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Soft materials often display complex behaviors that transition through apparent solid-
and fluid-like regimes. While a growing number of microscale simulation methods
exist for these materials, reduced-order models that encapsulate the macroscale physics
are often desired to predict how external bodies interact with soft media. Such an
approach could provide direct insights in diverse situations from impact and penetration
problems to locomotion over natural terrains. This work proposes a systematic
program to develop three-dimensional (3D) reduced-order models for soft materials
from a fundamental basis using continuum symmetries and rheological principles. In
particular, we derive a reduced-order, 3D resistive force theory (3D-RFT), which is
capable of accurately and quickly predicting the resistive stress distribution on arbitrary-
shaped bodies intruding through granular media. Aided by a continuum description
of the granular medium, a comprehensive set of spatial symmetry constraints, and
a limited amount of reference data, we develop a self-consistent and accurate 3D-
RFT. We verify the model capabilities in a wide range of cases and show that it can be
quickly recalibrated to different media and intruder surface types. The premises leading
to 3D-RFT anticipate application to other soft materials with strongly hyperlocalized
intrusion behavior.

soft matter | intrusion modeling | resistive force theory | continuum modeling | granular media

Intrusion in soft media is a common occurrence in nature arising in biological and
vehicular locomotion, excavation and anchoring applications, and meteorite and ballistic
impact problems (1–4). Modeling intrusion in real-time is critical for a variety of
applications and would enable heuristic understanding and quick insight into phenomena
like biological circumnutation (5) and robot-terrain interactions (6). But the multiphase
nature of these materials—simultaneous solid- and fluid-like behaviors (7)—makes
modeling such systems computationally challenging. In the specific case of dry granular
media, despite over a century of progress in the disciplines of granular physics and
terramechanics—the study of the interaction of tracked vehicles on various substrates
(8)—challenges remain. Many commonly used methods have limited applicability due
to their shape- or media-specific nature. For instance, commonly used terramechanical
empirical models such as the Bekker model (9), later modified by Wong and Reece
(10), and the “Magic formulae” (11) are limited to specific geometries such as circular
wheels. Inspired by an analogous approach for viscous fluids (12, 13), in recent years, a
granular resistive force theory (RFT) has been introduced (14) to model the forces on
arbitrarily shaped intruders in granular media, but its form is limited to two-dimensional
(2D) problems. This poses limits on its usage in many practical applications. Attempts
to extend RFT to three-dimensional (3D) intruders have only recently been explored
based on empirical fitting, though these approaches have known limitations (5, 15) (see
SI Appendix, section S1 for comparison and critique).

While granular intrusions represent a wide class of intrusion problems, equally
plentiful problems exist in other soft material systems such as muds and slurries. The
challenges are further exacerbated by the 3D nature of such problems that require
additional physical self-consistency constraints. Thus, this work introduces a generic
program for developing intrusion models in a wide class of soft materials and exemplifies
its use in the case of dry granular media. The basic program is to combine three ingredients
from the full-field physics of the soft media to extract a “hyperlocalized” rule-set for
determining intrusive stresses. First, a continuum model that parsimoniously represents
the rheology of the media is identified. Second, dimensional analysis of the continuum
system together with surface-media boundary stress constraints are used to obtain a
generic functional form for the local intrusion stress formula. Third, global symmetries
are enforced to reduce the remaining functional dependences. In our application to
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dry granular intrusions herein, the final step is to fill in the
remaining details of the resulting functions using a targeted set
of in silico reference tests. We use this program to develop a 3D-
RFT model with additional efforts to keep its structure similar
to the previous 2D-RFT. We test the 3D-RFT model against a
variety of granular intrusions, consisting of the arbitrary motion
of many symmetric and asymmetric shapes in beds of granular
media. We find excellent agreement between the reference results
and 3D-RFT predictions both globally (total intrusion force
and moment) and locally (surface stress distribution). Thus, the
proposed set of steps, which could also be extended to other soft
flowable materials, helps us develop a 3D-RFT framework that
satisfies all needed physical constraints, is robust and predictive,
and whose dependence on material parameters and surface
roughness is transparent. We further discuss the approach’s use
in material systems other than noncohesive granular media in the
Conclusion and SI Appendix, section S2.

1. Review of Existing RFT

The resistive force theory methodology was originally introduced
by Gray and Hancock (12) for modeling self-propelling undula-
tory biological systems in viscous fluids. In this model, a simple
approximate formula for the resistive force on a segment of a thin
body is derived from the Stokes equations as a function of the
segment’s velocity components, orientation, and a few variables
characterizing the fluid-segment interaction. Importantly, the
theory assumes decoupling of the forces over the various segments
of the body (13). The success of fluid RFT motivated multiple
studies (14, 16, 17) to explore the existence of a similar theory in
granular media.

Li et al. (14) proposed a planar (or 2D) version of RFT for
dry granular media (2D-RFT). In 2D-RFT, at low-speeds, the
rate-independent nature of granular media (characterized by low
values of the nondimensional (micro-) inertial number I (18–20)
and macroinertial number Imac,Materials andMethods) makes the
intrusion force independent of the velocity magnitude. Assuming
that material strength increases with pressure and that pressure is
primarily due to gravity, Li’s 2D-RFT model has the following
form:

F total =
∫

surf
(αx(β, γ ),αz(β, γ )) |z| ds. [1]

Here, F total represents the total force on an intruding surface,
which is divided into smaller planar subsurface elements of area
ds and depth |z| from the free surface. The tilt angle β and
angle of attack γ characterize the orientation and motion of each
surface element of the intruding body (Fig. 1A). The vector-
valued function of angles � = (αx ,αz) represents the force per
unit area per unit depth; this function must be obtained a priori
through experiments or simulations of plate drag and depends on
the material properties of the granular media, the intruder surface
interaction, and the value of gravity. Of note, Eq. 1 assumes
no correlation between the forces on different subsurfaces; only
details local to a surface element determine the force on that
element (16). A comprehensive comparison of various existing
reduced-order methods for modeling granular intrusions, includ-
ing 2D-RFT and a terramechanical model, can be referred from
Agarwal et al. (2).

