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Using the many-body expansion to predict crystal lattice energies (CLEs), a pleas-

antly parallel process, allows for flexibility in the choice of theoretical methods.

Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been

computed using interaction energies of dimers with minimum inter-monomer separa-

tions (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the

computational expense of calculating accurate CLEs, we have computed these two-

body contributions with 15 different quantum chemical levels of theory and compared

these energies to those computed with coupled-cluster in the complete basis set limit.

Interaction energies of the more distant dimers are easier to compute accurately and

several of the methods tested are suitable as replacements for coupled-cluster through

perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol−1 ac-

curacy can be obtained when calculating two-body interaction energies of dimers with

separations shorter than 4 Å with CCSD(T)/CBS and dimers with separations longer

than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of

dimers to be computed with coupled-cluster by as much as 98%.

a)Electronic mail: sherrill@gatech.edu
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I. INTRODUCTION

Polymorphs are crystals that have the same molecular composition but different packing

schemes. Many common crystals, including acetaminophen and aspirin, are polymorphic.1

Currently, the organic molecular crystal with the most fully characterized polymorphs is 5-

methyl-2-[(2-nitrophenyl)amino]-3-thiophenecabonitrile, also known as ROY, with 12 poly-

morphs. Four of those 12 have been discovered since 2019, and many of the 12 can crystallize

under the same conditions simultaneously.2,3

Polymorphs exhibit different properties due to their different intermolecular arrange-

ments. The properties that can be affected include solubility, which alters the bioavailibility

of a drug. Antibiotics such as oxytetracycline and chloramphenicol palmitate have at least

two different polymorphs, each with differing solubilities.4 The HIV medication ritonovir has

five polymorphs. When it was first released on the market, only one polymorph was known.

After two years, some of the product began failing solubility tests, indicating the presence

of a less soluble form. A second polymorph was determined to be the cause of this ∼50%

decrease in solubility.4–6

Due to polymorph-dependent properties, predicting and ranking relative stabilities of

polymorphs is a major focus in drug discovery. The stability of a polymorph is determined

by its crystal lattice energy (CLE), the energy released when infinitely separated molecules

come together to form a crystal.7 A study of 8 ROY polymorphs showed that their CLE’s

all lie within 8 kJ mol−1 of each other.8 Another study of 1061 crystals (made from 508

polymorphic organic molecules) showed that more than half of the pairs of polymorphs

differed in lattice energy by no more than 2 kJ mol−1; 95% of the pairs differed by less than

7.2 kJ mol−1.9 These small differences in energy necessitate high accuracy CLE calculations

for ranking polymorphs.

Unfortunately, highly accurate calculations of lattice energies are extremely expensive

due to the size of crystals. The many-body expansion (MBE) is a promising approach to

obtain accurate CLE’s using high-level methods from quantum chemistry.10–12 This technique

fragments a system into monomers, dimers, trimers, and so on, up to some limit. The CLE

is then the sum of the monomer deformation energies (the change in monomer energies

between the gas and crystal phase), and the N -body interaction energies among the dimer,

trimers, etc. The reliability of the MBE has been shown in several molecular crystal studies,
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and typically it is truncated at dimer or trimer interaction energy terms.1,13–20 Not only does

the MBE enable a reduction in the system size per energy calculation, but it also splits the

CLE calculation into independent computational steps, making it pleasantly parallel.

Periodic density functional theory (DFT) methods are widely used to calculate crystal

lattice energies, and they can provide accurate results when employing a method to account

for London dispersion interactions, e.g., semi-empirical -D corrections.21–23 However, even

when using distributed-parallel implementations, periodic DFT computations can be time-

consuming. The MBE may provide a more computationally efficient approach, and it also

allows for some of the contributions to be computed using high-level wavefunction methods,

which unlike DFT are systematically improvable towards the ab initio limit. Some groups

have employed a hybrid approach that begins with periodic DFT as a baseline, and then

the most important interactions (e.g., close dimers within the crystal) can be treated with

high-level wavefunction methods like coupled-cluster with single, double, and perturbative

triple excitations [CCSD(T)].24,25

Determining an accurate MBE-based method for the dimer and trimer calculations has

been a point of research for our group and others. Ringer and Sherrill showed that while

second-order perturbation theory (MP2)26 produced poor results for the lattice energy of

crystalline benzene, CCSD(T),27 the “gold-standard” of computational chemistry, in the

complete basis set (CBS) limit, was able to achieve accuracy of 1 kcal mol−1.14 Since then,

the Chan and Sherrill groups have computed the lattice energy of crystalline benzene to

sub-kJ mol−1 accuracy.13,28 While this level of accuracy is desirable for applications like

polymorph ranking, unfortunately, the O(N7) scaling of canonical CCSD(T) makes even

these fragment-based calculations computationally infeasible for molecular crystals of many

larger molecules.

Efforts have been made to find lower-scaling methods that predict CLEs accurately,1 but

an avenue less explored is determining which fragments’ interaction energies must be com-

puted with CCSD(T)/CBS, and which can be determined accurately with a computationally

cheaper method. Prior studies suggest that methods approximate to CCSD(T)/CBS may be

used for interaction energies of dimers and trimers with larger intermolecular distances, with

only a small reduction in accuracy and at a dramatically reduced computational cost.29,30

Recently, our group explored this range-dependent approach while calculating the CLE of

benzene with sub-kJ mol−1 accuracy.28 Among other conclusions, it was determined that
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MP2 with a double-ζ basis set was a reasonable choice for calculating the two-body contri-

bution from medium to long range dimers, defined in that study as the 417 symmetry-unique

dimers with inter-monomer separations (i.e. closest contact distances) between 4 and 30 Å.

(Dimers beyond this range could be neglected.) The error was −1.87 kJ mol−1 relative to

CCSD(T)/CBS. For the 278 unique dimers with separations between 20 and 30 Å, the error

was just −0.10 kJ mol−1. Only 3 dimers are short range, with separations less than 4 Å,

which demand a high level of theory, such as CCSD(T)/CBS.28

While MP2 was effective in yielding accurate results at a greatly reduced computational

cost for more distant dimers in the recent benzene study, it would be valuable to have

high-quality benchmark energies for other molecular crystals and an assessment of addi-

tional approximate quantum chemical methods to see which level of theory consistently pro-

vides the best approximations at the lowest computational cost. In this study, we present

CCSD(T)/CBS benchmark values for the two-body interaction energies of ice and 22 of the

23 molecular crystals of the X23 dataset.31–33 We then compare the two-body interaction

energies calculated with 15 different levels of theory to the CCSD(T)/CBS data and ex-

amine which of the less expensive methods achieve low errors for the contribution of the

longer-range dimers to the CLE.

