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Abstract

Motivation: Annotations of biochemical models provide details of chemical species, documentation of chemical reactions,
and other essential information. Unfortunately, the vast majority of biochemical models have few, if any, annotations,
or the annotations provide insufficient detail to understand the limitations of the model. The quality and quantity of
annotations can be improved by developing tools that recommend annotations. For example, recommender tools have
been developed for annotations of genes. Although annotating genes is conceptually similar to annotating biochemical
models, there are important technical differences that make it difficult to directly apply this prior work.
Results: We present AMAS, a system that predicts annotations for elements of models represented in the Systems Biology
Markup Language (SBML) community standard. We provide a general framework for predicting model annotations for
a query element based on a database of annotated reference elements and a match score function that calculates the
similarity between the query element and reference elements. The framework is instantiated to specific element types
(e.g., species, reactions) by specifying the reference database (e.g., ChEBI for species) and the match score function (e.g.,
string similarity). We analyze the computational efficiency and prediction quality of AMAS for species and reactions in
BiGG and BioModels and find that it has sub-second response times and accuracy between 80% and 95% depending on
specifics of what is predicted. We have incorporated AMAS into an open-source, pip-installable Python package that can
run as a command-line tool that predicts and adds annotations to species and reactions to an SBML model.
Availability: Our project is hosted at https://github.com/sys-bio/AMAS, where we provide examples, documentation,
and source code files. Our source code is licensed under the MIT open-source license.
Contact: hsauro@uw.edu
Supplementary information: Supplementary data are available online.
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1. Introduction

In systems biology, annotations are metadata that can describe

models and model elements. For example, annotations can

provide detailed information about the chemical species that

may participate in reactions in a model. These annotations

leverage canonical, readily available knowledge resources such

as the Gene Ontology and ChEBI (Degtyarenko et al. 2008;

Ashburner et al. 2000). Annotations on a biosimulation

model provide contextual information that can be used by

researchers and systems for advanced search capabilities and

to determine suitability for reuse (Cowan, Mendes, and Blinov

2019; Neal et al. 2019; Schulz et al. 2011). For example,

researchers have demonstrated that complex biological models

can be constructed by combining simpler models if appropriate

annotations are present (Krause et al. 2010; Snoep et al. 2006).

A number of tools are based on the assumption of high-quality

and pervasive model annotations. semanticSBML by Krause et

al. merges models that have annotations in common for model

elements (Krause et al. 2010). ModelBricks builds on the idea

of high-quality annotations of model elements to construct

reusable model modules that can be easily incorporated into

new models (Cowan, Mendes, and Blinov 2019). Finally, Sarwar

et al. demonstrate the ability of annotations to support

specialized and detailed search capabilities (Sarwar et al. 2019).

These examples illustrate the benefits that can be derived by

having well-annotated models.

Annotating model elements is a time-consuming and

knowledge-intensive task. For chemical species, choosing an

appropriate annotation from the ChEBI knowledge resource

often requires a detailed examination of a large number
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of similar molecules. For example, the name “glucose” is

associated with approximately 1,000 ChEBI entries. The effort

to annotate an entire model is the effort to annotate a single

model element multiplied by the number of species, reactions,

and other elements in the model. Because this is a substantial

effort, models are typically not well annotated. As we described

in our earlier analysis (Shin et al. 2021), about half of the

models in the BioModels collection have fewer than half of their

species and reactions annotated. Even for models that have

some annotations, there are significant gaps that can impair

the understanding of models and their results. A common

reason for not annotating model elements is that doing so is

a painstakingly difficult manual effort.