In recent years, it has been shown that plasticity-based PDE
models can also obtain the form of 2D granular RFT (21).
More recently, the performance of the continuum approach in

A

B

C

Fig. 1. 2D and 3D RFT surface characterization—2D-RFT: (A) Any moving
subsurface (line element) is represented using a set of two characteristic
angles—plate tilt (�, green) and angle of attack (
 , orange). 3D-RFT: (B) Any
moving subsurface (plate element) is represented using surface normal (n̂)
and velocity direction (v̂). The force is given from these directions together
with the area magnitude (ds), depth (|z|), and gravity direction (ĝ). (C)
Directions n̂ and v̂ are expressed using three characteristic angles—plate
tilt (�, green), plate twist ( , yellow), and velocity angle (
 , orange) in the local
coordinate frame {r̂, �̂, ẑ}.

modeling a variety of granular intrusions has been demonstrated
for wheeled locomotion, impact and penetration, and multibody
intrusion (2, 22–25). Additionally, the approach also provides
insight into the somewhat-surprising observation that granular
RFT is often more accurate than its viscous fluid counterpart (12,
13). Thus, while experimental observations primarily drove the
original RFT discoveries, the availability of faster computational
methods, the success of 2D-RFT, and a need for better real-time
3D granular intrusion methods have driven the exploration of
3D-RFT. Our work combines the capabilities of the continuum
approach with a few symmetry requirements and DEM data
to accurately and efficiently model the physics of 3D granular
intrusion to develop a 3D-RFT based on our proposed mecha-
nistic framework. We briefly discuss the details of the continuum
approach next.
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2. Guidance from Continuum Modeling

We use continuum modeling as the primary theoretical motivator
as well as a reference data generation tool in this work. The
constitutive model we use (22, 23) has a response characterized
by a rate-insensitive, nondilatant frictional flow rule when in
a dense state but also models the separated state which allows
material to become stress-free when below a critical density. The
model has been validated in a number of previous studies of
granular intrusion and locomotion (21, 25–28, 49).

The constitutive flow equations representing the material’s
separation behavior, shear yield condition, and tensorial codirec-
tionality, respectively, are shown below:

(ρ − ρc)P = 0 and P ≥ 0 and ρ ≤ ρc ,
γ̇ (τ − µintP) = 0 and γ̇ ≥ 0 and τ ≤ µintP,
Dij/γ̇ = σ ′ij/2τ if γ̇ > 0 and P > 0, [2]

where subscripts i, j = 1, 2, 3. In these equations,� represents the
Cauchy stress tensor and σ ′ij = σij + Pδij represents the deviatoric
part of �, where P = −σii/3 represents the hydrostatic pressure
(with summation implied over repeated indices). τ =

√
σ ′ijσ

′
ij/2

represents the equivalent shear stress, and µint and ρc represent
the constant bulk friction coefficient and critical close-packed
density of the granular media, respectively. Dij = (∂ivj +∂jvi)/2
represents the (plastic) flow rate tensor, and γ̇ =

√
2DijDij

represents the equivalent shear rate. We assume that the surface
friction coefficient µsurf describes the interaction of the granular
continuum with intruder surfaces. In general, µsurf ≤ µint with
µsurf = µint in the case of a fully rough interface.

We use a 3D Material Point Method (MPM) solver from
Baumgarten and Kamrin (29) to implement the continuum
modeling in this study, which has been successfully used for
modeling complex problems in the past (29, 30). We have
also validated the accuracy of the continuum model against
experiments for a specific set of 3D plate intrusions, which justify
the use of the continuum solver for generating 3D-RFT reference
data in the final step of the model development. The details of
the validation studies are provided in Materials and Methods.

3. Proposed Procedure: Physically Constrained
Intrusion Modeling

We begin by discussing a three-step procedure which can be
used to infer reduced-order intrusion models in soft media. This
is followed by a derivation in Section 4 showing how these
ingredients are used to deduce 3D-RFT in granular media.

Step-1: Order-Reduction Hypothesis. We assume that the in-
trusion stress on each surface element of the intruder is
approximately equal to that of an isolated plate element in the
same configuration moving the same way. This is the key order-
reduction hypothesis in the RFT family of models, though other
reductive hypotheses could conceivably be used.

Step-2: Apply Constraints from Continuum Description. The
previous step reduces the problem to inferring a force relation on
isolated plate elements. We now identify a continuum model for
the media and use it to impose constraints on the intrusion force
relation as implied by the continuum system. These constraints
can be inferred through dimensional analysis of the model

parameters and through analysis of stress state limitations in the
rheology and boundary conditions.

Step-3: Apply Global Symmetry Constraints. Any function pro-
viding the intrusion force on an intruder must obey a sym-
metry relationship whereby if the entire problem is rotated
by some amount—that is, the free surface, gravity, intruder
orientation/position, and intruder velocity are all rotated the
same amount—then, the resistive force must also rotate by this
common global rotation. As we will show, this constraint, which
implies that the drag force relations are isotropic functions of
their inputs, imposes a rather strong restriction on the 3D form
that 3D-RFT can take.

