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Introduction: Campylobacter spp. infections are responsible for significant diarrheal
disease burden across the globe, with prevalence thought to be increasing. Although wild
avian species have been studied as reservoirs of Campylobacter spp., our understanding of
the role of wild mammalian species in disease transmission and persistence is limited. Host
factors influencing infection dynamics in wild mammals have been neglected, particularly
life traits, and the role of these factors in zoonotic spillover risk is largely unknown.

Methods: Here, we conducted a systematic literature review, identifying mammalian
species that had been tested for Campylobacter spp. infections (molecular and culture
based). We used logistic regression to evaluate the relationship between the detection
of Campylobacter spp. in feces and host life traits (urban association, trophic level, and
sociality).

Results: Our analysis suggest that C.  jejuni transmission is associated with urban living
and trophic level. The probability of carriage was highest in urban-associated species
(p =0  .02793) and the most informative model included trophic level. In contrast, C.  coli
carriage appears to be strongly influenced by sociality (p =0  .0113) with trophic level still
being important. Detection of Campylobacter organisms at the genus level, however,
was only associated with trophic level (p =0  .0156), highlighting the importance of this
trait in exposure dynamics across host and Campylobacter pathogen systems.

Discussion: While many challenges remain in the detection and characterization of
Camploybacter spp., these results suggest that host life traits may have important
influence on pathogen exposure and transmission dynamics, providing a useful
starting point for more directed surveillance approaches.

KEYWORDS

zoonotic, Campylobacter, life histories, spillover, wildlife, foodbome pathogen

Introduction

Campylobacter spp. are a diverse group of gastrointestinal zoonotic pathogens that are
responsible for an estimated 96 million cases of foodborne illness in humans annually (Kirk et al.,
2015) an important cause of human illness in both economically developed and developing nations
(Devleesschauwer et al., 2017). This pathogen group infects a wide range of animal hosts, although
domestic species such as cattle and chickens are thought to be the largest known reservoirs of
infection (Man, 2011; Wagenaar et al., 2013). Campylobacter jejuni and C. coli are the primary
species associated with clinical disease in humans, but a growing number of Campylobacter spp. have
been recognized as emerging human pathogens (Man, 2011). Risk factors for Campylobacter
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infection include consumption of poultry, household water from wells,
and exposure to animals (Levesque et al., 2013; MacDonald et al., 2015).
This exposure has typically focused on occupational contact with
livestock, owning a dog, or allowing animals access to sleeping and food
preparation areas (Levesque et al., 2013; Mughini Gras et al., 2013; Kirk
et al., 2015; MacDonald et al., 2015; Osbjer et al., 2016). Although
consumption of poultry is the most common risk factor in urban
environments, increased odds ratios of campylobacteriosis in rural
populations are associated with poultry husbandry (Potter et al., 2003),
high ruminant density (Arsenault et al., 2012), and contact with wild
bird feces (Kapperud et al., 2003). Attribution studies have been
performed to examine genetic similarities between clinical cases and
animal isolates, with some evidence of contribution from wildlife
(French et al., 2009; Strachan et al., 2009). In some studies, wildlife has
also been demonstrated to be a competent reservoir of Campylobacter,
including important human pathogens such as C. jejuni and C. coli
(Weis et al., 2016; Newell et al., 2017). Wildlife may be an important
source of Campylobacter spillover to humans, but it is unclear which
species present the greatest public health risk. Challenges in both
detection and characterization continue to complicate progress in this
area of research (Couturier et al., 2013; Frasao et al., 2017).

Life traits and species interactions with
conspecifics and socio-ecological systems

Host life traits can have important influence on the way a particular
host species interfaces with conspecifics, animal communities, humans,
and the environment, creating or eliminating opportunities for pathogen
transmission. For example, a study carried out in Northern Botswana
found that antibiotic resistance is higher in carnivores and water-
associated species, demonstrating that the way an organism interacts
with its environment can alter pathogen transmission and carriage
(Alexander et al., 2010; Jobbins and Alexander, 2015).

Multi-host pathogens, such as Campylobacter, can have altered
transmission dynamics in urban landscapes increasing pathogen
prevalence (Woolhouse et al., 2001; Bradley and Altizer, 2007) in
relation to changes in interspecific contact rates, a key determinant of
multi-host pathogen transmission (Woolhouse et al., 2001; Renteria-
Solis et al., 2014). Indeed, urbanization is increasingly identified as a
potential driver of infectious disease emergence as it can change host
spatial dynamics and pathogen transmission patterns in ways that are
unpredictable (Neiderud, 2015; Hassell et al., 2017). For example, urban
landscapes may alter host-pathogen dynamics directly by changing the
way pathogens move through a system, or indirectly through changes to
host immunocompetence or behavior (Brearley et al., 2013; Brunton
et al., 2020). Urbanization has been shown to increase individual
dispersal between troops in the banded mongoose (Mungos mungo),
which may heighten the transmission risk of pathogens that spread
through close contact (Verble et al., 2021). Evidence of increased stress
(typically measured by fecal cortisol) and immunosuppression in urban-
associated wildlife, however, is mixed. Some species associated with
urban landscapes have in fact demonstrated lower stress levels and more
robust immune responses, likely associated with consistent resource
availability (Audet et al., 2015; Lyons et al., 2017; Iglesias-Carrasco et al.,
2020). This was demonstrated in a population of banded mongoose in
northern Botswana, where access to anthropogenic food sources was
associated with lower levels of circulating glucocorticoids (Laver
et al., 2012).

