v〉F3(t, x, v) (4.4)

+ 2
(
∂tF3(t, x‖, 0, v)

) x3
〈v〉 + 2v̂3x3 − (2v̂‖ · ∇x‖F3(t, x‖, 0, v))

x3
〈v〉

− 2
(v̂3)

3

〈v〉 F3(t, x, v) − 2(v̂3)
2 v̂‖
〈v〉 · F‖(t, x, v) − 2

x3
〈v〉F(t, x, v) · ∇vF3(t, x‖, 0, v)

+ 2x3
v̂

〈v〉2 · F(t, x, v)F3(t, x‖, 0, v). (4.5)

Using the fundamental theorem of calculus

(4.4) = 2
v̂3

〈v〉
(∫ x3

0
∂x3F3(t, x‖, s, v)ds

)
.

Since F3 = E3 + Ee + v̂1B2 − v̂2B1 − g, and since v̂ · F = v̂ · (E + Eext + v̂ × (B3 +
Bext) − ge3) = v̂ · E − (g − Ee)v̂3, we have

[∂t + v̂ · ∇x + F · ∇v](α2)

= 2
v̂3

〈v〉
(∫ x3

0
∂x3 E3(t, x‖, s) + v̂1∂x3 B2(t, x‖, s) − v̂2∂x3 B1(t, x‖, s)ds

)

+ 2
x3
〈v〉

(
(∂t − v̂‖ · ∇x‖)

(
E3(t, x‖, 0) + v̂1B2(t, x‖, 0) − v̂2B1(t, x‖, 0)

))
+ 2v̂3x3

− 2
(v̂3)

2

〈v〉
(
v̂ · E(t, x, v) − (g − Ee)v̂3

)

− 2
x3
〈v〉

(
E + Eext + (v̂ × (B + Bext) − ge3)

) · ∇v(v̂1B2(t, x‖, 0) − v̂2B1(t, x‖, 0))

+ 2x3
v̂ · E − (g − Ee)v̂3

〈v〉2
(
E3(t, x‖, 0) + v̂1B2(t, x‖, 0) − v̂2B1(t, x‖, 0) − g

)

−2
x3
〈v〉 (v̂ × Bext) · ∇v(v̂1B2(t, x‖, 0) − v̂2B1(t, x‖, 0))

︸ ︷︷ ︸
(4.6)1

.

(4.6)

Now from the assumptions (4.1) and (4.2), all the terms on the RHS of (4.6) except
(4.6)1 can be bounded by

C1

c0

(
c0

x3
〈v〉 + (x3)

2 + (v̂3)
2
)

, (4.7)
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where C1 = sup0≤t≤T

(
‖E(t)‖∞ + ‖B(t)‖∞ + ‖E3(t)‖W 1,∞ + ‖B1(t)‖W 1,∞ + ‖B2(t)

‖W 1,∞
)
+ Ee + g. And from direct computation,

(4.6)1 = −2Be
x3

〈v〉2

⎡
⎣

v̂2
−v̂1
0

⎤
⎦ ·

⎛
⎝
⎡
⎣
1 − v̂21−v̂1v̂2
−v̂1v̂3

⎤
⎦ B2(t, x‖, 0) −

⎡
⎣

−v̂2v̂1
1 − v̂22−v̂2v̂3

⎤
⎦ B1(t, x‖, 0)

⎞
⎠

= −2Be
x3

〈v〉2
(
v̂2B2(t, x‖, 0) + v̂1B1(t, x‖, 0)

)
,

thus from (4.2)

|(4.6)1| ≤ Be

c0
c0

x3
〈v〉 . (4.8)

Combining (4.7) and (4.8), we get

|[∂t + v̂ · ∇x + F · ∇v](α2)| ≤ 10(
C1 + Be

c0
)c0

x3
〈v〉 + 8C1

(
(x3)

2 + (v̂3)
2
)

. (4.9)

From the expression of α in (0.57) and the assumption (4.2), this yields

|[∂t + v̂ · ∇x + F · ∇v](α2)| ≤ 20(
C1 + Be

c0
)α2, (4.10)

Thus along the characteristics, by the Gröwall’s inequality we get

e
−20( C1+Be

c0
)|t−s|

α2(t, x, v) ≤ α2(s, X (s; t, x, v), V (s; t, x, v))

≤ e
20( C1+Be

c0
)|t−s|

α2(t, x, v). (4.11)

Taking square root we get (4.3). ��
Lemma 9. Let α be defined as in (0.57). Then for any (t, x) ∈ [0, T ) × �, we have

∫

R3

1|v|≤M

α(t, x, v)
dv ≤ 4M3 ln

(
1 +

1

x3

)
, (4.12)

∫

R3

1

1 + |v|4+δ

1

α(t, x, v)
dv ≤ Cδ ln

(
1 +

1

x3

)
. (4.13)

Proof. From (0.57) we have
∫

R3

1|v|≤M

α(t, x, v)
dv =

∫

|v|≤M

(
(x3)

2 + (v̂3)
2 − 2

(
E3(t, x‖, 0)

+Ee + (v̂ × B)3(t, x‖, 0) − g
) x3

〈v〉
)−1/2

dv

≤
∫

|v|≤M

2

x3 +
|v3|〈v〉

dv ≤
∫

|v3|≤M

2M2

x3 +
|v3|
M

dv3

= 4M3 ln
(

x3 +
v3

M

) ∣∣M
0 = 4M3 ln

(
1 +

1

x3

)
.
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Now, for (4.13), we have
∫

R3

1

1 + |v|4+δ

1

α(t, x, v)
dv ≤

∫

R3

1

1 + |v|4+δ

2

x3 +
|v3|〈v〉

dv

�
∫

R3

1(
1 + |v|3+δ

)
(x3 + |v3|)dv.

(4.14)

Using the spherical coordinate v = (r, θ, φ) we have dv = r2 sin φ drdθdφ, v3 =
r cosφ, and

∫

R3

1(
1 + |v|3+δ

)
(x3 + |v3|)dv = 4π

∫ ∞

0

∫ π/2

0

r2 sin φ

(1 + r3+δ)(x3 + r cosφ)
dφdr

= 4π
∫ 1

0

∫ π/2

0

r2 sin φ

(1 + r3+δ)(x3 + r cosφ)
dφdr

+ 4π
∫ ∞

1

∫ π/2

0

r2 sin φ

(1 + r3+δ)(x3 + r cosφ)
dφdr.

(4.15)

Using change of variables r cosφ = u, −r sin φ dφ = du, we have
∫ 1

0

∫ π/2

0

r2 sin φ

(1 + r3+δ)(x3 + r cosφ)
dφdr ≤

∫ 1

0

∫ π/2

0

r2 sin φ

x3 + r cosφ
dφdr

=
∫ 1

0

∫ r

0

r

x3 + u
dudr =

∫ 1

0
r ln

(
1 +

r

x3

)
dr < ln

(
1 +

1

x3

)
.

(4.16)

And using change of variables cosφ = u, − sin φ dφ = du, we have
∫ ∞

1

∫ π/2

0

r2 sin φ

(1 + r3+δ)(x3 + r cosφ)
dφdr ≤ Cδ

∫ π/2

0

sin φ

x3 + cosφ
dφ

= Cδ

∫ 1

0

1

x3 + u
du = Cδ ln

(
1 +

1

x3

)
.

(4.17)

Combining (4.14), (4.15), (4.16), and (4.17) we conclude (4.13). ��
We have the following estimate on the backward exit time tb for the trajectory.

Lemma 10. Let (t, x, v) ∈ (0, T ) × � × R
3, and the trajectory X (s; t, x, v) and

V (s; t, x, v) satisfies (0.54). Extending E(t) = E0, B(t) = B0 for t < 0. Suppose
for all t, x, v,

g − Ee − E3(t, x‖, 0) − (v̂ × B)3(t, x‖, 0) > c0, (4.18)

then there exists a C depending on T , g, Be, ‖E‖W 1,∞((0,T )×�), ‖B‖W 1,∞((0,T )×�) such
that

tb(t, x, v)

supt−tb<s<t

√
1 + |V (s)|2 ≤ C

c0
v̂b,3. (4.19)

If t − tb(t, x, v) ≤ 0, then

t

sup0≤s≤t

√
1 + |V (s)|2 ≤ C

c0
α(0, X (0), V (0)). (4.20)
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Proof. Wefirst prove (4.19). For any (t, x, v) ∈ (0, T )×�×R
3 with t −tb(t, x, v) > 0,

we have

vb,3 − v3 =
∫ t

t−tb
−F3(s, X (s; t, x, v), V (s; t, x, v))ds.

From (4.18) this implies

∫ t

t−tb
c0ds <

∫ t

t−tb
−F3(s, X (s; t, x, v), V (s; t, x, v))ds ≤ |vb,3| + |v3| (4.21)

On the other hand, from (4.3),

|vb,3| + |v3| = 〈vb〉|v̂b,3| + 〈v〉|v̂3| ≤ sup
t−tb<s<t

〈V (s)〉 (v̂b,3 + α(t, x, v)
)

< C sup
t−tb<s<t

〈V (s)〉v̂b,3. (4.22)

Combining (4.21) and (4.22) we get tbc0 < C supt−tb<s<t 〈V (s)〉v̂b,3. This implies
(4.19).

For t − tb(t, x, v) ≤ 0, using the same argument we have,

c0t <

∫ t

0
−F3(s, X (s), V (s))ds ≤ |V3(0)| + |v3|

and from (4.3),

|V3(0)| + |v3| ≤ sup
t−tb<s<t

〈V (s)〉 (α(0, X (0), V (0)) + α(t, x, v))

< C sup
t−tb<s<t

〈V (s)〉α(0, X (0), V (0)),

thus we get c0t < C supt−tb<s<t 〈V (s)〉α(0, X (0), V (0)), and this yields (4.20). ��
Lemma 11. Suppose

sup
0≤t≤T

‖∇x E(t)‖∞ + sup
0≤t≤T

‖∇x B(t)‖∞ < ∞.

Then for any s, t ∈ (0, T ), we have

|∂xi X (s; t, x, v)| � eC1|t−s|, |∂xi V (s; t, x, v)| � (t − s)eC1|t−s|,

|∂vi X (s; t, x, v)| � |t − s|
〈V (s)〉eC1|t−s|, |∂vi V (s; t, x, v)| � eC1|t−s|,

(4.23)

and for i �= j ,

|∂xi X j (s; t, x, v)| � eC1|t−s| |t − s|2
〈V (s)〉 . (4.24)

where C1 = (
sup0≤t≤T (‖∇x E(t)‖∞ + ‖∇x B(t)‖∞ + ‖E(t)‖∞ + ‖B(t)‖∞) + g + |Be|

)2
.
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Proof. The expressions of X (s; t, x, v) and V (s; t, x, v) are

X (s; t, x, v) = x − (t − s)v̂ +
∫ t

s

∫ t

τ

F̂(τ ′, X (τ ′), V (τ ′))dτ ′dτ,

V (s; t, x, v) = v −
∫ t

s
F(τ, X (τ ), V (τ ))dτ.

(4.25)

We denote

d

ds
V̂ (s) = 1√

1 + |V (s)|2
d

ds
V (s) − 1√

1 + |V (s)|2 V̂ (s) · d

ds
V (s)V̂ (s)

= 1√
1 + |V (s)|2F(s, X (s), V (s))

− 1√
1 + |V (s)|2 V̂ (s) · F(s, X (s), V (s))V̂ (s)

:= F̂(s, X (s), V (s)).

(4.26)

By direct computation we get

∂xi X (s; t, x, v) = ei +
∫ t

s

∫ t

τ

[∇x F̂(τ ′) · ∂xi X (τ ′) + ∇vF̂(τ ′) · ∂xi V (τ ′)]dτ ′dτ,

∂vi X (s; t, x, v) = −(t − s)∂vi v̂ +
∫ t

s

∫ t

τ

[∇x F̂(τ ′) · ∂vi X (τ ′) + ∇vF̂(τ ′) · ∂vi V (τ ′)]dτ ′dτ,

∂xi V (s; t, x, v) = −
∫ t

s
[∇xF(τ ′) · ∂xi X (τ ) + ∇vF(τ ′) · ∂xi V (τ )]dτ

∂vi V (s; t, x, v) = ei −
∫ t

s
[∇xF(τ ′) · ∂vi X (τ ) + ∇vF(τ ′) · ∂vi V (τ )]dτ.

(4.27)

Since F = E + Eext + v̂ × (B + Bext) − ge3, we have

|∇xF| ≤ |∇x E | + |∇x B|. (4.28)

And since ∂vi v̂ = ei〈v〉 − v̂i v̂〈v〉 ,

|∇vF| � 1√
1 + |v|2 (|B| + |Be|). (4.29)

From the expression of F̂ in (4.26), we have from (4.28),

|∇x F̂| ≤ 2√
1 + |v|2 |∇xF| � 1√

1 + |v|2 (|∇x E | + |∇x B|) , (4.30)

and from (4.29),

|∇vF̂| ≤
∣∣∣∣∣∇v(

1√
1 + |v|2 )(F − v̂ · F · v̂)

∣∣∣∣∣ +
∣∣∣∣∣

1√
1 + |v|2

(∇vF − ∇v(v̂ · F · v̂)
)
∣∣∣∣∣

� 1

1 + |v|2 |F| + 1√
1 + |v|2 |∇vF|

� 1

1 + |v|2 (|E | + |B| + g + |Be|)

(4.31)
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From (4.27) and Fubini’s theorem,

∂xi X (s) = ei +
∫ t

s

∫ τ ′

s
[∇x F̂(τ ′) · ∂xi X (τ ′) + ∇vF̂(τ ′) · ∂xi V (τ ′)]dτdτ ′

= ei +
∫ t

s
(τ ′ − s)[∇x F̂(τ ′) · ∂xi X (τ ′) + ∇vF̂(τ ′) · ∂xi V (τ ′)]dτ ′.

Therefore, from (4.30) and (4.31) we have

|∂xi X (s)| ≤ 1 + (t − s)
∫ t

s

(
|∇x F̂(τ )||∂xi X (τ )| + |∇vF̂(τ )||∂xi V (τ )|

)
dτ

� 1 + (t − s) (‖∇x E‖∞ + ‖∇x B‖∞)

∫ t

s

1√
1 + |V (τ )|2 |∂xi X (τ )|dτ

+ (t − s) (‖E‖∞ + ‖B‖∞ + g + |Be|)
∫ t

s

1

1 + |V (τ )|2 |∂xi V (τ )|dτ.

(4.32)

Thus

〈V (s)〉|∂xi X (s)|
� 〈V (s)〉 + (t − s) (‖∇x E‖∞ + ‖∇x B‖∞)

sup0≤s≤t 〈V (s)〉
inf0≤s≤t 〈V (s)〉∫ t

s

1√
1 + |V (τ )|2 〈V (τ )〉|∂xi X (τ )|dτ

+ (t − s) (‖E‖∞ + ‖B‖∞ + g + |Be|) sup0≤s≤t 〈V (s)〉
inf0≤s≤t 〈V (s)〉∫ t

s

1√
1 + |V (τ )|2 |∂xi V (τ )|dτ

� 〈V (s)〉 + C1

∫ t

s

1√
1 + |V (τ )|2

(〈V (τ )〉|∂xi X (τ )| + |∂xi V (τ )|) dτ,

(4.33)

whereC1 = (
sup0≤t≤T (‖∇x E(t)‖∞ + ‖∇x B(t)‖∞ + ‖E(t)‖∞ + ‖B(t)‖∞) + g + |Be|

)2.
From (4.27), (4.28), and (4.29),

|∂xi V (s)| � (‖∇x E‖∞ + ‖∇x B‖∞)

∫ t

s

1√
1 + |V (τ )|2 〈V (τ )〉|∂xi X (τ )|dτ

+ (‖B‖∞ + |Be|)
∫ t

s

1√
1 + |V (τ )|2 |∂xi V (τ )|dτ

� C1

∫ t

s

1√
1 + |V (τ )|2

(〈V (τ )〉|∂xi X (τ )| + |∂xi V (τ )|) dτ.

(4.34)

Combine (4.33) and (4.34) we have

〈V (s)〉|∂xi X (s)| + |∂xi V (s)| � 〈V (s)〉
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+C1

∫ t

s

1√
1 + |V (τ )|2

(〈V (τ )〉|∂xi X (τ )| + |∂xi V (τ )|) dτ. (4.35)

So from Gronwall’s inequality,

〈V (s)〉|∂xi X (s)| + |∂xi V (s)| � 〈V (s)〉eC1
∫ t

s
1√

1+|V (τ )|2 dτ
� eC1|t−s|〈V (s)〉, (4.36)

Next, using the same argument as (4.28)–(4.35), from (4.27) we get

〈V (s)〉|∂vi X (s)| + |∂vi V (s)| � 1 + C1

∫ t

s

1√
1 + |V (τ )|2

(〈V (τ )〉|∂xi X (τ )| + |∂xi V (τ )|) dτ.

Again by Gronwall’s inequality,

〈V (s)〉|∂vi X (s)| + |∂vi V (s)| � eC1|t−s|. (4.37)

Thus,

|∂vi X (s; t, x, v)| � eC1|t−s|

〈V (s)〉 , |∂vi V (s; t, x, v)| � eC1|t−s|. (4.38)

Now plug (4.36), (4.38) back to (4.27) and using (4.30), (4.31), and (4.38), we have

|∂vi X (s; t, x, v)| � |t − s|
〈v〉 + eC1|t−s|

∫ t

s

∫ t

τ

1

〈V (τ ′)〉2 dτ ′dτ � |t − s|
〈V (s)〉eC1|t−s|,

(4.39)

|∂xi V (s; t, x, v)| � eC1|t−s|
∫ t

s

1

〈V (τ )〉 〈V (τ )〉dτ � |t − s|eC1|t−s| (4.40)

From (4.36), (4.38), and (4.39) we conclude (4.23). Finally, for i �= j , from (4.27),
(4.30), and (4.31),

|∂xi X j (s; t, x, v)| � eC1|t−s|
∫ t

s

∫ t

τ

1

〈V (τ ′)〉dτ ′dτ � eC1|t−s| |t − s|2
〈V (s)〉 .

