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Abstract

Motivation: Annotations of biochemical models provide details of chemical species, documentation of chemical reactions,
and other essential information. Unfortunately, the vast majority of biochemical models have few, if any, annotations,
or the annotations provide insufficient detail to understand the limitations of the model. The quality and quantity of
annotations can be improved by developing tools that recommend annotations. For example, recommender tools have
been developed for annotations of genes. Although annotating genes is conceptually similar to annotating biochemical
models, there are important technical differences that make it difficult to directly apply this prior work.

Results: We present AMAS, a system that predicts annotations for elements of models represented in the Systems Biology
Markup Language (SBML) community standard. We provide a general framework for predicting model annotations for
a query element based on a database of annotated reference elements and a match score function that calculates the
similarity between the query element and reference elements. The framework is instantiated to specific element types
(e.g., species, reactions) by specifying the reference database (e.g., ChEBI for species) and the match score function (e.g.,
string similarity). We analyze the computational efficiency and prediction quality of AMAS for species and reactions in
BiGG and BioModels and find that it has sub-second response times and accuracy between 80% and 95% depending on
specifics of what is predicted. We have incorporated AMAS into an open-source, pip-installable Python package that can
run as a command-line tool that predicts and adds annotations to species and reactions to an SBML model.
Availability: Our project is hosted at https://github.com/sys-bio/AMAS, where we provide examples, documentation,
and source code files. Our source code is licensed under the MIT open-source license.

Contact: hsauro@Quw.edu

Supplementary information: Supplementary data are available online.
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1. Introduction A number of tools are based on the assumption of high-quality
. . . and pervasive model annotations. semanticSBML by Krause et
In systems biology, annotations are metadata that can describe . R
al. merges models that have annotations in common for model
elements (Krause et al. 2010). ModelBricks builds on the idea
of high-quality annotations of model elements to construct

reusable model modules that can be easily incorporated into

models and model elements. For example, annotations can
provide detailed information about the chemical species that
may participate in reactions in a model. These annotations
leverage canonical, readily available knowledge resources such
as the Gene Ontology and ChEBI (Degtyarenko et al. 2008;
Ashburner et al. 2000). Annotations on a biosimulation

new models (Cowan, Mendes, and Blinov 2019). Finally, Sarwar
et al. demonstrate the ability of annotations to support

. . . specialized and detailed search capabilities (Sarwar et al. 2019).
model provide contextual information that can be used by . .
. These examples illustrate the benefits that can be derived by
researchers and systems for advanced search capabilities and K
. . .. . having well-annotated models.
to determine suitability for reuse (Cowan, Mendes, and Blinov

2019; Neal et al. 2019; Schulz et al. 2011). For example,
researchers have demonstrated that complex biological models

Annotating model elements is a time-consuming and
knowledge-intensive task. For chemical species, choosing an

.. . . . appropriate annotation from the ChEBI knowledge resource
can be constructed by combining simpler models if appropriate K K . K
. often requires a detailed examination of a large number
annotations are present (Krause et al. 2010; Snoep et al. 2006).

© The Author 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com



bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549722; this version posted July 21, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

2 | Shin et al.

of similar molecules. For example, the name “glucose” is
associated with approximately 1,000 ChEBI entries. The effort
to annotate an entire model is the effort to annotate a single
model element multiplied by the number of species, reactions,
and other elements in the model. Because this is a substantial
effort, models are typically not well annotated. As we described
in our earlier analysis (Shin et al. 2021), about half of the
models in the BioModels collection have fewer than half of their
species and reactions annotated. Even for models that have
some annotations, there are significant gaps that can impair
the understanding of models and their results. A common
reason for nmot annotating model elements is that doing so is
a painstakingly difficult manual effort.

The need for high-quality annotations is well recognized
in other areas of biological modeling. For example, extensive
tooling (e.g., Manning, Raghavan, and Schiitze 2008) has
been developed for gene annotations, and more broadly,
for annotation of common biological polymers (e.g., DNA,
RNA, proteins). This has been successful because functionally
equivalent biological polymers are readily identified by the
similarities in their atomic (or residue) sequences. Tools such
as BLAST and HMMER provide high-quality and efficient algorithms
for calculating match scores (Finn, Clements, and Eddy 2011;
McGinnis and Madden 2004). An unannotated molecule is
annotated by searching a database of annotated molecules to
find molecules with a high match score with the unannotated
molecule. There are several databases available for analyzing
biological polymers, including RefSeq and GeneBank for genes
and pFam and uniProt for proteins (Leray et al. 2019; Mistry
et al. 2021; Pruitt, Tatusova, and Maglott 2007; Consortium
2014).