10.3389/fevo.2023.1070519

While Campylobacter occurs in many wildlife species, clinical signs
of gastrointestinal illness or adverse health effects have rarely been
observed. Two noctule bats (Nyctalus noctula; Hazeleger et al., 2018), a
dozen rhesus monkeys (Macaca mulatta; Kalashnikova et al., 2002), and
several vervet monkeys (Chlorocebus pygerythrus; Ngotho et al., 2006)
infected with Campylobacter spp. presented with signs of acute
gastrointestinal disease. These infections have the potential to cause
mortality, with one wild vervet monkey dying from suspected antibiotic-
resistant Campylobacter infection during laboratory quarantine, while
several other monkeys in poor condition were euthanized (Ngotho et al.,
2006). This outcome suggests that some free-ranging wildlife may
be susceptible to acute Campylobacter infections, potentially affecting
the quantity of pathogen shed into the environment and subsequent
transmission to other animals and humans (Chaban et al., 2010). Even
in the absence of acute signs of disease, however, evidence suggests that
Campylobacter spp. infection in wildlife can affect body mass and overall
health (Taff and Townsend, 2017).

Campylobacter transmission at the human-wildlife interface is also
likely influenced by the intrinsic properties of the pathogen itself,
including its persistence within infected animals across time (Inglis
et al., 2004). In a study of clinical Campylobacter isolates, it was found
that there is extensive evolutionary potential due to frequent
recombination events, and that genetic exchange occurs regularly
between C. coli and C. jejuni, important human pathogens (Wilson et al.,
2009). This exchange may be accelerated by human activity and could
increase the host range of these organisms (Sheppard et al., 2008;
Waldenstrom et al., 2010; Lawton et al., 2018; Wei et al., 2019). For
example, C. jejuni sequence type (ST)-137 was found to be widespread
across wild bird taxa and has been implicated more recently in sporadic
cases of campylobacteriosis (Wei et al., 2019). Hypervariable regions
have also been discovered in C. jejuni that likely contribute to rapid
evolutionary change, host range expansion, and antibiotic resistance
(Parkhill et al., 2000).

A worrying trend is the emergence of multi-drug resistant (MDR)
Campylobacter. In a study that took place in the United Kingdom, MDR
C. jejuni was found to be widespread in poultry (Lopes et al., 2019). As
livestock waste is considered an important reservoir of antibiotic
resistance genes (ARGs; He et al., 2020), the risk of ARGs spreading to
wildlife through this route is substantial. However, even in the absence
of antibiotic use, high levels of resistance have been found in
Campylobacter isolated from wild birds (Molina-Lopez et al., 2011; Du
et al., 2019). Examples of this phenomenon are also observed in
domestic species. For instance, 15% of Campylobacter isolates from a
population of Australian chickens were fluoroquinolone-resistant
without any history of exposure to this antibiotic class (Abraham et al.,
2020). It has been demonstrated that gyrA mutations conferring
fluroquinolone resistance are particularly stable and unlikely to incur
fitness costs in Campylobacter (Luo et al., 2005; Luangtongkum et al.,
2009). There are additional mechanisms that may allow for the
persistence of antibiotic resistance genes in the absence of selective
pressure, such as fitness-enhancing compensation from other regions of
the genome and co-selection with genes that confer an evolutionary
advantage (Melnyk et al., 2015). Monitoring antibiotic resistance in
Campylobacter will remain key in reducing its spread and preserving the
therapeutic agents available to treat disease.

While wildlife is considered an important reservoir of Campylobacter
spp., our understanding of infection and transmission dynamics is
mostly limited to avian species. The current body of evidence of
Campylobacter among mammalian wildlife hosts is inadequate to fully
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utilize a One Health approach to disease control strategies. Here,
we review and summarize the literature concerning Campylobacter
infection in wildlife hosts, identifying and expanding our current
understanding of Campylobacter in mammalian wildlife species. Using
infection detection data, we assess the potential influence of host life
history traits such as trophic level, urban association, and sociality on
the probability of Campylobacter carriage in wildlife species. We discuss
these results and study limitations as well as implications to

10.3389/fevo.2023.1070519

due to habitat needs that did not overlap with urban areas. Information
on consumption of species by humans was collected from the IUCN Red
List (IUCN, 2019) and Mildenstein et al. (2016) for some bat species.

Statistical analyses

Once data had been compiled, duplicate records were removed from
Campylobacter transmission dynamics and surveillance and the original database through an automated process using EndNote 20
management approaches.

Methods

Literature review

This study followed guidelines provided under the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA),
a framework for the standardization of reviews and meta-analyses (Page
et al., 2021). Briefly, published studies of Campylobacter in wildlife were
retrieved from online scientific search engines (Web of Science, PubMed,
Google Scholar) using the key words: ‘wildlife + Campylobacter’ and ‘wild
mammals + Campylobacter.’ Only the first 300 records from each query
in Google Scholar were screened, as this resource was considered a
secondary database to capture articles not located on Web of Science or
PubMed (Haddaway et al., 2015; Gusenbauer and Haddaway, 2020).
Duplicate records were removed automatically using EndNote 20, a
reference manager (The EndNote Team, 2013). Reference lists of pertinent
publications were searched for additional related articles. Information was
retrieved on the location of sample collection, order, genus, and species
studied, animal status (captive, wild feces or wild carcass), detection of
Campylobacter spp. and particular Campylobacter species identified, and
method of testing used (culture and PCR or other molecular methods).