The need for high-quality annotations is well recognized

in other areas of biological modeling. For example, extensive

tooling (e.g., Manning, Raghavan, and Schütze 2008) has

been developed for gene annotations, and more broadly,

for annotation of common biological polymers (e.g., DNA,

RNA, proteins). This has been successful because functionally

equivalent biological polymers are readily identified by the

similarities in their atomic (or residue) sequences. Tools such

as BLAST and HMMER provide high-quality and efficient algorithms

for calculating match scores (Finn, Clements, and Eddy 2011;

McGinnis and Madden 2004). An unannotated molecule is

annotated by searching a database of annotated molecules to

find molecules with a high match score with the unannotated

molecule. There are several databases available for analyzing

biological polymers, including RefSeq and GeneBank for genes

and pFam and uniProt for proteins (Leray et al. 2019; Mistry

et al. 2021; Pruitt, Tatusova, and Maglott 2007; Consortium

2014).

The foregoing capabilities have been impactful. For example,

ModelSEED, a web resource for genome-scale reconstruction and

analysis, obtains the annotation of assembled genome sequence

using RAST, an automated annotation service for archaeal and

bacterial genomes (Aziz et al. 2008; Henry et al. 2010; Mendoza

et al. 2019). Other examples include merlin (Dias et al. 2015;

Mendoza et al. 2019) and Architect (Nursimulu, Moses, and

Parkinson 2022).

However, can these techniques be applied to annotating

elements of SBML models? From the foregoing, there are

two requirements: (1) there must be a reference database of

annotated model elements; and (2) there must be a way to

find elements in the reference database that are similar to an

unannotated element in a model. The first condition is satisfied

for chemical species (e.g., ChEBI) and reactions (e.g., Rhea).

However, the second condition is more difficult.

The challenge is that there is no simple way to apply

sequence similarity to many model elements, especially species

and reactions. Genes can be described by a long sequence of a

small alphabet – {G, A, T, C}. This tends to make sequence

similarity effective for identifying similar genes. In contrast, it

is non-trivial to apply sequence similarity to chemical species.

We cannot use the similarity of chemical structures because

the chemical structure of an unannotated species is not known.

Further, sequence similarity is problematic for reactions since

the alphabet consists of thousands of different molecules that

could be reaction participants.

We introduce AMAS, an Automated Model Annotation System

that predicts annotations for chemical species and reactions in

SBML models. The core of our approach is the development of

appropriate similarity measures, which we refer to as match

scores. We do this by leveraging two properties of SBML

models. First, elements are typed so that we know if a symbol is

a chemical species, a reaction, or some other component of the

model. Second, all SBML elements have an identifier, and some

elements have user-provided display names as well. Finally,

SBML reactions indicate which chemical species participate

as reactants or products. As we describe below, our methods

also leverage ChEBI for reference information about chemical

species (Degtyarenko et al. 2008), and Rhea for information

about reactions (Alcántara et al. 2012). Our match scores for

chemical species are based on element identifiers and/or display

names. Our match scores for reactions are quantified in terms

of the similarity of the chemical species that participate in that

reaction.

Others have aimed to automate annotations. For example,

SBMLSqueezer 2 predicts reaction annotations based on species

participants (Dräger et al. 2015). However, this approach

requires that the chemical species have annotations, whereas

we first predict un-annotated species, and then use this

information to optimize our predicated annotations for the

reactions. Similarly, Leonidou et al. describe an approach

(Leonidou et al. 2023) that relies on having correctly annotated

species to permit the analysis of reaction types (e.g., transport

reactions). Although the paper demonstrates effectiveness in

terms of providing more precise annotations for BiGG models,

its scope is limited to Systems Biology Ontology (Courtot

et al. 2011) annotations of reactions. In particular, it does

not address the absence of annotations of species, a major

consideration in the BioModels repository.

The contributions of this work are: (a) construction of

an accurate and computationally efficient way to predict

annotations for species and reactions in SBML models, (b) the

implementation of a tool (AMAS) that recommends annotations

and can add those annotations into an SBML model, and (c)

an evaluation of these methods and this tool with models from

the BiGG and BioModels collections. AMAS is an open-source,

pip-installable Python package.