II. THEORETICAL METHODS

A. Dataset

The molecular crystals studied are those of the X23 dataset,33 except for anthracene,

which was too computationally expensive. The crystalline infographic files (CIF) were taken

from the Cambridge Structural Database (CSD). The CSD codes for each CIF are those used

in the C21 publication.32 The revised version of C21, X23, includes hexamine and succinic

acid. For these molecules, the CSD codes we use are HXMTAM and SUCACB12. We also

include ice Ih (ICSD 27837). These crystal structures have been determined through either

x-ray or neutron diffraction at various temperatures, ranging from 10 K to 298 K. The

experimental method and temperature for each crystal is noted in the appropriate CIF.
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FIG. 1. The molecules studied are ice and every molecule from the X23 dataset, except anthracene.

Each of these 22 molecules are used to form one of the crystals studied, and two different packings

of oxalic acid (α and β) are considered, resulting in 23 crystals.
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B. Two-Body Energies

The total energy of a molecular cluster can be calculated using the many-body expansion

(MBE),

Etotal =
∑

I

∆E
(1)
I +

∑

I<J

∆E
(2)
IJ +

∑

I<J<K

∆E
(3)
IJK + . . . , (1)

where the superscript (N) denotes an N -body term, ∆E
(1)
I is the deformation energy of the

monomer I, ∆E
(2)
IJ is the two-body interaction energy, defined as

∆E
(2)
IJ = EIJ − EI − EJ , (2)

and ∆E
(3)
IJK is the non-additive three-body interaction energy,

∆E
(3)
IJK = EIJK − EI − EJ − EK −∆E

(2)
IJ −∆E

(2)
IK −∆E

(2)
JK . (3)

Calculating the lattice energy of a crystal, the energy needed to form a crystal from

infinitely separated molecules, is complicated by the fact that crystals can be modeled by

infinite solids. If this is the case, there will be an infinite number of monomers, dimers,

trimers, etc. which contribute to the crystal lattice energy (CLE). For a finite result, we

compute the CLE per monomer, or per mole of monomers. One reference monomer is chosen

and is included in all N -body fragments, which provides the per monomer CLE,

ECLE
I = ∆E

(1)
I +

1

2

∑

I<J

∆E
(2)
IJ +

1

3

∑

I<J<K

∆E
(3)
IJK + . . . , (4)

under the many-body expansion.

Truncating the MBE at the two-body or three-body term typically provides good accuracy

for molecular crystals. This study focuses only on the two-body term, which has been found

to contribute 80-90% to the total crystal lattice energy.34 All dimers considered include the

reference monomer, and due to the periodic nature of the crystal, any other dimers should

be equivalent to the ones we choose.

Our group’s open-source software, CrystaLattE,35 is used to build supercells from CIF

files. Here the monomer geometries are assumed to be rigid, and we do not include any

monomer deformation terms. The software extracts symmetry-unique dimers that have a

minimum inter-monomer separation (closest-contact distance) less than some user-defined

distance, as well as their degeneracy factors, in order to eliminate redundant calculations of
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symmetry-equivalent dimers.35 The energetic contribution of each symmetry-unique dimer

to the CLE is the degeneracy factor multiplied by the dimer interaction energy, defined

in equation 2, then divided by 2 for a per monomer contribution. We sum over these per

monomer contributions to obtain a partial crystal lattice energy (PCLE), which is the two-

body term in equation 4.

C. Benchmark Calculations

For the benchmark calculations, CrystaLattE extracted symmetry-unique dimers that

have a minimum monomer separation less than 30 Å. Psi4 1.4rc3 was used to calculate the

interaction energies.

A focal-point coupled-cluster with single, double, and perturbative triple excitations

[CCSD(T)] scheme was used to extrapolate energies to a complete basis set limit (CBS).36,37

This technique has been successful with correlation consistent basis sets for noncovalent

interactions.38–40 CCSD(T) in a large basis set may be approximated by

E(CCSD(T)/Large) ≈ E(MP2/Large) + δ
CCSD(T )
MP2 /Small, (5)

because smaller basis sets can often capture higher-order electron correlation effects. In

equation 5, the “large” and “small” refer to relative size of the basis sets, and the delta term

is

δ
CCSD(T )
MP2 /Small = E(CCSD(T)/Small)− E(MP2/Small). (6)

A two-point extrapolation of the correlation energy typically provides a sufficient es-

timate of the CBS limit.41 The large basis in equation 5 uses a two-point extrapolation

of Dunning’s augmented, correlation-consistent triple and quadruple-ζ basis sets, aug-cc-

pVTZ and aug-cc-pVQZ,42,43 abbreviated aTZ and aQZ, respectively. The small basis

employed was aug-cc-pVDZ (aDZ). For brevity, we will refer to this specific CCSD(T)/CBS

scheme as CCSD(T)/CBS(a[TQ]Z; δ:aDZ). In our recent study of crystalline benzene,

CCSD(T)/CBS(a[TQ]Z; δ:aDZ) provided the total lattice energy contribution of dimers

with separations between 8 and 14 Å within 0.01 kJ mol−1 of CCSD(T)/CBS(a[Q5]Z;

δ:aTZ) results. For separations of R ≤ 4 Å and 4 < R ≤ 8, the errors were 0.50 and 0.02

kJ mol−1, respectively.28
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Additionally, for CCSD(T) computations we employed the frozen natural orbital approx-

imation with the default occupation number cutoff of 10−6,44 and the convergence criteria

for energy and self-consistent field (SCF) density were set to 10−10 a.u. The density fit-

ting approximation was used for SCF and CC. All calculations included the counterpoise

correction of Boys and Bernardi.45,46

D. Approximate Methods

A variety of density functional theory (DFT) and wavefunction methods were tested

for their accuracy of approximating the two-body interaction energy. The methods in-

clude: B3LYP-D3BJ,47 B97-D3BJ, B97-D,21,48 HF-3c,49 MP2.5,50 MP2-D,51 MP2,26 PBE-

D3BJ,52,53 PBEh-3c,54 and SAPT055,56. The counterpoise correction of Boys and Bernardi

was included with all methods except those for which a counterpoise correction is already

effectively included as part of the procedure: HF-3c, PBEh-3c,57 and SAPT0. B97-D in-

cludes Grimme’s D2 correction, and -D3BJ refers to his D3 correction with Becke-Johnson

damping.21–23

In general, the methods tested have the correct physics to describe intermolecular in-

teractions with good accuracy, and thus to compute the two-body contribution to crys-

tal lattice energies reliably. DFT partially incorporates the effects of electron correlation

through its approximate exchange-correlation models, and thus it should provide reasonably

accurate electron densities, which in turn will mean that interaction energy computations

will effectively capture the underlying electrostatics, induction/polarization, and short range

exchange-repulsion effects. Density functional approximations do not typically capture long-

range electron correlation effects necessary to model London dispersion interactions, but that

is remedied here by the use of semi-empirical -D corrections. The MP2 methods will likewise

appropriately include electron correlation effects on electrostatics, induction/polarization,

and exchange-repulsion, and will further appropriately describe long-range electron corre-

lation leading to London dispersion interactions. At short intermolecular distances, corre-

lations between pairs of electrons, and between three electrons simultaneously, will start

to contribute to the interaction energy, and MP2 does not include such effects, so it will

become less accurate at these distances. Similarly, standard correlation potentials in density

functional theory may also become less accurate at short intermolecular distances. Thus, we
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expect the largest errors to come from the dimers with the shortest intermolecular contacts

(at the same time, these will also contribute the largest interaction energies).

