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Abstract

Conditional mean embedding (CME) operators encode con-
ditional probability distributions within reproducing kernel
Hilbert spaces (RKHS). In this paper, we present a decen-
tralized algorithm for a collection of agents to cooperatively
approximate CME over a network. Communication constraints
limit the agents from sending all data to their neighbors; we
only allow sparse representations of covariance operators to be
exchanged among agents, compositions of which defines CME.
Using a coherence-based compression scheme, we present a
consensus-type algorithm that preserves the average of the ap-
proximations of the covariance operators across the network.
We theoretically prove that the iterative dynamics in RKHS
is stable. We then empirically study our algorithm to estimate
CMEs to learn spectra of Koopman operators for Markovian
dynamical systems and to execute approximate value iteration
for Markov decision processes (MDPs).

1 Introduction
Over the last several years, embeddings of conditional prob-
ability distributions into reproducing kernel Hilbert spaces
(RKHS), known as conditional mean embeddings (CMEs),
have gained recognition as a powerful tool for both describ-
ing and estimating the dynamics of unknown or uncertain
nonlinear dynamical systems. The CME framework captures
transition dynamics without resorting to explicit modeling of
system dynamics such as differential equations, yielding a
representation which reduces computationally intensive, high
dimensional integrations to inner products with linear com-
plexity. Moreover, convergence guarantees on data-driven
estimates of the embeddings are available, e.g., (Song et al.
2009; Grünewälder et al. 2012).

In many applications involving dynamical systems, a dis-
tributed, multi-agent approach to sensing and estimation is de-
sired, if not required. The training time incurred in industrial-
scale machine learning, for example, can be reduced when
model estimation is decentralized across parallelized com-
puting resources (Koppel et al. 2018). Operations involving
systems which naturally encompass large geographical areas,
such as wind condition assessment, necessitate deployment
of multi-robot sensing teams in order to maintain feasible ex-
ploration time (Bobade, Panagou, and Kurdila 2019). In fully
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decentralized scenarios, individual agents or sensors share
observations and other information across a communication
network in order to reach a consensus regarding quantities of
interest. However, this process is complicated by constraints
arising from characteristics of the network and the agents
themselves, including limitations on sensing, communication
and computation.

In this work, our particular interest lies in a decentral-
ized, networked multi-agent setting where agents coopera-
tively seek to learn CME operators describing a common
dynamical system, while interacting across a network with
constraints on the capacity of communication links. Specifi-
cally, agents communicate their tentative empirical estimates
with neighbors in order to augment and refine their system
model estimates. The empirical estimators maintained by
each agent are represented using kernel functions centered at
data points and weight coefficients locally observed and com-
puted, whose size scales with the number of samples. Thus,
with large amount of data, the required inter-agent exchanges
may exceed network link capacities.

Scalability has long been identified as a critical issue fac-
ing kernel methods, e.g., see (Lever et al. 2016). As such,
it has generated a considerable body of literature develop-
ing sparsification techniques that attempt to discard data
found to be essentially redundant for the purposes of estima-
tion (Engel, Mannor, and Meir 2002; Kivinen, Smola, and
Williamson 2004; Richard, Bermudez, and Honeine 2008;
Koppel et al. 2017; Hou, Bose, and Vaidya 2021). Here, we
draw upon this work to design a compression protocol exe-
cuted by agents prior to transmission. Specifically, we adopt
the notion of coherency to control message length. To the best
of our knowledge, this is the first work that provides detailed
theoretical analysis on compressed decentralized learning in
RKHS.

Our approach is most closely related to the scalar-valued
quantized averaging techniques found in the networked
consensus literature (Kashyap, Başar, and Srikant 2007;
El Chamie, Liu, and Başar 2016), as the resulting evolution of
estimates involves nonlinear dynamics, wherein the initial av-
erage across agents is not necessarily preserved (Nedic et al.
2009; Carli et al. 2010; El Chamie, Liu, and Başar 2016;
Frasca et al. 2009; Aysal and Barner 2010). Nevertheless,
our problem differs from the aforementioned ones in many
respects. First, we consider learning operators rather than
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real values. Second, the data dependent, coherence-based
compression mapping cannot be viewed as that generated by
uniform quantizers studied in quantized consensus.

The main contribution of this paper is the design of a
coherence-based compressed decentralized algorithm that
aims to learn the CME operator. While decentralized learn-
ing over RKHS is well-studied, its sparse variant is much
more challenging to address, as the errors due to approxima-
tions can pile up over time, making the estimate biased. We
show in Theorem 1 that under mild conditions on the com-
munication network, the initial average of empirical (cross)
covariance operators across the network is preserved and
each agent obtains a “stationary dictionary”. In addition, we
prove the stability of local empirical CME operators main-
tained by each agent through the iterative dynamics. Finally,
we present applications of our consensus algorithm as a basis
for distributed estimation of eigenfunctions of kernel transfer
operators in a pair of oscillator systems, and approximate
value iteration in a benchmark reinforcement learning task.