2. Methods

Fig. 1 displays an overview of our method. Beginning with the

left side of Fig. 1, a query element is an element whose

annotation is to be predicted. The Element Filter determines

if AMAS can predict any annotations for a query element. For

example, some models name species in a way that provides

no useful information for predicting annotations (e.g., S1, S2,

· · · ). The Element Filter rejects these query elements. We

assume there are reference elements whose annotations are

known, and these elements reside in a reference database. A

Match Score Function takes as arguments a query element

and a reference element; it returns a match score, a number

in [0, 1]. A match score of 0 indicates that the two elements

are maximally dissimilar; a score of 1 indicates maximal

similarity. The Match Score Selector chooses a subset of

the annotations as the prediction set of annotations based on

the match score of the reference element associated with the

annotation. Query elements rejected by the element filter have

an empty prediction set.

The Match Score Selector can use two different match score

selection criteria (MSSC):

• MSSC Top: Predicted annotations are those associated

with the reference element with the largest match score

above a user-specified minimum value called the match

score cutoff. If multiple reference elements have the same

score, then their annotations are predicted as well.
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Fig. 1. Summary of AMAS annotation prediction. Annotation prediction is done for a query element by choosing the annotations of reference elements

(with known annotations) that have the highest match scores as calculated by a Match Score Function. The Element Filter determines if there is

sufficient information about a query element to make any prediction.

• MSSC Above: Predicted annotations are all reference

elements whose match score exceeds the match score cutoff.

Both MSSCs are useful, as we detail below.

AMAS may produce an empty prediction set. This occurs if the

query element is rejected by the Element Filter. It also occurs if

MSSC Cutoff is used and the largest match score for the query

element is smaller than the match score cutoff.

We use three metrics to assess the quality of AMAS

predictions. Nonempty is the percentage of annotation

predictions where there is at least one annotation in the

prediction set. Accuracy is the probability that a correct

annotation of a query element is in the prediction set if the

prediction set is not empty. If the query element has multiple

correct annotations, then accuracy is the probability of at least

one correct annotation being in the prediction set. Last, we

consider the size of the prediction set: Exactness quantifies

how specific the prediction is: the inverse of the size of the

prediction set. Nonempty, accuracy, and exactness are in [0, 1]

with 1 being the ideal value.

We have developed an application that uses AMAS predictions

to recommend annotations for species and reactions for SBML

models. The approach is: (a) predict annotations for the query

element; (b) if MSSC Top is used, display the annotations for

the reference element(s) with the largest match score above a

user-specified threshold; (c) if MSSC Above is used, display

the annotations for the reference elements whose match score

exceeds the threshold. In both cases, it can be valuable to the

user to see the match scores associated with the annotations

(via the reference element for that annotation).

2.1. Predicting Species Annotations

AMAS calculates the similarity between two species based on

the similarity of strings associated with the two species. For

the query species, the preferred strings is the SBML display

name if it exists (since this tends to better reflect the nature of

the species). If the display name is absent, we use the SBML

element identifier. The Element Filter for predicting species

annotations is the length of the string for the element; our

experience is that a length of at least 3 or 4 characters provides

good results. In our current implementation, the reference

species is a term in the ChEBI database. Each ChEBI term

has a list of frequently used synonyms, and these synonyms are

the strings associated with the reference species. For example,

the synonyms for CHEBI:17634 include D(+)-glucose, dextrose,

and grape sugar.

String similarity is conceptually simple, but the details can

be a bit more complex. Strings may have different lengths. One

string may be a sub-string of the other. Letters may be inserted,

deleted, and/or transposed. Given these considerations, what

is a meaningful score that quantifies the similarity of two

strings? Approaches such as the Needleman–Wunsch algorithm

(Needleman and Wunsch 1970) assume much longer strings,

and work best with a small alphabet and non-binary scoring

for character mismatches.