��

5. W1,∞ Estimate of Inflow Problem

In this section, we prove an a priori estimate for the inflow problem (0.40), (0.25). From
(0.54), we have

f (t, x, v) = 1tb≥t f (0, X (0), V (0)) + 1tb<t g(t − tb, xb, vb). (5.1)

From (0.54), we have

Xi (s; t, x, v) = xi − (t − s)v̂i +
∫ t

s

∫ t

τ

F̂i (τ
′, X (τ ′), V (τ ′))dτ ′dτ. (5.2)

Set s = t − tb so that X3(t − tb; t, x, v) = 0. Then

tbv̂3 = x3 +
∫ t

t−tb

∫ t

τ

F̂3(τ
′)dτ ′dτ (5.3)



Y. Cao, C. Kim

By taking derivatives we obtain

∂x x3 +
∫ t

t−tb

∫ t

τ

∂x [F̂3(τ
′, X (τ ′), V (τ ′))]dτ ′dτ =

(
v̂3 −

∫ t

t−tb
F̂3(τ

′)dτ ′)∂x tb

= v̂b,3∂x tb,

(5.4)

and hence

∂xi tb = 1

v̂b,3

{
∂xi x3 +

∫ t

t−tb

∫ t

τ

∂xi [F̂3(τ
′, X (τ ′), V (τ ′))]dτ ′dτ

}

= 1

v̂b,3

{
∂xi x3 +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂xi X (τ ′) + ∇vF̂3(τ

′) · ∂xi V (τ ′)]dτ ′dτ
}

.

(5.5)

Similarly,

∂vi x3 − tb∂vi v̂3 +
∫ t

t−tb

∫ t

τ

∂vi [F̂3(τ
′, X (τ ′), V (τ ′))]dτ ′dτ = v̂b,3∂vi tb, (5.6)

Thus

∂vi tb = 1

v̂b,3

{
−tb∂vi v̂3 +

∫ t

t−tb

∫ t

τ

∂vi [F̂3(τ
′, X (τ ′), V (τ ′))]dτ ′dτ

}

= 1

v̂b,3

{
−tb∂vi v̂3 +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂vi X (τ ′) + ∇vF̂3(τ

′) · ∂vi V (τ ′)]dτ ′dτ
}

.

(5.7)

And we have

∂xi xb = ei − (∂xi tb)v̂b +
∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂xi X (τ ′) + ∇vF̂3(τ

′) · ∂xi V (τ ′)]dτ ′dτ

∂xi vb = −(∂xi tb)F(t − tb, xb, tb) −
∫ t

t−tb
[∇xF3(τ ) · ∂xi X (τ ) + ∇vF3(τ ) · ∂xi V (τ )]dτ

∂vi xb = −(∂vi v̂)tb − (∂vi tb)v̂b +
∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂vi X (τ ′) + ∇vF̂3(τ

′) · ∂vi V (τ ′)]dτ ′dτ

∂vi vb = ei − (∂vi tb)F(t − tb, xb, tb) −
∫ t

t−tb
[∇xF3(τ ) · ∂vi X (τ ) + ∇vF3(τ ) · ∂vi V (τ )]dτ.

(5.8)

We have the following calculations for the derivatives of f in (5.1).

∂xi f (t, x, v)

= 1tb>t {∇x f0(X (0), V (0)) · ∂xi X (0)

+ ∇v f0(X (0), V (0)) · ∂xi V (0)}
+ 1tb<t {−∂t g(t − tb, xb, vb)∂xi tb + ∇x g(t − tb, xb, vb)∂xi xb

+ ∇vg(t − tb, xb, vb)∂xi vb}
= 1tb>t {∇x f0(X (0), V (0)) · ∂xi X (0)

+ ∇v f0(X (0), V (0)) · ∂xi V (0)}
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+ 1tb<t

(
− ∂t g(t − tb, xb, vb)

1

v̂b,3{
∂xi x3 +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂xi X (τ ′) + ∇vF̂3(τ

′) · ∂xi V (τ ′)]dτ ′dτ
}

+ ∇x g(t − tb, xb, vb)·{
ei − (∂xi tb)v̂b +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂xi X (τ ′) + ∇vF̂3(τ

′) · ∂xi V (τ ′)]dτ ′dτ
}

+ ∇vg(t − tb, xb, vb)·{
−(∂xi tb)F(t − tb, xb, tb) −

∫ t

t−tb
[∇xF3(τ ) · ∂vi X (τ )

+∇vF3(τ ) · ∂vi V (τ )]dτ}
)

, (5.9)

and

∂vi f (t, x, v)

= 1tb>t {∇x f0(X (0), V (0)) · ∂vi X (0) + ∇v f0(X (0), V (0)) · ∂vi V (0)}
+ 1tb<t {−∂t g(t − tb, xb, vb)∂vi tb
+ ∇x g(t − tb, xb, vb)∂vi xb + ∇vg(t − tb, xb, vb)∂vi vb}
= 1tb>t {∇x f0(X (0), V (0)) · ∂vi X (0)

+ ∇v f0(X (0), V (0)) · ∂vi V (0)}
+ 1tb<t

(
− ∂t g(t − tb, xb, vb)

1

v̂b,3

{
−tb∂vi v̂3 +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂vi X (τ ′)

+∇vF̂3(τ
′) · ∂vi V (τ ′)]dτ ′dτ

}

+ ∇x g(t − tb, xb, vb) ·
{
−(∂vi v̂)tb − (∂vi tb)v̂b + +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂vi X (τ ′)

+∇vF̂3(τ
′) · ∂vi V (τ ′)]dτ ′dτ

}

+ ∇vg(t − tb, xb, vb) ·
{

ei − (∂vi tb)f(t − tb, xb, tb) −
∫ t

t−tb
[∇xF3(τ ) · ∂vi X (τ )

+∇vF3(τ ) · ∂vi V (τ )]dτ}
)

(5.10)

Proposition 3. Let ( f, E, B) be a solution of (0.40), (0.25), (0.21). Suppose the fields
satisfies (4.18), and

sup
0≤t≤T

(‖∇x E(t)‖∞ + ‖∇x B(t)‖∞) < ∞.

And assume that for δ > 0,

‖〈v〉5+δ∇x‖ f0‖∞ + ‖〈v〉5+δα∂x3 f0‖∞ + ‖〈v〉5+δ∇v f0‖∞ < ∞,

‖〈v〉5+δ∂t g‖∞ + ‖〈v〉5+δ∇x‖ g‖∞ + ‖〈v〉5+δ∇vg‖∞ < ∞.
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then for 0 < T � 1 small enough, we have

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉5+δ∇v f (t)‖∞

)
< ∞.

(5.11)

Proof. For notational simplicity, we assume that the lower order terms of E and B are
smaller than the higher order terms:

sup
0≤t≤T

‖E(t)‖∞ + g + |Be| � sup
0≤t≤T

‖∇x E(t)‖∞,

sup
0≤t≤T

‖B(t)‖∞ + g + |Be| � sup
0≤t≤T

‖∇x B(t)‖∞.
(5.12)

From (5.9), (5.10), we have

|∂xi f (t, x, v)| ≤ 1tb>t {|∇x f0(X (0), V (0))||∂xi X (0)| + |∇v f0(X (0), V (0))||∂xi V (0)|}
+1tb<t

(
|∂t g(t − tb, xb, vb)|

∣∣∣∣
1

v̂b,3{
∂xi x3 +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂xi X (τ ′)

+∇vF̂3(τ
′) · ∂xi V (τ ′)]dτ ′dτ

}∣∣∣
+|∇x g(t − tb, xb, vb)| ∣∣ei − (∂xi tb)v̂b

+
∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂xi X (τ ′) + ∇vF̂3(τ

′) · ∂xi V (τ ′)]dτ ′dτ
∣∣∣∣

+|∇vg(t − tb, xb, vb)| ∣∣−(∂xi tb)F(t − tb, xb, tb)

−
∫ t

t−tb
[∇xF3(τ ) · ∂xi X (τ ) + ∇vF3(τ ) · ∂xi V (τ )]dτ

∣∣∣∣
)

. (5.13)

|∂vi f (t, x, v)| ≤ 1tb>t {|∇x f0(X (0), V (0))||∂vi X (0)| + |∇v f0(X (0), V (0))||∂vi V (0)|}
+1tb<t

(
|∂t g(t − tb, xb, vb)|

∣∣∣∣
1

v̂b,3

{
−tb∂vi v̂3 +

∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′)

·∂vi X (τ ′) + ∇vF̂3(τ
′) · ∂vi V (τ ′)]dτ ′dτ

}∣∣∣
+|∇x g(t − tb, xb, vb)| ∣∣−(∂vi v̂)tb − (∂vi tb)v̂b

+
∫ t

t−tb

∫ t

τ

[∇x F̂3(τ
′) · ∂vi X (τ ′) + ∇vF̂3(τ

′) · ∂vi V (τ ′)]dτ ′dτ
∣∣∣∣

+|∇vg(t − tb, xb, vb)| ∣∣ei − (∂vi tb)F(t − tb, xb, tb)

−
∫ t

t−tb
[∇xF3(τ ) · ∂vi X (τ ) + ∇vF3(τ ) · ∂vi V (τ )]dτ

∣∣∣∣
)

.

(5.14)

From (4.30), (4.31), (4.23), (5.5), and (5.7), we have

|∂xi tb| ≤ 1

v̂b,3

{
|∂xi x3| +

∫ t

t−tb

∫ t

τ
|∇x F̂3(τ

′) · ∂xi X (τ ′) + ∇vF̂3(τ
′) · ∂xi V (τ ′)|dτ ′dτ

}
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≤ 1

v̂b,3

{
|∂xi x3| +

∫ t

t−tb

∫ t

τ
|∇x F̂3(τ

′)||∂xi X (τ ′)| + |∇vF̂3(τ
′)||∂xi V (τ ′)|dτ ′dτ

}

� 1

v̂b,3

(
|∂xi x3| +

Ct2b
〈v〉 (‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
)

)
, (5.15)

|∂vi tb| ≤ 1

v̂b,3

{
|tb∂vi v̂3| +

∫ t

t−tb

∫ t

τ
|∇x F̂3(τ

′) · ∂vi X (τ ′) + ∇vF̂3(τ
′) · ∂vi V (τ ′)|dτ ′dτ

}

≤ 1

v̂b,3

{
|tb∂vi v̂3| +

∫ t

t−tb

∫ t

τ
|∇x F̂3(τ

′)||∂vi X (τ ′)| + |∇vF̂3(τ
′)||∂vi V (τ ′)|dτ ′dτ

}

� 1

v̂b,3

(
tb
〈v〉 +

Ct2b
〈v〉2 (‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
)

)
. (5.16)

Thus from (5.13) and (5.15), for i = 1, 2,

|〈v〉4+δ∂xi f (t, x, v)|
≤ 〈v〉4+δ

(|∇x‖ f0(X (0), V (0))||∂xi X‖(0)| + |∂x3 f0(X (0), V (0))||∂xi X3(0)|
+ |∇v f0(X (0), V (0))||∇x V (0)|) (5.17)

+ 〈v〉4+δ|∂t g(t − tb, xb, vb)| Ct2b
v̂b,3〈v〉 (‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
) (5.18)

+ 〈v〉4+δ|∇x g(t − tb, xb, vb)|
(
1 +

(
1

v̂b,3
+ 1

)
Ct2b
〈v〉 (‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
)

)

+ 〈v〉4+δ|∇vg(t − tb, xb, vb)|C
(

t2b
v̂b,3〈v〉 |F(t − tb, xb, tb)| + tb

)

× (‖∇x E‖L∞
t,x

+ ‖∇x B‖L∞
t,x

). (5.19)

From (4.23), (4.27), and (4.20), we have

|(5.17)| ≤C〈v〉4+δ
(|∇x‖ f0(X (0), V (0))| + t |∂x3 f0(X (0), V (0))|

+(1 + |v|)|∇v f0(X (0), V (0))|)
≤ (C2 + 1)

(
‖〈v〉5+δα∂x3 f0‖L∞

x
+ ‖〈v〉4+δ∇x‖ f0‖L∞

x
+ ‖〈v〉5+δ∇v f0‖L∞

x

)
.

(5.20)

And

|(5.18)| + |(5.19)| + |(5.19)|
≤ (C + tbC(‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
))

(
‖〈v〉4+δ∂t g‖L∞

t,x
+ ‖〈v〉4+δ∇x g‖L∞

t,x
+ ‖〈v〉4+δ∇vg‖L∞

t,x

)
.

(5.21)

And from (5.13) and (5.15), for i = 3,

|〈v〉5+δα∂x3 f (t, x, v)|
≤ 〈v〉5+δα(t, x, v)

(|∇x‖ f0(X (0), V (0))||∂x3 X‖(0)| + |∂x3 f0(X (0), V (0))||∂x3 X3(0)|
+ |∇v f0(X (0), V (0))||∇x V (0)|) (5.22)
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+ 〈v〉5+δ|∂t g(t − tb, xb, vb)|α(t, x, v)

v̂b,3
(1 +

Ct2b
〈v〉 (‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
)) (5.23)

+ 〈v〉5+δ|∇x g(t − tb, xb, vb)|α(t, x, v)

v̂b,3
(1 +

Ct2b
〈v〉 (‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
)) (5.24)

+ 〈v〉5+δ|∇vg(t − tb, xb, vb)|α(t, x, v)

v̂b,3
|F(t − tb, xb, tb)|

× (1 + tbC(‖∇x E‖L∞
t,x

+ ‖∇x B‖L∞
t,x

)). (5.25)

Now from (4.23) and the velocity lemma (4.3),

|(5.22)| ≤ C
(
‖〈v〉5+δα∂x3 f0‖L∞

x
+ ‖〈v〉5+δ∇x‖ f0‖L∞

x
+ ‖〈v〉5+δα∇v f (0)‖L∞

x

)
,

(5.26)

and

|(5.23)| + |(5.24)| + |(5.25)|
≤ (C + tbC(‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
))

(
‖〈v〉5+δ∂t g‖L∞

t,x
+ ‖〈v〉5+δ∇x g‖L∞

t,x
+ ‖〈v〉5+δ∇vg‖L∞

t,x

)
.

(5.27)

Also, similarly from (5.14) and (5.16),

|〈v〉5+δ∂vi f (t, x, v)|
≤ 〈v〉5+δ

(|∇x‖ f0(X (0), V (0))||∂vi X‖(0)| + |∂x3 f0(X (0), V (0))||∂vi X3(0)|
+ |∇v f0(X (0), V (0))||∇vi V (0)|)

+ 〈v〉5+δ|∂t g(t − tb, xb, vb)| tb
v̂b,3〈v〉 × (1 +

tb
〈v〉C(‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
))

+ 〈v〉5+δ|∇x g(t − tb, xb, vb)|(
tb
〈v〉 +

(
1

v̂b,3
+ 1

)
t2b
〈v〉C(‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
)

)

+ 〈v〉5+δ|∇vg(t − tb, xb, vb)|(
(1 +

tb
v̂b,3〈v〉 |F(t − tb, xb, tb)| + tbC(‖∇x E‖L∞

t,x
+ ‖∇x B‖L∞

t,x
)

)

≤ (C2
2 + 1)

(
‖〈v〉5+δα∂x3 f0‖L∞

x
+ ‖〈v〉4+δ∇x‖ f0‖L∞

x
+ ‖〈v〉5+δ∇v f0‖L∞

x

)

+ (C + tbC(‖∇x E‖L∞
t,x

+ ‖∇x B‖L∞
t,x

))

×
(
‖〈v〉5+δ∂t g‖L∞

t,x
+ ‖〈v〉5+δ∇x g‖L∞

t,x
+ ‖〈v〉5+δ∇vg‖L∞

t,x

)
. (5.28)

Now from (3.3) we have

‖∇x E‖L∞
t,x

+ ‖∇x B‖L∞
t,x

� ‖〈v〉4+δ∇x‖ f (t, x, v)‖L∞
t,x

+ ‖〈v〉5+δα∂x3 f (t, x, v)‖L∞
t,x

+ C,
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thus combining (5.20), (5.21), (5.26), (5.27), and (5.28), and by choosing 0 < T � 1
small enough we have

‖〈v〉4+δ∇x‖ f (t, x, v)‖L∞
t,x

+ ‖〈v〉5+δα∂x3 f (t, x, v)‖L∞
t,x

+ ‖〈v〉5+δ∇v f (t, x, v)‖L∞
t,x

≤ 2
(
‖〈v〉5+δα∂x3 f0‖L∞

x
+ ‖〈v〉5+δ∇x‖ f0‖L∞

x
+ ‖〈v〉5+δ∇v f0‖L∞

x

)

+ C1

(
‖〈v〉5+δ∂t g‖L∞

t,x
+ ‖〈v〉5+δ∇x g‖L∞

t,x
+ ‖〈v〉5+δ∇vg‖L∞

t,x

)

+
1

2

(
‖〈v〉4+δ∇x‖ f (t, x, v)‖L∞

t,x
+ ‖〈v〉5+δα∂x3 f (t, x, v)‖L∞

t,x

)
< ∞.

(5.29)

This conclude (5.11). ��
We state and prove a variation of Ukai’s trace theorem in [1,35,62].

Lemma 12. Suppose f ∈ L∞((0, T ) × � × R
3), and F ∈ W 1,∞((0, T ) × R

3) satisfy

∂t f + v̂ · ∇x f + F · ∇v f = h ∈ L∞((0, T ) × � × R
3). (5.30)

Then f ∈ L∞((0, T ) × (γ \γ0)), and

sup
0≤t≤T

‖ f (t)‖L∞(γ \γ0) ≤ sup
0≤t≤T

‖ f (t)‖L∞(�×R3). (5.31)

Proof. Denote the characteristics X (s; t, x, v), V (s; t, x, v) which solves

d

ds
X (s; t, x, v) = V̂ (s; t, x, v),

d

ds
V (s; t, x, v) = F(s, X (s; t, x, v), V (s; t, x, v)),

(5.32)

and X (t; t, x, v) = x , V (t; t, x, v) = v. Then since F ∈ W 1,∞((0, T ) × R
3), the

characteristics (5.32) is Hölder continuous. From (5.30), for almost every (t, x, v) ∈
(0, T ) × γ+, and max{0, t − tb(t, x, v)},

f (t, x, v) = f (s, X (s; t, x, v), V (s; t, x, v)) +
∫ t

s
h(τ ; X (τ ; t, x, v), V (τ ; t, x, v))dτ.

Thus

sup
0<t<T

‖ f (t)‖L∞(γ+) ≤ sup
0<t<T

‖ f (t)‖L∞(�×R3) + (t − s)‖h‖L∞((0,T )×�×R3).

Since t − s > 0 can be arbitrarily small, we have

sup
0<t<T

‖ f (t)‖L∞(γ+) ≤ sup
0<t<T

‖ f (t)‖L∞(�×R3).

Now, for (x, v) ∈ γ− and s ∈ (t,max{T, tf (t, x, v)}), we have

f (t, x, v) = f (s, X (s; t, x, v), V (s; t, x, v)) −
∫ s

t
h(τ ; X (τ ; t, x, v), V (τ ; t, x, v))dτ.

Using the same argument we get

sup
0<t<T

‖ f (t)‖L∞(γ−) ≤ sup
0<t<T

‖ f (t)‖L∞(�×R3).