2 Preliminaries: RKHS and CME
We briefly review requisite definitions and properties of
RKHS, and refer to (Muandet et al. 2016) for a detailed
exposition. Let X be a compact subset of an appropriate
dimensional Euclidean space, and κ : X× X→ R be a sym-
metric, positive semi-definite kernel. DefineH as the RKHS
defined via the kernel κ as the completion of the linear span
of {ϕ(x) := κ(x, ·) : x ∈ X} that is equipped with the inner
product ⟨·, ·⟩, satisfying ⟨ϕ(x), ϕ(y)⟩ = κ(x, y). Here, ϕ is
called the feature map of the kernel κ. The inner product
satisfies the reproducing property, given by

⟨ϕ(x), f⟩ = f(x), ∀x ∈ X, f ∈ H. (1)

Kernel mean embedding of probability distributions
Consider a probability space (Ω,F ,P) with a σ-algebra
F and a probability measure P. Let X : (Ω,F ,P) →
(X,Σ,PX) be a X-valued random variable, where Σ is the
Borel σ-algebra on X and PX is a distribution on X . Denote
EX as the expectation with respect to PX . If κ is Σ ⊗ Σ-
measurable, and EX

[√
κ(x, x)

]
<∞, then the probability

distribution PX can be embedded within the RKHSH (see
e.g, (Muandet et al. 2016, Lemma 3.1)). In fact, there exists
a kernel mean embedding µ : PX 7→ µPX

∈ H such that

µPX
:= EX [κ(X, ·)] . (2)

Throughout this paper, we suppose that κ is measurable and
bounded, i.e., supx∈X κ(x, x) <∞.

Let Y : (Ω2,F2,P2) → (Y,Σ2,PY ) be a Y-valued ran-
dom variable. In addition, let (H1, κ1), (H2, κ2) be RKHSs
on X and Y, respectively. Denote PXY as the joint distribu-
tion of (X,Y ), and EXY as the expectation with respect to
PXY . Along the same lines as the preceding discussion, per
(Berlinet and Thomas-Agnan 2011), PXY can be embedded
into the tensor product Hilbert spaceH1 ⊗H2 as

µPXY
:= CXY = EXY [ϕ(X)⊗ ψ(Y )], (3)

where CXY is the (uncentered) cross-covariance operator and
ψ is the feature map of H2. This operator can be identified

as an element inH1 ⊗H2 with kernel κ⊗ := κ1 ⊗ κ2, i.e.,

κ⊗

(
(x1, y1), (x2, y2)

)
= κ1(x1, x2) κ2(y1, y2), (4)

for all x1, x2 ∈ X, y1, y2 ∈ Y and (joint) feature map

φ (xi, yi) := ϕ (xi)⊗ ψ (yi) = κ1 (xi, ·)κ2 (yi, ·) . (5)

Equivalently, we can also view CXY as a Hilbert-Schmidt
(HS) operator CXY : H2 → H1 that satisfies

EXY [f(X)g(Y )] = ⟨CXY g, f⟩, ∀f ∈ H1, g ∈ H2. (6)

Along the same lines as above, the (uncentered) covariance
operator CXX , embedding of the marginal distribution PX

intoH1 ⊗H1, can be defined as

CXX := EX [ϕ(X)⊗ ϕ(X)]. (7)

One often needs to estimate such mean embeddings from
data. Let D := {(x1, y1) , . . . , (xn, yn)} denote a collection
of n data points sampled independently according to PXY .
The empirical estimations of CXX and CXY , given D, then
are

CXX =
1

n

n∑
i=1

ϕ (xi)⊗ ϕ (xi) =
1

n

n∑
i=1

φ (xi, xi) ,

CXY =
1

n

n∑
i=1

ϕ (xi)⊗ ψ (yi) =
1

n

n∑
i=1

φ (xi, yi) .

(8)

The empirical estimation in (8) is known be
√
n-consistent in

RKHS norm (Muandet et al. 2016; Tolstikhin, Sriperumbudur,
and Muandet 2017; Hou, Bose, and Vaidya 2021).