These computational concerns led us to calculate string

similarities using cosine similarity, a technique used in Natural

Language Processing (Han, Kamber, Pei, et al. 2012). A string

is represented as a vector in a 36-dimensional space: one

dimension for each letter of the alphabet and for the numerals

0 through 9. The vector representation of a string has a “1” as

the coordinate of a dimension in which that character is present

in the string; otherwise, the coordinate is zero. For example,

the vector for “ATP” has a “1” as the coordinate for the “a”,

“t”, and “p” dimensions of the vector space, and a “0” for

all other coordinates. We quantify the similarity of two strings

as the cosine of the angle between their vector representations.

Because of the structure of the space, the cosine is in [0, 1] (since

the dot product can never be negative because all coordinates

are non-negative). A value of 1 is obtained when the angle is 0.

This means that the vectors coincide, and so the query string

and the synonym are ideally similar. The match score between

a query species Sq and a reference species Sr is the maximum

cosine distance between the (string) name Nq for Sq and the

names of the synonyms {Nr
j } for Sr:

cScore(S
q
, S

r
) = max

j

Nq · Nr
j

||Nq|| ||Nr
j ||

where Nq, Nr
j are vector representations of species names and

||N || is the length of the string N in the vector space.

One concern with cScore is that the encoding is lossy

in that we cannot recover the original string from its vector
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representation. More elaborate encodings can reduce this

problem. However, we found that the simple binary encoding

produced good results for predicting annotations. Another

concern is that several ChEBI terms can share a synonym, and

so the accuracy of predictions could be impaired if the two or

more reference species share a synonym that has the largest

cosine distance with a query species. This said, our evaluations

in Section 3.1 suggest that AMAS produces reasonably accurate

predictions.

2.2. Predicting Reaction Annotations

This section describes how we predict reaction annotations

using the framework presented in Fig. 1. As with predicting

species annotations, we start by constructing a match score

that quantifies how close a query reaction is to a reference

reaction. Analogous to predicting species annotations, reference

reactions are in a database and have associated annotations. We

use Rhea (Alcántara et al. 2012) for the database of reference

reactions.

Let rScore(Rq, Rr) be the match score between the query

reaction Rq and the reference reaction Rr. We calculate rScore

based on the similarity between the participants of the query

reaction and the participants of reference reactions.

The first step in calculating rScore is to simplify the

chemical formulas of reaction participants. We do this by

omitting all hydrogen atoms. There is one exception to this rule.

Hn has the simplified formula of H. Using simplified chemical

formulas helps with handling chemical variants created by

protonation and deprotonation, and it reduces computational

complexity (by having fewer chemical formulas).

As with species annotations, we represent reactions as

binary valued vectors. The dimension of the vector space are the

simplified chemical formulas of species in the ChEBI database.

The i-th coordinate in a reaction vector is 1 if there is at

least one participant with that simplified chemical formula;

otherwise, the coordinate is 0. If a species has more than one

chemical formula, then there may be more than one non-zero

coordinate associated with that species.

Let Rq be the vector representation of the query reaction

and Rr be the representation of a reference reaction. Rq · Rr

is the dot product of these vectors, the sum of the product

of the coordinates of the two vectors. Note that this is the

number of simplified chemical species that are common to the

two reactions. The reaction match score is proportional to Rq ·

Rr.

We have found that the AMAS match score works best if

an appropriate normalization constant is applied to Rq · Rr.

The normalization constant D is a function that considers

all reference reactions that have the largest dot product with

Rq. We denote this largest dot product by Mq, and indicate

distinct reference reactions by Rrj . The resulting set is Lq =

{Rrj |Rq · Rrj = Mq}. The normalization constant is the

smallest number of participants for reactions in Lq. That is,

D = minj{R
rj ·Rrj |Rrj ∈ Lq}. The AMAS reaction match score

is:

rScore(R
q
, R

r
) =

Rq · Rr

D

Note that D does not influence the ranking of match scores

between the query reaction and the reference reactions. Rather,

D affects the value of the match score, and this has implications

for the prediction set: annotations are included in this set only

if their scores exceed the match score cutoff value.