This proves (5.31). ��
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Next, we prove a trace theorem for the derivatives of f .

Lemma 13. Let ( f, E, B) be a solution of (0.40), (0.25), (0.21). Suppose

sup
0≤t≤T

(‖∇x E(t)‖∞ + ‖∇x B(t)‖∞) < ∞, (5.33)

‖〈v〉5+δ∂t g‖∞ + ‖〈v〉5+δ∇x‖ g‖∞ + ‖〈v〉5+δ∇vg‖∞ < ∞, (5.34)

and

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉5+δ∇v f (t)‖∞

)
< ∞.

(5.35)

Then

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖L∞(γ \γ0) + ‖〈v〉5+δα∂x3 f (t, x, v)‖L∞(γ \γ0)

+‖〈v〉5+δ∇v f (t)‖L∞(γ \γ0)
)

< ∞ (5.36)

Proof. The proof uses similar argument as Ukai’s proof of a trace theorem in [62]. Next,
notice that for ∂e ∈ {∇x‖,∇v}, and p = 4 + δ, 5 + δ, we have

∂t (〈v〉p∂e f ) + v̂ · ∇x (〈v〉p∂e f ) + F · ∇v(〈v〉p∂e f )

= −〈v〉p∂ev̂ · ∇x f − 〈v〉p∂eF · ∇v f − F · ∇v(〈v〉p)∂e f. (5.37)

Then for almost every (x, v) ∈ γ+, and s ∈ (max{0, t − tb(t, x, v)}, t), we have

〈v〉p∂e f (t, x, v) = 〈V (s; t, x, v)〉p∂e f (s, X (s; t, x, v), V (s; t, x, v))

+
∫ t

s

(−〈v〉p∂ev̂ · ∇x f − 〈v〉p∂eF · ∇v f

−F · ∇v(〈v〉p)∂e f
)
(τ, X (τ ; t, x, v), V (τ ; t, x, v))dτ.

(5.38)

Thus, from (5.33) and (5.35),

|〈v〉p∂e f (t, x, v)|
≤ sup

0≤s≤t
‖〈v〉p∂e f (s)‖∞ +

C(t − s)

α(t, x, v)

(
( sup
0≤t≤T

(‖∇x E(t)‖∞ + ‖∇x B(t)‖∞) + g + |Be|)

× sup
0≤s≤t

(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉5+δ∇v f (t)‖∞

))
, (5.39)

since we can choose s close enough to t such that

C(t − s)

α(t, x, v)

(
( sup
0≤t≤T

(‖∇x E(t)‖∞ + ‖∇x B(t)‖∞) + g + |Be|) sup
0≤s≤t

×
(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉5+δ∇v f (t)‖∞

))
< ε � 1,
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we have

|〈v〉p∂e f (t, x, v)| ≤ sup
0≤s≤t

‖〈v〉p∂e f (s)‖∞ + ε,

for any ε > 0. Therefore, we get

sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖L∞(γ+) ≤ sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖∞,

sup
0≤t≤T

‖〈v〉5+δ∇v f (t)‖L∞(γ+) ≤ sup
0≤t≤T

‖〈v〉5+δ∇v f (t)‖∞.
(5.40)

Similarly, since

(∂t + v̂ · ∇x + F · ∇v)(〈v〉5+δα∂x3 f )

= −〈v〉5+δα∂x3F · ∇v f − F · ∇v(〈v〉5+δ)α∂x3 f

− [(∂t + v̂ · ∇x + F · ∇v)α]〈v〉5+δ∂x3 f

=: Gα(t, x, v).

Then for almost every (x, v) ∈ γ+, and s ∈ (max{0, t − tb(t, x, v)}, t), we have

〈v〉5+δα∂x3 f (t, x, v)

= 〈V (s; t, x, v)〉5+δα∂x3 f (s, X (s; t, x, v), V (s; t, x, v))

+
∫ t

s
Gα(τ, X (τ ; t, x, v), V (τ ; t, x, v))dτ.

(5.41)

Since

|Gα(t, x, v)| ≤ C
(
(( sup
0≤t≤T

‖∇x E(t)‖∞ + ‖∇x B(t)‖∞) + g + |Be|)

× sup
0≤s≤t

(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉5+δ∇v f (t)‖∞

) )
,

using the same argument as (5.39)–(5.40), we obtain

sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t, x, v)‖L∞(γ+) ≤ sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t, x, v)‖∞. (5.42)

Now, for (x, v) ∈ γ−, and any s ∈ (t,max{T, tf (t, x, v)}) we have the same formula
(5.38) and (5.41) for 〈v〉p∂e f and 〈v〉5+δα∂x3 f respectively. Therefore by the same
argument, we get

sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖L∞(γ−) ≤ sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖∞,

sup
0≤t≤T

‖〈v〉5+δ∇v f (t)‖L∞(γ−) ≤ sup
0≤t≤T

‖〈v〉5+δ∇v f (t)‖∞,

sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t, x, v)‖L∞(γ−) ≤ sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t, x, v)‖∞.

(5.43)

Combining (5.40), (5.42), and (5.43), we conclude (5.36). ��
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Next, we sketch the proof of local existence of the solution with inflow boundary
condition (Theorem 1). Since the argument is similar to (and easier than) the proof of
Theorem 2, we skip the details here to avoid redundancy.

Sketch of proof of Theorem 1. We recursively define a sequence of functions:

f 0(t, x, v) = f0(x, v), E0(t, x) = E0(t, x), B0(t, x) = B0(x).

For � ≥ 1, let f � be the solution of

∂t f � + v̂ · ∇x f � + F�−1 · ∇v f � = 0, where

F�−1 = E�−1 + Eext + v̂ × (B�−1 + Bext) − ge3,

f �(0, x, v) = f0(x, v),

f �(t, x, v)|γ− = g(t, x, v).

(5.44)

Let ρ� = ∫
R3 f �dv, j� = ∫

R3 v̂ f �dv. Let

E� = (2.31) + · · · + (2.41), B� = (2.45) + · · · + (2.55), with f changes to f �.

(5.45)

α�(t, x, v) =
√

(x3)2 + (v̂3)2 − 2
(
E�
3(t, x‖, 0) + Ee + (v̂ × B�)3(t, x‖, 0) − g

) x3
〈v〉 .
(5.46)

Then similar to the argument in Lemma 14, Lemma 15, there exits M1, M2, M3, M4,
and c0, such that for 0 < T � 1,

sup
�

sup
0≤t≤T

(
‖〈v〉4+δ f �(t)‖L∞(�̄×R3)

)
< M1,

sup
�

sup
0≤t≤T

(
‖E�(t)‖∞ + ‖B�(t)‖∞

)
+ |Be| + Ee + g < M2,

inf
�
inf
t,x‖

(
g − Ee − E�

3(t, x‖, 0) − (v̂ × B�)3(t, x‖, 0)
)

> c0. (5.47)

sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖∞ + ‖〈v〉5+δα�−1∂x3 f �(t)‖∞ + ‖〈v〉4+δ∇v f �(t)‖∞

)

+ sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖L∞(γ \γ0) + ‖〈v〉5+δα�−1∂x3 f �(t)‖L∞(γ \γ0)

+‖〈v〉4+δ∇v f �(t)‖L∞(γ \γ0)
)

< M3,

sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)
< M4.

(5.48)

Similar to the argument in Lemma 17, there exists functions ( f, E, B)with 〈v〉4+δ f (t, x,

v) ∈ L∞((0, T ); L∞(�̄ × R
3)), and (E, B) ∈ L∞((0, T ); L∞(�) ∩ L∞(∂�)), such

that as � → ∞,

sup
0≤t≤T

(
‖E�(t) − E(t)‖L∞(�) + ‖E�(t) − E(t)‖L∞(∂�)
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+‖B�(t) − B(t)‖L∞(�) + ‖B�(t) − B(t)‖L∞(∂�)

)
→ 0, (5.49)

and

sup
0≤t≤T

‖〈v〉4+� f �(t) − 〈v〉4+δ f (t)‖L∞(�̄×R3) → 0. (5.50)

Moreover, ( f, E, B) is a (weak) solution of the system (0.40)–(0.42), and (0.25). And
the solution ( f, E, B) obtained in Lemma 17 satisfies

‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉4+δ∇v f (t)‖∞ < ∞, (5.51)

and

‖∂t E(t)‖∞ + ‖∂t B(t)‖∞ + ‖∇x E(t)‖∞ + ‖∇x B(t)‖∞ < ∞. (5.52)

Finally, using the argument as in Lemma 19, we can show that the solutions of the RVM
system (0.40)–(0.42), (0.25) is unique. ��

6. Diffuse BC

In (0.26), we denote μ = 1
(2π)3/2

e− |v|2
2 . And let the constant cμ be such that cμ

∫
v3>0 v̂3

μ(v)dv = 1. We first prove an a priori estimate for diffuse BC.

Proposition 4. Let ( f, E, B) be a solution of (0.40)–(0.42), (0.26). Suppose the fields
satisfies (4.2), and

sup
0≤t≤T

(‖∇x E(t)‖∞ + ‖∇x B(t)‖∞) < ∞. (6.1)

Assume that for δ > 0, 〈v〉4+δ∇x‖ f, 〈v〉5+δα∂x3 f, 〈v〉5+δ∇v f ∈ L∞((0, T ) × � × R
3),

then for 0 < T � 1, there exists a C > 0 such that

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉5+δ∇v f (t)‖∞

)

+ sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖L∞(γ \γ0)

+‖〈v〉5+δα∂x3 f (t)‖L∞(γ \γ0) + ‖〈v〉5+δ∇v f (t)‖L∞(γ \γ0)
)

< C
(
‖〈v〉5+δ∇x‖ f0‖∞ + ‖〈v〉5+δα∂x3 f0‖∞ + ‖〈v〉5+δ∇v f0‖∞

)
.

(6.2)

Proof. For any (t, x, v) ∈ (0, T ) × � × R
3, from (5.13) and (5.14), we have

|∂xi f (t, x, v)|
� 1tb>t {|∇x f0(X (0), V (0))||∂xi X (0)| + |∇v f0(X (0), V (0))||∂xi V (0)|}
+ 1tb<t

(
|∂t f (t − tb, xb, vb)|δi3 + tb

v̂b,3

+|∇x‖ f (t − tb, xb, vb)|δi3 + tb
v̂b,3

+ |∇v f (t − tb, xb, vb)|
(

δi3 + tb
v̂b,3

+ 〈v〉
))

,

(6.3)
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and

|∂vi f (t, x, v)|
� 1tb>t {|∇x f0(X (0), V (0))||∂vi X (0)| + |∇v f0(X (0), V (0))||∂vi V (0)|}
+ 1tb<t

(
|∂t f (t − tb, xb, vb)| tb

v̂b,3

+|∇x‖ f (t − tb, xb, vb)| tb
v̂b,3

+ |∇v f (t − tb, xb, vb)|
(

tb
v̂b,3

+ 〈v〉
))

.

(6.4)

Now, using the boundary condition (0.26) and equation (0.40), we have

∇x‖ f (t − tb, xb, vb) = cμμ(vb)

∫

u3<0
−∇x‖ f (t − tb, xb, u)û3du,

∇v f (t − tb, xb, vb) = cμvbμ(vb)

∫

u3<0
f (t − tb, xb, u)û3du,

∂t f (t − tb, xb, vb) = cμμ(vb)

∫

u3<0
û · ∇x f (t − tb, xb, u)û3 + f (t − tb, xb, u)F·

∇u(û3)du.

Therefore, for i = 1, 2,

|∂xi f (t, x, v)|
� 1tb>t {|∇x f0(X (0), V (0))||∂xi X (0)| + |∇v f0(X (0), V (0))||∂xi V (0)|}
+ 1tb<t

(
cμμ(vb)〈v〉2

∫

u3<0

(|∇x f (t − tb, xb, u)|û3 + f (t − tb, xb, u)
)

du

)

� 1tb>t {|∇x‖ f0(X (0), V (0))||∂xi X‖(0)| + |∂x3 f0(X (0), V (0))||∇x‖ X3(0)|
+ |∇v f0(X (0), V (0))||∂xi V (0)|}
+ 1tb<t

(
cμμ(vb)〈v〉2

∫

u3<0

(|∇x f (t − tb, xb, u)|û3 + f (t − tb, xb, u)
)

du

)
,

(6.5)

where we’ve used (4.19). And for i = 3, we have

|∂x3 f (t, x, v)|
� 1tb>t {|∇x‖ f0(X (0), V (0))||∂x3 X‖(0)| + |∂x3 f0(X (0), V (0))||∇x3 X3(0)|
+ |∇v f0(X (0), V (0))||∂xi V (0)|}
+ 1tb<t

(
cμ

1

v̂b,3
μ(vb)〈v〉2

∫

u3<0

(|∇x f (t − tb, xb, u)|û3 + f (t − tb, xb, u)
)

du

)
.

(6.6)

Also,

|∂vi f (t, x, v)|
� 1tb>t {|∇x‖ f0(X (0), V (0))||∂vi X‖(0)| + |∂x3 f0(X (0), V (0))||∇vi X3(0)|
+ |∇v f0(X (0), V (0))||∂vi V (0)|}
+ 1tb<t

(
cμμ(vb)|vb|〈v〉2

∫

u3<0

(|∇x f (t − tb, xb, u)|û3 + f (t − tb, xb, u)
)

du

)
.

(6.7)
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Let (x, v) /∈ γ0 and (t0, x0, v0) = (t, x, v). For the characteristic

d

ds
X (s; t, x, v) = V̂ (s; t, x, v),

d

ds
V (s; t, x, v) = F(s, X (s; t, x, v), V (s; t, x, v)),

(6.8)

we define the stochastic (diffuse) cycles as

t1 = t − tb(t, x, v), x1 = xb(t, x, v) = X (t − tb(t, x, v); t, x, v),

v0b = V (t − tb(t, x, v); t, x, v) = vb(t, x, v),
(6.9)

and v1 ∈ R
3 with n(x1) · v1 > 0. For l ≥ 1, define

t l+1 = t l − tb(t l , xl , vl), xl+1 = xb(t l , xl , vl),

vl
b = vb(t l , xl , vl),

(6.10)

and vl+1 ∈ R
3 with n(xl+1) · vl+1 > 0. Also, define

Xl(s) = X (s; t l , xl , vl), V l(s) = V (s; t l , xl , vl), (6.11)

so X (s) = X0(s), V (s) = V 0(s).
Expanding ∇x f (t1, x1, v1) + f (t1, x1, v1) in (6.6) again, we get for i = 1, 2,

|∂xi f (t, x, v)|
� 1t1<0{|∇x f0(X (0), V (0))||∂xi X (0)| + |∇v f0(X (0), V (0))||∂xi V (0)|}
+ 1t2<0<t1

{
cμμ(vb)〈v〉2

∫

v13<0

( (|∇x f (0, X1(0), V 1(0)) + 〈v1〉|∇v f (0, X1(0), V 1(0))|
)

|v̂13

+ f (0, X1(0), V 1(0))
)
dv1

}

+ 1t2>0

(
cμμ(vb)〈v〉2

∫

v13<0

(
cμμ(v1b)〈v1〉2 v̂13

v̂b
1
,3

∫

v23<0
|
(
∇x‖ f (t2, x2, v2)|v̂23

+ f (t2, x2, v2)
)

dv2
)

dv1
)

.

Keep doing the expansion we get for � > 1,

|∇x‖ f (t, x, v)|
� 1t1<0{|∇x‖ f0(X (0), V (0))||∇x‖ X‖(0)| + |∂x3 f0(X (0), V (0))||∇x‖ X3(0)|
+ |∇v f0(X (0), V (0))||∇x‖ V (0)|}

+ μ(vb)〈v〉2
∫
∏l−1

j=1 V j

l−1∑
i=1

1{t i+1<0<t i }
((

|∇x f (0, Xi (0), V i (0))| + 〈vi 〉|∇v f (0, Xi (0), V i (0))|
)

v̂i
3

+ f (0, Xi (0), V i (0))

)
d�l−1

i

+ μ(vb)〈v〉2
∫
∏l−1

j=1 V j

1{tl>0}
∫

Vl

(
|∇x‖ f (t l , xl , vl)|v̂l

3 + f (t l , xl , vl)
)

dvld�l−1
l−1 ,

(6.12)
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where V j = {v j ∈ R
3 : v J

3 < 0}, and

d�l−1
i = {

l−1∏
j=i+1

μ(v j )cμ|v̂ j
3 |dv j }{

i−1∏
j=1

cμμ(v
j
b)〈v j 〉2 v̂ J

3

v̂b
j
,3

dv j },

where cμ is the constant that cμ

∫
R3 μ(v j )|v̂ j

3 |dv j = 1. Similarly, we get

|∂x3 f (t, x, v)|
� 1t1<0{|∇x‖ f0(X (0), V (0))||∂x3 X‖(0)| + |∂x3 f0(X (0), V (0))||∂x3 X3(0)|
+ |∇v f0(X (0), V (0))||∂x3V (0)|}

+
μ(vb)

v̂b,3
〈v〉2

∫
∏l−1

j=1 V j

l−1∑
i=1

1{t i+1<0<t i }
((

|∇x f (0, Xi (0), V i (0))| + 〈vi 〉|∇v f (0, Xi (0), V i (0))|
)

v̂i
3

+ f (0, Xi (0), V i (0))

)
d�l−1

i

+
μ(vb)

v̂b,3
〈v〉2

∫
∏l−1

j=1 V j

1{tl>0}
∫

Vl

(
|∇x f (t l , xl , v�)|v̂�

3 + f (t�, x�, v�)
)

dvld�l−1
l−1 ,

(6.13)

and

|∇v f (t, x, v)|
� 1t1<0{|∇x‖ f0(X (0), V (0))||∇v X‖(0)|
+ |∂x3 f0(X (0), V (0))||∇v X3(0)| + |∇v f0(X (0), V (0))||∇vV (0)|}

+ μ(vb)|vb|〈v〉2
∫
∏l−1

j=1 V j

l−1∑
i=1

1{t i+1<0<t i }
((

|∇x f (0, Xi (0), V i (0))| + 〈vi 〉|∇v f (0, Xi (0), V i (0))|
)

v̂i
3

+ f (0, Xi (0), V i (0))

)
d�l−1

i

+ μ(vb)|vb|〈v〉2
∫
∏l−1

j=1 V j

1{tl>0}
∫

Vl

(
|∇x f (t l , xl , vl)|v̂l

3 + f (t l , xl , vl)
)

dvld�l−1
l−1 ,

(6.14)

Next, we claim that there exists l0 � 1 such that for l ≥ l0, we have

∫
∏l−1

j=1 V j

1{tl (t,x,v,v1,...,vl−1)>0} d �l−1
l−1 �

(
1

2

)l

. (6.15)

Since

|v j
b|2 � |v j |2 + (t j − t j+1)2(‖E‖2∞ + ‖B‖2∞), 〈v j

b〉
� 〈v j 〉 + (t j − t j+1)(‖E‖∞ + ‖B‖∞),
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and using (4.3), we have for some fixed constant C0 > 0,

d �l−1
l−1 ≤ (C0)

l
l−1∏
j=1

√
μ(v j )〈v j 〉2dv j .