Embedding of conditional probability distributions Let
PY |x denote the conditional distribution of the random vari-
able Y given X = x ∈ X. The embedding of PY |x into H2

is defined as

µPY |x := EY |x[ϕ(Y )|X = x] ∀x ∈ X. (9)

In fact, per (Song et al. 2009), the conditional mean embed-
ding operator UY |X : H1 → H2, is a linear operator that
satisfies

µPY |x = UY |Xϕ(x), . (10)

In particular, UY |X : µPX
7→ µPY

, i.e.,

µPY
= UY |XµPX

. (11)

If EY |x[f(Y )|X = x] ∈ H2 for all f ∈ H2 and x ∈ X,
and CXX is invertible, then we have

UY |X = CY XC−1
XX . (12)

The operator definitions in the next section rely on CXX

being an invertible map. For technical reasons, (Song et al.
2009) we consider their regularized versions, defined as

Uε = CY X (CXX + εI)−1
, (13)

for ε > 0, where I is the identity operator. Given the col-
lection of data points D := {(x1, y1) , . . . , (xn, yn)}, the
regularized empirical estimate of the CME operator becomes

Uε := CY X (CXX + εI)
−1
. (14)
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3 Applications of CME in Markov Processes
CMEs encode how the distribution of one random variable
relates to another’s. If the random variables correspond to
successive states of a discrete-time Markov process, CMEs
naturally encapsulate the transition dynamics of that process.
There are two main reasons that make CME particularly suit-
able to study Markovian dynamics. First, the approximation
errors in CME estimation is independent of the dimension
of the state space of the underlying data (Song et al. 2009,
Theorem 6). Second, evaluations of high-dimensional inte-
gration, such as those required to evaluate expectations over
the state space, reduce to the simple computation of an inner
product in an RKHS. Here, we briefly review how CME is
related to transfer operators and the control of MDPs.

3.1 Uncontrolled Markov Processes
Consider a time-homogeneous discrete-time Markov process
over X, described by the transition kernel density p as

P {Xt+1 ∈ A | xt = x} =
∫
A

p(y|x)dy, ∀t ≥ 0 (15)

for any Borel set A in X, where the random variable Xt

denotes the state at time t. If f describes a probability den-
sity of states in X, then the Perron–Frobenius operator P ,
propagates f through the dynamical system, i.e.,

(Pf) (y) =
∫
p(y|x)f(x)dx ∀y ∈ X. (16)

On the other hand, for any function f on X, the Koopman
operator K acts on f such that

(Kf) (x) =
∫
p(y|x)f(y)dy ∀x ∈ X. (17)

Using these operators, the nonlinear probabilistic propagation
of a finite-dimensional state can be described via the linear
propagation of infinite-dimensional densities or functions
of states. Comparing (11) and (16) motivates the definition
of Perron–Frobenius operator as P := UY |X (see (Klus,
Schuster, and Muandet 2020) for details). As a result, we
have

P = UY |X = CY XC−1
XX . (18)

Along the same line as (18), we identify the Koopman opera-
tor K as the adjoint of UY |X = P , given by

K = C−1
XXCXY . (19)

The spectra of these linear transfer operators contain valuable
information about the dynamical system, including their re-
gions of attraction and stable orbits (Mezić 2005). In view of
(18) and (19), the interactions of these operators with RKHS
can be studied through the CME operator. Data-driven ap-
proximations to CME, e.g., in (Song et al. 2009), then allow
data-driven dynamical systems analysis.

3.2 Markov Decision Processes (MDPs)
CMEs also find application in the analysis of MDPs. Con-
sider an MDP with compact state and action spaces X and

U that are subsets of a finite-dimensional Euclidean space.
The state dynamics are described by a transition kernel
xt+1 ∼ p(·|xt, ut). The value function at x ∈ X (expected
cost starting from x) satisfies

(BV )(x) := min
u∈U

{
c(x, u) + γEY |(x,u)[V (Y )]

}
, (20)

where in this context, Y is the X-valued random state fol-
lowing x, and c : X × U → R is the immediate cost func-
tion. Given an arbitrary V0, the sequence {Vk} defined via
Vk+1 = BVk converges in sup-norm to an optimal value
function (Szepesvári 2010).

CMEs allow for “kernelization” of the value iteration pro-
cedure. Let Z = X×U and Z be a Z valued random variable,
and (H1, κ1) and (H2, κ2) be RKHS on Z and X, respec-
tively. For f ∈ H2, the mapping f 7→ EY |z[f(Y )] can be
implemented using a CME as

EY |z[f(Y )] = ⟨f, µY |z⟩, (21)

where µY |z is the distribution on Y , conditioned on current
state-action pair z = (x, u). Then, µY |z ∈ H2 is given by

µY |z = CY ZC−1
ZZϕ(z), (22)

where ϕ denotes the feature map corresponding to κ2 (Song
et al. 2009; Grunewalder et al. 2012).