Classification of life traits

Mammals that had Campylobacter detection data were categorized by
trophic level (herbivore, omnivore, and carnivore) and sociality using the
PanTHERIA database (Jones et al., 2009) and the Animal Diversity Web
(ADW; Myers et al., 2019). In cases where species are occasionally
omnivores but are primarily herbivores or carnivores, the predominant
trophic level was chosen for analysis. Sociality of the species was defined
as either social or solitary, depending on whether a species lived alone or
within a social group (Myers et al., 2019). Mammals were also classified
based on their association with urban areas. The classification system from
Santini et al. (Santini et al., 2019) was used to classify species into urban
‘dwellers’ and urban ‘visitors’, with species meeting more than one criterion
labeled as both (i.e., ‘dwellers\visitors’). Per this classification system,
species that are classified as urban ‘dwellers’ have been demonstrated to
utilize urban areas for all resources, while ‘visitors’ may exist in urban
areas for some parts of their life cycle, but still obtain most resources from
natural environments. Urban association for species that were not
included in the Santini et al. (Santini et al., 2019) review were searched for
using ‘taxon name (genus and species)+urban, urbanization or humans’
(Supplementary Table S1). An additional category was added for purposes
of this study to classify species that had no urban interaction, which were
labeled as urban ‘avoiders’ based on an absence of urban interaction in the
literature. Several marine and alpine species were assumed to be avoiders

(The EndNote Team, 2013). If the same species was studied in two
different regions of the world, and no subspecies are apparent, only one
entry for this species was kept in our database. Due to the significant
differences in sample sizes from different manuscripts (sample sizes
varied from one to 1,168; Sus scrofa), we used a dummy categorical
variable for Campylobacter presence in wildlife species, with 1 indicating
that Campylobacter spp. had been detected (culture and/or polymerase
chain reaction (PCR) based methods) or 0 indicating no Campylobacter
spp. detection. This dummy variable was used to create graphs and carry
out statistical analyses of the data. If at least one study of a species
reported the detection of Campylobacter spp., it was recorded as present
for the purposes of analysis. For studies that only identified Campylobacter
to the genus level or where the authors did not attempt to detect C. jejuni
or C. coli, no data was recorded at the species level and this field was left
blank. All statistical analyses were conducted in R 4.1.2, an open source
integrated programming environment (R Core Development Team,
2022). To investigate the effect of the categorical input variables (trophic
level, urban association, and sociality) on the binary presence/absence of
Campylobacter, C. jejuni, and C. coli, a series of logistic regression (LR)
models were created in order to determine the ability of a model to
predict carriage of either Campylobacter genus or the two species of
Campylobacter analyzed in this study (C. jejuni and C. coli). An important
assumption of LR models is that multicollinearity does not exist among
the predictors. The generalized variance inflation factor (GVIF) was used
to assess for multicollinearity in the predictor variables of all models used
for analysis. GVIF is generally corrected by ½ degrees of freedom (df)
when applied to categorical variables, and a cutoff of 1.73 following (Usio,
2020) was used, with independent variables below this threshold having
little-to-no correlation. To obtain the GVIF1/2df value, we used the vif
function of the car package (Fox et al., 2012). No independent variables
in the models had GVIF1/2df values significantly above 1, indicating that
multicollinearity was not present in this dataset.

We use the Akaike information criterion (AIC) to score and select
the model with the best fit for the data balanced against the number of
model parameters included (Aho et al., 2014). For this analysis we use
the AICc, which is a sample size adjusted formula to calculate AIC
(Bedrick and Tsai, 1994), due to the relatively low sample size (n =128).
AICc values were generated using AICcmodavg (Mazerolle and
Mazerolle, 2017) and the model with the lowest AICc value was chosen
as the best fit and used in additional analyses. The predict function in R
4.1.2 was used to estimate the probability of pathogen carriage for each
level of the factors included in the in our top model. Data were visualized
and graphed using ggplot2 (Wickham et al., 2016). Summary statistics
were generated using the janitor package (Firke, 2021).

Results

We identified 65 published papers (1985–2021) and included these
in our analysis representing 128 different free-ranging mammal species
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across 38 families and 9 orders. The plurality of studies was conducted
on European wildlife (n =30), but many world regions, including North
America (n =11), South America (n =3), the Caribbean (n =4), the
Middle East (n =2), Africa (n =6), Asia (n =6), Oceania (n =1) and
Antarctica (n =2) were represented (See Supplementary materials S2),
having at least one published study on Campylobacter spp. in
mammalian wildlife. Campylobacter spp., C. jejuni, and C. coli carriage
was detected by culture (n =56), PCR (or other molecular methods;
n =6), or both (n =2). One study used microarray for detection of
Campylobacter (Jaing et al., 2015). Additionally, two of the studies that
utilized culture techniques leveraged matrix-assisted laser desorption/
ionization (MALDI-TOF) mass spectrometry for species identification.
Four papers were included that investigated Campylobacter spp. in
wildlife carcasses destined for human consumption. A full list of species,
references, and associated data included in our statistical analyses are
listed in Supplementary Table S2. As a species was often covered by
multiple studies, there were many cases of redundancy in data that were
removed for the analysis. An additional 11 studies analyzed
Campylobacter spp. presence in captive wild mammals. These studies
were excluded from statistical analysis but included below due to the
added value they provide in understanding Campylobacter spp. carriage
in wildlife species.