SAPT0 is symmetry-adapted perturbation theory based on a Hartree–Fock description

of the monomers. Thus, it neglects electron correlation corrections to the monomer electron

densities before those densities interact through electrostatics, induction/polarization, and

exchange-repulsion (it does, however, contain an MP2-like model of intermolecular London

dispersion interactions). The lack of intramolecular electron correlation terms would, in

principle, make it less reliable than the MP2-like or DFT-D approaches. However, we have

often found good performance for SAPT0 when paired with modest basis sets like aug-cc-

pVDZ or jun-cc-pVDZ (which drops the diffuse functions from aug-cc-pVDZ on H atoms, and

the highest angular momentum functions on heavy atoms)58 due to a favorable cancellation

of errors.59 Like the other methods considered, the approximations inherent in SAPT0 will

become less appropriate at short intermolecular distances.

Finally, HF-3c and PBEh-3c are semi-empirical methods that both use prescribed small

basis sets that may lead to inaccurate electrostatic, induction/polarization, and exchange-

repulsion contributions to the interaction energy of a dimer. However, they compensate for

this deficiency by the inclusion of short-range basis set incompleteness and superposition

corrections, and they include London dispersion contributions through a semi-empirical -D

correction. HF-3c has previously been shown to provide fairly accurate results for molecular

crystals.35,60,61

MP2, MP2-D, MP2.5, and SAPT0 were tested with both aDZ and jun-cc-pVDZ (jDZ)

basis sets. Only aDZ basis sets were used for B3LYP-D3BJ, B97-D3BJ, B97-D, and PBE-

D3BJ. Additionally, PBE-D3BJ was tested with the Karlsruhe basis set def2-TZVP, which

we denote as TZVP.62 Default basis sets were used for HF-3c and PBEh-3c. The default grid

in Psi4 (i.e., 75 radial and 302 spherical points) was used in all DFT calculations with the

exception of PBEh-3c, where radial and spherical points were set to 99 and 590, respectively.

When comparing the relative error of these methods to CCSD(T)/CBS(a[TQ]Z; δ:aDZ),

only dimers with a minimum inter-monomer separation less than 20 Å were used. While we

could have considered dimers with separations up to 30 Å, we found that the dimers with

separations between 20 and 30 Å only contributed up to 0.2% of the two-body lattice energy

in 20 of the 23 molecules tested, as shown in Table I. For most of the crystals, the neglected

longer-range dimers (20 ≤ R < 30 Å) are only worth about 0.15 kJ mol−1 or less, although
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in a few cases they contribute more, up to a maximum of 0.89 kJ mol−1 in the case of urea.

Thus, we decided to ignore the dimers with inter-monomer separations of 20 Å and greater,

in the study of approximate methods, to greatly reduce the number of computations that

would accumulate from such a large number of dimers in this separation range (and the

significant number of approximate methods considered).

Nearly all computations were performed with various versions of Psi463: 1.4rc3, 1.4.1, and

1.5, and there are no notable differences in each Psi4 version listed pertaining to this project.

Convergence criteria were set identically to those of the benchmark computations. The

density-fitting approximation was employed for SCF and perturbation theory computations.

For PBEh-3c calculations of hexamine dimers, Orca version 5.0.164 was used with defgrid3.

Hexamine computations with this method in Psi4 exhibited very small systematic errors

that accumulated when closely examining CLEs. This is apparently due to a bug in the

implementation of this method in Psi4, or the interface to the underlying libXC library,65

which we were unable to trace as of this writing.

III. RESULTS

A. Benchmark Energies

For the 23 crystals studied, we first computed the contributions to the crystal lat-

tice energies from the dimers with an inter-monomer separation, R, less than 30 Å us-

ing CCSD(T)/CBS(a[TQ]Z; δ:aDZ). A recent report of SAPT0 calculations on the present

dataset showed that two-body contributions to CLEs from dimers with R < 60 Å converged

to within 1 kJ mol−1 when accumulating interactions of dimers only up to R = 30 Å, and

to within 0.5 kJ mol−1 for all but three crystals: cyanamide, cytosine, and urea.66 Figure 2

shows the cumulative two-body CCSD(T)/CBS(a[TQ]Z; δ:aDZ) CLE as dimers with longer

inter-monomer distances are included for acetic acid (polar), adamantane (nonpolar), im-

idazole (polar, aromatic), and benzene (nonpolar, aromatic). Similar figures for all other

crystals in the dataset are included in the supplementary material. From these figures, we

see that contributions from longer-range dimers are small but significant when aiming for

high accuracy crystal lattice energies.
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FIG. 2. Cumulative partial crystal lattice energy (kJ mol−1) of four crystals as dimers

with longer inter-monomer separations are included. Interaction energies are calculated with

CCSD(T)/CBS(a[TQ]Z; δ:aDZ). The gray bars are 1 kJ mol−1 above and below the final PCLE.

The green box highlights a range of 1 kJ mol−1 around the final PCLE (±0.5 kJ mol−1).
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The calculated two-body contributions, from dimers with R < 30 Å, for each crystal are

reported in Table I, in addition to the number of symmetry-unique dimers included for each

crystal. These values are also divided into subsets corresponding to ranges of minimum

inter-monomer separations. The short-range dimers (R < 4 Å) only comprise between 0.4

and 5.0% of dimers with separations less than 30 Å, yet their contribution to the two-body

PCLE is more than 83% in all molecules, and over 90% in the majority of cases studied. This

also supports the idea that the closest dimers should be given priority when choosing which

should be computed with CCSD(T)/CBS. The energetic contributions of the mid-range

dimers (4 ≤ R < 8 Å) are less than 15% for each crystal. Although the number of dimers

in each range subset increases rapidly, due to the increasing volume of shells at distance

R from the center of the reference monomer, there is a drastic decrease in the energetic

contributions from long-range dimers, whose inter-monomer separations are between 8 and

20 Å. The 75 long-range dimers of trioxane contribute 4.1% to the PCLE, the maximum

percent contribution of long-range dimers, whereas for oxalic acid α, 179 long-range dimers

contribute 0.2% of the PCLE. The subset for the 20 ≤ R < 30 Å range contains at least 62%

of the dimers for each crystal, yet only contributes energetically up to 0.8% in the case of

urea, and 0.1-0.2% in the majority of cases studied. The largest energetic contributions from

this subset, those greater than 0.2 kJ mol−1, are from some of the more polar molecules:

formamide, urea, and uracil. This can be attributed partially to slow convergence of the

electrostatic energy with respect to intermonomer distance, which can also be used to explain

the noise in Figure 2. Range-dependent convergence of electrostatics, exchange, induction,

and dispersion for each of these crystals have been reported recently by our group.66
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TABLE I. Two-body crystal lattice energy contributions (kJ mol−1) and the number of symmetry-

unique dimers (Ndim) with a minimum inter-monomer separation, R, less than 30 Å, in addition

to those for subsets of R. Percentages of the total two-body energies and dimer counts are listed

in parentheses. Energies are computed with CCSD(T)/CBS(a[TQ]Z; δ:aDZ).