The foregoing capabilities have been impactful. For example,
ModelSEED, a web resource for genome-scale reconstruction and
analysis, obtains the annotation of assembled genome sequence
using RAST, an automated annotation service for archaeal and
bacterial genomes (Aziz et al. 2008; Henry et al. 2010; Mendoza
et al. 2019). Other examples include merlin (Dias et al. 2015;
Mendoza et al. 2019) and Architect (Nursimulu, Moses, and
Parkinson 2022).

However, can these techniques be applied to annotating
elements of SBML models? From the foregoing, there are
two requirements: (1) there must be a reference database of
annotated model elements; and (2) there must be a way to
find elements in the reference database that are similar to an
unannotated element in a model. The first condition is satisfied
for chemical species (e.g., ChEBI) and reactions (e.g., Rhea).
However, the second condition is more difficult.

The challenge is that there is no simple way to apply
sequence similarity to many model elements, especially species
and reactions. Genes can be described by a long sequence of a
small alphabet — {G, A, T, C}. This tends to make sequence
similarity effective for identifying similar genes. In contrast, it
is non-trivial to apply sequence similarity to chemical species.
We cannot use the similarity of chemical structures because
the chemical structure of an unannotated species is not known.
Further, sequence similarity is problematic for reactions since
the alphabet consists of thousands of different molecules that
could be reaction participants.

‘We introduce AMAS, an Automated Model Annotation System
that predicts annotations for chemical species and reactions in
SBML models. The core of our approach is the development of
appropriate similarity measures, which we refer to as match
scores. We do this by leveraging two properties of SBML
models. First, elements are typed so that we know if a symbol is
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a chemical species, a reaction, or some other component of the
model. Second, all SBML elements have an identifier, and some
elements have user-provided display names as well. Finally,
SBML reactions indicate which chemical species participate
as reactants or products. As we describe below, our methods
also leverage ChEBI for reference information about chemical
species (Degtyarenko et al. 2008), and Rhea for information
about reactions (Alcdntara et al. 2012). Our match scores for
chemical species are based on element identifiers and/or display
names. Our match scores for reactions are quantified in terms
of the similarity of the chemical species that participate in that
reaction.

Others have aimed to automate annotations. For example,
SBMLSqueezer 2 predicts reaction annotations based on species
participants (Drédger et al. 2015). However, this approach
requires that the chemical species have annotations, whereas
we first predict un-annotated species, and then use this
information to optimize our predicated annotations for the
reactions. Similarly, Leonidou et al. describe an approach
(Leonidou et al. 2023) that relies on having correctly annotated
species to permit the analysis of reaction types (e.g., transport
reactions). Although the paper demonstrates effectiveness in
terms of providing more precise annotations for BiGG models,
its scope is limited to Systems Biology Ontology (Courtot
et al. 2011) annotations of reactions. In particular, it does
not address the absence of annotations of species, a major
consideration in the BioModels repository.

The contributions of this work are: (a) construction of
an accurate and computationally efficient way to predict
annotations for species and reactions in SBML models, (b) the
implementation of a tool (AMAS) that recommends annotations
and can add those annotations into an SBML model, and (c)
an evaluation of these methods and this tool with models from
the BiGG and BioModels collections. AMAS is an open-source,
pip-installable Python package.

2. Methods

Fig. 1 displays an overview of our method. Beginning with the
left side of Fig. 1, a query element is an element whose
annotation is to be predicted. The Element Filter determines
if AMAS can predict any annotations for a query element. For
example, some models name species in a way that provides
no useful information for predicting annotations (e.g., S1, S2,
-++). The Element Filter rejects these query elements. We
assume there are reference elements whose annotations are
known, and these elements reside in a reference database. A
Match Score Function takes as arguments a query element
and a reference element; it returns a match score, a number
in [0,1]. A match score of 0 indicates that the two elements
are maximally dissimilar; a score of 1 indicates maximal
similarity. The Match Score Selector chooses a subset of
the annotations as the prediction set of annotations based on
the match score of the reference element associated with the
annotation. Query elements rejected by the element filter have
an empty prediction set.