As an example, consider the query reaction ATP → ADP ,

a simplified description of ATP hydrolysis. Rq for this reaction

Query Reaction: R_ACKr

matched

match
ed

match
ed

Reference Reaction: RHEA_11352

Predicted Species Annotations
for a Reaction

A Predicted Reaction Annotation

Species M_atp_c
(predicted CHEBI:182955 CHEBI:22191

acetyl phosphate(2-)

CHEBI:30089
acetate

CHEBI:30616
ATP(4-)

CHEBI:456216
ADP(3-)

Species M_actp_c
(predicted CHEBI:22191

Species M_ac_c
(predicted CHEBI:30089

Species M_adp_c
(predicted CHEBI:456216

Fig. 2. Example of iterative optimization of predicted annotations. The

left hand side depicts a reaction for an E. Coli model in BiGG. The right

hand side depicts RHEA:11352, the reference reaction with the largest

match score for the query reaction. Participants of the query reaction are

paired with a participant of the reference reaction. A pairing is “matched”

if the annotation of a species in the query reaction is the same as the

annotation of its paired species. Predictions can often be improved if the

predicted annotation for an unmatched reference species is changed to the

annotation of its paired species in the reference reaction.

has a 1 in the coordinate for ATP and a 1 in the coordinate for

ADP . We calculate rScore(Rq, Rr) for the reference reaction

RHEA:13065, which has the participants ATP , H2O, ADP ,

H+, and PO
3−
4 (phosphate). Note that Rq ·Rr = 2 = Mq (since

the query reaction only has two participants). For this example,

we assume that minj{R
rj ·Rrj |Rq ·Rrj = 2} = Mq = 5. Hence,

D = 5. So, rScore(Rq, Rr) = Rq·Rr

D
= 2

5
= 0.4. Section S5

contains more details on the calculation of rScore.

2.3. Optimizing Annotation Predictions

Once reaction annotations have been predicted, there is an

opportunity to improve the prediction of species annotations.

In effect, we can use information about participation in a known

reaction to make better, more complete guesses about species

annotation.

Fig. 2 illustrates the foregoing. On the left is a query

reaction R ACKr, and on the right is the reference reaction

with the largest match score, RHEA:11352. The figure

displays how participants of the query reaction are paired

with participants of the reference reaction. We see that in

three of the four pairings, the annotations are same or are

“matched”. However, the species M atp c is paired with a

species whose annotation differs from that assigned to M atp c.

So, if RHEA:11352 is the correct annotation for the query

reaction, then we should change the annotation of M atp c to

CHEBI:20616 since this is the annotation its paired species in

the reference reaction.

Actually, we can go further. Once we revise the species

annotations based on reaction annotations, we can then

revise reaction annotations based on the revisions to species

annotations. We provide complete algorithmic details for these

revisions in supplemental material S6.

3. Results

This section evaluates the effectiveness and efficiency of the

AMAS approach to predicting annotations, as well as some details

on how one can use AMAS to annotate SBML models.

3.1. Evaluations

We evaluate AMAS annotation predictions in terms of

effectiveness and computational efficiency. Throughout, our
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analysis uses MSSC Top with a match score cutoff of 0.0. Our

approach compares AMAS annotation predictions with existing

annotations in two repositories of biological models, BioModels

and BiGG. That is, we assume that the existing annotations

are correct (although this may not be the case).

We note that our notions of prediction quality is similar to

quality concerns in the field of information retrieval (IR) (e.g.,

Manning, Raghavan, and Schütze 2008). In IR, there is a set of

desired documents (DD) that should be retrieved and there is

a set of retrieved documents (DR) that are retrieved. Two key

quality measures are recall, |DD∩DR|
|DD| , and precision, |DD∩DR|

|DR| ,

where |D| is the size of the set D. Unfortunately, these measures

have two shortcomings for quantifying AMAS prediction quality.