Choose a sufficiently small δ = δ(C0) > 0. Define

Vδ
j = {v j ∈ V j : v J

3 ≥ δ},

where we have
∫
V j \Vδ

j
C0
√

μ(v j )〈v j 〉2dv j � δ.

On the other hand if v j ∈ Vδ
j , we have from (5.2)

|(t j − t j+1)v̂
j
3 | = |

∫ t j

t j+1

∫ t j

s
F̂3(τ, X j (τ ), V j (τ ))dτds|

≤
∫ t j

t j+1

∫ t j

s

2g

〈V j (τ )〉dτds ≤ (t j − t j+1)2g

min0≤τ≤T 〈V j (τ )〉 .

Thus

|t j − t j+1| ≥ v J
3

g

min0≤τ≤T 〈V j (τ )〉
max0≤τ≤T 〈V j (τ )〉 � v J

3 ≥ δ.

Now if t l ≥ 0 then there are at most
[

C�

δ

]
+ 1 numbers of vm ∈ Vδ

m for 1 ≤ m ≤ l − 1.

Equivalently there are at least l − 2 −
[

C�

δ

]
numbers of vmi ∈ Vmi \Vδ

mi
. Therefore we

have:
∫
∏l−1

j=1 V j

1{tl (t,x,v,v1,...,vl−1)>0} d �l−1
l−1

≤

[
C�
δ

]
+1∑

m=1

∫
{
there are exactly m of vmi ∈ Vδ

mi

and l − 1 − m of vmi ∈ Vmi \Vδ
mi

}
l−1∏
j=1

C0

√
μ(v j )〈v j 〉2dv j

≤

[
C�
δ

]
+1∑

m=1

(
l − 1

m

){∫

V
C0
√

μ(v)〈v〉2dv

}m {∫

V\Vδ

C0
√

μ(v)〈v〉2dv

}l−1−m

≤
([

C�

δ

]
+ 1

)
(l − 1)

[
C�
δ

]
+1

(δ)
l−2−

[
C�
δ

] {∫

V
C0
√

μ(v)〈v〉2dv

}[C�
δ

]
+1

≤ Cδl/2 ≤ C(
1

2
)l ,

(6.16)

if l � 1, say l = 2
([

C�

δ

]
+ 1

)2
.

Therefore, from (4.20), (4.23), (4.27), (6.12),(6.15), and (6.16) we have
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〈v〉4+δ |∇x‖ f (t, x, v)|
� 〈v〉4+δ{|∇x‖ f0(X (0), V (0))| + t |∂x3 f0(X (0), V (0))| + 〈v〉|∇v f0(X (0), V (0))|}

+ 〈v〉4+δμ(vb)〈v〉2
∫
∏l−1

j=1 V j

l−1∑
i=1

1{t i+1<0<t i }
((

|∇x f (0, Xi (0), V i (0))|

+〈vi 〉|∇v f (0, Xi (0), V i (0))|
)

v̂i
3 + f (0, Xi (0), V i (0))

)
d�l−1

i

+ 〈v〉4+δμ(vb)〈v〉2
∫
∏l−1

j=1 V j

1{tl>0}
∫

Vl

(
|∇x‖ f (t l , xl , vl )|v̂l

3 + f (t l , xl , vl )
)

dvl d�l−1
l−1

� Cl

(
‖(1 + |v|4+δ)∇x‖ f0‖∞ + ‖(1 + |v|4+δ)α∂x3 f0‖∞ + ‖(1 + |v|5+δ)∇v f0‖∞

)

+ C

(
1

2

)l

sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖∞,

(6.17)

and similarly,

〈v〉5+δ|α∂x3 f (t, x, v)|
� 〈v〉5+δα(t, x, v){|∇x‖ f0(X (0), V (0))|
+ |∂x3 f0(X (0), V (0))| + 〈v〉|∇v f0(X (0), V (0))|}

+ 〈v〉5+δ α(t, x, v)μ(vb)

v̂b,3
〈v〉2

∫
∏l−1

j=1 V j

l−1∑
i=1

1{t i+1<0<t i }
((

|∇x f (0, Xi (0), V i (0))| + 〈vi 〉|∇v f (0, Xi (0), V i (0))|
)

v̂i
3

+ f (0, Xi (0), V i (0))

)
d�l−1

i

+ 〈v〉5+δ α(t, x, v)μ(vb)

v̂b,3
〈v〉2

∫
∏l−1

j=1 V j

1{tl>0}
∫

Vl

(
|∇x f (t l , xl , vl)|v̂l

3 + f (t l , xl , vl)
)

dvld�l−1
l−1

� Cl

(
‖(1 + |v|5+δ)∇x‖ f0‖∞ + ‖(1 + |v|5+δ)α∂x3 f0‖∞ + ‖(1 + |v|5+δ)∇v f0‖∞

)

+ C

(
1

2

)l

sup
0≤t≤T

‖〈v〉5+δα∇x f (t)‖∞,

(6.18)

and

〈v〉5+δ|∇v f (t, x, v)|
� Cl

(
‖(1 + |v|4+δ)∇x‖ f0‖∞ + ‖(1 + |v|4+δ)α∂x3 f0‖∞ + ‖(1 + |v|5+δ)∇v f0‖∞

)

+C

(
1

2

)l

sup
0≤t≤T

‖〈v〉5+δα∇x f (t)‖∞, (6.19)



Lipschitz Continuous Solutions of the Vlasov–Maxwell Systems

where we’ve used (4.3). Adding (6.12), (6.18), and (6.19) and choosing l � 1, we get
for a large C > 0,

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉5+δ∇v f (t)‖∞

)

< C
(
‖〈v〉5+δ∇x‖ f0‖∞ + ‖〈v〉5+δα∂x3 f0‖∞ + ‖〈v〉5+δ∇v f0‖∞

)
.

(6.20)

Next, using the same argument in Lemma 13, we obtain

sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖L∞(γ \γ0) ≤ sup
0≤t≤T

‖〈v〉4+δ∇x‖ f (t)‖∞,

sup
0≤t≤T

‖〈v〉5+δ∇v f (t)‖L∞(γ \γ0) ≤ sup
0≤t≤T

‖〈v〉5+δ∇v f (t)‖∞,

sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t, x, v)‖L∞(γ \γ0) ≤ sup
0≤t≤T

‖〈v〉5+δα∂x3 f (t, x, v)‖∞.

(6.21)

Together (6.20), we conclude (6.2). ��
In order to construct a solution to the system (0.40)–(0.42), (0.26), we define a

sequence of functions:

f 0(t, x, v) = f0(x, v), E0(t, x) = E0(t, x), B0(t, x) = B0(x).

For � ≥ 1, let f � be the solution of

∂t f � + v̂ · ∇x f � + F�−1 · ∇v f � = 0, where F�−1

= E�−1 + Eext + v̂ × (B�−1 + Bext) − ge3,

f �(0, x, v) = f0(x, v),

f �(t, x, v)|γ− = cμμ(v)

∫

u3<0
− f �−1(t, x, u)û3du.

(6.22)

Let ρ� = ∫
R3 f �dv, j� = ∫

R3 v̂ f �dv. Let

E� = (2.31) + · · · + (2.41), B� = (2.45) + · · · + (2.55), with f changes to f �.

(6.23)

And let

F� = E� + Eext − v̂ × (B� + Bext) − ge3. (6.24)

We prove several uniform-in-� bounds for the sequence before passing the limit.

Lemma 14. Suppose f0 satisfies (0.32), E0, B0 satisfy (0.16), (0.35), then there exits
M1, M2, and c0, such that for 0 < T � 1,

sup
�

sup
0≤t≤T

(
‖〈v〉4+δ f �(t)‖L∞(�̄×R3)

)
<M1,

sup
�

sup
0≤t≤T

(
‖E�(t)‖∞ + ‖B�(t)‖∞

)
+ |Be| + Ee + g <M2,

inf
�
inf
t,x‖

(
g − Ee − E�

3(t, x‖, 0) − (v̂ × B�)3(t, x‖, 0)
)

>c0.

(6.25)
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Proof. Let � ≥ 1. By induction hypothesis we assume that

sup
0≤i≤�

sup
0≤t≤T

(
‖〈v〉4+δ f �−i (t)‖L∞(�̄×R3)

)
<M1,

sup
0≤i≤�

sup
0≤t≤T

(
‖E�−i (t)‖∞ + ‖B�−i (t)‖∞

)
+ |Be| + Ee + g <M2.

(6.26)

Denote the characteristics (X�, V �) which solves

d

ds
X�(s; t, x, v) = V̂ �(s; t, x, v),

d

ds
V �(s; t, x, v) = F�(s, X�(s; t, x, v), V �(s; t, x, v)).

(6.27)

We define the stochastic cycles:

t�1 (t, x, v) := sup{s < t : X�(s; t, x, v) ∈ ∂�},
x�
1(t, x, v) := X�(t�1 (t, x, v); t, x, v),

t�−1
2 (t, x, v, v1) := sup{s < t�1 : X�−1(s; t�1 (t, x, v), x�

1(t, x, v), v1) ∈ ∂�},
x�−1
2 (t, x, v, v1) := X�−1(t�−1

2 (t, x, v, v1); t�1 (t, x, v), x�
1(t, x, v), v1),

(6.28)

and inductively

t�−(k−1)
k (t, x, v, v1, . . . , vk−1)

:= sup
{
s < t�−(k−2)

k−1 : X�−1(s; t�−(k−2)
k−1 , x�−(k−2)

k−1 , vk−1) ∈ ∂�
}
,

x�−(k−1)
k (t, x, v, v1, . . . , vk−1)

:= X�−(k−2)(t�−(k−1)
k ; t�−(k−2)

k−1 , x�−(k−2)
k−1 , vk−1).

(6.29)

Here,

t�−(i−1)
i := t�−(i−1)

i (t, x, v, v1, . . . , vi−1),

x�−(i−1)
i := x�−(i−1)

i (t, x, v, v1, . . . , vi−1).

First, we note that for any t�−i
i+1 ≤ s < t�−(i−1)

i , since

V �−i (s; t�−(i−1)
i , x�−(i−1)

i , vi ) = vi −
∫ t�−(i−1)

i

s
F�−i (τ, X�−i (τ ), V �−i (τ ))dτ,

from (6.26), we have

|vi | − (t�−(i−1)
i − t�−i

i+1 )M2 ≤ |V �−i (s; t�−(i−1)
i , x�−(i−1)

i , vi )|
≤ |vi | + (t�−(i−1)

i − t�−i
i+1 )M2.

Thus
(
1 + (t�−(i−1)

i − t�−i
i+1 )M2

)−1 〈v〉 ≤ 〈V �−i (s; t�−(i−1)
i , x�−(i−1)

i , vi )〉
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≤
(
1 + (t�−(i−1)

i − t�−i
i+1 )M2

)
〈v〉. (6.30)

From (6.22) we have for any (t, x, v) ∈ (0, T ) × �̄ × R
3,

f �+1(t, x, v) = 1t�1≤0 f �+1(0, X�(0), V �(0))

+ 1t�1≥0 f �+1(t�1 , X�(t�1 ; t, x, v), V �(t�1 ; t, x, v))

= 1t�1≤0 f �+1(0, X�(0), V �(0))

− 1t�1≥0cμμ(V �(t�1 ))
∫

v1,3<0
f �(t�1 , x�

1, v1)v̂1,3dv1.

(6.31)

And (6.30) gives

〈v〉4+δ| f �+1(t, x, v)|
≤ 1t�1≤0(1 + T (M2 + g))4+δ|〈V �(0)〉4+δ f �+1(0, X�(0), V �(0))|
+ 1t�1≥0cμ(1 + T (M2 + g))4+δ|〈V �(t�1 )〉4+δμ(V �(t�1 ))∫

v1,3<0
〈v1〉4+δ f �(t�1 , x�

1, v1)
v̂1,3

〈v1〉4+δ
dv1|.

(6.32)

Then inductively, we obtain

〈v〉4+δ| f �+1(t, x, v)| ≤ 1t�1≤0(1 + t (M2 + g))4+δ||〈V �(0)〉4+δ f �+1(0, X�(0), V �(0))|

+ (1 + T (M2 + g))4+δ

∫
∏k−1

j=1 V j

k−1∑
i=1

1{t�−i
i+1 ≤0<t�−(i−1)

i }|〈V �−i (0; vi )〉4+δ f �−(i−1)

× (0, X�−i (0; vi ), V �−i (0; vi ))| d�k−1
i + (1 + T (M2 + g))4+δ

∫
∏k−1

j=1 V j

1{t�−(k−1)
k >0}

∫

Vk

| f �−k(t�−(k−1)
k , x�−(k−1)

k , vk)|dvkd�k−1
k−1 ,

(6.33)

where

X�−i (0; vi ) = X�−i (0; t�−(i−1)
i , x�−(i−1)

i , vi ),

V �−i (0; vi ) = V �−i (0; t�−(i−1)
i , x�−(i−1)

i , vi ),

V j = {v j ∈ R
3 : v j,3 < 0}, and

d�k−1
i = {

i−1∏
j=1

cμ(1 + T (M2 + g))4+δμ(V �−( j−1)(t�−( j−1)
j ))

v̂ j,3〈V �−( j−1)(t�−( j−1)
j )〉4+δ

V̂ �−( j−1)
3 (t�−( j−1)

j )〈v j 〉4+δ
dv j }{

k−1∏
j=i+1

μ(v j )cμ|v̂ j,3|dv j }.
(6.34)
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From the same argument as in (6.15)–(6.16), we get there exists k0 � 1 such that for
k ≥ k0,

∫
∏k−1

j=1 V j

1{t�−(k−1)
k >0}d�k−1

k−1 ≤
(
1

2

)k

. (6.35)

Thus, from (6.33), (6.35), we have

sup
0≤t≤T

‖〈v〉4+δ f �+1(t)‖L∞(�̄×R3)

≤ k(1 + T M2)
4+δ‖〈v〉4+δ f0‖∞

+ (1 + T (M2 + g))4+δ

(
1

2

)k

sup
0≤t≤T

‖〈v〉4+δ f �−i (t)‖L∞(�̄×R3).

(6.36)

By choosing M1 � 1 and then T � 1, we get

sup
0≤t≤T

‖〈v〉4+δ f �+1(t)‖L∞(�̄×R3) < M1. (6.37)

Now from (6.23) and (0.16),

sup
0≤t≤T

‖E�+1(t)‖∞ + sup
0≤t≤T

‖B�+1(t)‖∞

≤ C(‖E0‖∞ + ‖B0‖∞) + CT (‖E0‖C1 + ‖B0‖C1)

+ CT sup
0≤t≤T

‖〈v〉4+δ f �(t)‖∞

(
1 + T ( sup

0≤t≤T

(
‖E�(t)‖∞ + ‖B�(t)‖∞

)
+ g + |Be|)

)

≤ C(‖E0‖C1 + ‖B0‖C1) + CT M1 (1 + T (M2 + g + |Be|)) .

(6.38)

Letting M2 = (C + 1)(‖E0‖C1 + ‖B0‖C1) + |Be| + Ee + g and T � 1, we get

sup
0≤t≤T

‖E�+1(t)‖∞ + sup
0≤t≤T

‖B�+1(t)‖∞ + |Be| + Ee + g < M2. (6.39)

Next, from (0.16) and the proof of Lemma 6, by letting c0 = c1
2 in (0.16), we get

inf
t,x‖

(
g − Ee − E�+1

3 (t, x‖, 0) − (v̂ × B�+1)3(t, x‖, 0)
)

> 2c0

− CT M1 (1 + T (M2 + g + |Be|)) .

By choosing T � 1 small enough, we have

inf
t,x‖

(
g − Ee − E�+1

3 (t, x‖, 0) − (v̂ × B�+1)3(t, x‖, 0)
)

> c0. (6.40)

Thus we conclude (6.25) by induction. ��
Next, we consider the derivative of the sequences. Define α� as in (5.46). We have

the following estimate.
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Lemma 15. Suppose f0 satisfies (0.32), E0, B0 satisfy (0.35), then there exits M3, M4
such that for 0 < T � 1,

sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖∞ + ‖〈v〉5+δα�−1∂x3 f �(t)‖∞ + ‖〈v〉4+δ∇v f �(t)‖∞

)

+ sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖L∞(γ \γ0) + ‖〈v〉5+δα�−1∂x3 f �(t)‖L∞(γ \γ0)

+‖〈v〉4+δ∇v f �(t)‖L∞(γ \γ0)
)

< M3,

sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)
< M4.

(6.41)

Proof. The proof is essentially the same as the proof of Proposition 4. The only dif-
ference is that instead of using the stochastic cycles (6.8)–(6.11) that flows under fixed
E(t, x), B(t, x), we use the (6.28)–(6.29) that flows with a different E�(t, x), B�(t, x)

after each bounce.
From the uniform estimate (6.25), and from the velocity lemma (Lemma 8), we have

for some C > 0,

e−C|t−s|α�(t, x, v) ≤ α�(s, X�(s; t, x, v), V �(s; t, x, v))

≤ eC|t−s|α�(t, x, v), for all �. (6.42)

Therefore, following the same proof of Proposition 4 we get

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �+1(t)‖∞ + ‖〈v〉5+δα�∂x3 f �+1(t)‖∞ + ‖〈v〉5+δ∇v f �+1(t)‖∞

)

+ sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖L∞(γ \γ0) + ‖〈v〉5+δα�−1∂x3 f �(t)‖L∞(γ \γ0)

+‖〈v〉4+δ∇v f �(t)‖L∞(γ \γ0)
)

≤ Ck

(
‖〈v〉4+δ∇x‖ f0‖∞ + ‖‖〈v〉4+δα∂x3 f0‖∞ + ‖‖〈v〉5+δ∇v f0‖∞

)

+ C

(
1

2

)k

sup
0≤i≤�

(
sup

0≤t≤T

(
‖〈v〉4+δ∇x‖ f i (t)‖∞

+‖〈v〉5+δα∂x3 f i (t)‖∞ + ‖〈v〉5+δ∇v f i (t)‖∞
)

+ sup
0≤i≤�

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f i (t)‖L∞(γ \γ0) + ‖〈v〉5+δαi−1∂x3 f i (t)‖L∞(γ \γ0)

+‖〈v〉4+δ∇v f i (t)‖L∞(γ \γ0)
))

.