The Match Score Selector can use two different match score
selection criteria (MSSC):

e MSSC Top: Predicted annotations are those associated
with the reference element with the largest match score
above a user-specified minimum value called the match
score cutoff. If multiple reference elements have the same
score, then their annotations are predicted as well.
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Fig. 1. Summary of AMAS annotation prediction. Annotation prediction is done for a query element by choosing the annotations of reference elements

(with known annotations) that have the highest match scores as calculated by a Match Score Function. The Element Filter determines if there is

sufficient information about a query element to make any prediction.

e MSSC Above: Predicted annotations are all reference
elements whose match score exceeds the match score cutoff.

Both MSSCs are useful, as we detail below.

AMAS may produce an empty prediction set. This occurs if the
query element is rejected by the Element Filter. It also occurs if
MSSC Cutoff is used and the largest match score for the query
element is smaller than the match score cutoff.

We wuse three metrics to assess the quality of AMAS

predictions. Nonempty is the percentage of annotation
predictions where there is at least one annotation in the
prediction set. Accuracy is the probability that a correct
annotation of a query element is in the prediction set if the
prediction set is not empty. If the query element has multiple
correct annotations, then accuracy is the probability of at least
one correct annotation being in the prediction set. Last, we
consider the size of the prediction set: Exactness quantifies
how specific the prediction is: the inverse of the size of the
prediction set. Nonempty, accuracy, and exactness are in [0, 1]
with 1 being the ideal value.

We have developed an application that uses AMAS predictions
to recommend annotations for species and reactions for SBML
models. The approach is: (a) predict annotations for the query
element; (b) if MSSC Top is used, display the annotations for
the reference element(s) with the largest match score above a
user-specified threshold; (c) if MSSC Above is used, display
the annotations for the reference elements whose match score
exceeds the threshold. In both cases, it can be valuable to the
user to see the match scores associated with the annotations
(via the reference element for that annotation).

2.1. Predicting Species Annotations

AMAS calculates the similarity between two species based on
the similarity of strings associated with the two species. For
the query species, the preferred strings is the SBML display
name if it exists (since this tends to better reflect the nature of
the species). If the display name is absent, we use the SBML
element identifier. The Element Filter for predicting species
annotations is the length of the string for the element; our
experience is that a length of at least 3 or 4 characters provides

good results. In our current implementation, the reference

species is a term in the ChEBI database. Each ChEBI term
has a list of frequently used synonyms, and these synonyms are
the strings associated with the reference species. For example,
the synonyms for CHEBI:17634 include D(4)-glucose, dextrose,
and grape sugar.

String similarity is conceptually simple, but the details can
be a bit more complex. Strings may have different lengths. One
string may be a sub-string of the other. Letters may be inserted,
deleted, and/or transposed. Given these considerations, what
is a meaningful score that quantifies the similarity of two
strings? Approaches such as the Needleman—Wunsch algorithm
(Needleman and Wunsch 1970) assume much longer strings,
and work best with a small alphabet and non-binary scoring
for character mismatches.

These computational concerns led us to calculate string
similarities using cosine similarity, a technique used in Natural
Language Processing (Han, Kamber, Pei, et al. 2012). A string
is represented as a vector in a 36-dimensional space: one
dimension for each letter of the alphabet and for the numerals
0 through 9. The vector representation of a string has a “1” as
the coordinate of a dimension in which that character is present
in the string; otherwise, the coordinate is zero. For example,
the vector for “ATP” has a “1” as the coordinate for the “a”,
“t”, and “p” dimensions of the vector space, and a “0” for
all other coordinates. We quantify the similarity of two strings
as the cosine of the angle between their vector representations.
Because of the structure of the space, the cosine is in [0, 1] (since
the dot product can never be negative because all coordinates
are non-negative). A value of 1 is obtained when the angle is 0.
This means that the vectors coincide, and so the query string
and the synonym are ideally similar. The match score between
a query species S? and a reference species S” is the maximum
cosine distance between the (string) name N? for S? and the
names of the synonyms {N}'} for S":

N?. N7

cScore(S?,S") = max ————————
i [INe[{INT]

where N9, NJ’" are vector representations of species names and
||N| is the length of the string N in the vector space.

One concern with cScore is that the encoding is lossy
in that we cannot recover the original string from its vector
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representation. More elaborate encodings can reduce this
problem. However, we found that the simple binary encoding
produced good results for predicting annotations. Another
concern is that several ChEBI terms can share a synonym, and
so the accuracy of predictions could be impaired if the two or
more reference species share a synonym that has the largest
cosine distance with a query species. This said, our evaluations
in Section 3.1 suggest that AMAS produces reasonably accurate

predictions.

