A CHARACTERIZATION OF THURSTON’S MASTER TEAPOT

KATHRYN LINDSEY AND CHENXI WU

ABSTRACT. We prove an explicit characterization of the points in Thurston’s Master Teapot, which
can be implemented algorithmically to test whether a point in C x R belongs to the complement
of the Master Teapot. As an application, we show that the intersection of the Master Teapot with
the unit cylinder is not symmetrical under reflection through the plane that is the product of the
imaginary axis of C and R.

1. INTRODUCTION

The growth rate of a continuous dynamical system f : X — X, where X is a compact topolog-
ical space, is the exponential of the topological entropy of f, e"*r(/). When such a dynamical
system admits a Markov partition — as is the case of for continuous, multimodal, postcritically
finite, self-maps of intervals, or pseudo-Anosov surface diffeomosphisms — a consequence of
the Perron Frobenius theorem is that the growth rate must be a weak Perron number, i.e. a real,
positive algebraic integer that is not less than the absolute value of any of its Galois conjugates.
In [Thul4], Thurston proved that every weak Perron number arises as the growth rate of some
continuous, multimodal, postcritically finite, self-maps of intervals. (The analogous question
for pseudo-Anosovs remains open.) By considering the set of all interval maps of any modality
and any postcritical orbit portrait, Thurston stabilized the question; the question of character-
izing the set of growth rates of all postcritically finite interval maps of any fixed modality d > 2
is more subtle, and remains open. This work investigates growth rates of the family of all
continuous, unimodal, critically periodic interval self-maps, which we denote F57.

Since the growth rates of maps in 5" are known to satisfy a condition involving their Galois
conjugates (namely, they are weak Perron numbers), it is natural to consider, for any f € F57”,
the set {z € C : z is a Galois conjugate of the growth rate, e"«or(), of f}. Another, related rea-
son to consider the set of Galois conjugates of et»(/) is that the Galois conjugates can be used
to construct a “lift” of this real, one-dimensional dynamical system defined by f to a dynamical
system defined on C* x R%, where r is the number of real Galois conjugates of e"+r(f) and s is
the number of non-real complex-conjugate pairs of Galois conjugates (see, e.g. Theorem 2.1 of
[Thul4]). The Master Teapot for the family F5” is the set

Y57 = {(z,\) € C x R | X\ = ehtor(J) for some f € F,?, z is a Galois conjugate of \}.

Thurston coined the term “Master Teapot” because plots of finite approximations of this set
resemble a teapot, with a roughly cylindrical body over the unit circle, a “spout” consisting
of points of the form {\, A}, and a “handle” protruding from the body opposite the spout.
(See Figure[}) Clearly, the geometry and topology of this set encode information about which
growth rates are realized by maps in the family F,”. While the geometry of the Master Teapot
retains information about which growth rate A corresponds to which Galois conjugate z, it is
also interesting to consider the subset of C formed by plotting all the Galois conjugates (includ-
ing the growth rate \) of all maps in 75" in the same copy of C, and taking the closure. The
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Thurston set is the set
Q5P := {z € C| z is a Galois conjugate of e’to»(/) for some f € Fy'}.

Equivalently, the Thurston set is the projection of the Master Teapot to the complex plane.

FIGURE 1. A plot of a finite approximation of Y35”, showing all points coming
from maps in F°? whose critical orbits have periods at most 23. The two black
circles are S* x {1} and S* x {2}, where S* is the unit circle. The color gradients
show the height of the plotted points. This figure is from [BDLW19].

The Master Teapot and Thurston set have rich and mysterious geometrical and topological
structures that have been investigated in several recent works, including

Thul4, BDLW19]. Describing the “shape” of the Master Teapot T5” or the Thurston set
Q5" is a step towards towards refining Thurston’s result by characterizing which weak Perron
numbers arise as the growth rates of which PCF interval maps. In particular, the ability to
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prove that a specific point z is not in the Master Teapot — which the algorithms we present in
§8 accomplish — provides a necessary condition for a necessary condition for a growth rate to
be realized by a map in F5".

In [BDLW19], the authors prove that the Master Teapot Y5 is connected and contains the
unit cylinder S' x [1,2]. Furthermore, the intersection of the height-\ slice of the Master Teapot,

ExNTY :={z€C: (2 €T}

with the closed unit disk D grows monotonically with A ([BDLW19]). Consequently, the part
of the top level slice of the Master Teapot that is inside the unit cylinder, 25 N D, coincides with
Q5P N D, the part of the Thurston set inside the unit disk.

The growth rates of PCF self-maps of real intervals may be seen as a specific case of core
entropy for PCF complex polynomials. Indeed, the filled Julia set of a PCF complex polyno-
mial contains a forward invariant, finite topological tree, called the Hubbard tree, that contains
the critical points of the polynomial; the core entropy of such a polynomial is the topological
entropy of the restriction of the dynamics to the Hubbard tree. For a polynomial with real co-
efficients, the Hubbard tree is a real interval, and so the restriction of the map to the Hubbard
tree is a PCF multimodal self-map of an interval. Although we confine our investigation here to
self-maps of real polynomials, similar questions could be explored in the complex setting. The
interested reader may read more about core entropy for complex polynomials in [Tiol6}GT21].