It is only after Steps 1 to 3 have reduced down the functional
form of the intrusion model considerably that we then refer to
data to fit the remaining details. Of key importance, much less
fitting must be done, and one is assured that the result obeys basic
physical principles when the above procedure is used. As we shall
show with 3D-RFT, this procedure results in an accurate model
with an explicit dependence on material parameters that can be
exploited to enable rapid calibration to various granular media.
Beyond granular media, in ref. 21, a pseudodiagnostic test was
proposed to determine when a constitutive model for a material
is likely to give rise to an accurate RFT-like intrusion model (Step
1). This “garden hoe test” examines the mathematical form of
the intrusion force under the full continuum model for the case
of finite-sized square intruders and compares it to the scaling
of intrusion force necessarily implied by the corresponding RFT
model. More discussion of this test and examples of how to use
the three-step procedure in other soft materials can be found in
SI Appendix, section S2.

In the case of granular 3D-RFT, the execution of step 2 uses the
continuum model discussed previously and summarized in Eq. 2.
Assuming that the continuum model holds, the resistive force on
a surface element depends on the same limited set of material
parameters that govern the continuum model: ρc (the critical
density), µint (the internal friction), and µsurf (the media-surface
friction). This requirement is quite constraining when combined
with dimensional analysis. Also, the continuum model’s lack
of tensile stress states is enforced by requiring resistive stress
to only have positive compressive normal component and to
occur only on leading edges of the intruder. That is, only surfaces
moving “into” and not “away from” a granular volume experience
nonnegligible resistive force. SI Appendix, section S3 provides
evidence in support of this hypothesis in three dimensions.
We can also make inferences based on the continuum model’s
boundary conditions. Since the intruder is assumed to have a
surface-media friction coefficientµsurf, the ratio of tangential and
normal stress on a surface element cannot exceed this value. In
agreement with this requirement, we observe in extensive analysis
of continuum model solutions that plate-tangential resistive
forces generated at a higher µsurf can be used to generate the
tangential force for a lowerµsurf by simply limiting the magnitude
of the tangential force based on the Coulomb friction limit.
Detailed material response graphs in this regard can be found
in SI Appendix, section S4–S5. Our extensive data analysis also
allows us to assert that the normal force is relatively uninfluenced
by µsurf for a large range of internal friction (µint = 0.3 − 0.9)
(SI Appendix, Fig. S3). Between different µint, the normal forces
appear to vary only by a multiplicative scalar factor ξn as discussed
in Section 4.

In addition to these premises, we will utilize a few operational
constraints. We desire a 3D-RFT model that collapses back to
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the previously defined 2D-RFT description in the appropriate
limits. Thus, we desire to ultimately express 3D-RFT in terms
of similar characteristic angles β and γ and a new twist angle
ψ representing the angle between the planes of plate normal
and velocity direction with the vertical, similar to the angle-
based characterization of 2D-RFT by Li et al. (14) (Fig. 1A).
Also, we limit ourselves to quasi-static intruder motions, with
negligible inertial effects in the granular media. This was also
assumed in the original 2D-RFT formulation and allows the
force on a subsurface to be presumed independent of the surface’s
speed. More recently, an inertia-sensitive 2D-RFT has also been
proposed and validated (25). We limit our attention to quasi-
static cases in this work (see Materials and Methods for more
details). We also require that intruders are submerged to a depth
|z| less than a O(10) factor of the size of the intruder. This
requirement comes from observations that the intrusion force
stops increasing linearly with |z| below a critical depth in gravity-
loaded quasi-semi-infinite granular beds (24, 31); specifically,
the lift component of the intrusion force saturates beneath the
critical depth. This interesting phenomenon occurs even though
the pressure field within the grains, excluding a localized zone
about the intruder, continues increasing linearly with depth.
Lastly, the RFT form assumes grains to be small relative to
the size scale of the intruder. RFT is expected to have reduced
accuracy along intruder surfaces that sharply vary; direct grain-
size effects may be important to determining the resistive force on
these subsurfaces.

4. Deducing Physically Constrained 3D-RFT

We use the previously discussed steps to propose a general form
of the intended 3D-RFT model. In light of step 1, we propose a
3D-RFT that supposes that the force on any small surface element
of the intruding body is equal to what the force would be if the
plate element were isolated and moving on its own. Hence, the
force (per area per depth, �) is a function that depends only on
the element’s surface normal n̂, local velocity direction v̂, and
depth |z|, along with the acceleration of gravity g and material
properties “mat,” such that the total intrusion force satisfies

F total =
∫

surf
�(n̂, v̂, g , |z|;mat) |z| ds. [3]

Referring to Step 2, the material properties are taken to be
given by the parameter set mat = {ρc ,µint,µsurf}. Assuming
for the time being that the intruder is fully rough, µsurf = µint,
dimensional analysis together with the observed dependence on
µint in SI Appendix, Fig. S3 reduces the functional dependence
of � significantly, requiring that

� = ρcgf̃ (µint)�gen(n̂, v̂, ĝ), [4]

where g = g ĝ , the dimensionless function f̃ is as-yet undeter-
mined, and the prefactor ρcgf̃ (µint), which we collectively refer
to as ξn, is a media-dependent scaling coefficient reflecting the
overall intrusive strength of the system. The generic RFT function
�gen is labeled as such because, under the given premises, it is
universal across all granular/intruder systems with fully rough
interfaces. We now show how �gen can be used to enable the
modeling non–fully rough surfaces.

We can uniquely decompose the vector-valued function �gen

into normal and tangential directions as �gen
≡ �gen

n + �gen
t .