Total R < 4 4 ≤ R < 8 8 ≤ R < 20 20 ≤ R < 30

Energy Ndim Energy Ndim Energy Ndim Energy Ndim Energy Ndim

1,4-Cyclohexanedione -97.97 596 -92.11 7 -4.86 20 -0.82 182 -0.17 387

P21 (94.0%) (1.2%) (5.0%) (3.4%) (0.8%) (30.5%) (0.2%) (64.9%)

Acetic Acid -75.51 935 -67.29 7 -7.73 24 -0.56 282 0.06 622

Pna21 (89.1%) (0.7%) (10.2%) (2.6%) (0.7%) (30.2%) (-0.1%) (66.5%)

Adamantane -59.05 128 -53.23 2 -4.40 5 -1.31 41 -0.11 80

P4̄21c (90.1%) (1.6%) (7.4%) (3.9%) (2.2%) (32.0%) (0.2%) (62.5%)

Ammonia -36.38 626 -35.39 3 -0.35 12 -0.49 184 -0.15 427

P1 (97.3%) (0.5%) (1.0%) (1.9%) (1.3%) (29.4%) (0.4%) (68.2%)

Benzene -57.99 420 -50.16 3 -6.67 14 -1.05 125 -0.11 278

Pbca (86.5%) (0.7%) (11.5%) (3.3%) (1.8%) (29.8%) (0.2%) (66.2%)

Carbon Dioxide -30.11 251 -25.10 1 -4.46 8 -0.52 73 -0.03 169

Pa3̄ (83.4%) (0.4%) (14.8%) (3.2%) (1.7%) (29.1%) (0.1%) (67.3%)

Cyanamide -77.56 1463 -71.61 9 -5.28 30 -0.66 428 -0.01 996

Pbca (92.3%) (0.6%) (6.8%) (2.1%) (0.9%) (29.3%) (0.0%) (68.1%)

Cytosine -166.28 690 -155.08 7 -5.04 18 -6.07 215 -0.09 450

P212121 (93.3%) (1.0%) (3.0%) (2.6%) (3.7%) (31.2%) (0.1%) (65.2%)

Ethyl Carbamate -82.04 977 -80.26 12 -0.57 24 -1.14 301 -0.07 640

P1̄ (97.8%) (1.2%) (0.7%) (2.5%) (1.4%) (30.8%) (0.1%) (65.5%)

Formamide -76.76 1534 -77.07 9 1.81 34 -0.95 450 -0.55 1041

P21/n (100.4%) (0.6%) (-2.4%) (2.2%) (1.2%) (29.3%) (0.7%) (67.9%)

Hexamine -87.13 40 -82.93 2 -2.45 2 -1.61 14 -0.13 22

I4̄3m (95.2%) (5.0%) (2.8%) (5.0%) (1.9%) (35.0%) (0.2%) (55.0%)

Ice -34.05 1483 -34.05 6 0.24 32 -0.23 434 -0.01 1011

P63cm (100.0%) (0.4%) (-0.7%) (2.2%) (0.7%) (29.3%) (0.0%) (68.2%)

Imidazole -93.30 1070 -92.30 10 2.55 27 -3.61 323 0.06 710

P21/c (98.9%) (0.9%) (-2.7%) (2.5%) (3.9%) (30.2%) (-0.1%) (66.4%)

Naphthalene -84.43 386 -75.65 5 -6.83 11 -1.83 123 -0.13 247

P21/a (89.6%) (1.3%) (8.1%) (2.8%) (2.2%) (31.9%) (0.2%) (64.0%)

Oxalic Acid α -108.25 595 -96.81 4 -11.07 15 -0.26 179 -0.12 397

Pcab (89.4%) (0.7%) (10.2%) (2.5%) (0.2%) (30.1%) (0.1%) (66.7%)

Oxalic Acid β -126.70 712 -114.86 5 -10.26 17 -1.49 218 -0.09 472

P21/c (90.7%) (0.7%) (8.1%) (2.4%) (1.2%) (30.6%) (0.1%) (66.3%)

Pyrazine -63.04 319 -57.80 4 -4.39 10 -0.76 97 -0.08 208

Pmnn (91.7%) (1.3%) (7.0%) (3.1%) (1.2%) (30.4%) (0.1%) (65.2%)

Pyrazole -66.79 1269 -58.22 10 -7.87 34 -0.77 381 0.06 844

P21cn (87.2%) (0.8%) (11.8%) (2.7%) (1.1%) (30.0%) (-0.1%) (66.5%)

Succinic Acid -133.87 525 -121.15 5 -11.76 18 -0.87 162 -0.09 340

P121/a1 (90.5%) (1.0%) (8.8%) (3.4%) (0.7%) (30.9%) (0.1%) (64.8%)

Triazine -58.36 199 -53.61 3 -3.67 8 -1.02 63 -0.08 125

R3̄c (91.8%) (1.5%) (6.3%) (4.0%) (1.7%) (31.7%) (0.1%) (62.8%)

Trioxane -60.60 256 -54.17 3 -3.95 8 -2.48 75 0.00 170

R3c (89.4%) (1.2%) (6.5%) (3.1%) (4.1%) (29.3%) (0.0%) (66.4%)

Uracil -127.55 858 -116.52 9 -12.16 24 1.37 262 -0.24 563

P21/a (91.4%) (1.0%) (9.5%) (2.8%) (-1.1%) (30.5%) (0.2%) (65.6%)

Urea -115.56 311 -113.18 5 -2.76 8 -0.50 101 0.89 197

P4̄21m (97.9%) (1.6%) (2.4%) (2.6%) (0.4%) (32.5%) (-0.8%) (63.3%)
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B. Performance of Approximate Methods

With relevant benchmark data, 15 levels of theory approximate to CCSD(T)/CBS are

tested for their accuracy in calculating the two-body lattice energy contributions for each

of the 23 crystals. Timings are shown in Figure 3, where the wall time needed to com-

pute the interaction energy of an adamantane dimer with each level of theory is compared.