(6.43)

Thus, by choosing k � 1 and M3 � 1, we conclude

sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖∞ + ‖〈v〉5+δα�−1∂x3 f �(t)‖∞ + ‖〈v〉4+δ∇v f �(t)‖∞

)

+ sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖L∞(γ \γ0) + ‖〈v〉5+δα�−1∂x3 f �(t)‖L∞(γ \γ0)

+‖〈v〉4+δ∇v f �(t)‖L∞(γ \γ0)
)

< M3.

(6.44)
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From this, we use the same argument to get (3.49) in the proof of Lemma 7 and obtain

sup
0≤t≤T

(
‖∂t E�+1(t)‖∞ + ‖∂t B�+1(t)‖∞ + ‖∇x E�+1(t)‖∞ + ‖∇x B�+1(t)‖∞

)

≤ T C sup
1≤i≤�

sup
0≤t≤T

(
‖∂t Ei (t)‖∞ + ‖∂t Bi (t)‖∞ + ‖∇x Ei (t)‖∞ + ‖∇x Bi (t)‖∞

)

C
(‖E0‖C2 + ‖B0‖C2

)
+ C sup

0≤t≤T

(
‖〈v〉4+δ∇x‖ f �+1(t)‖∞ + ‖〈v〉�+δαn∂x3 f �+1(t)‖∞

)

+ C sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖L∞(γ \γ0) + ‖〈v〉5+δα�−1∂x3 f �(t)‖L∞(γ \γ0)

)

+ C sup
0≤t≤T

(
‖〈v〉4+δ f �+1(t)‖∞ + ‖E�+1(t)‖∞ + ‖B�+1(t)‖∞

)
.

From (6.25) and (6.44), this gives

sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)

≤ T C sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)

+ C
(‖E0‖C2 + ‖B0‖C2

)
+ C(M1 + M2 + M3).

Therefore, by choosing M4 � 1 and T � 1, we get

sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)
< M4.

(6.45)

Together with (6.44), we conclude (6.41). ��
We have the following trace properties for E� and B�:

Lemma 16. Suppose E�, B� satisfies (6.41). Then for any � ≥ 1, 0 < t < T ,

E�(t, ·, 0) ∈ L∞(∂�), B�(t, ·, 0) ∈ L∞(∂�). (6.46)

Proof. From (6.41) we have

E�(t, x) ∈ W 1,∞((0, T ) × �), B�(t, x) ∈ W 1,∞((0, T ) × �),

in particular, from the Morrey’s inequality, E(t), B(t) are Lipschitz continuous on �.
Now pick any x‖ ∈ R

2, and 0 < x3 < 1, from the fundamental theorem of calculus, we
have

E�(t, x‖, 0) = E�(t, x‖, x3) −
∫ x3

0
∂3E�(t, x‖, y)dy,

B�(t, x‖, 0) = B�(t, x‖, x3) −
∫ x3

0
∂3B�(t, x‖, y)dy.

Therefore

‖E�(t, ·, 0)‖L∞(∂�) ≤ ‖E�(t)‖L∞(�) + x3‖∂3E�(t)‖L∞(�),

‖B�(t, ·, 0)‖L∞(∂�) ≤ ‖B�(t)‖L∞(�) + x3‖∂3B�(t)‖L∞(�),
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for any x3 > 0. Thus

‖E�(t, ·, 0)‖L∞(∂�) ≤ ‖E�(t)‖L∞(�)

< ∞, ‖B�(t, ·, 0)‖L∞(∂�) ≤ ‖B�(t)‖L∞(�) < ∞,

and we conclude (6.46). ��
Next, we prove the strong convergence of the sequence f �.

Lemma 17. Suppose f0 satisfies (0.32), E0, B0 satisfy (0.16), (0.35). There exists func-
tions ( f, E, B) with 〈v〉4+δ f (t, x, v) ∈ L∞((0, T ); L∞(�̄ × R

3)), and (E, B) ∈
L∞((0, T ); L∞(�) ∩ L∞(∂�)), such that as � → ∞,

sup
0≤t≤T

(
‖E�(t) − E(t)‖L∞(�) + ‖E�(t) − E(t)‖L∞(∂�)

+‖B�(t) − B(t)‖L∞(�) + ‖B�(t) − B(t)‖L∞(∂�)

)
→ 0, (6.47)

and

sup
0≤t≤T

‖〈v〉4+� f �(t) − 〈v〉4+δ f (t)‖L∞(�̄×R3) → 0. (6.48)

Moreover, ( f, E, B) is a (weak) solution of the system (0.40)–(0.42), and (0.26).

Proof. Let m > n ≥ 1. Note that f m − f n satisfies ( f m − f n)|t=0 = 0 and

( f m − f n)|γ− = cμμ

∫

γ+

( f m−1 − f n−1)(t, x, u)û3du.

The equation for f m − f n is

∂t ( f m − f n) + v̂ · ∇x ( f m − f n) + Fm−1 · ∇v( f m − f n) = −(Fm−1 − Fn−1) · ∇v f n .

Thus, for any (t, x, v) ∈ (0, T ) × �̄ × R
3, using (6.30), we get

|〈v〉4+δ( f m − f n)(t, x, v)|
≤ C1

∫ t

max{tm−1
1 ,0}

|〈V m−1(s)〉4+δ(Fm−1 − Fn−1) · ∇v f n)(s, Xm−1(s), V m−1(s))|ds

+ 1tm−1
1 >0C1cμV m−1(tm

1 )μ(V m(tm
1 ))

∫

v1,3<0
|( f m−1 − f n−1)(tm−1

1 , xm−1
1 , v1)v̂1,3|dv1,

where C1 = (1 + T (M2 + g))4+δ . Doing this inductively, we obtain

|〈v〉4+δ( f m − f n)(t, x, v)|

≤ C1

∫
∏k−1

j=1 V j

k−1∑
i=1

∫ tm−(i−1)
i−1

max{tm−i
i ,0}

1{tm−i
i ≤0<tm−(i−1)

i−1 }

× |〈V m−i (s)〉4+δ(Fm−i − Fn−i ) · ∇v f n−(i−1))(s, Xm−i (s), V m−i (s))|dsd�k−1
i

+ C1

∫
∏k−1

j=1 V j

1{tm−(k−1)
k−1 >0}

∫

Vk

|( f m−k − f n−k)(tm−(k−1)
k , xm−(k−1)

k , vk)|dvkd�k−1
k−1 .

(6.49)
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Where, V j and �k−1
i are in (6.34). Then from (6.35) and (6.41), by fixing k � 1,we get

‖〈v〉4+δ f m(t) − 〈v〉4+δ f n)(t)‖∞ ≤ CkC1

(
sup

�

sup
0≤s≤t

‖〈v〉4+δ∇v f �(s)‖∞

)

∫ t

0
sup

1≤i≤k
‖Fm−i (s) − Fn−i (s)‖∞ds

≤ C2

∫ t

0
sup

1≤i≤k
‖Fm−i (s) − Fn−i (s)‖∞ds,

(6.50)

where C2 = CkC1M3.
Now, from (6.24) and using the same argument as Lemma 6 with (6.50), we have

‖Fm−i (s) − Fn−i (s)‖∞ ≤ ‖En−i (s) − Em−i (s)‖∞ + ‖Bn−i (s) − Bm−i (s)‖∞

≤ C

(
sup

0≤s′≤s
‖〈v〉4+δ( f n−i − f m−i )(s′)‖∞

+
∫ s

0
‖Fm−i−1(s′) − Fn−i−1(s′)‖∞ds′

)

≤ C
∫ s

0
sup

1≤i1≤k
‖Fm−i−i1(s′) − Fn−i−i1(s′)‖∞ds′

≤ C
∫ s

0
sup

1≤i≤2k

(
‖Em−i (s′) − En−i (s′)‖∞

+‖Bm−i (s′) − Bn−i (s′)‖∞
)

ds′.

(6.51)

Iteration of (6.51) and using (6.25) yields

‖Em(t) − En(t)‖∞ + ‖Bm(t) − Bn(t)‖∞

≤ C2
∫ t

0

∫ s

0
sup

1≤i≤2k

(
‖Em−i (s′) − En−i (s′)‖∞ + ‖Bm−i (s′) − Bn−i (s′)‖∞

)
ds′ds

= C2
∫ t

0
τ sup
1≤i≤2k

(
‖Em−i (τ ) − En−i (τ )‖∞ + ‖Bm−i (τ ) − Bn−i (τ )‖∞

)
dτ

≤ Cl
∫ t

0

τ l−1

(l − 1)! sup
1≤i≤lk

(
‖Em−i (τ ) − En−i (τ )‖∞ + ‖Bm−i (τ ) − Bn−i (τ )‖∞

)
dτ

≤ M2
Cltl

l! .

Thus the sequences E�, B� are Cauchy in L∞((0, T )×�), moreover, from Lemma 16,
E�, B� ∈ L∞([0, T ] × ∂�). Therefore, there exists functions E, B ∈ L∞((0, T ); L∞
(�) ∩ L∞(∂�)), such that

E� → E, B� → B in L∞((0, T ) × �) ∩ L∞((0, T ) × ∂�). (6.52)

This proves (6.47). Also, from (6.50), (6.51),

‖〈v〉4+δ f m(t) − 〈v〉4+δ f n)(t)‖L∞((0,T )×�̄) ≤ M2
Cl−1t l−1

(l − 2)! ,
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therefore we get (6.48).
Now, take any φ(t, x, v) ∈ C∞

c ([0, T ) × �̄ × R
3 with supp φ ⊂ {[0, T ) × �̄ ×

R
3}\{(0 × γ ) ∪ (0, T ) × γ0}, from (6.22), we have
∫

�×R3
f0φ(0)dvdt +

∫ T

0

∫

�×R3
f �
(
∂tφ + v̂ · ∇xφ + F�−1 · ∇vφ

)
dvdxdt

=
∫ T

0

∫

γ+

φ f �v̂3dvd Sx +
∫ T

0

∫

γ+

(
−cμ

∫

u3>0
μ(u)φ(t, x, u)û3du

)
v̂3 f � dvd Sx .

(6.53)

Because of the strong convergence (6.47), (6.48), we have that as � → ∞, each term
in (6.53) goes to the corresponding terms with f � replaced by f and F� replaced by F.
Therefore we conclude that ( f, E, B) satisfy (0.28).

Next, from Propositions 1 and 2, we have that E� and B� are (weak) solutions to
the wave equations with the initial data, boundary condition and forcing term with ρ, J
changed to ρ�, J �. Then from (5.48) and Lemma 5, we have

∂t E� = ∇x × B� − 4π J �, ∇x · E� = 4πρ�,

∂t B� = −∇x × E�, ∇x · B� = 0,
(6.54)

with

E�
1 = E�

2 = 0, B�
3 = 0, on ∂�. (6.55)

Clearly, (0.31) is satisfied. Now, for any test functions 	(t, x) ∈ C∞
c ([0, T ) × �̄; R

3),


(t, x) ∈ C∞
c ([0, T ) × �; R

3), from (6.54) and (6.55), we have
∫ T

0

∫

�

E� · ∂t	dxdt −
∫

�

	(0, x) · E0dx

= −
∫ T

0

∫

�

(∇x × 	) · B�dxdt + 4π
∫ T

0

∫

�

	 · J �dxdt, (6.56)

∫ T

0

∫

�

B� · ∂t
dxdt +
∫

�


(0, x) · B0dx

=
∫ T

0

∫

�

(∇x × 
) · E�dxdt, (6.57)

Then from the strong convergence (5.50), (5.49), we can pass � → ∞ and deduce
that each term in (6.56) and (6.57) converges to the corresponding term with E�, B�, J �

replace by E , B, and J respectively. Therefore, ( f, E, B) satisfy (0.29) and (0.30), and
we conclude that ( f, E, B) is a (weak) solution of the RVM system (0.40)–(0.42) with
diffuse BC (0.26). ��

In the next lemma, we consider the regularity of the solution.

Lemma 18. Let α(t, x, v) be defined as in (0.57). The solution ( f, E, B) obtained in
Lemma 17 satisfies

‖〈v〉4+δ∇x‖ f (t)‖∞ + ‖〈v〉5+δα∂x3 f (t)‖∞ + ‖〈v〉4+δ∇v f (t)‖∞ < ∞, (6.58)

and

‖∂t E(t)‖∞ + ‖∂t B(t)‖∞ + ‖∇x E(t)‖∞ + ‖∇x B(t)‖∞ < ∞. (6.59)
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Proof. From the L∞ strong convergence (6.47), and the uniform-in-� bound (6.41), we
can pass the limit up to subsequence if necessary and get the weak−∗ convergence

∂t E� ∗
⇀ ∂t E, ∇x E� ∗

⇀ ∇x E,

∂t B� ∗
⇀ ∂t B, ∇x B� ∗

⇀ ∇x B in L∞((0, T ) × �), (6.60)

and

〈v〉4+δ∇x‖ f � ∗
⇀ 〈v〉4+δ∇x‖ f,

〈v〉4+δ∇v f � ∗
⇀ 〈v〉4+δ∇v f in L∞((0, T ) × � × R

3). (6.61)

We also claim

〈v〉5+δα�−1∂x3 f � ∗
⇀ 〈v〉5+δα∂x3 f in L∞((0, T ) × � × R

3). (6.62)

For any test function φ ∈ C∞
c ((0, T ) × � × R

3), we have

∫ t

0

∫∫

�×R3
(〈v〉5+δα�−1∂x3 f � − 〈v〉5+δα∂x3 f )φdvdxdt

= −
∫ t

0

∫∫

�×R3
(〈v〉5+δα�−1 f � − 〈v〉5+δα f )∂x3φdvdxdt (6.63)

−
∫ t

0

∫∫

�×R3
(〈v〉5+δ∂x3α

�−1 f � − 〈v〉5+δ∂x3α
�−1 f )φdvdxdt (6.64)

−
∫ t

0

∫∫

�×R3
(〈v〉5+δ∂x3α

�−1 f − 〈v〉5+δ∂x3α f )φdvdxdt. (6.65)

From (5.46) and (5.49) we have

‖α� − α‖L∞((0,T )×�×R3) → 0 as � → ∞. (6.66)

Thus, together with (5.50), we have (6.63) → 0 as n → ∞. Next, note that

∂x3α
� = x3 − (

E�
3(t, x‖, 0) + Ee + (v̂ × B�)3(t, x‖, 0) − g

) 1
〈v〉

α�
.

For (t, x, v) ∈ supp φ, x3 > 0 for some c > 0. Thus, 1
α�(t,x,v)

< 1
c , so

|∂x3α
�1supp(φ)(t, x, v)| <

C M2

c

From (5.50), this yields

|(6.64)| ≤ C M2

c

∫ t

0

∫∫

�×R3
|〈v〉5+δ( f � − f )φ|dvdxdt → 0.
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For (6.65), since

∂x3α
� − ∂x3α

= x3 − (
E�
3(t, x‖, 0) + Ee + (v̂ × B�)3(t, x‖, 0) − g

) 1
〈v〉

α�

− x3 − (
E3(t, x‖, 0) + Ee + (v̂ × B)3(t, x‖, 0) − g

) 1
〈v〉

α

= − (
(E� − E)3(t, x‖, 0) + (v̂ × (B� − B))3(t, x‖, 0)

) 1
〈v〉

α�
+

+
(
x3 − (

E3(t, x‖, 0) + Ee + (v̂ × B)3(t, x‖, 0) − g
)) 1

〈v〉
α − α�

α�α
.

Again, for (t, x, v) ∈ supp φ, x3 > 0 for some c > 0. Thus 1
α�(t,x,v)

< 1
c ,

1
α(t,x,v)

< 1
c .

So from (5.49), (6.66), we have

‖(∂x3α
� − ∂x3α)1supp(φ)(t, x, v)‖L∞((0,T )×�×R3)

≤ 1

c
sup

0≤t≤T

(
‖E(t) − E�(t)‖∞ + ‖B(t) − B�(t)‖∞

)

+
C M2

c2
‖α� − α‖L∞((0,T )×�×R3) → 0 as � → ∞.

(6.67)

Thus, we have (6.65) → 0, and this gives (6.62).
Therefore, from using the weak lower semi-continuity of the weak-∗ convergence

(6.60), (6.61), and the uniform-in-� bound (6.41), we conclude (6.58), (6.59). ��
Next, we prove the uniqueness of the solutions of the RVM system (0.40)–(0.42),

(0.26).

Lemma 19. Suppose ( f, E f , B f )and (g, Eg, Bg)are solutions to the VM system (0.40)–
(0.42), (0.26) with f (0) = g(0), E f (0) = Eg(0), B f (0) = Bg(0), and that

E f , B f , Eg, Bg ∈ W 1,∞((0, T ) × �), ∇xρ f ,∇x J f , ∂t J f ,∇xρg,

∇x Jg, ∂t Jg ∈ L∞((0, T ); L p
loc(�)) for some p > 1.

And

sup
0<t<T

‖〈v〉5+δ∇v f (t)‖∞ < ∞, sup
0<t<T

‖〈v〉5+δ∇vg(t)‖∞ < ∞. (6.68)

Then f = g, E f = Eg, B f = Bg.

Proof. The difference function f − g satisfies

(∂t + v̂ · ∇x + F f · ∇v)( f − g) = (Fg − F f ) · ∇vg

( f − g)(0) = 0, ( f − g)|γ−

= cμμ(v)

∫

u3<0
−( f − g)(t, x, u)û3du,

(6.69)
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where

F f = E f + Eext + v̂ × (B f + Bext) − ge3, Fg = Eg + Eext + v̂ × (Bg + Bext) − ge3,

so

Fg − F f = E f − Eg + v̂ × (B f − Bg). (6.70)

From Lemma 1 we have E f,1 − Eg,1, E f,2 − Eg,2, B f,3 − Bg,3 solve the wave equation
with the Dirichlet boundary condition (1.11) in the sense of (1.12) with

u0 = 0, u1 = 0, G = −4π∂xi (ρ f − ρg) − 4π∂t (J f,i − Jg,i ),

g = 0, for E f,i − Eg,i , i = 1, 2, (6.71)

u0 = 0, u1 = 0, G = 4π(∇x × (J f − Jg))3, g = 0, for B f,3 − Bg,3, (6.72)

respectively. And E f,3 − Eg,3, B f,1 − Bg,1, B f,2 − Bg,2 solve the wave equation with
the Neumann boundary condition (1.9) in the sense of (1.10) with

u0 = 0, u1 = 0, G = −4π∂x3(ρ f − ρg) − 4π∂t (J f,3 − Jg,3),

g = −4π(ρ f − ρg), for E f,3 − Eg,3, (6.73)

u0 = 0, u1 = 0, G = 4π(∇x × (J f − Jg))i ,

g = (−1)i+14π(J f,i − Jg,i ), for B f,i − B j,i , i = 1, 2, (6.74)

respectively. Therefore, from Lemmas 2 and 4, we know that E f − Eg and B f − Bg
would have the form of

E f − Eg = (2.31) + · · · + (2.41), B f − Bg = (2.45) + · · · + (2.55),

with E0, B0 changes to 0, and f changes to f − g.
(6.75)

Now consider the characteristics

Ẋ f (s; t, x, v) = V̂ f (s; t, x, v),

V̇ f (s; t, x, v) = F f (s, X f (s; t, x, v), V f (s; t, x, v)).