We may now remove the fully rough assumption and suppose

µsurf 6= µint. Then, in accord with the surface friction limit and
conclusions drawn from SI Appendix, section S5, we can simply
scale down the tangential component of surface stress from the
fully rough case to the surface friction µsurf limit by writing

� =ρcgf̃ (µint)

[
�gen
n + min

(
µsurf |�

gen
n |

|�gen
t |

, 1

)
�gen
t

]
. [5]

The 3D-RFT model we are proposing is closed upon choosing
the scalar-valued function f̃ (µint) and the vector-valued function
�gen(n̂, v̂, ĝ). Upon selection of these two functions, Eq. 5 can
be used to determine � for any choice of material and interface
properties {ρc ,µint,µsurf}.

We now apply symmetry constraints inherent to the drag
problem (Step 3) to further constrain the functional form of�gen.
Our strategy is to constrain the function space to satisfy symmetry
constraints by design rather than leaving it to chance based on
the choice of fit functions. Moreover, by enforcing the symmetry
constraints directly, we reduce the space of admissible functions,
thereby reducing the amount of fitting that must be done.

Consider a small plate intruder characterized with n̂, v̂, ds,
|z|, and g . For µsurf = µint, the force on the plate according
to RFT is dF = ξn�gen(n̂, v̂, g)|z|ds. If the entire system is
rotated—including the intruder, the granular bed, and gravity—
the resistive force on the intruder must rotate by the same
amount. This is because rotating the entire system should be
consistent with a fixed system and a rotation of the observer.
Fig. 2A visualizes this action; note that the distance to the free
surface along the gravity vector (|z|) remains unchanged as does
the plate area (ds). Thus, for any rotation R, we expect that
R dF = ξn�gen(Rn̂,Rv̂,Rĝ)|z| ds, and thus

�gen(Rn̂,Rv̂,Rĝ) = R�gen(n̂, v̂, ĝ). [6]

This “global rotation constraint” implies that �gen is an isotropic
function of its inputs. Thus, in accord with isotropic represen-
tation theory (IRT) (32), the function must have the following
specific form:

�gen(n̂, v̂, ĝ) = f1n̂ + f2v̂ + f3ĝ , [7]

where f1, f2, and f3 are three mutually independent arbitrary
scalar-valued functions of coordinate-invariant dot-products
between the three direction vectors, that is, fi = fi(ĝ ·v̂, ĝ ·n̂, n̂·v̂).
Eq. 7 has reduced the problem of fitting �gen from determining a
vector-valued function of six independent variables (three vectors,
each with a constraint of being unit magnitude) to determining a
vector-valued function of three independent variables (three dot
products). Note that the form given in Eq. 5 for general µsurf
continues to satisfy the IRT requirement Eq. 7. A detailed proof
in this regard is provided in SI Appendix, section S6.

We next introduce the methodology for parametrizing subsur-
faces in terms of three angles to arrive at our ultimate description
of �gen.

3D-RFT Subsurface Characterization. Eq. 7 defines the normal-
ized stress-per-depth on a subsurface using n̂, v̂, and ĝ directions
and corresponding dot products. We could stop here and set out
to fit the fi functions; however, there are certain advantages to first
reexpressing Eq. 7 in terms of an orthogonal set of directions and
angles measured from those directions. Using angles helps us meet
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A

B C D

Fig. 2. 3D-RFT symmetry constraints: (A) Global rotational constraint requiring the drag force to be an isotropic function of the plate normal, motion
direction, and gravity direction. Some consequences of this constraint are plate twist symmetry, plate tilt symmetry, and vertical motion symmetry. (B) A
special case of plate twist symmetry: F�(�, 
 , = 0) = 0. (C) A special case of plate tilt symmetry: F�(� = 0, 
 , ) = 0, and (D) Vertical motion symmetry:
(�, 
 = ±�/2, = 0)→ (�, 
 = ±�/2, = �) causes (Fr , F� = 0, Fz)→ (Fr cos �, Fr sin �, Fz). Violet, red, and blue arrows show force, velocity, and surface-normal
direction, respectively.

our desire to maintain a consistency of 3D-RFT with the 2D-
RFT form, which is also angle-based, and using an orthogonal
basis rather than the set {n̂, v̂, ĝ} eases the physical interpretation
and simplifies calibration.

We define a local cylindrical coordinate system at each surface
element as follows (Fig. 1C ): We choose the direction opposite
to the gravity (upward in general) as the positive z-direction and
use the horizontal component of v̂ as the positive r̂ direction. The
remaining �̂ direction is chosen as the cross product between r̂
and ẑ. The free surface is taken as the reference (z = 0) for the
z-direction.* Next, we recast Eq. 7 in terms of angles referenced
against directions {r̂, �̂, ẑ}. The surface twist angle, ψ , gives the
azimuthal angle between the r-axis and the projection of the
surface normal onto the rθ -plane, denoted by n̂rθ . The surface
tilt angle, β, is the polar angle between the r-axis and the rθ -
plane. To be clear, β measures the angle between the rθ -plane
and one of n̂ or−n̂, whichever gives a result in the [−π/2,π/2]
range. This choice is not problematic because at any time, only
one side of a plate element experiences forces, and this can be
identified using the leading edge condition (v̂ · n̂ ≥ 0). The local
coordinate frame definitions keep the velocity vector completely
within the rz-plane. Thus, once {r̂, �̂, ẑ} are determined, only one
angle is needed to represent the velocity direction. This angle of
attack, γ , is the angle between the velocity direction vector and
the local positive r-axis. See Fig. 1C for a visual representation
of these angles. Based on the above definitions, the variations of
each of the systems’ characteristic angles {β, γ ,ψ} is restricted to
[−π/2,π/2] for any leading-edge surface. We use these limits in
the generation of reference 3D-RFT data. Mathematical formulae
for the angles in terms of vector components in a fixed cartesian

*When |v − (v · ẑ)ẑ| is zero (a subsurface moves up or down), r̂ is set to the direction of
the horizontal component of the surface normal, i.e., r̂ = (n̂− (n̂ · ẑ)ẑ)/|n̂− (n̂ · ẑ)ẑ|.