First, recall and precision are correlated because they have the

same numerator; this complicates the interpretation of quality

measures. Second, AMAS produces an empty prediction set if

there is insufficient information to make a prediction. In these

cases, precision is undefined since its denominator is 0.

That AMAS intentionally produces empty prediction sets

motivates a new metric, nonempty. It also is the reason why

accuracy and exactness are only defined if the prediction set

is not empty.

To formalize nonempty, accuracy, exactness, we denote

the prediction set by P and the expected (correct) set of

annotations by E. First, for a given prediction, nonempty is

either true or false (1 or 0). Next, if nonempty is false, accuracy

and exactness are undefined. Otherwise (nonempty = 1), we

can compute accuracy and exactness:

accuracy = min(1, |P ∩ E|),

exactness =
1

|P |

For a recommender system, our feeling is that a list of 3 to

5 choices is acceptable. This means that exactness should be at

least 0.2 or 0.33. Note that all three metrics have values in the

interval [0, 1], where higher numbers are better.

Tab. 1 summarizes the models we study for predicting

species and reaction annotations. Of the 1,000 models in

BioModels, only 306 have at least one ChEBI annotated species,

and 131 have at least one KEGG or EC-number annotated

reaction that can be mapped to Rhea. In BiGG, the fraction of

ChEBI and RHEA annotated elements is much higher.

Type Models Elements Annotated Elements

Species 306 39.89 16.02

Reactions 131 42.64 16.70

(a) BioModels

Type Models Elements Annotated Elements

Species 108 1,674.09 1,233.64

Reactions 108 2,328.00 1,119.92

(b) BiGG

Table 1. Summary of curated models that contain existing ChEBI

and Rhea annotations from 1,000 models in BioModels and 108

models in BiGG. Models are considered only if they have at least

one annotation, either species (ChEBI) or reaction (KEGG/EC-

number). For these models, the column “Elements” is the average

number of species (reactions) in the model, and “Annotated

Elements” is the average number of species (reactions) that are

annotated.

Tab. 2 reports statistics on AMAS computational efficiency

for predicting annotations. We see that the processing time

per species for predicting annotations is modest. For both

BioModels and BiGG, predicting reaction annotations takes

about ten times longer than predicting species annotations.

The longer processing times are in large part due to the

fact that, for timing purposes, we predict annotations for

each reaction separately and so do not take advantage of

species predictions that have been done previously. The longer

processing times for BiGG reactions is due to having reactions

with more participants; two-participant reactions (1 reactant

and 1 product) are common in BioModels, and much less so in

BiGG.

Type Models Time

BioModels Species 306 0.12

BioModels Reactions 131 0.22

BiGG Species 108 0.12

BiGG Reactions 108 0.21

Table 2. Average processing times (in seconds) for predicting

annotations per each species and each reaction in BioModels and

BiGG. Reaction times are larger because we include the time to

predict annotations for the participant species in the reaction for

which prediction is done. BiGG reaction predictions take longer

because on the average they have more participants than BioModels

reactions.

Fig. 3 plots the accuracy of AMAS predictions for species and

reactions in BiGG and BioModels. Accuracy is averaged across

all elements of the same type (species or reactions). The figure

is organized as two rows of plots. The top row is BiGG and

the bottom row is BioModels; the columns are species and

reactions. The plots have the same structure. The horizontal

axis is the match score cutoff used for MSSC Cutoff; the vertical

axis is accuracy. There are results for five Element Filters

based on the length of species names. We see that the accuracy

of species predictions increases as we increase the minimum

length of species names. This make sense since longer names

are generally more meaningful.