We arbitrarily chose an adamantane dimer that has an inter-monomer separation of ∼7

Å after observing no correlation between inter-monomer separation and computation wall

time. All methods tested, excluding MP2.5, returned the interaction energy in less than

5 minutes on 14 cores of an Intel i9-10980XE processor using Psi4 1.4rc3.63 HF-3c is the

least expensive method studied and calculates the adamantane dimer’s interaction energy

in just 9 seconds on 14 cores. Existing studies on the X23 dataset have shown that HF-

3c performs similarly to some dispersion-corrected DFT methods.60,61 MP2.5 is by far the

most expensive approximate method considered, taking one hour to complete with the aDZ

basis set and 15 minutes with jDZ. Still, all methods are drastically less expensive than

CCSD(T)/CBS(a[TQ]Z; δ:aDZ), which has a wall time of 2 days, 13 hours, and 17 minutes

for the corresponding calculation.

Errors for calculating the two-body contribution with the 15 low-cost levels of theory

relative to CCSD(T)/CBS(a[TQ]Z; δ:aDZ) are shown in the left panel of Figure 4. For the

error analysis study, given the very small contribution from dimers 20 ≤ R < 30 Å, and

the large number of them, we limited ourselves only to the significant dimers, R < 20 Å.

Nevertheless, we strongly expect the reliability of various methods in the neglected range

(20 ≤ R < 30 Å) to be at least as good as in the range 8 ≤ R < 20 Å. In general, it appears

that more distant dimers are much easier to model with more approximate methods, as we

have already observed for crystalline benzene,28 and as we discuss in more detail below.

The left panel of Figure 4 reports errors in the two-body crystal lattice energy when using

each approximate method rather than the benchmark-level coupled cluster. The absolute

errors range from 0.1 kJ mol−1 (cytosine with PBE-D3BJ/aDZ) to 50.6 kJ mol−1 (succinic

acid with MP2-D/jDZ). The three darkest columns correspond to the use of the smallest

standard basis sets considered here, jun-cc-pVDZ. (HF-3c and PBEh-3c use even smaller

basis sets, but those methods are tuned specifically for their associated basis sets.) Overall,

the jDZ basis sets, which are used for only MP2, MP2-D, and MP2.5, return some especially
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FIG. 3. Wall times (seconds) of calculating the interaction energy of an adamantane dimer with

a minimum inter-monomer separation of 6.997 Å using Psi4 1.4rc3 and 14 cores of an Intel

i9-10980XE processor. The gray shaded region represents one minute. This calculation with

CCSD(T)/CBS(a[TQ]Z; δ:aDZ) has a wall time of ∼2.5 days.

large errors, up to 50.6 kJ mol−1, signaling that these levels of theory tend to underbind the

dimers of this dataset. The largest of these errors tend to be associated with molecules con-

taining carbonyl groups (e.g., 1,4-cyclohexanedione, cytosine, ethyl carbamate, formamide,

oxalic acid, succinic acid, uracil, and urea). We hypothesize that diffuse d functions (absent

in the jDZ basis set but present in aDZ) are important for computing accurate MP2 inter-

action energies in these systems. Using the aDZ basis sets instead alleviates some error,

reducing the maximum error to 23.8 kJ mol−1, but these methods still tend to underbind.

The DFT methods tend to overbind, resulting in negative interaction energy errors. Inter-

estingly, SAPT0/aDZ overbinds, but switching to the jDZ basis set results in underbound

dimers.

Some of the largest errors appear for succinic acid, oxalic acid (α and β), and cytosine.

All four of these crystals have dimers with closest-contact separations between 1 and 2 Å.

Due to this observation, we compared the closest inter-molecular contact within each crystal

to each crystal’s maximum PCLE error (over all approximate methods). Figure S-8 in the
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supplementary material shows no correlation between the two.

As stated previously, it has been suggested that methods approximate to CCSD(T)/CBS

may be appropriate for long-range dimers, only reducing accuracy a small amount and cer-

tainly reducing computational cost. Therefore, we have computed PCLE errors under a

range-dependent scheme. We compute the interaction energies of dimers with separations

between 3 and 20 Å with the low-cost methods and allow those dimers with separations

less than 3 to be computed with CCSD(T)/CBS. We chose 3 Å to be the switchover dis-

tance because all of the crystals, except crystalline carbon dioxide, have some (but very

few) dimers with separations below this distance, keeping the number of dimers to be com-

puted with CCSD(T)/CBS low. Carbon dioxide has no dimers with separations below 3 Å.

For each of the 23 crystals, no more than 9 symmetry-unique dimers were computed with

CCSD(T)/CBS. (A detailed breakdown of dimer counts are included in the supplementary

material.) Upon implementing this switchover distance of 3 Å, there resulted a notable

decrease in errors compared to computing all dimers with the approximate method. Specific

errors for each crystal/method combination can be seen in the right panel of Figure 4. The

range of absolute errors reduces from 0.1 – 50.6 kJ mol−1 (when computing all dimers R <

20 Å with approximate methods) to 0.0(02) – 18.6 kJ mol−1, and the levels of theory tend to

maintain overbinding or underbinding predictions. The crystal with the largest long-range

errors is CO2; however, this is simply because the nearest-neighbor dimer in CO2 has a

closest-contact distance between 3–4 Å (as previously discussed) and is included in the right

panel of Fig. 4. Among the crystals with the next-largest errors, several have large molecular

dipole moments: e.g., cytosine, formamide, and uracil (dipole moments for these molecules

are available in the supporting material of Ref. 66). However, large errors are also found for

succinic acid, which has a small dipole moment, and oxalic acid β, which has a zero dipole

moment (although these molecules do have polar groups and nonzero quadrupole moments).

Overall, we do not see a clear correlation between the molecular structure and which crystals

exhibit the largest errors in the right-hand panel of Figure 4, apart from the predominance

of carbonyl groups in the systems with the largest errors, especially for MP2-type methods

with the truncated jun-cc-pVDZ basis set, as already noted.

Mean absolute errors (MAEs) for each method, averaged over all 23 crystals, are presented

in Figure 5 for both distance ranges (0–20 Å and 3–20 Å). When considering all dimers,

R < 20 Å, the lowest MAEs hover around 4-5 kJ mol−1 with B3LYP-D3BJ, PBE-D3BJ,
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PBEh-3c, and SAPT0. Excluding those dimers with R < 3 Å returns MAEs less than 5 kJ

mol−1 for almost all methods. B3LYP-D3BJ, PBE-D3BJ, and PBEh-3c continue to have

the lowest MAEs, around 1 kJ mol−1. MAE values are also tabulated in the supplementary

material.

MP2-type methods perform well despite our use of smaller basis sets (jDZ and aDZ).