frame are provided in SI Appendix, section S7. With some algebra,
one can express the {n̂, v̂, ĝ} basis vectors in terms of {r̂, �̂, ẑ},
and the three angles (SI Appendix, Eq. 9). Substituting the result
into Eq. 7 yields the expressions for the components of �gen =
α

gen
r r̂ + α

gen
θ �̂ + α

gen
z ẑ as follows:

α
gen
r (β, γ ,ψ) = f1 sinβ cosψ + f2 cos γ ,

α
gen
θ (β, γ ,ψ) = f1 sinβ sinψ ,

α
gen
z (β, γ ,ψ) = −f1 cosβ − f2 sin γ − f3, [8]

where fi = fi (ĝ · v̂, ĝ · n̂, n̂ · v̂) are three as-yet undetermined
functions of the three dot products, which are now given by the
three angles as follows:

ĝ · v̂ = sin γ , ĝ · n̂ = cosβ,
n̂ · v̂ = cosψ cos γ sinβ + sin γ cosβ. [9]

Eqs. 8 and 9 give the final functional form of �gen and the
completion of the three-step process outlined in Section 4. The
3D-RFT model we introduce is closed upon fitting the three fi
as functions of the three dot products, which we shall do in the
next section using a targeted set of in silico reference tests. Note
that by building the angle dependences of αgen

r , αgen
θ , and αgen

z
indirectly from the fi using IRT rather than by directly fitting the
αgen functions, the model is guaranteed to satisfy many easy-to-
observe requirements regardless of how the fi are picked. These
include (i) “plate twist symmetry” (Fig. 2B), which requires that
the subsurface forces in the r- and z-direction should be even
functions of plate twist (ψ) and that force in the θ -direction
should be an odd function of ψ ; (ii) “plate tilt symmetry”
(Fig. 2C ) which requires that when the plate faces upward or
downward (β = 0), the subsurface force in the θ -direction should

PNAS 2023 Vol. 120 No. 4 e2214017120 https://doi.org/10.1073/pnas.2214017120 5 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

G
EO

R
G

IA
 IN

ST
IT

U
TE

 O
F 

TE
C

H
N

O
LO

G
Y

 S
ER

IA
LS

 C
O

N
TR

O
L-

EB
S 

on
 S

ep
te

m
be

r 8
, 2

02
3 

fr
om

 IP
 a

dd
re

ss
 1

43
.2

15
.1

6.
47

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2214017120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2214017120#supplementary-materials


vanish, the force magnitude should depend only on γ , and the
twist angleψ should have no influence on the force; (iii) “vertical
motion symmetry” (Fig. 2D), which requires that for any tilt β, as
γ →±π/2 (approaching an upward or downward motion) any
azimuthal rotation (changing ψ at constant β) of a subsurface
should rotate the resultant force on the subsurface by the same
angle. Moreover, by using Eqs. 8 and 9, we are ensured that the
relation for �gen always has the correct periodicity in the three
angles.

5. Reference Data

We use a large number of combinations (∼3,000) of material
properties (µint and µsurf ) and 3D-RFT angles (β, γ , and ψ) to
generate a bank of continuum modeling-based reference data for
evaluating the 3D-RFT form. The details of the combinations are
provided in SI Appendix, section S4. Based on this extensive data
set, we can fit the functions f1, f2, and f3 that determine �gen,
and we can also fit f̃ . Fig. 3 A–D shows the simulation setup
used for the data collection. While both the β and the γ angles
are varied over the interval [−π/2,π/2], ψ was varied only in
[0,π/2] taking advantage of “plate twist symmetry” discussed
earlier.

Fig. 3E shows a comparison of reference data to an example
fitting of 3D-RFT. Odd columns in the figure show the data
obtained using continuum simulations as a function of β and
γ at four ψ values. The material properties were µint = 0.4,
ρc = 3,000 kg/m3, and µsurf = 0.15. Corresponding 3D-RFT
fittings are plotted on the even columns. We find the value of the
scaling coefficient ξn to be 0.92 × 106 N/m3 for this material.
While Eq. 8 represents the most generic form of 3D-RFT, the
choice of the functions fi determines the final 3D-RFT model.
All the results presented in this work use third degree polynomial
fits for the fi functions (SI Appendix, Table S3). Higher-order
polynomials could be used, which can better fit the reference
data. We provide one such form in (SI Appendix, Table S4). The
performance of 3D-RFT does not change significantly between
third and fourth degree polynomial fits. The latter form fits the
trends of |�t |/|�n| better but has inconsequential effects on 3D-
RFT predictions for the test cases used in this study.

The 3D-RFT model we propose is completed using a cubic
f̃ fit as shown in SI Appendix, Fig. S4—this dependence is in
accord with observations of past researchers in the simpler vertical
intrusion of flat plates (33)—and with �gen expressed using Eq. 8
in terms of third-degree polynomial fits for the fi, and using
directions {r̂, �̂, ẑ} and angles {β, γ ,ψ} as shown in Fig. 3 A–D.
To numerically implement the model, we discretize the intruder
surface into small plate elements and determine {β, γ ,ψ} and
{r̂, �̂} for each element. The model then provides the force on
each element that is on the leading edge of the intruder. A step-by-
step implementation strategy for 3D-RFT is given in SI Appendix,
section S7.