2.2. Predicting Reaction Annotations

This section describes how we predict reaction annotations
using the framework presented in Fig. 1. As with predicting
species annotations, we start by constructing a match score
that quantifies how close a query reaction is to a reference
reaction. Analogous to predicting species annotations, reference
reactions are in a database and have associated annotations. We
use Rhea (Alcdntara et al. 2012) for the database of reference
reactions.

Let rScore(R?, R") be the match score between the query
reaction R? and the reference reaction R". We calculate rScore
based on the similarity between the participants of the query
reaction and the participants of reference reactions.

The first step in calculating rScore is to simplify the
chemical formulas of reaction participants. We do this by
omitting all hydrogen atoms. There is one exception to this rule.
H,, has the simplified formula of H. Using simplified chemical
formulas helps with handling chemical variants created by
protonation and deprotonation, and it reduces computational
complexity (by having fewer chemical formulas).

As with species annotations, we represent reactions as
binary valued vectors. The dimension of the vector space are the
simplified chemical formulas of species in the ChEBI database.
The i-th coordinate in a reaction vector is 1 if there is at
least one participant with that simplified chemical formula;
otherwise, the coordinate is 0. If a species has more than one
chemical formula, then there may be more than one non-zero
coordinate associated with that species.

Let R? be the vector representation of the query reaction
and R" be the representation of a reference reaction. R? - R”
is the dot product of these vectors, the sum of the product
of the coordinates of the two vectors. Note that this is the
number of simplified chemical species that are common to the
two reactions. The reaction match score is proportional to R? -
R".

We have found that the AMAS match score works best if
an appropriate normalization constant is applied to R? - R".
The normalization constant D is a function that considers
all reference reactions that have the largest dot product with
R?. We denote this largest dot product by MY, and indicate
distinct reference reactions by R’7. The resulting set is L7 =
{R"|R? - R"" = M¢9}. The normalization constant is the
smallest number of participants for reactions in £%. That is,
D = minj{R" - R"|R" € L?}. The AMAS reaction match score

is:
R?-R"

D
Note that D does not influence the ranking of match scores

rScore(R?,R") =

between the query reaction and the reference reactions. Rather,
D affects the value of the match score, and this has implications
for the prediction set: annotations are included in this set only
if their scores exceed the match score cutoff value.

As an example, consider the query reaction ATP — ADP,
a simplified description of ATP hydrolysis. R? for this reaction

made available under aCC-BY-NC-ND 4.0 International license.

Query Reaction: R_ACKr Reference Reaction: RHEA_11352

Species M a

tp_c CHEBI:22191
(predicted CHEBI:182955

ped| —  acetyl phosphate(2-)
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Species M_actp_c v CHEBI:30089
autl— B0
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Species M_ac_c T CHEBI:30616
(predicted CHEBI:30089 ATP (4-)

Species M_ad

P pS CHEBI:456216
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matched

Predicted Species Annotations A Predicted Reaction Annotation

for a Reaction

Fig. 2. Example of iterative optimization of predicted annotations. The
left hand side depicts a reaction for an E. Coli model in BiGG. The right
hand side depicts RHEA:11352, the reference reaction with the largest
match score for the query reaction. Participants of the query reaction are
paired with a participant of the reference reaction. A pairing is “matched”
if the annotation of a species in the query reaction is the same as the
annotation of its paired species. Predictions can often be improved if the
predicted annotation for an unmatched reference species is changed to the

annotation of its paired species in the reference reaction.

has a 1 in the coordinate for AT P and a 1 in the coordinate for
ADP. We calculate rScore(R?, R") for the reference reaction
RHEA:13065, which has the participants AT P, H>O, ADP,
H™, and PO3™ (phosphate). Note that R?-R" = 2 = M? (since
the query reaction only has two participants). For this example,
we assume that min;{R"7-R"|R?-R" = 2} = M? = 5. Hence,
D = 5. So, rScore(R?,R") = £E° = 2 = 0.4. Section S5
contains more details on the calculation of rScore.

2.3. Optimizing Annotation Predictions

Once reaction annotations have been predicted, there is an
opportunity to improve the prediction of species annotations.
In effect, we can use information about participation in a known
reaction to make better, more complete guesses about species
annotation.