Another motivation for investigating PCF multimodal self-maps of real intervals is that
these maps may also be seen as one-dimensional analogues of pseduo-Anosov surface dif-
feomorphisms. A uniform expander is a continuous, piecewise affine-linear (with finitely many
pieces) self-map of an interval such that the derivative on each piece is £\ for some expan-
sion factor A > 0. Classical results in entropy theory imply that the growth rate of a uni-
form expander with expansion factor A is A. Milnor and Thurston proved that every continu-
ous, self-map of an interval with finitely many critical points and positive topological entropy
is semi-conjugate to a uniform expander with the same topological entropy (IMT88]). Both
PCF uniform expanders and pseudo-Anosov surface diffeomorphisms are uniformly expand-
ing maps except at finitely many points, admit Markov partitions, and their expansion factors
(called the dilatation of a pseduo-Anosov) coincide with their growth rates. Constructions of
pseduo-Anosovs from uniform expanders are explored in [Far21, BRW16]. Characterizing the
set of dilatations realized by pseudo-Anosovs remains an open question.

The Master Teapot and Thurston set are also closely related to the theory of 8- and gen-
eralized (-expansions (cf. [G07, [LSS16, [DMP11], 1509, Stel3]), roots of Littlewood, Newman
and Borwein polynomials (cf. [BELOS, Kon99, Muk10, HM14, [5506| [OP93]), and dynamics of
iterated function systems (cf. [BH85, Ban02} [SX03) [Sol04]).

Overview of main results. The main contribution of this paper is an explicit characterization
of the Master Teapot T5” — necessary and sufficient conditions for a point to be in Y5”. (The
part of the Master Teapot inside the unit cylinder D x [1, 2] is described by Theorem [I]and the
part outside the unit cylinder by Theorem2]) Theorem [I]establishes a new connection between
horizontal slices of the Master Teapot and iterated function systems. Specifically, the part in D
of each horizontal slice of the Teapot can be viewed as an analogue of the Mandelbrot set for a
family of “restricted iterated function systems” (c.f. Remark[I.12). From this characterization,
we prove an algorithm (Section [8) for showing that certain weak Perron numbers can not be
the exponent of the topological entropy of a critically periodic unimodal interval map. As
an application of this algorithm, we prove that the part of the Master Teapot inside the unit
cylinder is not symmetrical with respect to reflection across the imaginary axis (Theorem [3).
Conjecture[I.13|proposes that an analogy of the Mandelbrot-Julia set correspondence holds for
horizontal slices and limits sets of restricted iterated function systems.
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Precise statement of results and commentary. In order to state the results precisely, we intro-
duce some terminology and notation.

First, we define words and sequences in the alphabet {0,1}:

Definition 1.1.
(1) A sequence w = wyws ... is an element in {0, 1}". The shift map o : {0, 1} — {0,1}" is
defined by removing the first element of a sequence, i.e. o(wiwaws . ..) == wows. ...
(2) Aword w = wiw;...w, is an element in {0, 1}" for some positive integer n. The num-
ber n is called the length of the word w and is denoted by |w|.
(3) For n € N, the reverse function Reverse : {0,1}" — {0, 1}" is defined as
Reverse(wiws ... wy) := WnpWp_1 ... W1
(4) For k € N, the k-prefix of a sequence w = wiws ... is the word
Prefixy (w) := w1 ... wg
(5) For a word w = w; ...w, of length n and a natural number k& < n, the k-prefix and
k-suffix of w are the words
Prefixy (w) 1= wy ... wy,

Suffixy (w) := Wy —g+1Wn—gt2 - - Wy

Next, we relate words and sequences with dynamics on C via the following definitions:

Definition 1.2.
(1) For any z € C, define maps fy -, fi1,- : C = Cby
for(x) =2z, fi.(x):=2—zx.
(2) Forany w = w; ... w, and z € C, set
F(w,z) == fuw, 200 fu, (1)

(8) For any sequence w = wyws ... and any z € C with |z| > 1, set

H(w,z) := lim (—1)i=1%) ;7" F(Prefix,, (w), 2)

n—oo

= lim (—].)(Z?:l wi)z_nfwn,z 6...0 fw1,z(1)

n—0o0

(4) For any sequence w = wiws ... and z € C with |z| < 1, set

G(w, z) :== lim F(Reverse(Prefix, (w)), z)
n—oo

= lim fu,.0...0 fu, (1)

n—oo

The following definition is partly from [MT88]:

Definition 1.3.

(1) The cumulative sign of a word w = wywsy . . . w, is defined as s(w) := (—1)%: vs.