We also note that accuracy increases with match score

cutoff. At first glance, this may seem counter-intuitive since

increasing the match score cutoff decreases the size of the

prediction set and this in turn can only decrease accuracy for a

given query element. However, what is happening is that as the

match score cutoff increases, nonempty decreases. Thus, the

query elements for which there are nonempty prediction sets at

higher match scores are query elements for which accuracy is

larger.

Fig. 4 analyzes AMAS predictions by showing all three quality

metrics in combination–nonempty, accuracy, and exactness.

As before, the horizontal axis is the match score cutoff; the

particular metrics are indicated by different bar colors. As we

saw in Fig. 3, accuracy increases with match score cutoff, and

this is because nonempty is decreasing with match score cutoff.

exactness also increases with match score cutoff. The quality

metrics tend to be better with BiGG than BioModels, which is

likely the result of BiGG having longer names for species. We

see that exactness is always in excess of 0.3, our requirement

for a recommender. The accuracy of species predictions tend to

be larger than those for predicting reaction annotations. This

is expected since reaction predictions depends on the correct

prediction of species annotations.
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Fig. 3. Accuracy of predictions for species (column 1) and reactions

(column 2) in BiGG (row 1) and BioModels (row 2). The plots display the

relationship between prediction accuracy and the match score obtained by

MSSC Top with a cutoff of 0.0. Plots have five lines that reflect element

filtering by length of species names (for species) and the number of species

in reactions (for reactions).
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Fig. 4. Quality metrics at different match score cutoffs. Element filtering

eliminates species names that have less than 3 characters.

3.2. Using AMAS

AMAS is an open source, pip-installable Python package. The

source code is available at https://github.com/sys-bio/AMAS.

The current version was developed and tested on Python

version 3.11.2.

AMAS can be used on the command line to recommend

and apply annotations using a specified match score cutoff.

Fig. 5 shows an example of getting recommendations for

all species and reactions in a model, with a match score

cutoff of 0.9. Fig. 5 also shows AMAS saving those

recommendations as annotations in a new SBML model

file. AMAS has multiple scripts that can be run at the

command line. Full details can be found in readthedocs at

https://amas.readthedocs.io/en/latest/index.html.

1: (amas)$recommend_annotation BIOMD0000000190.xml

--mssc top --cutoff 0.9 --save sbml --outfile

new_model.xml

2: ...

3: Analyzing 11 species...

4: ...

5: Analyzing 13 reaction(s)...

6: Annotation recommended for 11 species:

7: [SAM, A, P, S, D, aS, aD, Met, ORN, AcCoA, CoA]

8: Annotation recommended for 2 reaction(s):

9: [ODC, P_efflux]

10: Recommendations saved as:

11: /Users/amas_project/example/new_model.xml

Fig. 5. Example of running AMAS on the command line. Line numbers

are included to facilitate references to the figure. In the invocation of

recommend annotation (line 1), the only required argument is the path of

the SBML model file. Recommendations are saved for model elements

with match scores at or above the cutoff (defaults to 0). There are 13

reactions in the model (line 5), but recommendations are mode for only

two reactions (lines 8, 9). Recommendations are made for all 11 species

(lines 6, 7). The number of recommended reactions will increase if the user

applies a smaller cutoff. Finally, annotations in the model were updated

using recommended annotations and saved to a new file (lines 10, 11).

Fig. 4 provides guidance as to how to specify the match

score cutoff in the command line invocation of AMAS. The user

should start by specifying a larger match score cutoff, say 0.9 so

that accuracy is larger. If nonempty is too small (as indicated

by the number of annotations recommended by the command

line tool), the user should reduce the match score cutoff. Since

accuracy decreases with the match score cutoff, the user should

review carefully annotations that are recommended at a lower

match score cutoff.

4. Discussion and Future Work

High quality annotations provide researchers with a critical

understanding of the meaning and behavior of biomedical

models. These insights increase the model’s utility and increase

the likelihood of others extending or otherwise reusing the

model. However, providing high-quality annotations is time

consuming and knowledge intensive. As a result, it is common

that models have missing or incorrect annotations.