6. Validation Studies

We first test the accuracy of the implied localization of the
proposed form of 3D-RFT (Eq. 3) as well as the fi fits by
comparing predictions for 10 arbitrary intruding objects to full
continuum model solutions of the same intrusions. We use
the continuum material properties µint = 0.4, ρc = 3,000
kg/m3, and µsurf = 0.4 for these cases. A representation of
the objects and their dimensions is provided in Fig. 4 and its

caption. The object length scales are kept as 7 cm in all the
cases, and the objects are submerged to an initial depth of 27
cm (vertical distance between the free surface and the geometric
center of the shape). The objects are translated at a speed of 0.1
m/s in different directions in the xz-plane. These directions are
characterized using θ , which represents the angle between the
velocity direction and the positive x-axis in a clockwise direction
(same as γ definition for a plate element). Negative θ represents
upward motion, positive θ represents downward motion, and
θ = 0 represents horizontal motion along the x-direction. The
variations of net-force (Fx , Fy, and Fz) with θ are plotted in
Fig. 4. 3D-RFT agrees with the continuum solutions well in
modeling all the intrusion test scenarios considered in Fig. 4.
Objects with sharp corners generally show weaker fits than those
with smoother shapes; this could be because sharp corners are
difficult to represent with our material point method.

Validation of 3D-RFT with Detailed DEM Studies. We further
check the performance of 3D-RFT with two DEM studies. In
these studies, we measure net moment, net force, and resistive
force distribution on bodies intruding into granular volumes
with simultaneous rotation and translation velocities. We use a
50/50 mixture of 3 mm and 3.4 mm diameter grains with a
grain density of 2,470 kg/m3, and the granular volumes have
an effective bulk density of 1,310 kg/m3 (φ ≈ 0.53) in both
the DEM studies. Below, we use d to denote the larger grain
size. We determine the internal coefficient of friction µint as
0.21 using simple shear simulations. SI Appendix, section S8
provides more details of the simple shear test setup and detailed
material properties. Using this value together with the known
f̃ relationship, we obtain a scaling coefficient (ξn) value of
0.12 × 106 N/m3. See SI Appendix, Table S1 and section S4
for more details.
Cylinder drill. In this test, we model simultaneous rotation and
translation (drilling) of a solid cylindrical intruder along the z-
axis (vertically down) in a granular volume (diameter = 0.05
m, length = 0.14 m). The cylinder axis was kept in the
horizontal plane throughout the motion. The setup consists
of approximately 6 × 105 particles in a 100d × 100d × 70d -
sized granular bed. The setup dimensions and setup schematic
are provided in Fig. 5. The figure also shows the variations
of force and moment on the intruder over time from the
DEM studies versus 3D-RFT. In addition, the figure shows
the variation of stress over the intruder surface from DEM and
3D-RFT. All reported components (net force and moment, as
well as stress distributions) show a strong match between the
two approaches.
Bunny drill. In this test, we model the drilling motion (ω =
2π rad/s, v = 0.1 m/s) of a Stanford bunny (34) in a granular
volume. The shape is chosen because it is an example of a
complex, asymmetric 3D object. The granular bed consists of
approximately 2.1× 106 particles filling a 150d × 150d × 88d -
sized domain. The bunny shape was slightly modified from the
standard shape—the shape was proportionally scaled in such a
way that the bunny height measures 0.1 m, and the bunny base
was flattened to make the base a plane surface without an inward
extrusion. Fig. 6 shows the simulation setup where the grains are
colored with velocity magnitudes. Fig. 6 also shows the variation
of stresses over the intruder surface from DEM and 3D-RFT. All
the reported components (net force and moment as well as stress
distributions) show a strong match between the two approaches.
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Fig. 3. Reference data collection and sample 3D-RFT fitings: MPM is used to simulate the continuum model for reference data collection. (A) Schematic
of intrusion setup with the thin plate (0.105 m × 0.105 m × 0.015 m) used for data collection. Variation of (B) material flow, (C) displacement magnitude,
and (D) equivalent plastic strain magnitude from one of the test setups. (E) Reference data for normalized forces (|F/A|z|�n|) and 3D-RFT functional
fittings (|�gen

r,�,z |) for plate intrusions at various plate twists ( = [0,�/6,�/3,�/2] rad), plate inclinations (� = −�/2 : �/6 : �/2 rad), and velocity
directions (
 = −�/2 : �/6 : �/2 rad) for a material with �int = 0.4, � = 3,000 kg/m3, and �surf = 0.15. The reference data are normalized with
�n = 0.92× 106 N/m3.
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Fig. 4. 3D-RFT verification studies 1-10: Variation of different force components (Fx : yellow, Fy : orange, and Fz : blue) during motions of various rigid objects
(intruders) obtained from continuum modeling (“o” markers) and 3D-RFT (dashed lines) at various velocity directions. All the studies were conducted at a velocity
magnitude of 0.1 m/s. All the velocities completely lie in the xz−plane. A pictorial representation of each intruder is provided in the corresponding subfigure.
The intruder shapes include (1) a 5-cm radius sphere, (2) an ellipsoid with [7.5,4.5,4.5]-cm semi-axes (x,y,z), (3) a 7.5-cm-tilted cube, rotated from a cartesian
alignment by �/4 radians about the z-axis, (4) a 7.5-cm cube sequentially rotated by �/3 and �/4 radians along the y-axis and z-axis from a cartesian alignment,
(5) a 7.5 cm cube sequentially rotated by �/6 and �/3 radians along the y-axis and z-axis from a cartesian coordinate alignment, (6) an isosceles right angle
prism with 7.5-cm equal sides and 10.5-cm width, (7) a quarter ellipsoid with [7.5,4.5,4.5]-cm semi-axes (x,y,z) (x > 0 and y > 0), (8) an isosceles right angle
prism with equal sides of 10.5 cm and 7.5 cm width, (9) a half-ellipsoid with [7.5,4.5,4.5]-cm semi-axes (x,y,z) (y > 0), and (10) a monkey-head shape from the
open-source 3D computer graphics software “Blender” at a scale factor of 0.075 and facing �/4 radians from the positive x-direction in the xy-plane.
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DEM
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results