Then from (6.69), same as (6.49), we obtain

|〈v〉4+δ( f − g)(t, x, v)| ≤ C1

∫
∏k−1

j=1 V j

k−1∑
i=1

∫ ti−1

max{ti ,0}
1{ti ≤0<ti−1}

× |〈V f (s)〉4+δ(Fg − F f ) · ∇v f )(s, X f (s), V f (s))|dsd�k−1
i

+ C1

∫
∏k−1

j=1 V j

1{tm−(k−1)>0}
∫

Vk

|( f − g)(tk, xk, vk)|dvkd�k−1
k−1 .

(6.76)

So using (6.16) and (6.35), we have

sup
0≤s≤t

‖〈v〉5+δ( f − g)(s)‖∞ ≤ C
∫ t

0
‖(Fg − F f )(s)‖∞‖〈v〉5+δ∇vg(s)‖∞ds.

(6.77)
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Now, from (6.75) and the estimate in Lemma 6, we have

‖(Fg − F f )(s)‖∞ ≤ ‖(E f − Eg)(s)‖∞ + ‖(B f − Bg)(s)‖∞
≤ C sup

0≤s′≤s
‖〈v〉5+δ( f − g)(s′)‖∞, (6.78)

and from the assumption (6.68), sup0≤s≤t ‖(1 + |v|5+δ)∇vg(s)‖∞ < C . Therefore from
(6.77) and (7.91), we have

sup
0≤s≤t

‖〈v〉5+δ( f − g)(s)‖∞ ≤ C ′
∫ t

0
sup

0≤s′≤s
‖〈v〉5+δ( f − g)(s′)‖∞ds. (6.79)

Therefore from Gronwall

sup
0≤s′≤t

‖〈v〉5+δ( f − g)(s′)‖∞ ≤ eC ′t‖〈v〉5+δ( f − g)(0)‖∞ = 0.

Therefore we conclude that the solutions to (0.40)–(0.42), (0.26) is unique. ��
proof of Theorem 2. Using the sequence f �, E�, B� constructed in (6.22), (6.23), we
have from Lemma 17 that the limit ( f, E, B) is a solution to the VM system (0.40)–
(0.42), (0.26). This proves the existence. FromLemma18,wehave the regularity estimate
(0.36), (0.37). And from Lemma 19, we conclude the uniqueness. ��

7. Specular BC

In this section we consider the solution f of the Vlasov–Maxwell system (0.40) satisfies
the specular reflection boundary condition (0.27).We have the following a priori estimate
for f .

Proposition 5. Let ( f, E, B) be a solution of (0.40)–(0.42), (0.27). Suppose the fields
satisfies (4.18), and

sup
0≤t≤T

(‖∇x E(t)‖∞ + ‖∇x B(t)‖∞) < ∞. (7.1)

Assume that for some δ > 0, and some C > 0 such that

‖〈v〉5+δe
C√
α〈v〉 ∇x f0‖∞ + ‖〈v〉5+δe

C√
α〈v〉 ∇v f0‖∞ < ∞,

then there exists a 0 < T � 1 small enough such that

sup
0≤t≤T

(
‖〈v〉4+δ∇x f (t)‖∞ + ‖〈v〉4+δ∇v f (t)‖∞

)

+ sup
0≤t≤T

(
‖〈v〉4+δ∇x f (t)‖L∞(γ \γ0) + ‖〈v〉4+δ∇v f (t)‖L∞(γ \γ0)

)
< ∞.

(7.2)
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Let (t, x, v) ∈ (0, T )×�̄×R
3.Recall the definitionof tb(t, x, v), xb(t, x, v), vb(t, x,

v) in (0.55). Now let (t0, x0, v0) = (t, x, v). We define the specular cycles, for � ≥ 0,

(t�+1, x�+1, v�+1) = (t� − tb(t�, x�, v�), xb(t�, x�, v�), vb(t�, x�, v�) − 2vb,3(t
�, x�, v�)e3).

And we define the generalized characteristics for the specular BC as

Xcl(s; t, x, v) =
∑

�

1[t�+1,t�)(s)X (s; t�, x�, v�), Vcl(s; t, x, v)

=
∑

�

1[t�+1,t�)(s)V (s; t�, x�, v�).
(7.3)

The key to prove Proposition 5 is the following estimate for the derivative of the
characteristics under the specular reflection.

Lemma 20. For any (t, x, v) ∈ (0, T ) × �̄ × R
3, and 0 ≤ s ≤ t , let ∂e ∈ {∇x ,∇v},

then for some C1 � 1, we have

|∂e Xcl(s; t, x, v)| ≤ C1〈v〉e
C1√

α(t,x,v)〈v〉 ,

|∂eVcl(s; t, x, v)| ≤ C1〈v〉e
C1√

α(t,x,v)〈v〉 .
(7.4)

Proof. We need to estimate along the bounces:

∂(Xcl(s; t, x, v), Vcl(s; t, x, v))

∂(x, v)

= ∂(Xcl(s), Vcl(s))

∂(t�∗, x�∗‖�∗ , v
�∗
3�∗ , v

�∗‖�∗ )︸ ︷︷ ︸
from the last bounce to the s−plane

×
�∗∏

�=1

∂(t�+1, x�+1‖ , v�+1
3 , v�+1‖ )

∂(t�, x�‖, v�
3, v

�‖)︸ ︷︷ ︸
intermediate groups

× ∂(t1, x1‖1 , v
1
31

, v1‖1)
∂(x, v)︸ ︷︷ ︸

from the t−plane to the first bounce

.

(7.5)

We first find out the matrix of derivatives in the intermediate groups from the �-th
bounce to the (� + 1)-th bounce:

J �+1
� := ∂(t�+1, x�+1‖ , v�+1

3 , v�+1‖ )

∂(t�, x�‖, v�
3, v

�‖)
. (7.6)

We have

(t� − t�+1)v̂�
3 =

∫ t�

t�+1

∫ t�

s
F̂3(τ )dτds. (7.7)

Taking ∂
∂t�

(7.7) and direct computation gives

∂t�+1

∂t�
= 1 − 1

v̂�+1
3

∫ t�

t�+1
∫ t�

s

(
∂F̂3(τ )

∂τ
+ ∂F̂3(τ )

∂t�

)
dτds. (7.8)



Lipschitz Continuous Solutions of the Vlasov–Maxwell Systems

Taking ∂
∂t�

derivative to

x�+1‖ = x�‖ − (t� − t�+1)v̂�‖ +
∫ t�

t�+1

∫ t�

s
F̂‖(τ )dτds, (7.9)

we get

∂x�+1‖
∂t�

=
∫ t�

t�+1

∫ t�

s

(
∂F̂‖(τ )

∂τ

+
∂F̂‖(τ )

∂t�

)
dτds

− v̂�+1‖
v̂�+1
3

∫ t�

t�+1

∫ t�

s

(
∂F̂3(τ )

∂τ

+
∂F̂3(τ )

∂t�

)
dτds.

(7.10)

And taking ∂
∂t�

derivative to

v�+1‖ = v�‖ −
∫ t�

t�+1
F‖(s)ds, (7.11)

we get

∂v�+1‖
∂t�

= −F‖(t�+1)
v̂�+1
3

∫ t�

t�+1

∫ t�

s

(
∂F̂3(τ )

∂τ

+
∂F̂3(τ )

∂t�

)
dτds

−
∫ t�

t�+1

(
∂F‖(s)

∂s
+

∂F‖(s)
∂t�

)
ds.

(7.12)

Similarly, taking taking ∂
∂t�

derivative to

v�+1
3 = −v�

3 −
∫ t�

t�+1
F3(s)ds, (7.13)

we get

∂v�+1
3

∂t�
= −F3(t�+1)

v̂�+1
3

∫ t�

t�+1

∫ t�

s

(
∂F̂3(τ )

∂τ

+
∂F̂3(τ )

∂t�

)
dτds

−
∫ t�

t�+1

(
∂F3(s)

∂s
+

∂F3(s)

∂t�

)
ds.

(7.14)

Now let’s calculate the matrix J �+1
� in (7.6). Taking ∂e ∈ {∂x�‖

, ∂v�
3
, ∂v�‖

} derivatives
to (7.7) we get

∂t�+1

∂x�‖
= − 1

v̂�+1
3

∫ t�

t�+1

∫ t�

s

∂F̂3(τ )

∂x�‖
dτds,

∂t�+1

∂v�
3

= t� − t�+1

v̂�+1
3

∂v̂�
3

∂v�
3

+
1

v̂�+1
3

∫ t�

t�+1

∫ t�

s

∂F̂3(τ )

∂v�
3

dτds
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= (t� − t�+1)

v̂�+1
3

(1 − (v̂�
3)

2)

〈v�〉 +
1

v̂�+1
3

∫ t�

t�+1

∫ t�

s

∂F̂3(τ )

∂v�
3

dτds,

∂t�+1

∂v�‖
= − 1

v̂�+1
3

∫ t�

t�+1

∫ t�

s

∂F̂3(τ )

∂v�‖
dτds. (7.15)

Taking ∂e ∈ {∂x�‖
, ∂v�

3
, ∂v�‖

} derivatives to (7.9) we get

∂x�+1‖
∂x‖�

= Id2,2 +
∂t�+1

∂x�‖
v̂�+1‖ +

∫ t�

t�+1

∫ t�

s

∂F̂‖(τ )

∂x�‖
dτds,

∂x�+1‖
∂v3�

= ∂t�+1

∂v�
3

v̂�+1‖ +
∫ t�

t�+1

∫ t�

s

∂F̂‖(τ )

∂v�
3

dτds,

∂x�+1‖
∂v‖�

= ∂t�+1

∂v�‖
v̂�+1‖ − (t� − t�+1)

1 − (v̂�‖)2

〈v�〉 +
∫ t�

t�+1

∫ t�

s

∂F̂‖(τ )

∂v�‖
dτds. (7.16)

Taking ∂e ∈ {∂x�‖
, ∂v�

3
, ∂v�‖

} derivatives to (7.11) we get

∂v�+1‖
∂x‖�

= ∂t�+1

∂x�‖
F‖(t�+1) −

∫ t�

t�+1

∂F‖(s)
∂x�‖

ds,

∂v�+1‖
∂v3�

= ∂t�+1

∂v�
3

F‖(t�+1) −
∫ t�

t�+1

∂F‖(s)
∂v�

3

ds,

∂v�+1‖
∂v‖�

= Id2,2 +
∂t�+1

∂v�‖
F‖(t�+1) −

∫ t�

t�+1

∂F‖(s)
∂v�‖

ds.

(7.17)

And finally, taking ∂e ∈ {∂x�‖
, ∂v�

3
, ∂v�‖

} derivatives to (7.13) we get

∂v�+1
3

∂x‖�
= ∂t�+1

∂x�‖
F3(t

�+1) −
∫ t�

t�+1

∂F3(s)

∂x�‖
ds,

∂v�+1
3

∂v3�
= −1 − ∂t�+1

∂v�
3

F3(t
�+1) +

∫ t�

t�+1

∂F3(s)

∂v�
3

ds,

∂v�+1
3

∂v‖�
= ∂t�+1

∂v�‖
F3(t

�+1) −
∫ t�

t�+1

∂F3(s)

∂v�‖
ds.

(7.18)

For the estimate, from (7.8) and that | ∂F̂3(τ )
∂τ

+ ∂F̂3(τ )
∂t�

| � 1
〈v〉 , we obtain

|∂t�+1

∂t�
| ≤ 1 + M |t�−t�+1|2

v̂�+1
3 〈v〉 , | ∂x�+1‖

∂t�
| ≤ M |t�−t�+1|2

v̂�+1
3 〈v〉 ,

|∂v�+1‖
∂t�

| ≤ M(
|t�−t�+1|2
v̂�+1
3 〈v〉 + |t�−t�+1|

〈v〉 ), | ∂v�+1
3

∂t�
| ≤ M(

|t�−t�+1|2
v̂�+1
3 〈v〉 + |t�−t�+1|

〈v〉 ). (7.19)
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Next, we estimate ∂F̂(τ )
∂

x�‖
, ∂F̂(τ )

∂
v�

, ∂F(τ )
∂

x�‖
, ∂F(τ )

∂
v�

. Since

∂F̂(τ )

∂x�‖
= ∇x‖ F̂(τ ) · ∂x�‖

X‖(τ ) + ∂x3 F̂(τ ) · ∂x�‖
X3(τ ) + ∇vF̂(τ ) · ∂x�‖

V (τ ).

From (4.23), (4.24), (4.30), (4.31), we have

|∂F̂(τ )

∂x�‖
| � 1

〈V (τ )〉2 |t� − t�+1| + 1

〈V (τ )〉 .

And,

|∂F̂(τ )

∂v�

| = |∇x F̂(τ ) · ∂v� X (τ ) + ∇vF̂(τ ) · ∂v� V (τ )| � |t� − t�+1|
〈V (τ )〉2 +

1

〈V (τ )〉2 .

Similarly, from (4.23), (4.24), (4.28) and (4.29),

|∂F(τ )

∂x�‖
| = |∇x‖F(τ ) · ∂x�‖

X‖(τ ) + ∂x3F(τ ) · ∂x�‖
X3(τ ) + ∇vF(τ ) · ∂x�‖

V (τ )|

� 1

〈V (τ )〉 |t
� − t�+1| + 1,

|∂F(τ )

∂v�

| = |∇xF(τ ) · ∂v� X (τ ) + ∇vF(τ ) · ∂v� V (τ )| � |t� − t�+1|
〈V (τ )〉 +

1

〈V (τ )〉 .

Thus, we have

∫ t�

t�+1

∫ t�

s
|∂F̂(τ )

∂x�‖
|dτds � |t� − t�+1|2

〈v〉 ,

∫ t�

t�+1

∫ t�

s
|∂F̂(τ )

∂v�

|dτds � |t� − t�+1|2
〈v〉2 ,

∫ t�

t�+1
|∂F(τ )

∂x�‖
|ds � |t� − t�+1|,

∫ t�

t�+1
|∂F(s)

∂v�

|ds � |t� − t�+1|
〈v〉 .

(7.20)

Thus, from (7.15) and (7.20), we obtain

|∂t�+1

∂x�‖
| ≤M

|t� − t�+1|2
v̂�+1
3 〈v〉 , |∂t�+1

∂v�
3

| ≤ M
|t� − t�+1|
v̂�+1
3 〈v〉 , |∂t�+1

∂v�‖
| ≤ M

|t� − t�+1|2
v̂�+1
3 〈v〉2 . (7.21)

From (7.16) and (7.20),

|∂x�+1‖
∂x�‖

| ≤ 1 + M
|t� − t�+1|2

v̂�+1
3 〈v〉 , |∂x�+1‖

∂v�
3

| ≤ M
|t� − t�+1|
v̂�+1
3 〈v〉 , |∂x�+1‖

∂v�‖
|

≤ M

(
|t� − t�+1|2
v̂�+1
3 〈v〉2 +

|t� − t�+1|
〈v〉

)
.

(7.22)
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From (7.17) and (7.20),

|∂v�+1‖
∂x�‖

| ≤M

(
|t� − t�+1|2

v̂�+1
3 〈v〉 + |t� − t�+1|

)
, |∂v�+1‖

∂v�
3

| ≤ M

(
|t� − t�+1|
v̂�+1
3 〈v〉 +

|t� − t�+1|
〈v〉

)
,

|∂v�+1‖
∂v�‖

| ≤1 + M

(
|t� − t�+1|2
v̂�+1
3 〈v〉2 +

|t� − t�+1|
〈v〉

)
.

(7.23)

From (7.18) and (7.20),

|∂v�+1
3

∂x�‖
| ≤ M

(
|t� − t�+1|2

v̂�+1
3 〈v〉 + |t� − t�+1|

)
, |∂v�+1

3

∂v�‖
| ≤ M

(
|t� − t�+1|2
v̂�+1
3 〈v〉2 +

|t� − t�+1|
〈v〉

)
.

(7.24)

Now we estimate | ∂v�+1
3

∂v�
3

|. Notice that since

0 = (t� − t�+1)v̂�+1
3 +

(t� − t�+1)2

2
F̂3(t

�+1) +
∫ t�

t�+1

∫ s

t�+1

∫ τ

t�+1

d

dτ ′ F̂3(τ
′)dτ ′dτds,

(7.25)

and from (4.30), (4.31),

| d

dτ ′ F̂3(τ
′)| ≤ M

〈v〉
where M depends on ‖∇x E‖∞, ‖∇x B‖∞, and g. Thus

1 +
(t� − t�+1)

2v̂�+1
3

F̂3(t
�+1) = M

|t� − t�+1|2
v̂�+1
3 〈v〉 . (7.26)

From (4.26),

F̂3(t
�+1) = 1 − |v̂�+1

3 |2
〈v�+1〉 F3(t

�+1) + OF(1)
v̂�+1
3

〈v�+1〉 .

Therefore,

|1 + (t� − t�+1)

2v̂�+1
3

1 − |v̂�+1
3 |2

〈v�+1〉 F3(t
�+1)| ≤ M

(
|t� − t�+1|2

v̂�+1
3 〈v〉 + |t� − t�+1|

)
. (7.27)

Also, notice that

| (1 − (v̂�
3)

2)

〈v�〉 − (1 − (v̂�+1
3 )2)

〈v�+1〉 | = |
∫ t�

t�+1

d

ds

(
(1 − (V̂ �

3 (s))2)

〈V �(s)〉

)
ds|

≤ M
|t� − t�+1|

〈v〉2 . (7.28)
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Therefore from (7.20), (7.20), (7.27), and (7.28), we have

∂v�+1
3

∂v3�
= −1 − ∂t�+1

∂v�
3

F3(t
�+1) +

∫ t�

t�+1

∂F3(s)

∂v�
3

ds

= 1 + M

(
|t� − t�+1|2
v̂�+1
3 〈v〉2 +

|t� − t�+1|
〈v〉

)
.