Campylobacter spp. presence was only correlated with trophic level
in the model containing the highest explanatory power (lowest AICc,
ΔAICc value of 1.5; Table 1). Based on this model, omnivores are
significantly more likely to carry the Campylobacter genus than either
herbivores or carnivores (p value=0.0156, Table 2). Given the breath of
Campylobacter and host species included in the genus level analysis, this
finding suggests that trophic position has an important cross-species
influence on exposure dynamics for this pathogen group. Urban
association and sociality life traits would appear to have a more

10.3389/fevo.2023.1070519

included in the model with the lowest AICc value and omnivores
seem to differ from carnivores in their likelihood of carrying C. jejuni,
this effect was not quite to the level of statistical significance
(p = 0.058, Table 4). This may be due to the relatively low sample size
used in the analysis.

C. coli carriage was highly correlated with both sociality and trophic
level in this analysis, as the model with the AICc included both variables
(Table 5). Omnivores were significantly more likely than carnivores to
carry the pathogen (p =0.0282), with herbivores showing no significant
difference from carnivores (p =0.0977). Solitary species were less likely
than social species to carry C. coli in our analysis (p =0.0113, Table 6).
Much like our analysis of C. jejuni, the interaction between these two
variables does not appear to be significant in prediction of carriage.

Discussion

Across 65 reviewed publications meeting our criteria, infection
detection was identified across a wide array and included 128 species
with varying life traits and Campylobacter infection status. Our analysis
indicates that life traits can have an important influence on the
probability of Campylobacter carriage and transmission potential with
dynamics in wildlife likely complex, involving interdependent
interactions between host, pathogen, and the environment. Summary
statistics by life history trait are provided in Table 7. Host factors driving
infection in wildlife are multifaceted with life traits, such as sociality and
trophic level appearing to influence disease transmission dynamics
(Kriger and Hero, 2007; Johnson et al., 2012; VanderWaal et al., 2014).
As an example, it has been demonstrated that parasite diversity is higher
in bird species that utilize a wider variety of food sources (Gutiérrez
et al., 2019). Host space use has been identified as an important factor

heterogenous influence across the various Campylobacter pathogen- influencing pathogen transmission and persistence dynamics
wildlife host systems.

C. jejuni presence was best predicted by urban association and
trophic level (ΔAICc value of 1.17, Table 3). There was not a
significant interactive effect, as the model with an interactive term
performed worse than a null model (carriage predicted by 1). Based
on the model containing urban association and trophic level, urban
dwellers were significantly more likely to be positive for C. jejuni than
urban avoiders (p value = 0.0279, Table 4). While trophic level is

(VanderWaal and Ezenwa, 2016). Similarly, trophic level and diet can
alter pathogen exposure dynamics, with previous studies identifying an
association between pathogen prevalence and carnivores in some multi-
host pathogen systems (Moore et al., 2010; Hollings et al., 2013) which
has recently been proposed as a form of accumulation due to the
diversity of pathogen exposure from prey (Malmberg et al., 2021).
Carnivores and water-associated species were shown to have a higher
prevalence of antibiotic-resistant E. coli in a previous study (Jobbins and

TABLE 1 AICc output for Campylobacter genus logistic regression models.

Model

Campy~trophic

Campy~ trophic sociality + interaction

Campy~ trophic+sociality

Campy~ 1 (null)

Campy~urban+ trophic

Campy~urban+ trophic+ interaction

Campy~urban

Campy~ sociality

Campy~urban+ trophic+sociality

Campy~urban+ sociality

Campy~urban+ sociality+ interaction

K AICc

3 175.1983

6 176.6988

4 177.2206

1 177.9431

6 179.6512

12 179.7306

4 179.8723

2 180.0615

7 181.8307

5 181.982

8 185.6265

Delta_AICc

0

1.500488

2.0223

2.744766

4.45285

4.532233

4.673984

4.86314

6.632329

6.783648

10.42812

AICcWt

1

0.472251

0.3638

0.253502

0.107914

0.103714

0.096618

0.087899

0.036292

0.033647

0.00544

Cum.Wt

0.390461

0.574856

0.716906

0.815889

0.858025

0.898521

0.936247

0.970568

0.984738

0.997876

1

LL

−84.5024

−82.0023

−84.4477

−87.9557

−83.4785

−87.8173

−85.7736

−76.6742

−83.4487

−85.7451

−84.2082

Note that the model with the lowest AICc value (delta AIC of 1.36) contains only trophic level as an explanatory variable. The next best model contains sociality and trophic level as well as an
interaction term.
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Alexander, 2015), further reinforcing the importance of life history traits
in the evaluation of infectious disease dynamics.

Life history traits

Trophic level
Diet can provide a critical influence on infectious disease exposure

and transmission (Fischer et al., 2005) with results from our meta-
analysis indicating that they may influence Campylobacter spp.
transmission patterns in wildlife as well. Omnivores are more likely to
carry Campylobacter than herbivores or carnivores (Figure 1), which
may be related to differences in host foraging behavior or bacterial
survival rates in different environments. Trophic level did not seem to
be as important in the transmission of C. coli, although the best
performing model in the prediction of C. jejuni carriage included this
variable, suggesting that it may be important for this species or that there
is an interaction between trophic level and urban association. A model
including an interactive term, however, did not reveal a significant
interaction between these variables and did not perform as well in
model comparison as the model without the interactive term (Table 2).

Urbanization
Urbanization did not appear to predict carriage of the Campylobacter

genus, based on our analysis. However, wildlife species that utilize the
urban landscape (urban dwellers) were significantly more likely using
logistic regression to carry C. jejuni than urban avoiders (Figure 2).

TABLE 2 Logistic regression output for the best explanatory model
(Campylobacter ~ trophic).