Post-Hartree–Fock methods like MP2 tend to be fairly sensitive to basis set, and this is

certainly true for intermolecular interactions. However, this basis set sensitivity decreases

rapidly with intermolecular separation,28,67–69 allowing accurate results to be obtained for

the more distant dimers despite the use of small basis sets.
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FIG. 4. Errors (kJ mol−1) in the two-body crystal lattice energy contribution computed with less

expensive methods, relative to CCSD(T)/CBS(a[TQ]Z; δ:aDZ). Dimers contributing to the energy

calculations have minimum monomer separations, R, less than 20 Å (left) and between 3 and 20

Å (right).
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FIG. 5. Absolute errors (kJ mol−1) in the two-body crystal lattice energy contribution for each

method, averaged over the 23 crystals studied. Dimers contributing to the energy calculations have

minimum monomer separations, R, less than 20 Å or between 3 and 20 Å.
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C. Range Dependence of Approximate Methods

With the present results confirming that approximate methods may be better suited to

compute interaction energies of dimers with longer inter-monomer separations rather than

shorter, we aimed to find certain switchover distances where calculating interaction energies

of dimers with separations longer than that distance with an approximate method would not

greatly sacrifice accuracy. Specifically, we determined such distances where using approxi-

mate methods past that distance (up to inter-monomer separations of 20 Å) would return

errors around 4, 1, 0.5, and 0.1 kJ mol−1 for the two-body contribution in all 23 crystals.

These switchover distances are listed in Table II, and dimers with closest inter-monomer

distances below the switchover distance would still be computed with CCSD(T)/CBS. For

example, for any of the crystals considered, computing dimers with separations R < 3 Å with

CCSD(T)/CBS(a[TQ]Z; δ:aDZ) and dimers with 3 ≤ R < 20 Å with B3LYP-D3BJ/aDZ,

PBE-D3BJ/TZVP or PBEh-3c produces an error less than 4 kJ mol−1 relative to the bench-

mark CCSD(T)/CBS(a[TQ]Z; δ:aDZ) values for R < 20 Å. Here, 3 Å is considered the

switchover distance.

While closest contact separations are presented here, it is also helpful to consider the

switchover distances in terms of nearest-neighbor interactions. Generally, for molecular

crystals, nearest-neighbor molecules lie within a 4 Å radius of the asymmetric unit, and one

can expect there to be 10-15 nearest-neighbors.70,71 Using these definitions, we predict that

using a specific a switchover distance of 3 Å will have most, but possibly not all, of the

nearest-neighbor interactions computed with CCSD(T). Switchover distances larger than 3

Å, presented later, will be more likely to capture all of the nearest-neighbor interactions,

and maybe even next-nearest interactions.

Figure 6 highlights those methods that give errors less than 4, 1, 0.5, and 0.1 kJ mol−1

for all 23 crystals using the specific switchover distances noted in the figure. These schemes

were chosen because they produced the desired error with the least number of dimers being

computed with CCSD(T)/CBS (according to Table II), therefore keeping costs low. DFT

methods B3LYP-D3BJ, PBE-D3BJ, and PBEh-3c succeed in keeping errors below 4 kJ

mol−1 for all crystals with a switchover distance at 3 Å. This distance corresponds to

calculating between 89 and 100% of the symmetry-unique dimers, depending on the crystal,

with one of the three previously mentioned DFT methods, and only the remaining fraction
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TABLE II. Minimum monomer separations, R, at which a non-benchmark method is used to

compute interaction energies of dimers with separations longer than R and desired accuracy of the

two-body contribution to the lattice energy is achieved for all systems studied. Error is relative

to CCSD(T)/CBS(a[TQ]Z; δ:aDZ). Separations denoted with x indicate that the method can not

achieve listed accuracy for any cutoff R < 20 Å.

Method Error (kJ mol−1)

<4 <1 <0.5 <0.1

B3LYP-D3BJ/aDZ 3 5 7 16

B97-D3BJ/aDZ 4 7 7 14

B97-D/aDZ 5 10 13 18

HF-3c/MINIX 4 10 16 x

MP2.5/aDZ 4 4 6 10

MP2.5/jDZ 4 7 8 18

MP2-D/aDZ 4 6 7 12

MP2-D/jDZ 4 7 9 14

MP2/aDZ 4 8 10 16

MP2/jDZ 4 7 9 15

PBE-D3BJ/TZVP 3 5 7 17

PBE-D3BJ/aDZ 4 5 7 14

PBEh-3c/MSVP 3 14 x x

SAPT0/aDZ 4 7 16 x

SAPT0/jDZ 4 9 16 x

of dimers (the closest ones) with CCSD(T)/CBS. Figure S-2 of the supplementary material

provides the specific absolute errors per crystal when calculating each crystal’s two-body

lattice energy with each of these DFT methods after a switchover distance of 3 Å, rather

than the mean absolute error.

For PCLE errors less than 1, 0.5, and 0.1 kJ mol−1, MP2.5/aDZ out-performs the other

methods. It consistently allows for a cutoff sooner than other methods, reducing the number
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FIG. 6. Absolute errors (kJ mol−1) in the two-body crystal lattice energy contribution for selected

methods, averaged over the 23 crystals studied. The approximate methods are used to compute all

dimers with minimum inter-monomer separations beyond the given switchover distances provided

in Table II. Methods in colored region correspond to those which have less than the error indicated

for every crystal. Slightly larger errors for MP2.5 vs. some other approximate methods are due to

switching over to MP2.5 earlier (MP2.5 switchover distances noted in parentheses). The benchmark

method is CCSD(T)/CBS(a[TQ]Z; δ:aDZ).

of dimers that need to be computed with CCSD(T)/CBS, and therefore reducing CPU time.

The good performance of MP2.5 is perhaps not surprising, as it is the most computationally

sophisticated method considered here short of the benchmark CCSD(T)/CBS results, and

it has previously been shown to be reliable for non-covalent interactions.72–75 In the event

that one would want a method that is cheaper than MP2.5, Figure 6 also includes other

methods which yield good results at low computational cost. For an error less than 1 kJ

mol−1, B3LYP-D3BJ and PBE-D3BJ can be used for dimers with inter-monomer separa-

tions between 5 and 20 Å. A switchover distance of 7 Å must be used to reduce the error to

less than 0.5 kJ mol−1. B3LYP-D3BJ, B97-D3BJ, MP2-D, and PBE-D3BJ are all possible

choices, while the lowest MAE is that of PBE-D3BJ/aDZ. (MAEs are listed in the supple-

mentary material.) Finally, MP2-D may be used for dimers with separations longer than
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12 Å to compute a PCLE with an error less than 0.1 kJ mol−1 relative to the benchmark

method.

As previously discussed, MP2, a very common method, was chosen when applying this

two-layer approach to benzene in our group’s recent study.28 The current study reveals

that this was a fine choice, but there are other methods which will yield a lower error. If

MP2/aDZ were the level of theory used with a switchover distance of 3 Å, 21 of the 23 crystal

lattice energies would have an error less than 4 kJ mol−1. The errors for carbon dioxide

and pyrazine are 5.2 and -6.6 kJ mol−1, respectively. Changing the switchover distances

to those considered in Figure 6 (5, 7, and 12 Å) returns errors within the cutoffs of Figure

6 (1, 0.5, and 0.1 kJ mol−1, respectively) for 20 of the 23 crystals. Benzene, naphthalene,

and pyrazine present larger errors. Naphthalene shows the largest errors: -2.9 kJ mol−1

when using a switchover distance of 5 Å, -1.0 kJ mol−1 for 7 Å, and -0.2 kJ mol−1 for 12 Å.