[N/m2] [N/m2] [N/m2]

−1.0 × 104 0 1 0 × 104 −1.0 × 104 0 1.0 × 104 −1.0 × 104 0 1.0 × 104

A B

C

3DRFT
DEM

3DRFT
DEM

Fig. 5. DEM-based 3D-RFT verification—cylinder drill: (A) A snapshot of the cylinder drill setup where a 50-mm diameter and 140-mm length cylinder was
simultaneously rotated (!, clockwise) and translated (v , downward) along the z-axis. We use three combinations of (!, v): [(0.25�,0.1), (0.5�,0.1), (�,0.1)]
(rad/s,m/s). Black arrows in (B) show the direction of increasing ! in each graph. The grains are colored with velocity magnitudes. The simulation domain
consisted of ∼6 × 105 particles (50/50 mix of 3-mm and 3.4-mm diameter (d) grains) spread over 100d × 100d × 70d physical space. (B) Variation of net force
(F , Left) and moment (M, Right) components (x: yellow, y: orange, and z: blue) from DEM (solid lines) and 3D-RFT (dotted lines) for ! = � rad/s. (C) Variation of
various force components from DEM (Top) and 3D-RFT (Bottom) at a 10-cm depth below the free surface (t = 1s). The DEM material properties are provided in
SI Appendix, Table S2.

7. Conclusion

This work proposes a mechanistic framework for developing
reduced-order models in soft materials. Successful development
of a granular 3D-RFT indicates the robustness of the approach for
these purposes. The 3D-RFT developed herein is an important
step toward developing a generic real-time modeling technique
capable of modeling granular intrusion of arbitrarily shaped
objects over a large range of low and high-speed scenarios in
diverse materials and environments. Previously, granular RFT’s
usage has focused on the modeling of arbitrary 2D objects
moving in-plane. We have proposed an extension of RFT to
three dimensions in a fashion consistent with granular continuum
mechanics and necessary symmetry constraints. The accuracy
of the proposed 3D-RFT was demonstrated against a variety
of full-field intrusion simulations, both continuum and DEM.
Notably, we provide a scheme that determines 3D-RFT in
different intrusion systems quickly and directly in terms of basic
properties of the granular media (ρc and µint) and the intruder
surface (µsurf).

The most immediate opportunity to expand 3D-RFT would
be to combine 3D-RFT with dynamic RFT (25) to build a high-

speed three-dimensional RFT (3D-DRFT). The current form
of 3D-RFT does not include a “shadowing effect;” i.e., the fact
that forces are reduced on leading edge surfaces that lie in the
immediate wake behind another part of the intruder (35). Such
effects are more pronounced in intruders with complex shapes
or fine geometric features such as the bunny shape we consider
in this study. Characterizing this effect would be an important
addition to RFT. Effects of multibody intrusions (24, 36), density
variations (37), inertial and noninertial velocity effects (3, 25, 38),
cohesion (39, 40), and inclined domains (41) on the resistive
forces experienced by intruding bodies are among other aspects
for further exploration toward the ultimate goal of a generic
and fast granular intrusion model applicable to terradynamical
motions (8), granular impact systems (42, 43), locomotors (44),
and many other similar applications.

The three-step mechanistic approach that produced 3D-RFT
could be extended to produce intrusion models in other soft
materials, including possible applications in colloids, gels, and
biological media. We refer readers to SI Appendix, section S2 to
see demonstrations of the procedure being used in other common
materials and a discussion on determining the accuracy of the
RFT localization rule (Step 1) in other media.
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C

Fig. 6. DEM-based 3D-RFT verification—bunny drill: (A) A snapshot of the Stanford bunny drill setup where a 10-cm-high Stanford bunny was simultaneously
rotated (! = 2�rad/s, clockwise) and translated (v = 0.1 m/s, downward) along the z-axis. The grains are colored with velocity magnitudes. The simulation
domain consisted of ∼ 2.1× 106 particles (50/50 split of 3 mm and 3.4 mm diameter (d) grains) spread over a 150d × 150d × 88d physical space. (B) Variation
of net force (F , Left) and moment (M, Right) components (x: yellow, y: orange, and z: blue) from DEM (solid lines) and 3D-RFT (dotted lines). (C) Components
of the surface stress distribution from DEM (Top) and 3D-RFT (Bottom) at a 5-cm bunny-center-depth below the free surface. The DEM material properties are
provided in SI Appendix, Table S2.

Materials and Methods

Evaluation of Quasi-static Conditions in a System. We use the following
definitions of the microinertial number I and the macroinertial number Imac for
evaluating the applicability of 3D-RFT in modeling the granular resistive forces
in a granular intrusion system:

I = γ̇ /

√
P/ρgd2 , Imac = v/

√
P/ρg,

where γ̇ represents the material shear rate,P represents the hydrostatic pressure,
ρg represents the material grain density, d represents the mean grain diameter,
and v represents the speed. The Imac formulation is equivalent to the inverse
square root of the Euler number which measures the ratio of the dynamic
pressure ρv2 to the total pressure P.

The macroinertial and microinertial numbers are defined pointwise within
a granular media, so to determine whether an intrusion is quasi-static, it is
convenient to determine characteristic values for these numbers. For this, we
use characteristic values of γ̇ , P, and v. We assume that the intruder has an
angular velocity ω, a translational velocity vintru, and a characteristic length L.
We also assume that the media has a critical density ρc and that the system is
acted upon by gravity g. We characterize v as v = max(vintru, Lω/2) and γ̇
as γ̇ = v/L. We consider intrusive loading of the system at characteristic
depth L to give a characteristic P as ξnL. Upon substitution, we get the
following:

I ∼ (v/L)/
√

(ξnL)/ρgd2 =

√
v2ρgd2

ξnL3
=

vd
L

√
ρg

ξnL
,

Imac ∼ v/
√
ξnL/ρg = v

√
ρg

ξnL
.