The contributions of this paper are:

1. A general framework for predicting annotations of model

elements. The framework, shown in Fig. 1, makes use

of an existing database of annotated model elements to

predict a set of annotations. We specify three metrics for

evaluating the quality of prediction: nonempty, accuracy,

and exactness. The framework is instantiated by specifying

a match score function for the type of element whose

annotations are being predicted.

2. Match score functions for predicting annotations for

species and reactions. These match score functions are

simple to implement and computationally efficient.
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3. An evaluation of prediction efficiency and quality. We

evaluated our approach for predicted annotations for

species and reactions in BiGG and BioModels.

4. AMAS, an open-source package for recommending SBML

annotations for species and reactions. The package is pip-

installable.

Our evaluations show that, for SBML models in BiGG

and BioModels, AMAS can efficiently and effectively be used to

recommend annotations. With these models, AMAS consistently

has an exactness in excess of 0.3, which means that the

prediction set has about 3 elements. Managing the accuracy

of AMS prediction requires some consideration of the match

score cutoff, the minimum match score at which annotations

are predicted. We see that prediction accuracy exceeds 90% in

BiGG if the match score cutoff is at least 0.9; similar prediction

accuracies are achieved for BioModels reactions. Accuracy is a

bit lower in BioModels species, about 0.8 with a 0.95 match

score cutoff. This is likely because species names in BioModels

are much shorter than in BiGG (averaging 7.2 characters in

BioModels versus 19.3 characters in Bigg). A larger match score

cutoff reduces nonempty, which means that fewer predictions

are made. Users should first set a high cutoff to obtain high

accuracy predictions. Then, the match score cutoff can be

reduced to increase nonempty. Greater scrutiny should be

applied to predictions made with a lower match score cutoff.

Our near-term efforts will extend the annotation capabilities

of AMAS from small molecules in metabolic pathways to larger

molecules (e.g., proteins, mRNA, DNA) that are frequently

part of signaling pathways. Another near-term direction is

to annotate SBML elements beyond species and reactions,

such as SBML elements for model and kinetic law. Reactome

and SABIO-RK (Gillespie et al. 2022; Wittig et al. 2018) are

possible reference databases to predict annotations for these

elements.

Although AMAS can be used as a command-line tool today, we

plan to create an API that supports the full AMAS functionality.

Such an API would allow for embedding annotation prediction

within other software, such as GUI-based or web-based

applications. Since our overall goal is to reduce the effort needed

to create annotations, any annotation prediction capability

should be embedded in an easy-to-use application that model

developers might already be using. For example, if a modeler

is using software to design or build the model, then if that

software calls AMAS to make predictions, these can be reviewed

immediately by the modeler, and they can select the most

appropriate annotation. Such an interface would also allow AMAS

to learn user preferences about annotations (such as via user

profiles, as is done in product recommender systems).

In addition, we also plan to explore the ability of AMAS to act

as a critiquing system. In our review of published models (e.g.,

those in the BioModels repository), we have numerous examples

where the annotation or the name of the element (reactions

or species) are incorrect, misleading, or ambiguous. With an

appropriate user interface, AMAS could compare the match score

of the existing annotation versus a de novo prediction for that

element. This capability would effectively allow for “debugging”

of existing annotations, and would help provide a more reusable

library of annotated models.

In sum, we have proposed a general framework for predicting

annotations of model elements, and a tool, AMAS, that

implements these capabilities. As our evaluation of AMAS with

SBML models from BiGG and BioModels demonstrates, our

system can efficiently produce accurate annotations. We plan to

apply these AMAS capabilities both prospectively, by embedding

AMAS within model-development software, and retrospectively,

by using AMAS to debug existing models. In both situations, the

goal is to make models more understandable and reusable by

providing quality annotations about model elements.
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