Fig. 2 illustrates the foregoing. On the left is a query
reaction R_ACKr, and on the right is the reference reaction
RHEA:11352. The figure
displays how participants of the query reaction are paired

with the largest match score,

with participants of the reference reaction. We see that in
three of the four pairings, the annotations are same or are
“matched”. However, the species M _atp_c is paired with a
species whose annotation differs from that assigned to M _atp_c.
So, if RHEA:11352 is the correct annotation for the query
reaction, then we should change the annotation of M_atp_c to
CHEBI:20616 since this is the annotation its paired species in
the reference reaction.

Actually, we can go further. Once we revise the species
annotations based on reaction annotations, we can then
revise reaction annotations based on the revisions to species
annotations. We provide complete algorithmic details for these

revisions in supplemental material S6.

3. Results

This section evaluates the effectiveness and efficiency of the
AMAS approach to predicting annotations, as well as some details
on how one can use AMAS to annotate SBML models.

3.1. Evaluations

We evaluate AMAS
effectiveness and computational efficiency. Throughout, our

annotation predictions in terms of
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analysis uses MSSC Top with a match score cutoff of 0.0. Our
approach compares AMAS annotation predictions with existing
annotations in two repositories of biological models, BioModels
and BiGG. That is, we assume that the existing annotations
are correct (although this may not be the case).

We note that our notions of prediction quality is similar to
quality concerns in the field of information retrieval (IR) (e.g.,
Manning, Raghavan, and Schiitze 2008). In IR, there is a set of
desired documents (Dp) that should be retrieved and there is
a set of retrieved documents (Dg) that are retrieved. Two key
quality measures are recall, % %,
where |D| is the size of the set D. Unfortunately, these measures

, and precision,

have two shortcomings for quantifying AMAS prediction quality.
First, recall and precision are correlated because they have the
same numerator; this complicates the interpretation of quality
measures. Second, AMAS produces an empty prediction set if
there is insufficient information to make a prediction. In these
cases, precision is undefined since its denominator is 0.

That AMAS intentionally produces empty prediction sets
motivates a new metric, nonempty. It also is the reason why
accuracy and exactness are only defined if the prediction set
is not empty.

To formalize nonempty, accuracy, exactness, we denote
the prediction set by P and the expected (correct) set of
annotations by E. First, for a given prediction, nonempty is
either true or false (1 or 0). Next, if nonempty is false, accuracy
and exactness are undefined. Otherwise (nonempty = 1), we
can compute accuracy and exactness:

accuracy = min(1l, |P N E|),

exactness = i
E

For a recommender system, our feeling is that a list of 3 to
5 choices is acceptable. This means that exactness should be at
least 0.2 or 0.33. Note that all three metrics have values in the
interval [0, 1], where higher numbers are better.

Tab. 1 summarizes the models we study for predicting
species and reaction annotations. Of the 1,000 models in
BioModels, only 306 have at least one ChEBI annotated species,
and 131 have at least one KEGG or EC-number annotated
reaction that can be mapped to Rhea. In BiGG, the fraction of
ChEBI and RHEA annotated elements is much higher.

Type Models | Elements | Annotated Elements
Species 306 39.89 16.02
Reactions | 131 42.64 16.70

(a) BioModels

Type | Models | Elements | Annotated Elements
Species 108 1,674.09 1,233.64
Reactions | 108 2,328.00 | 1,119.92

(b) BiGG

Table 1. Summary of curated models that contain existing ChEBI
and Rhea annotations from 1,000 models in BioModels and 108
models in BiGG. Models are considered only if they have at least
one annotation, either species (ChEBI) or reaction (KEGG/EC-
number). For these models, the column “Elements” is the average
number of species (reactions) in the model, and “Annotated
Elements” is the average number of species (reactions) that are
annotated.

5

Tab. 2 reports statistics on AMAS computational efficiency
for predicting annotations. We see that the processing time
per species for predicting annotations is modest. For both
BioModels and BiGG, predicting reaction annotations takes
about ten times longer than predicting species annotations.
The longer processing times are in large part due to the
fact that, for timing purposes, we predict annotations for
each reaction separately and so do not take advantage of
species predictions that have been done previously. The longer
processing times for BiGG reactions is due to having reactions
with more participants; two-participant reactions (1 reactant
and 1 product) are common in BioModels, and much less so in
BiGG.