In the next section, we propose a distributed (decentralized)
algorithm such that when the transition kernel is unknown
in these Markov processes, the empirical approximations of
(19) and (21) can be learned by agents in a network, having
access only to private local data.

4 Compressed Decentralized Learning of the
CME Operator

Consider a finite collection of agents V := {1, . . . ,m} that
are connected via a communication network. The agents seek
to collectively learn an empirical approximation of CME. A
single agent can utilize (8) and (14) to learn an approximation
of the CME operator from data. Simulation capabilities can
limit the amount of data that a single agent can collect. Thus,
our goal is to allow agents to share their approximations with
each other to create meaningful approximations of the CME
operator. Represent the network by a fixed undirected graph
G = (V, E), where V and E denote the nodes (agents) and
the edges (communication channels) of the graph. Agents
can exchange their local tentative empirical approximations
of the CME operator at time t ≥ 0 with their neighbors in G.
Assume that there is no communication delay in the network.

Let Di(0) denote the local data points available to agent
i at t = 0. The CME operator approximations are obtained
from the covariance operator approximations in (7). These
approximations require the knowledge of each of the data
points. Since the number of data points in Di(0) can be large,
broadcasting that list over the network can be overwhelming.
The difficulty of handling large data in kernel estimation is
well-documented, e.g., see Engel, Mannor, and Meir (2002);
Koppel et al. (2017, 2018); Forero, Cano, and Giannakis
(2010). To circumvent this difficulty, we allow each agent
i ∈ V to share only compressed empirical approximations
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of the CME operators with their neighbors. This local com-
pressed approximations are constructed by pruning the local
dataset Di(t) for each agent i. Our notion of compression is
based on coherency; see Richard, Bermudez, and Honeine
(2008). Under this compression technique, only data points
that are not “too similar” are retained, where similarity is
measured via normalized inner products between the two
points, induced by the kernel functions. In what follows, we
define coherency and present our algorithm for decentralized
CME estimation.

Let Di(t) denote the local dataset available to agent i at
time t with cardinality Di(t) := |Di(t)|. Let κ be a positive
definite reproducing kernel on Di(t) with induced RKHS
Hi(t). GivenDi(t) and γ, each agent constructs a γ-coherent
compressed dataset D̂i(t) ⊆ Di(t), by identifying a subset
that satisfies

|κ(x⋆s, x⋆τ )| ≤
√
γκ(x⋆s, x

⋆
s)κ(x

⋆
τ , x

⋆
τ ), (23)

for each s, τ where (x⋆s, x
⋆
τ ) is either (xs, xτ ) or (x+s , x

+
τ ),

and (xs, x
+
s ), (xτ , x

+
τ ) are in Dγ . For any γ, we denote the

compression operation by

CMPγ(Di(t)) = D̂i(t). (24)

Let W ∈ Rm×m be a weighted adjacency matrix of the
graph G. Thus, we have wi,j > 0 ⇐⇒ (i, j) ∈ E . Let N i

denote the neighbors of i in G. We design an algorithm for
agents to arrive at empirical covariance estimations Ci

Y X(t)
and Ci

XX(t) using compressed variants from neighbors over
time, to then calculate the CME operator

U i
ε(t) := Ci

Y X(t)
(
Ci

XX(t) + εI
)−1

, ε > 0. (25)

Our decentralized algorithm proceeds as follows. At t = 0,
given local dateset Di(0), let κ be a reproducing kernel
on Di(0) with RKHS Hi(0). Each agent i constructs its
local estimate Ci

Y X(0) and Ci
XX(0) via (8). Then, each

agent compresses the local data set Di(0) with the γ-
coherent compression scheme CMPγ to obtain the com-
pressed dataset D̂i(0). Let Ii(0) = {1, · · · , Di(0)} be the
index set for Di(0) and Îi(0) be a subset of Ii(0), con-
taining all k ∈ Ii(0) for which the pair (xk, yk) is in
D̂i(0). The sparse estimators of Ci

XY (0) and Ci
XX(0) for

agent i are given by Ĉi
Y X(0) :=

∑
k∈Îi(0) α̂

i
k(0)φ (xk, yk),

Ĉi
XX(0) :=

∑
k∈Îi(0) β̂

i
k(0)φ (xk, xk), where real-valued

vector α̂i(0) := (α̂i
k(0))k∈Îi(0) (and similarly, β̂i(0) :=

(β̂i
k(0))k∈Îi(0)) is defined as1

α̂i(0) := argmin
α(0)

∥∥∥∥∥∥ 1

Di(0)