Factor Estimate Std. z  Value Pr(>|z|)
level                                                Error

10.3389/fevo.2023.1070519

C. jejuni is considered an important zoonotic human pathogen and is
ubiquitous in domestic poultry. Urban dwellers are more likely than
avoiders to ingest waste from humans and domestic animals infected
with C. jejuni. This has been demonstrated in wild birds, with those
feeding on refuse more likely to carry Campylobacter than those that
forage on natural food sources (Kapperud and Rosef, 1983). Additionally,
C. jejuni has been found in raccoons and civets inhabiting urban centers
(Lee et al., 2011), rodents overwintering in human dwellings (Lõhmus
and Albihn, 2013) and even in wildlife feces on playgrounds (French
et al., 2009; Abdollahpour et al., 2015). However, the occurrence of C.
jejuni in wildlife species is not exclusively dependent on transmission
from human sources. Wild birds are also known carriers of C. jejuni,
having their own distinct C. jejuni subtypes (Ramonaite et al., 2014), and
may act as a reservoir for other wildlife species in these environments.
Wild-bird associated C. jejuni is also commonly found in water sources
(Mughini-Gras et al., 2016) and may be responsible for a small fraction
of human campylobacterosis cases annually (Cody et al., 2015). In a
recent study, Persian fallow deer (Dama mesopotamica) in a wildlife
refuge were found to have a high prevalence of Campylobacter spp.
(52.3%, 33/63) and C. jejuni (27.0%, 17/63), with exposure to water
sources used by migratory birds thought to be the primary source of
infection (Khoshbakht et al., 2015). Interestingly, C. coli carriage was not
associated with how an organism utilizes the urban environment, with
no difference found between urban avoiders and dwellers or visitors/
dwellers. Campylobacter coli is primarily associated with swine
production systems, and previous studies have identified an overall
reduced risk of C. coli infection in humans who live in urban areas
(Roux et al., 2013) consistent with the limited number of swine expected
in these environments.

Sociality
Sociality did not appear to be important in the carriage of

Campylobacter at the genus level or in the carriage of C. jejuni.
Carnivore

Herbivore

−0.6931

0.1967

0.3273 −2.118

0.4712 0.417

0.0382*

0.6793

Interestingly, from our analysis it has demonstrated importance in the
carriage of C. coli, with social species more likely to carry this pathogen

Omnivore 1.1558 0.4506 2.565 0.0156

Significant results are bolded. Note that omnivores are significantly more likely to carry
Campylobacter than carnivores and herbivores. Please also note that the significant value for
carnivores indicates only that the estimate (logit) is significantly different from zero.

(Figure 3). A study of C. coli prevalence in feral pigs found a significant
difference between males and females, with males more likely to carry
the bacteria (Cummings et al., 2018). It was postulated that this was
due to the social structure of pigs, as males are more likely to

TABLE 3 AICc values for logistic regression models with C.  jejuni presence/absence as the output variable.

Model

C. jejuni ~urban+ trophic

C. jejuni ~urban+ sociality

C. jejuni ~urban+ trophic+sociality

C. jejuni ~trophic

C. jejuni ~trophic+ sociality

C. jejuni ~1 (null)

C. jejuni ~urban+ sociality+ interaction

C. jejuni ~trophic+ sociality + interaction

C. jejuni ~urban+ trophic+ interaction

C. jejuni ~urban

C. jejuni ~sociality

K AICc

6 138.4256278

5 139.6037136

7 140.0756225

3 140.5290637

4 141.3321862

1 142.343611

8 143.6562944

6 143.8500115

12 143.8500115

2 144.2745202

2 144.8077785

Delta_AICc

0

1.178085794

1.64999462

2.103435884

2.906558327

3.91798318

5.230666526

5.424383616

5.424383616

5.8488924

6.382150621

AICcWt

1

0.554858087

0.438236171

0.349337092

0.233802353

0.141000536

0.073143409

0.066391131

0.066391131

0.05369442

0.041127622

Cum.Wt

0.331347

0.515198

0.660406

0.776158

0.853628

0.900348

0.924584

0.946582

0.968581

0.986372

1

LL

−62.7798

−66.6819

−64.7317

−62.6812

−66.4641

−70.1522

−65.3952

−69.8656

−69.8656

−63.3794

−58.6896

Note that the model with the input variables urban association and trophic level has the lowest AICc value, although the delta AIC value is under the 2 that is usually indicated as a significant
difference in the explanatory power of models. However, the models with the lowest AICc all contain urban association as a predictor variable, suggesting that it is important in the transmission
dynamics of Campylobacter.
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be solitary. Our results indicate that solitary species are less likely to
carry C. coli, but there may exist heterogeneity across species,
geographic areas, and a host of other factors. Different risk factors have
been associated with C. coli and C. jejuni in human infections,
including age, season and location (Gillespie et al., 2002; Roux et al.,
2013), which implies that different risk factors could also be associated
with C. coli in wildlife. Similar differences in transmission pathways
may also explain why C. coli was more common in social than
solitary species.

Public health implications

Consumption of wild game/bush meat
Overall, we found that almost 50% of wildlife species used as human

food resources were positive for Campylobacter spp., with 31% positive
for C. jejuni and 26% positive for C. coli, highlighting an important
public health concern. This is a concern that is not entirely restricted to
the developing world, however, with many developed countries having
high prevalence of the pathogen group. For example, it was found that
9.1% of diarrheic patients in Alberta over a one-year period were
positive for Campylobacter (Inglis et al., 2021). Additionally, some

TABLE 4  Summary statistics for the logistic regression model
(C. jejuni ~ urban + trophic).

10.3389/fevo.2023.1070519

wildlife species consumed by humans contained antimicrobial resistant
(AMR) strains of Campylobacter spp., which may have important
implications to AMR transmission dynamics and public health (Sasaki
et al., 2013).