Type Models | Time
BioModels Species 306 0.12
BioModels Reactions | 131 0.22
BiGG Species 108 0.12
BiGG Reactions 108 0.21

Table 2. Average processing times (in seconds) for predicting
annotations per each species and each reaction in BioModels and
BiGG. Reaction times are larger because we include the time to
predict annotations for the participant species in the reaction for
which prediction is done. BiGG reaction predictions take longer
because on the average they have more participants than BioModels
reactions.

Fig. 3 plots the accuracy of AMAS predictions for species and
reactions in BiGG and BioModels. Accuracy is averaged across
all elements of the same type (species or reactions). The figure
is organized as two rows of plots. The top row is BiGG and
the bottom row is BioModels; the columns are species and
reactions. The plots have the same structure. The horizontal
axis is the match score cutoff used for MSSC Cutoff; the vertical
axis is accuracy. There are results for five Element Filters
based on the length of species names. We see that the accuracy
of species predictions increases as we increase the minimum
length of species names. This make sense since longer names
are generally more meaningful.

We also note that accuracy increases with match score
cutoff. At first glance, this may seem counter-intuitive since
increasing the match score cutoff decreases the size of the
prediction set and this in turn can only decrease accuracy for a
given query element. However, what is happening is that as the
match score cutoff increases, nonempty decreases. Thus, the
query elements for which there are nonempty prediction sets at
higher match scores are query elements for which accuracy is
larger.

Fig. 4 analyzes AMAS predictions by showing all three quality
metrics in combination—nonempty, accuracy, and exactness.
As before, the horizontal axis is the match score cutoff; the
particular metrics are indicated by different bar colors. As we
saw in Fig. 3, accuracy increases with match score cutoff, and
this is because nonempty is decreasing with match score cutoff.
exactness also increases with match score cutoff. The quality
metrics tend to be better with BiGG than BioModels, which is
likely the result of BiGG having longer names for species. We
see that exactness is always in excess of 0.3, our requirement
for a recommender. The accuracy of species predictions tend to
be larger than those for predicting reaction annotations. This
is expected since reaction predictions depends on the correct
prediction of species annotations.
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(column 2) in BiGG (row 1) and BioModels (row 2). The plots display the
relationship between prediction accuracy and the match score obtained by
MSSC Top with a cutoff of 0.0. Plots have five lines that reflect element
filtering by length of species names (for species) and the number of species

in reactions (for reactions).
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Fig. 4. Quality metrics at different match score cutoffs. Element filtering

eliminates species names that have less than 3 characters.

3.2. Using AMAS

AMAS is an open source, pip-installable Python package. The
source code is available at https://github.com/sys-bio/AMAS.
The current version was developed and tested on Python
version 3.11.2.

AMAS can be used on the command line to recommend
and apply annotations using a specified match score cutoff.
Fig. 5 shows an example of getting recommendations for
all species and reactions in a model, with a match score
cutoff of 0.9. Fig. 5 also shows AMAS saving those
recommendations as annotations in a new SBML model
file. AMAS has multiple scripts that can be run at the
command line. Full details can be found in readthedocs at
https://amas.readthedocs.io/en/latest /index.html.

1: (amas)$recommend_annotation BIOMDO000000190.xml
--mssc top --cutoff 0.9 --save sbml --outfile

new_model.xml

: Analyzing 11 species...

5: Analyzing 13 reaction(s)...

6: Annotation recommended for 11 species:
[SAM, A, P, S, D, aS, aD, Met, ORN, AcCoA, CoAl

8: Annotation recommended for 2 reaction(s):
9: [0DC, P_efflux]

10: Recommendations saved as:
11: /Users/amas_project/example/new_model.xml

Fig. 5. Example of running AMAS on the command line. Line numbers
are included to facilitate references to the figure. In the invocation of
recommend_annotation (line 1), the only required argument is the path of
the SBML model file. Recommendations are saved for model elements
with match scores at or above the cutoff (defaults to 0). There are 13
reactions in the model (line 5), but recommendations are mode for only
two reactions (lines 8, 9). Recommendations are made for all 11 species
(lines 6, 7). The number of recommended reactions will increase if the user
applies a smaller cutoff. Finally, annotations in the model were updated

using recommended annotations and saved to a new file (lines 10, 11).