(Errors for calculating the two-body lattice energy of each crystal with switchover distances

of 3, 5, 7, and 12 Å to MP2/aDZ are listed in Table S-8 of the supplementary material.)

Using MP2/aDZ in all of the schemes of Figure 6, instead of the method listed, resulted

in MAEs that were between 1.3 and 2.6 times larger than those shown in Figure 6. All of

the methods highlighted in Figure 6 show superior performance to MP2/aDZ for two-body

contributions to the lattice energy, and most of them (all except MP2.5), have a comparable

or less expensive computational cost. Therefore, it is recommended that methods other than

MP2 be used for systems like these studied as they are more reliable for this dataset.

An interesting case study is the comparison of error convergence between the two poly-

morphs of oxalic acid. The top two panels of Figure 7 show errors in the PCLE, relative

to the final CCSD(T)/CBS PCLE, as the switchover distance between CCSD(T)/CBS and

four approximate methods increases. The errors of oxalic acid α’s PCLE become close to 1-2

kJ mol−1 around a switchover distance of 3 Å and converge even tighter as the switchover

distance increases. The results are similar for β, but MP2.5/aDZ does not achieve a compa-

rable error until ∼ 4 Å. It should be noted that ranking polymorph stability depends on the

accuracy of relative energies between crystals rather than the accuracy of individual CLEs.

The bottom panel of Figure 7 shows the convergence of the error in the relative polymorph

energy as a function of the switchover distance. The error in the relative polymorph energy

is also nearly converged by about 4 Å, but it tends to be significantly smaller in magnitude

(generally ∼ 0.2 kJ mol−1 or less by 4 Å) than the errors in the PLCEs, especially for MP2.5.

22

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
41

87
2



Accepted to J. Chem. Phys. 10.1063/5.0141872

For this test case, even though the errors in the energy difference between the polymporphs

are less than the errors in the PCLEs, a switchover distance of 4 Å provides fairly accurate

answers for both individual PCLEs and relative energies between polymorphs.
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FIG. 7. Error in two-body CLE, relative to the final CCSD(T)/CBS PCLE, when all dimers are

considered (R < 20 Å). CCSD(T)/CBS is used to calculate interaction energies of dimers with

R less than the switchover distance (x-axis), and an approximate method is used for interaction

energies of those dimers with R longer than the switchover distance. The top panel is for oxalic

acid α only, the middle is for oxalic acid β, and the bottom panel shows the relative errors between

the two polymorphs.

For the case that an approximate method is used for all oxalic acid calculations rather

than allowing some of the closest dimers to be calculated with CCSD(T)/CBS, Figure S-7 in

the supplementary material shows the error in PCLE as dimers with longer closest contact

distances are included. The figure also shows the error in the relative energy between these

two polymorphs as more dimers are included. The PCLE returned when dimers R < 20 Å

are included is nearly achieved when dimers R < 7 Å are accounted for in both polymorphs.

One might wonder whether the relative energy between the polymorphs can be captured by

including fewer dimers than required to converge the individual polymorph lattice energies.
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The Figure indicates that, while the errors in the polymorph energy difference initially

converge much more quickly with intermolecular distance than the individual polymporph

lattice energies, oscillations in the energy difference are not fully damped out until around

7 Å, where the individual polymorph energies also converge.

Figure 8 shows the substantial reduction of computational effort for the recommended

schemes of Figure 6. Timings were obtained for the adamantane dimer of Figure 3, and from

this data we have estimated the amount of time it would take to compute all the dimers of

adamantane in each of the distance regimes. Using CCSD(T)/CBS(a[TQ]Z; δ:aDZ) for all

48 symmetry-unique adamantane dimers (R < 20 Å) would take over 40,000 core-hours (122

wall-time days using 14 cores), whereas a lattice energy within 1 kJ mol−1 of that result

could be obtained by using MP2.5/aDZ past a switchover distance of 4 Å and CCSD(T)/CBS

below 4 Å, which would take just over 2500 core-hours (about one week of wall time on 14

cores). If only one approximate method is chosen for longer-range dimers, and 1, 0.5, or 0.1

kJ mol−1 error is desired, then MP2.5 saves the most computational time of the methods

considered. Even though it is the most expensive of the approximate methods for a single

dimer computation, its increased accuracy for shorter-range dimers reduces the number

of dimers that need to be computed with CCSD(T)/CBS, a method which is far more

computationally expensive. As stated previously, these dimer calculations are independent

of each other. In the event that one could obtain as many nodes as there are individual

dimer calculations, all interaction energies would be calculated once one CCSD(T)/CBS

calculation finishes, no matter the scheme.

Another option that keeps both errors and computational cost low would be a three-level

scheme that treats short, medium, and long-range dimers each with a different level of theory.

While MP2.5/aDZ returns low errors with medium to long-range switchover distances, it

would be ideal to treat the long-range dimers with an even cheaper level of theory due to

the large number of dimers in this range and the considerable cost of MP2.5 relative to the

other approximate methods considered here. We tested a three-level scheme for benzene such

that dimers with R < 4 Å had interactions calculated with CCSD(T)/CBS(a[TQ]Z; δ:aDZ),

4 ≤ R < 5 Å with MP2.5/aDZ, and R ≥ 5 Å with B3LYP-D3BJ/aDZ. For benzene, this

means that the three-level system reduces the number of dimers computed with MP2.5/aDZ

from 139 to 2. When using this three-level scheme, the error relative to the calculating the

interaction energies of R < 20 with CCSD(T)/CBS was 0.09 kJ mol−1. This is 0.27 kJ
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FIG. 8. Total computational effort (core-hours) for calculating the two-body crystal lattice energy

contribution with CCSD(T)/CBS(a[TQ]Z; δ:aDZ) (“All Benchmark”) and also different two-level

approaches that utilize the benchmark level for closer dimers, and various approximate methods

for more distant dimers, using the switchover distances provided in Table II. The different sectors

of the graph indicate different error regimes for the hybrid methods. Timings were calculated for

an adamantane dimer with a minimum inter-monomer separation ∼ 7 Å.

mol−1 below the error from calculating the two-body lattice energy with a two-level method

of switching over to MP2.5/aDZ at 4 Å.