Although there is an association between Campylobacter spp.
presence and wildlife consumed by humans, there is not strong evidence
from the literature implicating game meat as a significant public health
threat. Campylobacter spp. were only rarely detected in moose (Alces
alces; 6%) and deer (Odocoileus virginianus; 2%) carcasses in Finland
(Sauvala et al., 2019), hares (Lepus timidus; 4.3%) in Norway (Rosef
et al., 1983), and were not detected in any deer carcasses (Capreolus
capreolus and Cervus elaphus) in Germany (Atanassova et al., 2008).
Pyrenean chamois (Rupicapra pyrenaica) a game species harvested was
also not found to harbor Campylobacter spp. (Espunyes et al., 2021) in
a study conducted in Spain. Campylobacter was not detected in monkey,
porcupine, duiker or river hog muscle meat (n=104) in Gabon (Bachand
et al., 2012). Results from wild boar studies have been more varied, with
some detecting no or low Campylobacter spp. prevalence (Atanassova
et al., 2008; Wacheck et al., 2009; Cummings et al., 2018), and others
detecting high Campylobacter spp. prevalence (Jay-Russell et al., 2012;
Díaz-Sánchez et al., 2013; Sasaki et al., 2013). It also may be that wild
boar carry different Campylobacter spp. not detected by traditional
culture methods. For example, a study in Spain found that 66%
(188/287) of wild boar were positive for Campylobacter spp., but only
one was positive for C. jejuni and no isolates were positive for C. coli or
C. lari (Díaz-Sánchez et al., 2013). In contrast, another study in Spain

Factor
level

Avoider

Dweller

Visitor

Visitor/

Dweller

Estimate

−2.9386

2.4765

1.9762

2.2451

Std z
Error

1.1202 −2.623

1.1266 2.198

1.1027 1.792

1.1463 1.959

Pr(>|z|)

0.00871*

0.02793

0.07310

0.05016

identified C. lanienae as the dominant species in wild boar, making
up 67.3% (34/49) of Campylobacter isolates (Navarro-Gonzalez et al.,
2014), and found that it was significantly higher (p <0.01) in wild boar
than free-ranging cattle (Navarro-Gonzalez et al., 2014). Campylobacter
lanienae has primarily been isolated from livestock and slaughterhouse
workers, and its pathogenicity and role as a human gastrointestinal
pathogen is not well understood (Guévremont et al., 2008; Oporto and
Hurtado, 2011). Other species commonly isolated from wild boar

Herbivore 0.3161 0.5900 0.536 0.59210

Omnivore 1.0254 0.5416 1.1893 0.05834

Significant results are bolded. Note that urban dwellers and dwellers/visitors are significantly
more likely to carry C. jejuni than urban avoiders. Please also note that the significant value for
urban avoiders only indicates that the estimate of effect is significantly different from zero.

include C. hyointestinalis (Sasaki et al., 2013), while C. coli and C. jejuni
have been consistently less common (Jay-Russell et al., 2012; Cummings
et al., 2018).

If there is a public health concern from wild game, it looks to
be associated with cross-contamination during butchering and

TABLE 5 AICc output for C.  coli logistic regression models.

Model K

C. coli ~trophic+ sociality 4

C. coli ~sociality 2

C. coli ~trophic+ sociality + interaction 6

C. coli ~trophic 3

C. coli ~urban+ sociality 5

C. coli ~urban+ trophic+sociality 7

C. coli ~1 (null) 1

C. coli ~urban+ trophic 6

C. coli ~urban+ sociality+ interaction 8

C. coli ~urban 4

C. coli ~urban+ trophic+ interaction 12

AICc

96.03855

98.01888

98.07086

100.812

100.9031

102.0795

104.3584

104.6789

106.0756

106.6288

113.9627

Delta_AICc

0

1.980333

2.032305

4.773411

4.864507

6.040953

8.319898

8.64037

10.03703

10.59029

17.92412

AICcWt

1

0.371515

0.361985

0.091932

0.087839

0.048778

0.015608

0.013297

0.006614

0.005016

0.000128

Cum.Wt

0.499323

0.684829

0.865576

0.91148

0.955339

0.979695

0.987489

0.994129

0.997431

0.999936

1

LL

−43.8065

−46.9469

−42.5789

−45.0834

−42.8361

−47.9134

−51.1586

−43.5395

−46.5813

−49.1017

−43.1674

The model with the lowest AICc includes trophic level and sociality as predictor variables, the only Campylobacter species examined for which sociality seems to be important in the prediction of
carriage.
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processing as in most food systems. For example, Stella et al. (2018)
found that although only 16.7% (5/30) of wild boar carcass samples were
positive for Campylobacter, 51.8% (29/56) of caecal contents were
positive, and two carcass samples that were positive did not have positive
caecal content. Further, processed wild game meat that was smoked in

10.3389/fevo.2023.1070519

wild boar were deemed an unlikely reservoir for cattle because they each
had their own dominant species: C. lanienae in boar and C. jejuni in cattle
(Navarro-Gonzalez et al., 2014). In other studies, a low prevalence in
wildlife coupled with minimal genetic similarity between wildlife and
livestock genotypes suggests that transmission between wildlife and

the Democratic Republic of Congo was contaminated with livestock is infrequent (French et al., 2005; Jensen et al., 2006; Meerburg
Campylobacter spp. in 11.1–26.6% of buffalo (Syncerus caffer), common
duiker (Sylvicapra grimmia), and desert warthog (Phacochoerus
aethiopicus) samples (Mpalang et al., 2013). Although the risk of
infection from consuming wild game meat is lower than that from
poultry, communities who rely heavily on this food source should
exercise caution during butchering to reduce exposure.