∑
k∈Ii(0)

φ (xk, yk)

−
∑

k∈Îi(0)

αk(0)φ (xk, yk)

∥∥∥∥∥∥
2

Hi(0)

,

(26)

1Ĉi
Y X(0) is the orthogonal projection of Ci

XY (0) onto the
closed subspace span{φ(xk, yk) : k ∈ Îi

s} ⊆ H⊗.

so that the contribution of discarded kernel function can
be distributed over elements in D̂i(0). At t = 1, agent i
communicates D̂i(0), Ĉi

Y X(0) and Ĉi
XX(0) to each of its

neighbor j ∈ N i. Now, each agent must update its local
estimate of the covariance operators using a combination of
its own prior estimate and the compressed estimates that it
receives from its neighbors.

A natural candidate for consensus-based update rule for
covariance operator estimates takes the form

Ĉi
Y X(t+ 1) = wi,iĈ

i
Y X(t) +

∑
j∈N i

wi,jĈ
j
Y X(t) (27)

for t ≥ 0. However, these updates may cause the average
across the network to deviate from its initial value.

Instead, we consider a modified update rule for Ci
Y X(t)

(similarly for Ci
XX(t)), given by

Ci
Y X(t+ 1) =wi,iĈ

i
Y X(t) +

∑
j∈N i

wi,jĈ
j
Y X(t)

+ Ci
Y X(t)− Ĉi

Y X(t)︸ ︷︷ ︸
eiY X(t)

.
(28)

Our method is formally presented in Algorithm 1.
The proposed algorithm proceeds in two stage – dictionary

passing and coefficient passing. Let d(G) denote the longest
path between any two nodes of graph G. For t = 0, . . . , d(G),
each agent i sends its compressed dictionary D̂i(t) to its
neighbors in G. From t = d(G) onwards, agents exchange
their D̂i(t) and coefficient vectors αi(t),βi(t). As we will
prove in the next section, agents arrive at a stationary dic-
tionary within d(G) time-steps. Then, CME learning with
compressed dictionaries leads to a modified consensus dy-
namics described by (28).

Dictionary passing: Agent i begins by creating an order-
ing for its neighbors and appends itself to the start of this list,
i.e., it generates the ordered list ORDi = {vi1, · · · , vi|N i|+1}
from {i}

⋃
N i with vi1 = i. With the local dictionary Di(t)

at time t, agent i prunes it to obtain a γ-coherent dictio-
nary D̂i(t) = CMPγ

(
Di(t)

)
. Then, it shares its compressed

dictionary D̂i(t) with its neighbors. Upon receiving the dic-
tionaries from its neighbors, agent i updates Di(t) as

Di(t) = Di(t− 1)
⋃ ⋃

j∈N i

D̂j(t− 1)

 . (29)

For our analysis, we compress Di(t) to obtain D̂i(t) in a
specific way. We first construct a temporary collection D̃i(t)
via concatenation of received compressed dictionaries as

D̃i(t) := CONCAT
[
D̂vi

1
(t− 1), . . . , D̂vi

|Ni|+1
(t− 1)

]
.

It then computes the Gram matrix using all elements in D̃i

with κ⊗ as the kernel. If two data points (xs, ys) and (xt, yt)
are such that (23) fails to hold with indices s < t, agent
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i retains (xs, ys) in D̂i, but discards (xt, yt) from D̂i and
correspondingly removes the row/column associated with
(xt, yt) from the Gram matrix. It repeats this operation until
all elements in the Gram matrix satisfies (23) to obtain

D̂i(t) = CMPγ

(
D̃i(t)

)
. (30)

Coefficient passing: We show in Theorem 1 (b) that the
dictionaries of all agents stabilize by t = d(G). Denote the
stationary dictionary of agent i and its compression as Di

s

and D̂i
s, respectively, for each i ∈ V . After t = d(G), the

agents only update coefficients they assign to the elements in
their stationary dictionaries to obtain their CME estimates.

Let Iis = {1, · · · , Di
s} be the index set for Di

s and Îis
be a subset of Iis, containing all k ∈ Iis for which the pair
(xk, yk) is in D̂i

s. At t = d(G), each agent i forms estimates
Ci

Y X(t) (likewise Ci
XX(t)) by assigning uniform weights to

each element in Di(0) and 0 to elements in Di
s \ Di(0) as

Ci
Y X(d(G)) =

∑
k∈Ii

s

αi
k(d(G))φ (xk, yk) ,

αi
k(d(G)) =

{
1

Di(0) , if k ∈ Ii(0),
0, if k ∈ Iis \ Ii(0).