(7.29)

Finally, from (4.19), (4.3),

|t� − t�+1| � v̂�+1
3 〈v〉 � α(t, x, v)〈v〉,

and from (7.25),

|t� − t�+1|v̂�+1
3 = −

∫ t�

t�+1

∫ s

t�+1
F̂3(τ )dτds � |t� − t�+1|2g

〈v〉 ,

so by (4.3),

α(t, x, v)〈v〉 � v̂�+1
3 〈v〉 � |t� − t�+1|.

Therefore, we have for � ≥ 1, there exists c, C > 0 depending on T, ‖E‖∞, ‖B‖∞, and
g such that

cα(t, x, v)〈v〉 ≤ |t� − t�+1| ≤ Cα(t, x, v)〈v〉. (7.30)

Put together the above estimates and using (7.30), we have for some M > 0,

J �+1
� ≤

⎡
⎢⎢⎢⎢⎢⎣

1 + Mα〈v〉 Mα〈v〉 Mα〈v〉 M Mα〈v〉 Mα〈v〉
Mα〈v〉 1 + Mα〈v〉 Mα〈v〉 M Mα〈v〉 Mα〈v〉
Mα〈v〉 Mα〈v〉 1 + Mα〈v〉 M Mα〈v〉 Mα〈v〉
Mα〈v〉 Mα〈v〉 Mα〈v〉 1 + Mα〈v〉 Mα〈v〉 Mα〈v〉
Mα〈v〉 Mα〈v〉 Mα〈v〉 M 1 + Mα〈v〉 Mα〈v〉
Mα〈v〉 Mα〈v〉 Mα〈v〉 M Mα〈v〉 1 + Mα〈v〉

⎤
⎥⎥⎥⎥⎥⎦

:= J (α〈v〉).
(7.31)

From diagonalization, we get

J (α〈v〉) = P�P−1,

where

� = diag
[
1, 1, 1, 1, 1 + M

(√
α〈v〉(4α〈v〉 + 5) + 3α〈v〉

)
, 1

+M
(
−√α〈v〉(4α〈v〉 + 5) + 3α〈v〉

)]
,
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and

P =

⎡
⎢⎢⎢⎢⎢⎣

−1 −1 −1 −1 1 1
1 0 0 0 1 1
0 1 0 0 1 1
0 0 0 0

√
α〈v〉(4α〈v〉 + 5) − 2α〈v〉 −√

α〈v〉(4α〈v〉 + 5) − 2α〈v〉
0 0 1 0 1 1
0 0 0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

,

P−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
5

4
5 − 1

5 0 − 1
5 − 1

5

− 1
5 − 1

5
4
5 0 − 1

5 − 1
5

− 1
5 − 1

5 − 1
5 0 4

5 − 1
5

− 1
5 − 1

5 − 1
5 0 − 1

5
4
5

a a a b a a

−a −a −a −b −a −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

a = 2α
√〈v〉 + √

α(4α〈v〉 + 5)

10
√

α(4α〈v〉 + 5)
, b = 1

2
√

α〈v〉(4α〈v〉 + 5)
.

Now from (7.30), the number of bounces

�∗(0; t, x, v) ≤ T

cα(t, x, v)〈v〉 . (7.32)

Therefore,

�∗(0;t,x,v)∏
�=1

J �+1
� ≤ J �∗(0;t,x,v) ≤ P̃�̃�∗P̃−1 ≤ (1 + 2M

√
α〈v〉) 1

cα〈v〉 P̃P̃−1, (7.33)

where we use the notation: for a matrix A, the entries of a matrix Ã are absolute values
of the entries of A, i.e. ( Ã)i j = |(A)i j |. From

(1 + 2M
√

α〈v〉) 1
cα〈v〉 =

((
1 + 2M

√
α〈v〉

) 1
2M

√
α〈v〉

) 2M
c
√

α〈v〉 ≤ e
2M

c
√

α〈v〉 ,

and that
(
P̃P̃−1

)
i j

≤ M√
α〈v〉 , we get

⎛
⎝

�∗(0;t,x,v)∏
�=1

J �+1
�

⎞
⎠

i j

≤ e
2M

c
√

α〈v〉
(
P̃P̃−1

)
i j

≤ M√
α〈v〉e

2M
c
√

α〈v〉 . (7.34)

Next, we estimate ∂(Xcl(s),Vcl(s))
∂(t�∗ ,x�∗‖ ,v

�∗
3 ,v

�∗‖ )
and

∂(t1,x1‖ ,v13 ,v
1‖)

∂(x,v)
. From

X (s; t�
∗
, x�∗

, v�∗
) = x�∗ − (t�

∗ − s)v̂�∗
+
∫ t�

∗

s

∫ t�
∗

τ

F̂(τ ′, X (τ ′), V (τ ′))dτ ′dτ,

V (s; t�
∗
, x�∗

, v�∗
) = v�∗ −

∫ t�
∗

s
F(τ, X (τ ), V (τ ))dτ,
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we have

∂ X (s)

∂t�∗ = −V̂ (s) +
∫ t�

∗

s

∫ t�
∗

τ

∂F̂(τ ′)
∂t�∗ dτ ′dτ,

∂V (s)

∂t�∗ = −F(t�
∗
) −

∫ t�
∗

s

∂F(τ )

∂t�∗ dτ.

Therefore, | ∂ X (s)
∂t�∗ | � |V̂ (s)| � 1, and ∂V (s)

∂t�∗ � 1. Combine this with (4.23), we have

∂(Xcl(s), Vcl(s))

∂(t�∗, x�∗‖ , v
�∗
3 , v

�∗‖ )
≤
[

M M |t�∗−s|
〈v〉

M |t�∗ − s| M

]
. (7.35)

Lastly, since t1 = tb(t, x, v), (x1‖ , 0) = xb(t, x, v), (v13, v
1‖) = vb(t, x, v), from (5.5)

and (5.7),

|∂x t1| � 1

v̂13
� 1

α
, |∂vt1| � t1

v̂13〈v〉 � M.

And thus from (5.8), we have

∂(t1, x1‖ , v13, v
1‖)

∂(x, v)
≤
⎡
⎣

M
α

M
1 + M

α
M

M
α

M

⎤
⎦ . (7.36)

Finally, combining (7.34), (7.35), and (7.36), we get for some C1 = C1(M, c),
∣∣∣∣∣
(

∂(Xcl(s; t, x, v), Vcl(s; t, x, v))

∂(x, v)

)

i j

∣∣∣∣∣ ≤ 36M3

α3/2
√〈v〉e

2M
c
√

α〈v〉 ≤ C1〈v〉e
C1√
α〈v〉 .

(7.37)

��
Proposition 5 comes as a consequence of the lemma.

proof of Proposition 5. For any (t, x, v) ∈ (0, T ) × �̄ × R
3, let ∂e ∈ {∇x ,∇v}, then

∂e f (t, x, v) = ∂e( f (0, Xcl(0; t, x, v), Vcl(0; t, x, v))

= ∇x f0 · ∂e Xcl(0; t, x, v) + ∇v f0 · ∂eVcl(0; t, x, v).
(7.38)

Now, from (4.3) and (7.4), write X (0) = Xcl(0; t, x, v), and V (0) = Vcl(0; t, x, v), we
have

〈v〉4+δ|∂e f (t, x, v)|
≤ C1|∇x f (0, X (0), V (0))|〈v〉5+δe

C1√
α(t,x,v)〈v〉

+ C1|∇v f (0, X (0), V (0))|〈v〉5+δe
C1√

α(t,x,v)〈v〉

≤ C |∇x f (0, X (0), V (0))〈|V (0)〉5+δe
C√

α(0,X (0),V (0))〈V (0)〉

+ C |∇v f (0, X (0), V (0))〈V (0)〉5+δe
C√

α(0,X (0),V (0))〈V (0)〉

≤ C

(
‖〈v〉5+δe

C√
α〈v〉 ∇x f0‖∞ + ‖〈v〉5+δe

C√
α〈v〉 ∇v f0‖∞

)
.

(7.39)
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Next, using the same argument in Lemma 13, we obtain

sup
0≤t≤T

‖〈v〉4+δ∇x f (t)‖L∞(γ \γ0) ≤ sup
0≤t≤T

‖〈v〉4+δ∇x f (t)‖∞,

sup
0≤t≤T

‖〈v〉4+δ∇v f (t)‖L∞(γ \γ0) ≤ sup
0≤t≤T

‖〈v〉4+δ∇v f (t)‖∞.
(7.40)

Combining with (7.39), we conclude (7.2). ��
We consider the sequence of functions:

f 0(t, x, v) = f0(x, v), E0(t, x) = E0(t, x), B0(t, x) = B0(x).

For � ≥ 1, let f � be the solution of

∂t f � + v̂ · ∇x f � + F�−1 · ∇v f � = 0, where F�−1

= E�−1 + Eext + v̂ × (B�−1 + Bext) − ge3,

f �(0, x, v) = f0(x, v),

f �(t, x, v)|γ− = f �−1(t, x, v‖,−v3).

(7.41)

Let ρ� = ∫
R3 f �dv, J � = ∫

R3 v̂ f �dv. Let

E� = (2.31) + · · · + (2.41), B� = (2.45) + · · · + (2.55), with f changes to f �

(7.42)

And let

F� = E� + Eext − v̂ × (B� + Bext) − ge3. (7.43)

We prove several uniform-in-� bounds for the sequence before passing the limit.

Lemma 21. Suppose f0 satisfies (0.32), E0, B0 satisfy (0.16), (0.35), then there exits
M1, M2 such that for 0 < T � 1,

sup
�

sup
0≤t≤T

(
‖〈v〉4+δ f �(t)‖L∞(�̄×R3)

)
<M1,

sup
�

sup
0≤t≤T

(
‖E�(t)‖∞ + ‖B�(t)‖∞

)
+ |Be| + Ee + g <M2,

inf
�
inf
t,x‖

(
g − Ee − E�

3(t, x‖, 0) − (v̂ × B�)3(t, x‖, 0)
)

>c0.

(7.44)

Proof. By induction hypothesis we assume that

sup
0≤i≤�

sup
0≤t≤T

(
‖〈v〉4+δ f i (t)‖L∞(�̄×R3)

)
<M1,

sup
0≤i≤�

sup
0≤t≤T

(
‖Ei (t)‖∞ + ‖Bi (t)‖∞

)
+ |Be| + Ee + g <M2.

(7.45)

Denote the characteristics (X�, V �) which solves

d

ds
X�(s; t, x, v) = V̂ �(s; t, x, v),

d

ds
V �(s; t, x, v) = F�(s, X�(s; t, x, v), V �(s; t, x, v)).

(7.46)
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And define the specular cycles:

t�1 (t, x, v) := sup{s ≥ 0 : X�(τ ; t, x, v) ∈ � for all τ ∈ (t − s, t)},
x�
1(t, x, v) := X�(t�1 (t, x, v); t, x, v),

v�
1(t, x, v) := V �(t�1 (t, x, v); t, x, v) − 2V �

3 (t�1 (t, x, v); t, x, v)e3

(7.47)

and inductively for k ≥ 2,

t�−(k−1)
k (t, x, v) := sup

{
s ≥ 0 : X�−(k−1)(τ ; t�−(k−2)

k−1 , x�−(k−2)
k−1 , v

�−(k−2)
k−1 )

∈ � for all τ ∈ (t − s, t)
}
,

x�−(k−1)
k (t, x, v) := X�−(k−1)(t�−(k−1)

k ; t�−(k−2)
k−1 , x�−(k−2)

k−1 , v
�−(k−2)
k−1 ),

v
�−(k−1)
k (t, x, v)

:= V �−(k−1)(t�−(k−1)
k ; t�−(k−2)

k−1 , x�−(k−2)
k−1 , v

�−(k−2)
k−1 )

− 2V �−(k−1)
3 (t�−(k−1)

k ; t�−(k−2)
k−1 , x�−(k−2)

k−1 , v
�−(k−2)
k−1 )e3.

(7.48)

And we define the generalized characteristics for the specular BC as

X�
cl(s; t, x, v) = 1[t�1 (t,x,v),t)(s)X�(s; t, x, v)

+
∑
k≥1

1[t�−k
k+1 ,t�−(k−1)

k )
(s)X�−k(s; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k ),

V �
cl(s; t, x, v) = 1[t�1 (t,x,v),t)(s)V �(s; t, x, v)

+
∑
k≥1

1[t�−k
k+1 ,t�−(k−1)

k )
(s)V �−k(s; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k ).

(7.49)

From (7.41) and (7.47), for any (t, x, v) ∈ (0, T ) × �̄ × R
3, let k be such that

t�−k
k+1 (t, x, v) ≤ 0 < t�−(k−1)

k (t, x, v), then we have

f �+1(t, x, v) = f �−(k−1)
(
0, X�−k

(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

)
,

V �−k
(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

))

= f0
(

X�−k
(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

)
,

V �−k
(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

))
.

(7.50)

Thus

〈v〉4+δ f �+1(t, x, v) ≤ 〈v〉4+δ

(
V �−k

(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

))4+δ
‖〈v〉4+δ f0‖∞.

(7.51)



Y. Cao, C. Kim

Now, since

|v − V �−k
(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

)
|

=
∣∣∣∣∣∣
v − v�

1 +
k−1∑
i=1

(
v
�−(i−1)
i − v�−i

i+1

)
+ v

�−(k−1)
k − V �−k

(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

)
∣∣∣∣∣∣

≤
∫ t

t�1

‖F�(s)‖∞ds +
k−1∑
i=1

∫ t�−(i−1)
i

t�−i
i+1

‖F�−i (s)‖∞ds +
∫ t�−(k−1)

k

0
‖F�−k(s)‖∞ds

≤
∫ t

0
sup

0≤i≤l
‖Fi (s)‖∞ds.

From (7.45) we have

|v| ≤
∣∣∣V �−k

(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

)∣∣∣ + t M2,

and this yields

〈v〉
〈V �−k

(
0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k

)
〉

< 1 + t M2. (7.52)

Thus (7.51) gives

sup
0≤t≤T

‖〈v〉4+δ f �+1(t)‖L∞(�̄×R3) < (1 + T (g + M2))‖〈v〉4+δ f0‖∞ < M1, (7.53)

for T small enough. Now from (7.42) and (0.16), using the same argument as (6.38)–
(6.40), we get

sup
0≤t≤T

(‖E�+1(t)‖∞ + ‖B�+1(t)‖∞) + |Be| + Ee + g < M2, (7.54)

inf
t,x‖

(
g − Ee − E�+1

3 (t, x‖, 0) − (v̂ × B�+1)3(t, x‖, 0)
)

> c0. (7.55)

Thus we conclude (6.25) by induction.
��

Next, we define α�(t, x, v) in the same way as in (5.46). Then we have

Lemma 22. Suppose f0 satisfies (0.38), E0, B0 satisfy (0.16), (0.35), then there exits
M3, M4 such that for 0 < T � 1,

sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x f �(t)‖∞ + ‖〈v〉4+δ∇v f �(t)‖∞

)

+ sup
�

sup
0≤t≤T

(
‖〈v〉4+δ∇x f �(t)‖L∞(γ \γ0) + ‖〈v〉4+δ∇v f �(t)‖L∞(γ \γ0)

)
< M3,

sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)
< M4.

(7.56)

And with the M2 as in Lemma 21,

sup
�

sup
0≤t≤T

(
‖E�(t, x)‖L∞(∂�) + ‖B�(t, x)‖L∞(∂�)

)
< M2. (7.57)
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Proof. Let ∂e ∈ {∇x ,∇v}. From (7.50) we have

∂e f �+1(t, x, v) = ∇x f0 · ∂e X�−k
(
0; t�−(k−1)

k (t, x, v), x�−(k−1)
k (t, x, v), v

�−(k−1)
k (t, x, v)

)

+ ∇v f0 · ∂eV �−k
(
0; t�−(k−1)

k (t, x, v), x�−(k−1)
k (t, x, v), v

�−(k−1)
k (t, x, v)

)

(7.58)

Then from (7.44), we can use essentially the same argument as the proof of Lemma 20
to get

∣∣∣∣∣∣

(
∂(X�−k(0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k ), V �−k(0; t�−(k−1)

k , x�−(k−1)
k , v

�−(k−1)
k )

∂(x, v)

)

i j

∣∣∣∣∣∣

≤ C1〈V �−k(0)〉 exp
(

C1√
α�−k(0, X�−k(0), V �−k(0))〈V �−k(0)〉

)
,

(7.59)

where

X�−k(0) = X�−k(0; t�−(k−1)
k , x�−(k−1)

k , v
�−(k−1)
k ), V �−k(0)

= V �−k(0; t�−(k−1)
k , x�−(k−1)

k , v
�−(k−1)
k ),

t�−(k−1)
k = t�−(k−1)

k (t, x, v), x�−(k−1)
k

= x�−(k−1)
k (t, x, v), v

�−(k−1)
k = v

�−(k−1)
k (t, x, v),

and C1 depends on M1, M2. Therefore, from (7.58) and (7.59),

〈v〉4+δ∂e f �+1(t, x, v) ≤ C1
〈v〉4+δ

〈V �−k(0)〉4+δ

×
(

‖〈v〉5+δe
C√
α〈v〉 ∇x f0‖∞ + ‖〈v〉5+δe

C√
α〈v〉 ∇v f0‖∞

)
.

And using (7.52), we conclude

sup
�

sup
0≤t≤T

‖〈v〉4+δ∂e f �+1(t)‖∞

≤ C

(
‖〈v〉5+δe

C√
α〈v〉 ∇x f0‖∞ + ‖〈v〉5+δe

C√
α〈v〉 ∇v f0‖∞

)
< M3. (7.60)

Then, from the same argument as in Lemma 13, we get

sup
�

sup
0≤t≤T

‖〈v〉4+δ∂e f �+1(t)‖L∞(γ \γ0) ≤ sup
�

sup
0≤t≤T

‖〈v〉4+δ∂e f �+1(t)‖∞ < M3.

(7.61)
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From this, we use the same argument to get (3.49) in the proof of Lemma 7 and obtain

sup
0≤t≤T

(
‖∂t E�+1(t)‖∞ + ‖∂t B�+1(t)‖∞ + ‖∇x E�+1(t)‖∞ + ‖∇x B�+1(t)‖∞

)

≤ T C sup
1≤i≤�

sup
0≤t≤T

(
‖∂t Ei (t)‖∞ + ‖∂t Bi (t)‖∞ + ‖∇x Ei (t)‖∞ + ‖∇x Bi (t)‖∞

)

C
(‖E0‖C2 + ‖B0‖C2

)
+ C sup

0≤t≤T

(
‖〈v〉4+δ∇x‖ f �+1(t)‖∞ + ‖〈v〉�+δαn∂x3 f �+1(t)‖∞

)

+ C sup
0≤t≤T

(
‖〈v〉4+δ∇x‖ f �(t)‖L∞(γ \γ0) + ‖〈v〉5+δα�−1∂x3 f �(t)‖L∞(γ \γ0)

)

+ C sup
0≤t≤T

(
‖〈v〉4+δ f �+1(t)‖∞ + ‖E�+1(t)‖∞ + ‖B�+1(t)‖∞

)
.