Wildlife transmission to livestock and humans
As Campylobacter is primarily a foodborne pathogen, a pressing

concern is the role of wildlife in pathogen transmission to domestic
species commonly consumed by humans. There is conflicting evidence
regarding the role of wildlife in Campylobacter transmission to livestock
and poultry species. In one study from Spain, Campylobacter spp. from

TABLE 6 Logistic regression output for the model with the highest
explanatory power (C. coli ~ sociality + trophic).

Factor Estimate Std. z  value Pr(>|z|)
level                                                Error

et al., 2006; Sippy et al., 2012; Olkkola et al., 2021). When wildlife-specific
strains were compared to generalist strains, there were genetic regions
missing from wildlife-specific strains that may explain why they are
unable to colonize a wide host range (Hepworth et al., 2011). Although
Viswanathan et al. (2017) found most C. jejuni isolates phylogenetically
grouped into distinct wildlife and livestock clusters, 31.25% (5/16) of dairy
cattle isolates and 17.6% (3/17) of beef cattle isolates clustered with small
mammal (raccoons, skunks and mice) isolates collected from farms,
suggesting that transmission is occurring between wildlife and livestock
in this landscape type. It may be that some wildlife species are more likely
to be infected with livestock and human strains than others, as a study
from wildlife and livestock in the United Kingdom found little genetic
overlap between cattle and wild birds, but rabbit isolates were genetically
similar to cattle isolates (Kwan et al., 2008).

Additional studies have identified identical Campylobacter spp. clones
from rodents, sparrows, flies and livestock (Adhikari et al., 2004), and
high genetic similarity between Campylobacter spp. isolated from wild
birds, mice and poultry (Hiett et al., 2002). This genetic similarity across
isolates can create increased transmission risk to poultry flocks, as an

Carnivore

Herbivore

−2.1227

1.4183

0.7507 −2.827 0.0047

0.8564 1.656 0.0977

environment contaminated with feces from other animals is a risk factor
for poultry infection with Campylobacter spp. (Ellis-Iversen et al., 2012).

Omnivore 1.8371 0.8376 2.193 0.0282

Solitary −1.7356 0.6848 −2.534 0.0113

Significant results are bolded. Note that omnivores and solitary species are significantly more
likely to carry C. coli. An interactive term did not increase the explanatory power of the model
and was therefore not considered further.

An increased transmission risk to poultry flocks may also increase risk to
humans, as demonstrated by a study in England which found significant
overlap of Campylobacter sequence types between animals and humans
(Wilson et al., 2008). It is also worth noting that Campylobacter has been
demonstrated to form distinct genetic clusters that differ in pathogenicity

TABLE 7 Summary statistics by organism and life history trait.

Campylobacter Urban Association Trophic level Sociality

Absent

Present

Total

C. jejuni

Absent

Present

Not detected

Total

C. coli

Absent

Present

Not detected

Total

Avoider

18% (12)

11% (6)

16% (18)

Avoider

21% (13)

2% (1)

17% (4)

16% (18)

Avoider

16% (13)

5% (1)

21% (6)

16% (18)

Dweller

25% (18)

35% (20)

30% (38)

Dweller

24% (15)

43% (18)

21% (5)

30% (38)

Dweller

32% (25)

29% (6)

24% (7)

30% (38)

Visitor

31% (22)

39% (22)

34% (44)

Visitor

35% (22)

36% (15)

29% (7)

36% (44)

Visitor

32% (25)

52% (11)

28% (8)

34% (44)

Visitor/
Dweller

26% (19)

16% (9)

20% (28)

Visitor/

Dweller

19% (12)

19% (8)

33% (8)

18% (28)

Visitor/

Dweller

19% (15)

14% (3)

28% (8)

20% (28)

Carnivore

41% (29)

26% (15)

34% (44)

Carnivore

34% (21)

21% (9)

58% (14)

34% (44)

Carnivore

36% (28)

10% (2)

48% (14)

34% (44)

Herbivore

34% (24)

26% (15)

30% (39)

Herbivore

37% (23)

21% (9)

25% (6)

30% (39)

Herbivore

29% (23)

38% (8)

28% (7\8)

30% (39)

Omnivore

25% (18)

47% (27)

35% (45)

Omnivore

29% (18)

55% (23)

17% (4)

35% (45)

Omnivore

35% (27)

52% (11)

24% (7)

35% (45)

Social

68% (45)

63% (36)

66% (84)

Social

61% (38)

57% (24)

85% (17)

64% (79)

Social

53% (41)

86% (18)

86% (25)

66% (84)

Solitary Total

32% (2\3) 71

37% (21) 57

34% (44) 128

Solitary Total

39% (24) 62

43% (18) 42

15% (3) 24

36% (45) 128

Solitary

47% (37) 78

14% (3) 21

14% (4) 29

34% (44) 128
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FIGURE 1

Probability of Campylobacter carriage at different trophic levels.

(Carvalho et al., 2001). If such clusters are found circulating in animal
species, they may represent a heightened risk to associated humans.