We tested additional three-level schemes and found that for all 23 crystals, the PCLE

errors were within 1 kJ mol−1 of the CCSD(T)/CBS PCLE when using the following

method/switchover distance combinations: CCSD(T)/CBS for R < 4, MP2.5/aDZ for

4 ≤ R < 5, and either B3LYP-D3BJ/aDZ, PBE-D3BJ/aDZ, or PBE-D3BJ/TZVP for

R ≥ 5 Å. Specific errors for each crystal under these three recommended schemes are shown

in Figure 9 as well as MAEs. In addition, we have shown these errors beside those resulting

from using the two-level level scheme of CCSD(T)/CBS for R < 4 and MP2.5/aDZ for R ≥

4 Å. Using B3LYP or PBE for R ≥ 4 Å actually reduces the maximum and mean absolute

errors relative to using MP2.5/aDZ for all dimers with separations larger than 4 Å.

Finally, timings for all proposed two and three-level schemes resulting in PCLE errors

25

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
41

87
2



Accepted to J. Chem. Phys. 10.1063/5.0141872

below 1 kJ mol−1 for each crystal are shown in Figure 10. The switchover distances for the

two-level schemes are those used in Figure 6, and the switchover distances for the three-level

schemes have been described above. Using a three-level scheme can result in a 1.9x speed-up

relative to the two-level DFT schemes. To achieve the errors of 1 kJ mol−1 with a two-level

scheme, the switchover distance is 5 Å, so all dimers with separations less than 5 must be

calculated with CCSD(T)/CBS. With the three-level scheme, those dimers with separations

between 4 and 5 can be calculated with MP2.5/aDZ instead - a method much cheaper than

CCSD(T)/CBS - resulting in this speed-up.

MP2.5/
aDZ

B3LYP-D3BJ/
aDZ

PBE-D3BJ/
aDZ

PBE-D3BJ/
TZVP

Method for R> 5Å
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FIG. 9. Absolute errors (kJ mol−1) in the two-body contributions to the crystal lattice energies for

all 23 crystals using a three-level scheme. Dimers with R < 4 Å are calculated with CCSD(T)/CBS,

4 ≤ R < 5 Å with MP2.5/aDZ, and R ≥ 5 Å with each method listed. Green squares represent

the MAEs. The benchmark method is CCSD(T)/CBS(a[TQ]Z; δ:aDZ).

IV. CONCLUSIONS

For 23 molecular crystals, we have presented benchmark-level values of the two-body

contribution to lattice energies using focal-point estimates of coupled-cluster theory through

perturbative triple excitations, at the complete-basis-set [CCSD(T)/CBS] limit. We have

employed a many-body expansion (MBE) approach that obtains the crystal lattice energy
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FIG. 10. Total computational effort (core-hours) for calculating the two-body contribution to

adamantane’s CLE with different schemes which result in errors below 1 kJ mol−1 for all 23

crystals relative to CCSD(T)/CBS. Hatching represents the portion of core-hours required for the

CCSD(T)/CBS computations of each scheme. The switchover distances are those presented in

Figures 6 and 9.

as a sum of individual molecular dimer, trimer, etc., computations, and in this work we

have examined the leading two-body (dimers) term. The two-body contributions included

dimers with minimum inter-monomer separations less than 30 Å, and the energy contribu-

tion per dimer decreases rapidly as the inter-monomer separation increases. Based on this

benchmark data, we analyzed how approximate methods perform for the two-body crys-

tal lattice energy contribution. The great majority of the error from using approximate

methods rather than CCSD(T)/CBS comes from the short-range dimers with close inter-

monomer separations, and therefore we analyzed two-level schemes where dimers with the

closest separations were calculated with CCSD(T)/CBS and all other dimers were calculated

with an approximate method. We examined errors for such approaches as a function of the

switchover distance between CCSD(T)/CBS and the low-level methods and specifically de-

termined schemes which significantly reduce computational time while approximating the

CCSD(T)/CBS values within 4, 1, 0.5, and 0.1 kJ mol−1 for each crystal.
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While DFT methods B3LYP-D3BJ, PBE-D3BJ, and PBEh-3c return errors less than 4

kJ mol−1 for dimers with separations between 3 and 20 Å, lower errors can be obtained.

Using MP2.5/aDZ for the long-range dimers, and computing shorter-range dimers with

CCSD(T)/CBS, can return errors between 0.1 and 1 kJ mol−1 depending on the switchover

distance between the two methods. Methods less computationally expensive than MP2.5,

such as MP2-D/aDZ and various DFT methods, can sometimes also achieve very low er-

rors, but the number of dimers computed with CCSD(T)/CBS must be increased to achieve

target accuracies. Due to the success of MP2.5/aDZ computing medium to long-range inter-

action energies, three-level schemes were considered which compute short-range dimers with

CCSD(T), medium-range dimers with MP2.5, and long-range dimers with either B3LYP or

PBE. These three-level schemes resulted in a 1.9x speed-up relative to the DFT two-level

schemes while still achieving 1 kJ mol−1 error in the two-body contributions to each of the

23 crystal lattice energies.

Although we have focused on the two-body terms in the MBE approach, the general

accuracy of the DFT and MP2 methods should generally carry over to the context of pe-

riodic boundary condition compuations, with the caveat that periodic DFT computations

are typically performed in a plane-wave basis with pseudopotentials rather than with atom-

centered Gaussian basis functions, and so some differences are to be expected on that basis.

Of course, the periodic computations will naturally include three- and higher-body contri-

butions, which have not been included here, and the errors from those terms may add to

or partially cancel the errors from the two-body terms.The two-body interactions typically

constitute ∼80-90% of the total crystal lattice energy,34 so an accurate CLE under the many-

body expansion must consider three-body, and sometimes even four-body, terms. While this

study does not calculate any three or four-body terms, we expect that within the MBE we

could use approximate methods for the medium to long-range trimers and tetramers, as

evidenced in our recent benzene study.28

Additionally, this study does not examine polymporphs based on different molecular

conformations (conformational polymorphs). Some studies suggest that intramolecular con-

formational energies are poorly calculated by generalized gradient approximation (GGA)

and hybrid functionals, and that obtaining these energies with wavefunction methods, like

MP2 and MP2-D, can greatly improve the results, but basis sets larger than double-ζ may

be required.8,76,77
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SUPPLEMENTAL MATERIAL

The supplemental material contains the crystalline infographic files for each crystal, as

well as a report of all dimers, inter-monomer separations, replica numbers, and interaction

energies for each method. Figures, corresponding to Figure 2, for all crystals are provided,

in addition to absolute and mean absolute errors for different error minimizing schemes.

CrystaLattE can be accessed at https://github.com/carlosborca/CrystaLattE.
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50M. Pitoňák, P. Neogrády, J. Černý, S. Grimme, and P. Hobza, “Scaled MP3 Non-

Covalent Interaction Energies Agree Closely with Accurate CCSD(T) Benchmark Data,”

ChemPhysChem 10, 282–289 (2009).
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74K. E. Riley, J. Řezáč, and P. Hobza, “The performance of MP2.5 and MP2.x methods

for nonequilibrium geometries of molecular complexes,” Phys. Chem. Chem. Phys. 14,

13187–13193 (2012).
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