From the above equations, we observe that the characteristic value of Imac
reduces to a multiple of the Froude number (Fr) in gravity-loaded systems.
To this end, Sunday et al. (45) explored the existence of macroinertial effects
during high-speed granular intrusions and observed insignificant contributions
of macroinertial effects in the material force response for Fr < 1.5, which gives
Imac / 0.48. Similarly, Agarwal et al. (25), observed insignificant macroinertial
effects (macroinertial forces < 10% of static resistive forces i.e. ρAv2/K|z| <
10%) in granular plate intrusions at Imac < 0.16. Thus, we impose an upper
limit of 0.15 on Imac to be quasi-static. The degree that I affects the flow can be
quantified by how much it changes the apparent internal friction (46, 47). To keep
these changes bounded by 10%, we set an upper bound on the characteristic
value of I to be 0.010 so as to ensure quasi-static conditions. For all the test
cases used in this study, we choose system parameters in such a way that I
and Imac are always below the abovementioned limits keeping their motions in
quasi-static limits. The test cases 1 to 10 are continuum simulations that use a
rate-independent constitutive law and have Imac ∼ 0.02 (L ≈ 0.07 m, v =

0.1 m/s, ξn = 0.92× 106, ρc = 3,000 kg/m3). In the DEM-based cylinder
drill test cases, we find I < 0.002 and Imac < 0.07 (L ≈ 0.10 m, ω <

π rad/s, vintruder = 0.1 m/s, ξn = 0.12 × 106, ρg = 2,470 kg/m3).
Similarly, in the bunny drill test case, we find I ≈ 0.004 and Imac ∼ 0.13
(L ≈ 0.10 m, ω = 2π rad/s, vintruder = 0.1 m/s, ξn = 0.12×106, ρg =

2,470 kg/m3). Thus, 3D-RFT is a valid approach for modeling all the test
cases considered in this study, based on the insignificance of microinertial and
macroinertial force contributions.

Continuum Approach Accuracy Validation. Several studies in the past
have verified the accuracy of this constitutive formulation in plane-strain
problems (2D). We use the 3D numerical implementation of MPM developed
by Baumgarten and Kamrin (29) for this study, which has been successfully
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Maladen et al. fits
Continuum results

A

B
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Fig. 7. Experiment vs. Continuum Model—Dependence on twist angle: (A) Schematic of plate orientations, and (B) Variations of normal (red) and tangential
(blue) forces from Maladen et al. (48) experiments (• marker), their analytical fits to their results (dotted lines), and continuum simulations (� marker with
solid line). The forces are normalized by the plate center-depth (|z|) and plate area. Experiments (loosely packed 3-mm glass particles) as well as simulations
use glass beads (�g = 2,500 kg/m3 and �c = 0.6) as the granular media. Continuum simulations use �int = 0.4 and �surf = 0.27 in accordance with reported
experimental values. Comparison of in-plane plate motions: (C) Schematic of plate orientation angle � and 
 for in-plane motion study conducted using 3D
simulation setup shown in Fig. 3 A–D. (D) Force/area/depth (�) from Li et al. (14) experiments (Top) and continuum simulations (Bottom). The plate configurations
are also overlaid on graphs for clarity. The plates had no twist ( = 0) in regard to 3D-RFT definitions in these tests. Both the experiments and the simulations
use glass beads with grain density (�g ) of 2,500 kg/m3 and a packing fraction (�c ) of 0.58. Internal friction is �int = 0.4 and surface friction is �surf = 0.4 for
continuum simulations to match reported values in Li et al. (14).

used for modeling complex problems in the past (29, 30). For the continuum
model to be useful to determine input data for a 3D-RFT, it must be shown
to reliably match experiments for 3D plate intrusions. We test this in two
scenarios.

In the first test case, we check whether the 3D-continuum simulations
can regenerate the experimental variation of force/depth/area on flat plates
in submerged granular beds from Li et al. (14). These experimental data
were also used by Li et al. (14) in the generation of the 2D-RFT form. We
use an effective material density of ρc = 1,450 kg/m3 (loose glass beads,
ρg = 2,500 kg/m3, φc = 0.58) in line with Li et al. (14) experiments and
an approximate internal friction value for glass beads as µint = 0.4. The
media–plate surface friction was taken as µsurf = 0.4. The relative values of
the forces from continuum results match the experimental observations quite
well. The absolute values from continuum results, however, are higher than
experiments by a constant multiplicative factor of ∼1.1. A smaller value of
µint for glass beads could have provided a closer match to the experiments
as the graphs are not expected to change their shape with changing internal
friction values (14). But we do not attempt the exact calibration as the purpose
of the test was to verify the accuracy of the continuum formulation and
implementation. These results establish sufficient efficacy of the continuum
model for plate motions in which the velocity, plate normal, and gravity are
coplanar.

In the second test case, we assess the quantitative accuracy of the continuum
approach in modeling in-plane as well as out-of-plane forces. We consider a
study by Maladen et al. (48) which measured the normal and tangential forces
on submerged plates moving horizontally in granular media as a function of
plate twist (Fig. 7 Top for angles definition). The material properties are provided
in the figure caption. The continuum results match observations from Maladen
et al. (48) well.

The combination of the above two studies establishes the overall accuracy of
the continuum model and its implementation for both in-plane and out-of-plane
inputs and outputs in plate intrusion problems.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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