(31)

Each agent i then computes a CME estimate via (25). The
compressed counterpart of Ĉi

Y X(t) is given by

Ĉi
Y X(t) :=

∑
k∈Îi

s

α̂i
k(t)φ (xk, yk) (32)

with α̂i(t) := (α̂i
k(t))k∈Îi

s
that solves

argmin
z

∥∥∥∥∥∥
∑
k∈Îi

s

zkφ (xk, yk)−
∑
k∈Ii

s

αi
k(t)φ (xk, yk)

∥∥∥∥∥∥
2

Hi

= [GD̂i,D̂i ]
−1GD̂i,Diα

i(t),

(33)

where GD̂i,Di is the Gram matrix whose (p, q)-th entry

is κ⊗
(
(xp, yp), (xq, yq)

)
for (xp, yp) in D̂i

s and (xq, yq)

in Di
s. GD̂i,D̂i is defined similarly. Notice that D̂i

s is a
γ-coherent dictionary. From Gershgorin’s disk theorem
(Richard, Bermudez, and Honeine 2008), it follows that
the smallest eigenvalue of GD̂i,D̂i is bounded away from
zero. Therefore, GD̂i,D̂i is invertible and α̂ is well-defined
for every choice of γ ∈ (0, 1). One can similarly com-
pute the compressed counterpart Ĉi

XX(t) of Ci
XX(t) using

β̂i(t) := (β̂i
k(t))k∈Îi

s
.

At time t+ 1, agent i communicates its compressed esti-
mates Ĉi

Y X(t) and Ĉi
XX(t) to its neighbors. Then, it updates

its estimate of Ci
Y X(t + 1) and Ci

XX(t + 1), along with
αi(t + 1)and βi(t + 1) using (28). When computing com-
pressed estimators Ĉi

Y X(t + 1) and Ĉi
XX(t + 1) via (32),

the associated weights α̂i(t+ 1) and β̂i(t+ 1) are updated
according to (33).

Algorithm 1: Compressed decentralized learning of CME by
agent i for all i ∈ V
Require: Initial datasets Di(0); Kernels κ1, κ2; Coherent

parameter γ; Weighted adjacency matrix W ; Longest
path between any two agents d(G); Local ordering
ORDi; Time t = 0.

1: Initialize D̂i(0)← CMPγ

(
Di(0)

)
2: for t = 1, · · · , d(G) do
3: Update Di(t) and D̂i(t) via (29) and (30)
4: end for
5: Set t = d(G). Initialize Ci

Y X(t), Ci
XX(t) as (31)

6: for t > d(G) do
7: Send D̂i(t−1), α̂i(t−1), β̂i(t−1) to j ∈ N i, i ∈ V
8: Update Ci

Y X(t), Ci
XX(t) via (28)

9: Update U i
ε(t) via (25)

10: Update Ĉi
Y X(t), Ĉi

XX(t) via (32) and (33)
11: end for

5 Theoretical Analysis
We now present important properties of our decentralized
CME operator estimation algorithm.

Theorem 1. SupposeW is aperiodic, irreducible, and doubly
stochastic and κ1, κ2 are bounded, continuous kernel func-
tions. Then, updates by all agents according to Algorithm 1
satisfy the following assertions.

(a) 1
m

∑m
i=1 C

i
⋆(t) =

1
m

∑m
i=1 C

i
⋆(0) for all t ≥ 0 and ⋆ ∈

{XY,XX}.
(b) Di(t) remains the same as Di(d(G)), even if line 3 is

executed for all t ≥ d(G).
(c) For any δ > 0, there exists ϵ > 0, such that

sup
i
∥Ci

⋆(0)∥Hi
≤ δ =⇒ sup

i
∥Ci

⋆(t)∥Hi
≤ ϵ (34)

for all t ≥ 0 and ⋆ ∈ {XY,XX}.
Our first result establishes the invariance of the network

average of the covariance estimates. The second result shows
that the dictionary passing in Algorithm 1 terminates within
d(G) time to a stationary dictionary. The final result presents
stability analysis for the CME operator under the compressed
decentralized learning algorithm. The first two proofs are
elementary. The third proof relies on analyzing the nonlinear
dynamics of the coefficients α and β that define Ci

⋆(t). We
rewrite this dynamics where the error due to compression
is represented as a bounded input to a linear dynamical sys-
tem. Its bounded input bounded output (BIBO) stability then
allows us to infer the stability of α and β.