It is unclear whether wildlife may acquire Campylobacter spp.
infections from livestock and/or the environment. In a study of wild
rodents across chicken and pig farms, Campylobacter species in
rodents varied between farm type, with C. jejuni more common on
poultry farms and C. coli more common on pig farms (Backhans
et al., 2013). A survey of omnivorous mesopredators in Canada
(skunks, raccoons, and opossums) associated with swine farms
revealed the presence of C. jejuni and C. upsaliensis, but not C. coli
which is typically associated with swine (Bondo et al., 2019). Further
analysis of mammalian wildlife and livestock species that

Limitations and knowledge gaps

This study provides a broad overview of Campylobacter spp.
infection in free-ranging mammalian wildlife. Statistical analyses in this
study were based on presence/absence and did not include
Campylobacter prevalence data, removing some of the complexity of the
original datasets. Prevalence often varied greatly between species and
studies, ranging between 1 to 87.5%. These differences in prevalence
likely create differential transmission risks, a potential area of future
research. Culture and detection methods also varied greatly between the
studies which can have a significant impact on the prevalence, species
and genotypes isolated (Williams et al., 2012; Hetman et al., 2020).

incorporates both behavior and phylogenetic analysis of Detection methods often are biased toward C. jejuni and C. coli isolation
Campylobacter spp. is necessary and has demonstrated value in wild
bird studies (Taff et al., 2016). It is difficult to make broad
conclusions on the role of wildlife in agricultural Campylobacter
transmission dynamics as most studies have been limited to the
United States and Europe. Food production systems are increasinly
globalized, so it will be important to understand the role of the
various wildlife species across landscapes (Van Nierop et al., 2005;
Suzuki and Yamamoto, 2009; Adzitey et al., 2012; Perdoncini
et al., 2015).

which can skew the representation of Campylobacter species present
(Lastovica and le Roux, 2000). Importantly, there have been relatively
few studies about Campylobacter upsaliensis, especially in free-ranging
wild mammals. This species is suspected to be an emerging human
pathogen and has been isolated from domestic animals such as dogs
with some frequency (Bourke et al., 1998; Man, 2011; Couturier et al.,
2012). The age and storage of feces also impacts Campylobacter isolation,
with fresh fecal samples significantly more likely to likely to be positive
for Campylobacter spp. than older feces using culture methods
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FIGURE 2

Probability of C.  jejuni carriage at different trophic levels and degrees of urban association.

(Abdollahpour et al., 2015). In a study performed using sheep feces
sampled and placed back into the environment (Jackson et al., 2009), the
authors found that Campylobacter died rapidly. Another phenomenon
in Campylobacter spp. that complicates isolation is the progression to a
viable but non-culturable (VBNC) state under harsh conditions
(Moriarty et al., 2011). This may be particularly relevant for
Campylobacter isolation from wildlife samples, especially if samples are
taken from remote sites. Culture methods have also been found to
be inferior to immunoassay and molecular methods for sensitivity and
specificity of Campylobacter detection (Buss et al., 2019).

Pathogen prevalence and transmission have been well studied in
European and North American wildlife and bird species, but relatively
few studies on Campylobacter prevalence and transmission in wildlife
have occurred in developing countries where Campylobacter burden is
highest (Troeger et al., 2017), transmission dynamics may differ (Platts-
Mills and Kosek, 2014), and limited resources may increase the dificulty
of investigations. There is also a lack of phylogenetic information on
Campylobacter spp. in mammalian wildlife. Campylobacter spp. possess
the ability to evolve rapidly (Wilson et al., 2009) which suggests that the
relationship between wildlife-associated Campylobacter and human-
associated Campylobacter may be obscured. Most papers that incorporate
genetic or phylogenetic information rely on MLST techniques which

have been the gold-standard for defining clonal groups but have been
shown to be inferior at establishing epidemiological dynamics (Llarena
et al., 2017). Only two recent papers incorporate WGS on free-ranging
wildlife and both papers found human-associated Campylobacter
genotypes in their respective wildlife species (Baily et al., 2015; Hazeleger
et al., 2018). Future research should incorporate WGS methods into
targeted studies of species at the human-wildlife interface that are most
likely to contribute to Campylobacter transmission and human disease.

Conclusion

Multi-host pathogens, such as Campylobacter, have complex
interdependent transmission dynamics that can be altered by landscape
changes and host life traits. Our understanding of Campylobacter spp. in
mammals at the human-wildlife interface is limited, but it is important to
understand these dynamics to effectively model and predict transmission
risk and public and animal health needs. As large-scale surveillance of
Campylobacter is economically unfeasible, this study may optimize efforts
by identifying the wildlife species most likely to contribute to Campylobacter
infections in humans. In this study, we found that life traits significantly
influenced the presence of Campylobacter spp. in free-ranging wildlife. Most
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FIGURE 3

Probability of C.  coli carriage at different levels of sociality and urban association.

importantly, urban association is strongly correlated with C. jejuni presence
(Figure 4) and trophic level was important across all pathogens, with
omnivores more likely to carry Campylobacter spp. Additionally, sociality is
strongly correlated with C. coli presence. These results demonstrate that life
traits must be leveraged as a powerful tool for identifying points of increased
zoonotic spillover risk across the landscape. Campylobacter is a rapidly
evolving pathogen at the human-animal interface; therefore, targeted
monitoring of urban-associated species will be important for understanding
transmission dynamics and protecting public health.

Author’s note

As demonstrated with the recent emergence of SARS-CoV-2 and
the ensuing global pandemic, our ability to predict pathogen emergence
remains extremely limited, influenced strongly by the complexity of
interdependent factors that drive these processes. Using published
literature and Campylobacter spp. infection detection in wild
mammalian species, we identify the potential usefulness of key life
traits that may predict a heightened risk of infection with this multi-
host pathogen. Across host-pathogen systems, this approach may
provide a useful framework for identifying host factors that influence
pathogen transmission potential.
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