From (7.44) and (7.60), this gives

sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)

≤ T C sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)

+ C
(‖E0‖C2 + ‖B0‖C2

)
+ C(M1 + M2 + M3).

Therefore, by choosing M4 � 1 and T � 1, we get

sup
�

sup
0≤t≤T

(
‖∂t E�(t)‖∞ + ‖∂t B�(t)‖∞ + ‖∇x E�(t)‖∞ + ‖∇x B�(t)‖∞

)
< M4.

(7.62)

Together with (7.60) and (7.61), we conclude (7.56).
Now, from (7.62), we use the same argument as in Lemma 16 to conclude that for

any 0 < t < T ,

E�(t, x)|∂� ∈ L∞(∂�), B�(t, x)|∂� ∈ L∞(∂�),

sup
0≤t≤T

(
‖E�(t, x)‖L∞(∂�) + ‖B�(t, x)‖L∞(∂�)

)
< sup

0≤t≤T

(
‖E�(t, x)‖∞ + ‖B�(t, x)‖∞

)
< M2.

This proves (7.57). ��
Next, we prove a pointwise convergence result for f �.

Lemma 23. Suppose f0 satisfies (0.38), E0, B0 satisfy (0.16), (0.35). Then there exists
a function f such that f � → f pointwise almost everywhere on (0, T ) × (�̄ × R

3\γ0).
Proof. Fix any (t, x, v) ∈ (0, T )×(�̄×R

3\γ0), then it suffices to show that { f �(t, x, v)}∞�=1
is a Cauchy sequence. Fix ε > 0, and let n > m ≥ N0. Note that f m − f n satisfies
( f m − f n)|t=0 = 0 and

( f m − f n)(t, x, v)|γ− = ( f m−1 − f n−1)(t, x, v‖,−v3).

The equation for f m − f n is

∂t ( f m − f n) + v̂ · ∇x ( f m − f n) + Fm−1 · ∇v( f m − f n)
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= −(Fm−1 − Fn−1) · ∇v f n . (7.63)

Thus, for any (t, x, v) ∈ (0, T )×(�̄×R
3\γ0), there is a k ≥ 0 such that tm−k

k (t, x, v) ≤
0 < tm−(k−1)

k−1 (t, x, v), and we have from (7.63),

( f m − f n)(t, x, v)

=
∫ t

tm−1
1

(
−(Fm−1 − Fn−1) · ∇v f n

)
(s, Xm−1(s), V m−1(s))ds

+
k−2∑
i=1

∫ tm−i
i

tm−(i+1)
i+1

(
−(Fm−1−i − Fn−1−i ) · ∇v f n−i

)

(s, Xm−1−i (s), V m−1−i (s))ds

+
∫ tm−(k−1)

k−1

0

(
−(Fm−1−(k−1) − Fn−1−(k−1)) · ∇v f n−(k−1)

)

(s, Xm−1−(k−1)(s), V m−1−(k−1)(s))ds.

(7.64)

Together with (7.52), this implies

〈v〉4+δ|( f m − f n)(t, x, v)| ≤ C1

(
sup

�

sup
0≤s≤t

‖〈v〉4+δ∇v f �(s)‖∞

)

∫ t

0
sup

1≤i≤k−1
‖Fm−i (s) − Fn−i (s)‖∞ds (7.65)

where C1 = (1 + T (M2 + g))4+δ . Note that since (x, v) /∈ γ0, α(t, x, v) > 0. And from
(7.30) and (7.32), we have

k ≤ T

cα(t, x, v)〈v〉 ,

where c depends on M2 and g. Now, for some small δ′ > 0, we write

Fm−i − Fn−i = E f m−i − E f n−i + B f m−i − B f n−i

= E f m−i − f n−i + B f m−i − f n−i

= E1{|v3|>δ′}( f m−i − f n−i )

+ E1{|v3|≤δ′}( f m−i − f n−i ) + B1{|v3|>δ′}( f m−i − f n−i ) + B1{|v3|≤δ′}( f m−i − f n−i ),

where

E1{|v3 |>δ′ }( f m−i − f n−i ) = (2.31) + · · · + (2.41), with f changes to 1|v3|>δ′ ( f m−i − f n−i ),

B1{|v3 |>δ′ }( f m−i − f n−i ) = (2.45) + · · · + (2.55), with f changes to 1|v3|>δ′ ( f m−i − f n−i ),

E1{|v3 |≤δ′}( f m−i − f n−i ) = (2.31) + · · · + (2.41), with f changes to 1|v3|≤δ′ ( f m−i − f n−i ),

B1{|v3 |≤δ′}( f m−i − f n−i ) = (2.45) + · · · + (2.55), with f changes to 1|v3|≤δ′ ( f m−i − f n−i ).

(7.66)
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Now, using the estimate in Lemma 6 and that
∫

|v3|<δ′
1

〈v〉3+δ
dv ≤ C(δ′)δ,

we have

‖E1{|v3|≤δ′}( f m−i − f n−i )(s)‖∞ + ‖B1{|v3|≤δ′}( f m−i − f n−i )(s)‖∞

≤ C(δ′)δ sup
0≤s′≤s

‖〈v〉4+δ( f m−i − f n−i )(s′)‖∞. (7.67)

And

‖E1{|v3|>δ′}( f m−i − f n−i )(s)‖∞ + ‖B1{|v3|>δ′}( f m−i − f n−i )(s)‖∞

≤ C sup
0≤s′≤s

‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s′)‖∞.
(7.68)

So from (7.65), (7.67), and (7.68),

〈v〉4+δ|( f m − f n)(t, x, v)| ≤ CC1M3
∫ t

0

(
sup

1≤i≤k−1
sup

0≤s′≤s
‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s′)‖∞ + M1(δ

′)δ
)

ds.

(7.69)

Now, let j be such that tm−i− j
j (s′, x, v) ≤ 0 < tm−i−( j−1)

j−1 (s′, x, v). Then if |v3| > δ′,
from (7.32),

j ≤ T

cα(s′, x, v)〈v〉 ≤ T

cδ′ := k′.

So same as (7.65), this gives

sup
1≤i≤k−1

sup
0≤s′≤s

‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s′)‖∞

≤ C1M3

∫ s

0
sup

1≤i ′≤k′−1
sup

1≤i≤k−1
‖Fm−i−i ′(s′) − Fn−i−i ′(s′)‖∞ds′.

Using the same split (7.66), like (7.67) and (7.68), we thus get

sup
1≤i≤k−1

sup
0≤s′≤s

‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s′)‖∞

≤ CC1M3

∫ s

0
sup

2≤i≤k+k′
sup

0≤s′′≤s′

(
‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s′′)‖∞

+M1(δ
′)δ
)

ds′.

(7.70)

Plug (7.70) into (7.68) yields

〈v〉4+δ|( f m − f n)(t, x, v)|
≤ (CC1M3)

2
∫ t

0

∫ s

0
sup

2≤i≤k+k′
sup

0≤s′′≤s′
‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s′′)‖∞ds′ds

+ M1(δ
′)δ
(

CC1M3t +
(CC1M3t)2

2

)
.
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Iteration of the above gives

〈v〉4+δ|( f m − f n)(t, x, v)|
≤ (CC1M3)

l t l

l! sup
2≤i≤k+lk′

sup
0≤s≤t

‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s)‖∞

+ M1(δ
′)δ

l∑
i=1

(CC1M3t)i

i ! .

Now, by choosing δ′ small enough we have

M1(δ
′)δ

l∑
i=1

(CC1M3t)i

i ! < M1(δ
′)δeCC1M3t <

ε

2
.

And choosing l large enough such that

(CC1M3)
l t l

l! sup
2≤i≤k+lk′

sup
0≤s≤t

‖1{|v3|>δ′}〈v〉4+δ( f m−i − f n−i )(s)‖∞ <
ε

2
.

Finally choose N0 large enough such that N0 > k + lk′, we get for n, m > N0,

〈v〉4+δ|( f m − f n)(t, x, v)| < ε.

Therefore the sequence { f �(t, x, v)}∞�=1 is Cauchy, and this proves the lemma. ��
Lemma 24. Suppose f0 satisfies (0.38), E0, B0 satisfy (0.16), (0.35). Then for 0 < T �
1, there exists functions ( f, E, B) with 〈v〉4+δ f (t, x, v) ∈ L∞((0, T ); L∞(�̄ × R

3)),
and (E, B) ∈ L∞((0, T ); L∞(�) ∩ L∞(∂�)), such that ( f, E, B) is a (weak) solution
of the system (0.40)–(0.42), (0.27). Moreover,

‖〈v〉4+δ∇x f (t)‖∞ + ‖〈v〉4+δ∇v f (t)‖∞ < ∞, (7.71)

‖∂t E(t)‖∞ + ‖∂t B(t)‖∞ + ‖∇x E(t)‖∞ + ‖∇x B(t)‖∞ < ∞. (7.72)

Proof. From the uniform-in-� bound (7.44), we can pass the limit up to subsequence if
necessary and get the weak−∗ convergence

〈v〉4+δ f � ∗
⇀ 〈v〉4+δ f in L∞((0, T ) × � × R

3) ∩ L∞((0, T ) × γ ), (7.73)

E� ∗
⇀ E, B� ∗

⇀ B in L∞((0, T ) × �) ∩ L∞((0, T ) × ∂�). (7.74)

for some ( f, E, B). Then from (7.56) we also have

∂t E� ∗
⇀ ∂t E, ∇x E� ∗

⇀ ∇x E, ∂t B�

∗
⇀ ∂t B, ∇x B� ∗

⇀ ∇x B in L∞((0, T ) × �), (7.75)

〈v〉4+δ∇x f � ∗
⇀ 〈v〉4+δ∇x f, 〈v〉4+δ∇v f �

∗
⇀ 〈v〉4+δ∇v f in L∞((0, T ) × � × R

3). (7.76)
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Now it left to show that ( f, E, B) is a solution to the system (0.40)–(0.42), (0.27).
Take any φ(t, x, v) ∈ C∞

c ([0, T ) × �̄ × R
3 with supp φ ⊂ {[0, T ) × �̄ × R

3}\{{0} ×
γ ∪ (0, T ) × γ0}, from (7.41), we have

∫

�×R3
f0φ(0)dvdt +

∫ T

0

∫

�×R3
f �(∂tφ + v̂ · ∇xφ + F�−1 · ∇vφ)dvdxdt

=
∫ T

0

∫

γ+

φ f �v̂3dvd Sx +
∫ T

0

∫

γ+

φ(t, x, v‖,−v3) f �v̂3 dvd Sx .

(7.77)

Because of (7.73) and (7.74), we have
∫ T

0

∫

�×R3
f �(∂tφ + v̂ · ∇xφ)dvdxdt +

∫ T

0

∫

γ+

φ f �v̂3dvd Sx

+
∫ T

0

∫

γ+

φ(t, x, v‖,−v3) f �±v̂3 dvd Sx

→
∫ T

0

∫

�×R3
f (∂tφ + v̂ · ∇xφ)dvdxdt +

∫ T

0

∫

γ+

φ f v̂3dvd Sx

+
∫ T

0

∫

γ+

φ(t, x, v‖,−v3) f v̂3 dvd Sx

(7.78)

as � → ∞. As for the term
∫ T
0

∫
�×R3 f �F�−1 · ∇vφdvdxdt , since

∫ T

0

∫

�×R3
( f �F�−1 − f F) · ∇vφdvdxdt

=
∫ T

0

∫

�×R3
( f � − f )F�−1 · ∇vφdvdxdt +

∫ T

0

∫

�×R3
f (F�−1 − F) · ∇vφdvdxdt

(7.79)

From (7.74), we have
∫ T
0

∫
�×R3 f (F�−1 − F) · ∇vφdvdxdt → 0 as � → ∞.

Now, let supp(φ) = D. FromLemma23, 1D(t, x, v) f �(t, x, v) converges to 1D(t, x,

v) f (t, x, v) pointwise almost everywhere. And from (7.44), |1Dhere f ore, f romthe
dominated(t, x, v) f �(t, x, v)| ≤ 1D(t, x, v)M1. Therefore, from the dominated con-
vergence theorem, we have

∫ T

0

∫

�×R3
|1D( f − f �)|dvdxdt → 0 as � → ∞.

Thus
∫ T

0

∫

�×R3
( f − f �)F�−1 · ∇vφdvdxdt

≤ sup
0≤t≤T

‖F�−1(t)‖∞ sup
0≤t≤T

‖∇vφ(t)‖∞
∫ T

0

∫

�×R3
|1D( f − f �)|dvdxdt → 0 as � → ∞.

(7.80)

Put together (7.77)–(7.80), we deduce that ( f, E, B) satisfy (0.28).
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Next, using the same argument as in (6.54)–(6.57), we get ( f, E, B) satisfy (0.29) and
(0.30). Therefore, we conclude that ( f, E, B) is a (weak) solution of the RVM system
(0.40)–(0.42), with specular BC (0.27).

Finally, fromusing theweak lower semi-continuity of theweak-∗ convergence (7.75),
(7.76), and the uniform-in-� bound (7.56), we conclude (7.71), (7.72). ��

Lastly, we prove the uniqueness.

Lemma 25. Suppose ( f, E f , B f ) and (g, Eg, Bg) are solutions to the RVM system
(0.40)–(0.42), (0.27) with f (0) = g(0), E f (0) = Eg(0), B f (0) = Bg(0), and that

E f , B f , Eg, Bg ∈ W 1,∞((0, T ) × �), ∇xρ f ,∇x J f , ∂t J f ,∇xρg,∇x Jg,

∂t Jg ∈ L∞((0, T ); L p
loc(�)) for some p > 1.

And

sup
0<t<T

‖〈v〉4+δ∇v f (t)‖∞ < ∞, sup
0<t<T

‖〈v〉4+δ∇vg(t)‖∞ < ∞. (7.81)

Then f = g, E f = Eg, B f = Bg.

Proof. The difference function f − g satisfies

(∂t + v̂ · ∇x + F f · ∇v)( f − g) = (Fg − F f ) · ∇vg

( f − g)(0) = 0, ( f − g)(t, x, v)|γ−
= ( f − g)(t, x, v‖,−v3),

(7.82)

where

F f = E f + Eext + v̂ × (B f + Bext) − ge3, Fg = Eg + Eext + v̂ × (Bg + Bext) − ge3,

so

Fg − F f = E f − Eg + v̂ × (B f − Bg). (7.83)

From Lemma 1 we have E f,1 − Eg,1, E f,2 − Eg,2, B f,3 − Bg,3 solve the wave equation
with the Dirichlet boundary condition (1.11) in the sense of (1.12) with

u0 = 0, u1 = 0, G = −4π∂xi (ρ f − ρg) − 4π∂t (J f,i − Jg,i ),

g = 0, for E f,i − Eg,i , i = 1, 2, (7.84)

u0 = 0, u1 = 0, G = 4π(∇x × (J f − Jg))3, g = 0, for B f,3 − Bg,3, (7.85)

respectively. And E f,3 − Eg,3, B f,1 − Bg,1, B f,2 − Bg,2 solve the wave equation with
the Neumann boundary condition (1.9) in the sense of (1.10) with

u0 = 0, u1 = 0, G = −4π∂x3(ρ f − ρg) − 4π∂t (J f,3 − Jg,3),

g = −4π(ρ f − ρg), for E f,3 − Eg,3, (7.86)

u0 = 0, u1 = 0, G = 4π(∇x × (J f − Jg))i ,

g = (−1)i+14π(J f,i − Jg,i ), for B f,i − B j,i , i = 1, 2, (7.87)
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respectively. Therefore, from Lemmas 2 and 4, we know that E f − Eg and B f − Bg
would have the form of

E f − Eg = (2.31) + · · · + (2.41), B f − Bg = (2.45) + · · · + (2.55),

with E0, B0 changes to 0, and f changes to f − g.
(7.88)

Now consider the characteristics

Ẋ f (s; t, x, v) = V̂ f (s; t, x, v),

V̇ f (s; t, x, v) = F f (s, X f (s; t, x, v), V f (s; t, x, v)).

Then from (7.82), same as (7.64), we obtain

( f − g)(t, x, v) =
∫ t

t1

(
(Fg − F f ) · ∇vg

)
(s, Ẋ(s), V̇ (s))ds

+
k−2∑
i=1

∫ ti

ti+1

(
(Fg − F f ) · ∇vg

)
(s, ·X (s), ·V (s))ds

+
∫ tk−1

0

(
(Fg − F f ) · ∇vg

)
(s, ·X (s), ·V (s))ds.

(7.89)

So using (7.52), (7.81), we have

sup
0≤s≤t

‖〈v〉4+δ( f − g)(s)‖∞

≤ sup
0≤t<T

‖〈v〉4+δ∇vg(t)‖∞
∫ t

0
sup

0≤s′≤s
‖(Fg − F f )(s

′)‖∞ds

≤ C
∫ t

0
sup

0≤s′≤s
‖(Fg − F f )(s

′)‖∞ds.

(7.90)

Now, from (6.75) and the estimate in Lemma 6, we have

sup
0≤s′≤s

‖(Fg − F f )(s
′)‖∞ ≤ sup

0≤s′≤s
‖(E f − Eg)(s

′)‖∞ + sup
0≤s′≤s

‖(B f − Bg)(s
′)‖∞

≤ C sup
0≤s′≤s

‖〈v〉4+δ( f − g)(s′)‖∞,
(7.91)

Therefore from (7.90) and (7.91), we have

sup
0≤s≤t

‖〈v〉4+δ( f − g)(s)‖∞ ≤ C ′
∫ t

0
sup

0≤s′≤s
‖〈v〉4+δ( f − g)(s′)‖∞ds. (7.92)

Therefore from Gronwall

sup
0≤s′≤t

‖〈v〉4+δ( f − g)(s′)‖∞ ≤ eC ′t‖〈v〉4+δ( f − g)(0)‖∞ = 0.

Therefore we conclude that the solutions to (0.40)–(0.42), (0.27) is unique. ��
We conclude the section by proving Theorem 3.



Lipschitz Continuous Solutions of the Vlasov–Maxwell Systems

proof of Theorem 3. Using the sequence f �, E�, B� constructed in (7.41), (7.42), we
have from Lemma 25 that the limit ( f, E, B) is a solution to the RVM system (0.40)–
(0.42), (0.26), and it satisfies the regularity estimate (0.39), (0.37). And from Lemma 25,
we conclude the uniqueness. ��
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