Fig. 4 provides guidance as to how to specify the match
score cutoff in the command line invocation of AMAS. The user
should start by specifying a larger match score cutoff, say 0.9 so
that accuracy is larger. If nonempty is too small (as indicated
by the number of annotations recommended by the command
line tool), the user should reduce the match score cutoff. Since
accuracy decreases with the match score cutoff, the user should
review carefully annotations that are recommended at a lower
match score cutoff.

4. Discussion and Future Work

High quality annotations provide researchers with a critical
understanding of the meaning and behavior of biomedical
models. These insights increase the model’s utility and increase
the likelihood of others extending or otherwise reusing the
model. However, providing high-quality annotations is time
consuming and knowledge intensive. As a result, it is common
that models have missing or incorrect annotations.
The contributions of this paper are:

1. A general framework for predicting annotations of model
elements. The framework, shown in Fig. 1, makes use
of an existing database of annotated model elements to
predict a set of annotations. We specify three metrics for
evaluating the quality of prediction: nonempty, accuracy,
and exactness. The framework is instantiated by specifying
a match score function for the type of element whose
annotations are being predicted.

2. Match score functions for predicting annotations for
species and reactions. These match score functions are
simple to implement and computationally efficient.
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3. An evaluation of prediction efficiency and quality. We
evaluated our approach for predicted annotations for
species and reactions in BiGG and BioModels.

4. AMAS, an open-source package for recommending SBML
annotations for species and reactions. The package is pip-
installable.

Our evaluations show that, for SBML models in BiGG
and BioModels, AMAS can efficiently and effectively be used to
recommend annotations. With these models, AMAS consistently
has an ezxactness in excess of 0.3, which means that the
prediction set has about 3 elements. Managing the accuracy
of AMS prediction requires some consideration of the match
score cutoff, the minimum match score at which annotations
are predicted. We see that prediction accuracy exceeds 90% in
BiGG if the match score cutoff is at least 0.9; similar prediction
accuracies are achieved for BioModels reactions. Accuracy is a
bit lower in BioModels species, about 0.8 with a 0.95 match
score cutoff. This is likely because species names in BioModels
are much shorter than in BiGG (averaging 7.2 characters in
BioModels versus 19.3 characters in Bigg). A larger match score
cutoff reduces nonempty, which means that fewer predictions
are made. Users should first set a high cutoff to obtain high
accuracy predictions. Then, the match score cutoff can be
reduced to increase nmonempty. Greater scrutiny should be
applied to predictions made with a lower match score cutoff.

Our near-term efforts will extend the annotation capabilities
of AMAS from small molecules in metabolic pathways to larger
molecules (e.g., proteins, mRNA, DNA) that are frequently
part of signaling pathways. Another near-term direction is
to annotate SBML elements beyond species and reactions,
such as SBML elements for model and kinetic law. Reactome
and SABIO-RK (Gillespie et al. 2022; Wittig et al. 2018) are
possible reference databases to predict annotations for these
elements.

Although AMAS can be used as a command-line tool today, we
plan to create an API that supports the full AMAS functionality.
Such an API would allow for embedding annotation prediction
such as GUI-based or web-based
applications. Since our overall goal is to reduce the effort needed

within other software,

to create annotations, any annotation prediction capability
should be embedded in an easy-to-use application that model
developers might already be using. For example, if a modeler
is using software to design or build the model, then if that
software calls AMAS to make predictions, these can be reviewed
immediately by the modeler, and they can select the most
appropriate annotation. Such an interface would also allow AMAS
to learn user preferences about annotations (such as via user
profiles, as is done in product recommender systems).

In addition, we also plan to explore the ability of AMAS to act
as a critiquing system. In our review of published models (e.g.,
those in the BioModels repository), we have numerous examples
where the annotation or the name of the element (reactions
or species) are incorrect, misleading, or ambiguous. With an
appropriate user interface, AMAS could compare the match score
of the existing annotation versus a de novo prediction for that
element. This capability would effectively allow for “debugging”
of existing annotations, and would help provide a more reusable
library of annotated models.

In sum, we have proposed a general framework for predicting
and a tool, AMAS, that
implements these capabilities. As our evaluation of AMAS with
SBML models from BiGG and BioModels demonstrates, our
system can efficiently produce accurate annotations. We plan to

annotations of model elements,
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apply these AMAS capabilities both prospectively, by embedding
AMAS within model-development software, and retrospectively,
by using AMAS to debug existing models. In both situations, the
goal is to make models more understandable and reusable by
providing quality annotations about model elements.
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