Our result does not analyze asymptotic dynamics of the
algorithm. We now present a stylized example next to il-
lustrate that asymptotic dynamics of decentralized learning
with approximations can be richer than convergence to an
equilibrium point. To illustrate, equip Rn with inner product
⟨u, v⟩ := v⊤u. Then, the kernel of Rn is the identity matrix
(Manton and Amblard 2015, Definition 2.1). For simplicity
and clarity, instead of working with covariance operators
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in the tensor product space, we work with empirical kernel
mean embedding in such an RKHS.
Example 1. Considerm = 2 agents connected via a network,
whose initial dictionaries and their compressed variants be

Di(0) = {v, vi}, D̂i(0) = {v}, v, vi ∈ Rn (35)

for i = 1, 2. Assume for simplicity that ∥v∥22 = 1. At time t =
0, let the local empirical kernel mean embedding evaluated
at local data points be given by xi(0) = 1/2(v + vi) for
i = 1, 2. At time t, agent i’s estimate becomes αi

1(t)v +
αi
2(t)v

i. Then, the compressed variant is given by α̂i(t)v,
where α̂i(t) := xi(t)⊤v. Denote δ21(0) := x2(0) − x1(0)
and cδ := δ21(0)⊤v. Consider W = [w, 1 − w; 1 − w,w],
where w ∈ [0, 1]. Then, it can be shown that the estimates at
time t are given by

x1(t) = x1(0)− 1/2((2w − 1)
t − 1)cδv,

x2(t) = x2(0) + 1/2((2w − 1)
t − 1)cδv.

(36)

For w ∈ (0, 1), agents converge to compressed consensus

lim
t→∞

x1(t) = x1(0) + 1/2cδv, lim
t→∞

x2(t) = x2(0)− 1/2cδv.

With w = 0, we have

x1(t) = x1(0)− 1/2((−1)t − 1)cδv,

x2(t) = x2(0) + 1/2((−1)t − 1)cδv,

which implies that x1(t) and x2(t) enter a limit cycle.

6 Numerical Experiments on Decentralized
Learning of Kernel Transfer Operators

The spectra of transfer operators for dynamical systems are
rich in information in that they can be used to study a variety
of system characteristics including dominant modes, regions
of attraction, stable orbits, etc. In this section, we report
results on learning eigenfunctions of kernel transfer operators
that can be estimated cooperatively via sparse, decentralized
data exchange. See (Klus, Schuster, and Muandet 2020) for
details on the procedure to construct eigenfunctions using
Gram matrices alone.

Consider the unforced Duffing oscillator, described by

z̈ = −δż − z
(
β + αz2

)
,

with δ = 0.5, β = −1, and α = 1, where z ∈ R and
ż ∈ R are the scalar position and velocity, respectively. Let
x = (z, ż). As Figure 1a reveals, this system exhibits two
regions of attraction, corresponding to equilibrium points
x = (−1, 0) and x = (1, 0).

We consider a 10-agent network shown in Figure 1b. We
choose Metropolis edge weights (Xiao, Boyd, and Lall 2005)

wi,j =
1

1 +max{N i, N j}
∀ (i, j) ∈ E , wi,i = 1−

∑
j∈N i

wi,j ,

where N i = |N i|. Each agent uses a combination of
three Gaussian kernels: κ (x1, x2) =

∑3
ℓ=1 ηℓ exp(−∥x1 −

x2∥22/(2σ2
ℓ ), where (η1, η2, η3) = (0.5, 0.3, 0.2) and

(σ1, σ2, σ3) = (1.45, 0.48, 0.29).

(a) (b)

Figure 1: (a) Two trajectories of the Duffing oscillator that
converge to two different equilibrium points. (b) Illustration
of a network with 10 agents.

Initial local datasets are formed by partitioning 4900 data
points uniformly sampled over [z, ż] ∈ [−2, 2] × [−2, 2]
with ∆t = 0.25 into ten sets of size 490 each. Heat-maps
of the leading eigenfunction of the Koopman operator as
estimated with initial local datasets by agents 4 and 8 are
shown in the first row of Figure 2. We apply Algorithm 1 with

Agent 4 Agent 8

Figure 2: Leading eigenfunctions of Ki
ε(t)(the adjoint of

U i
ε (t) at times t = 0 (top row) and t = 17 (bottom row) for

i = 4, 8.

γ = 0.94. Since d(G) = 9, every agent obtains a stationary
(compressed) dictionary at time t = 9 with the maximum
cardinality of Di for all i ∈ V being 1253 and that of D̂i

being 693. Once the dictionaries stabilize, agents continue
to exchange information in order to reach consensus in their
operator estimates. Second row in Figure 2 reveals that each
agent detects the distinct regions of attraction.

7 Numerical Experiments on Decentralized
Learning for Value Iteration

In this section, we apply the CME operator to perform ap-
proximate value iteration in a decentralized fashion.

We consider a discrete-time approximation of the
continuous-time frictionless pendulum dynamics as imple-
mented in the OpenAI Gym package (Brockman et al. 2016).
The approximated continuous system is governed by θ̈(t) =
(3g/2l) sin θ(t) + (3/ml2)u(t), where θ is the pendulum an-
gle, g is the gravitational constant, l = 1m is the pendulum
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(a) (b)

Figure 3: (a) Pendulum swingup environment. (b) Reference
value function using discretized state and action space.

Agent 2 Agent 10

Figure 4: Agent value functions for the inverted pendulum
problem at time t = 0 (top row) and t = 14 (bottom row)
with maxi∈V |Di(14)| = 5296, maxi∈V |D̂i(14)| = 4139.

length and m = 1kg is the pendulum mass. The applied
torque is restricted to u ∈ [−2, 2] Nm. As implemented in
OpenAI Gym, environment observations consist of the tu-
ple (cos θ, sin θ, θ̇) = (x, y, θ̇). The angular velocity θ̇ is
restricted to [−8, 8]. Starting from an arbitrary initial state,
the goal is to balance the pendulum in the inverted position,
i.e., (θ, θ̇) = (0, 0). The instantaneous cost function is

r(θ[k], θ̇[k], u[k]) = θ[k]2 + 0.1θ̇[k]2 + 0.001u[k]2, (37)

where θ[k] is wrapped between [−π, π]. Episodes terminate
after 200 time steps.

As there does not exist a closed form expression for the
optimal value function, we rely on state and action space dis-
cretization and a standard dynamic programming approach
to compute a baseline for comparison with the agent value
functions and performance. In particular, we uniformly quan-
tize the state space to 1000 values for each state dimension
and the action space to 50 actions to arrive at the reference
value function shown in Figure 3b normalized to range [0, 1].

For decentralized learning, we used the network in Fig-
ure 1b. We used a single Gaussian kernel with σ = 0.17,
and set γ = 0.5 for Algorithm 1 in our experiment. 6000
state/action pairs were sampled uniformly from the joint state
and action space, and divided equally amongst the agents,
giving 600 points to each, initially. The value functions for

Agent 1 2 3 4 5 DP Ref

Mean -284 -233 -249 -263 -251 -176
Median -250 -241 -245 -251 -242 -134

Agent 6 7 8 9 10 DP Ref

Mean -226 -240 -212 -253 -231 -176
Median -239 -245 -129 -234 -131 -134

Table 1: 100 episode (rounded) aggregate performance statis-
tics for reference and individual agent controllers and refer-
ence dynamic programming based controller at time t = 14.

each agent were estimated via the kernel embedding method
outlined in the Section 3. Figure 4 collects the normalized
value functions for each agent with initial local datasets, and
later at time t = 14. Due to computational complexity, the
agent figures reflect value function estimates over a quantized
grid of only 75 values per state dimension, and 25 uniformly
spaced action values. As the plots show, consensus reduces
the variation in value function estimation across agents, and
refines each estimate close to the reference in Figure 3b.

There is no particular performance based threshold for us
to declare that the inverted pendulum environment is solved.
Therefore, we compare the performance of our agents to the
reference in terms of performance statistics over 100 episodes.
Due to the arbitrary initial state, per episode scores can vary
widely, even in the case where a given policy successfully
brings the pendulum to the goal position. Roughly speaking,
a score of approximately -400 or higher usually indicates that
the pendulum was brought upright near the goal position for
a significant portion of the episode. As Table 1 shows, each
agent effectively learns the task, and agent 8 actually exceeds
the median performance of the reference.

8 Concluding Remarks
In this paper, we have proposed a coherence-based com-
pressed decentralized learning algorithm for CME operators.
We showed that our novel consensus algorithm preserves the
average of the approximations of the covariance operators
across the agents in a network. In addition, the corresponding
dictionaries maintained by agents and iterative dynamics of
approximations of the CME operators remain stable over
time. We applied our consensus algorithm to distributed ap-
proximation of eigenfunctions of kernel transfer operators in
a pair of oscillator systems and approximate value iteration
in a benchmark reinforcement learning task. Our future di-
rections include asymptotic analysis of agent and aggregate
operator estimates. While we have proven the boundedness
of agent estimates, it remains to show whether this long-term
behavior can be characterized in term of, e.g., fixed points or
periodic orbits. We will likewise investigate the asymptotic
error of individual and aggregate agent estimates from the
true kernel operators. Finally, we plan to extend our approach
to the online streaming setting where, beyond their initial data
sets agents collect and share additional data as the consensus
procedure progresses.
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