(2) The twisted lexicographic order <p is a total ordering on the set of sequences, defined
as follows: w <pg w/, if and only if there is some k£ € N, such that Prefix;_;(w) =
Prefix; 1 (w’), and s(Prefixj_q (w))(wj, — wg) > 0. In other words, w <g w’ if and only
if, denoting by k the index of the first letter where w and w’ differ, either wj, > w;, and
the common (k — 1)-prefix has positive cumulative sign, or wj, < w;, and the common
(k — 1)-prefix has negative cumulative sign.
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(3) We define the total order <y on the set of words of length n exactly the same way as
above.
Definition 1.4.
(1) Let A € (1,2]. We call the map f» : [0,1] — [0, 1] given by by

R x<1/A
f/\(x)_{2—/\x x> 1/A

the A-tent map. Let I » = [0,1/A], I1 » = [1/A, 1].
(2) The M-itinerary, denoted as Ity, is the minimum (with respect to <g) sequence w such
that for any k > 0, f¥(1) € L, 2

One can easily check that Ity is the itinerary of 1 under fy in the convention of Milnor-
Thurston kneading theory.
Now we introduce a combinatorial condition on sequences:

Definition 1.5. For A € (1,2], a sequence w is called A-suitable if for every X € (),2], the
following conditions hold:

(1) Reverse(Prefix,,(w)) <g Prefix, (Ity) for alln € N.
(2) If Reverse(Prefix,, (w)) = Prefix, (Ity/), then the cumulative sign s(Prefix,, (w)) = —1.
(3) IfItyy =1-0%-1..., k € N, then w does not contain k + 1 consecutive 0s.
(That is, if Ity starts with 1 followed by k Os and then 1, writing w as w = wjws .. .,
there does not exist n € N such that w; = 0foralln <i <n+k.)
(4) If k € N satisfies v2 < PRANPS 2, then w = ®' k(w’ ) for some sequence w’, where

D’ is the map that replaces 0 with 11 and 1 with 01, such that for every A’ > A2 if
Ity =1-0F-1... then w’ does not contain k + 1 consecutive 0s.

Remark 1.6. Every sequence is (vacuously) 2-suitable.
For A € (1,2), let E) be height-) slice of the Master Teapot Y:
Exi={z:(z,X) €Ty}

We will use the following notation:
D:={z € C: |z| < 1}, the open unit disk
D:={z € C:|z| < 1}, the closed unit disk
St :={z € C:|z| = 1}, the unit circle
C :=D x [1,2], the closed “unit cylinder”

Our main theorem is:

Theorem 1. For any A € (1, 2], the part of the slice E inside the closed unit disk can be characterized
as:

ExND=S'U{zeD:G(w,z) = 1 for some \-suitable sequence w} .

There is a similar characterization for outside the unit disc, which follows directly from
results in in [Tio18]:

Theorem 2. Forany A € [1,2), the part of the slice Ey outside the unit disk is:
Ex\D={zeC\D:H(ty,2z) =0} .
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Remark 1.7. Theorems [I]and 2| both provide algorithms to certify that a point is in the com-
plement of =,. This is useful since the definition of Y5" is constructive and involves taking a
closure. Section 8| describes these algorithms. Figure |4is a finite approximation of Z; s N D
using Theorem 1} and Figureis a finite approximation of T5"\(D x [1,2]) using Theorem

FIGURE 2. A constructive approximation of the part of Y5 outside the unit
cylinder. This plot shows the 56737 points outside the cylinder S* x [1,2] that
are roots of the degree 100 partial sums of the kneading power series for 1000
different growth rates A in [1,2]. The "spout" on the right side of the image
consists of points of the form (A, A).

Remark 1.8. Since the set of A-suitable sequences is semicontinuous with A (Lemma , The-
orem|[I)implies thatif 1 < A < X' < 2, then

=N QEQE)\/QE,

which is the “Persistence Theorem” proved in [BDLW19]. However, our proof of Theorem
depends on the Persistence Theorem in [BDLW19].
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Remark 1.9. Tiozzo showed in [Tio18] that
QPND=S'"U{zeD:G(w,z) =1 for some sequence w},

and the Persistence Theorem ([BDLW19]) shows that 2, N D = Z, N D. It is also known that
the unit cylinder is in the teapot, i.e. S* x [1,2] C Y57 ([BDLW19]). Since every sequence
is 2-suitable, this proves the conclusion of Theorem (1| for the top level of the teapot, the case
A=2.

Remark 1.10. Our first step towards proving Theorem [I|is proving Theorem and alterna-
tive characterization of slices =5 N D. A corollary of Theorem {4.5/is that all roots in D of all
Parry polynomials coming from admissible words — even reducible Parry polynomials — are in
the Thurston set Q5”.

Corollary 1.11. Q5P ND is the closure of the set of all roots in D of all Parry polynomials associated to
admissible words.

In particular, when using Parry polynomials to plot approximations of 25, it is not necessary
to check whether the Parry polynomials are irreducible.

As an application of Theorem [1} we will show that:

Theorem 3. The part of the Master Teapot inside the unit cylinder is not symmetrical with respect to
reflection across the imaginary axis, i.e. Ys' N C is not invariant under the map (z,\) — (—z, \).

Since Galois conjugates occur in complex conjugate pairs, it is immediate that (z + iy, \) € T5¥
if and only if (z — iy, \) € TP,

Theorem [3is suprising because the Thurston set, 25", which is the projection to C of Y5,
is symmetrical under the map z — —z (Proposition 0.I). However, this asymmetry in the
Master Teapot is confined to the slices of heights > v/2; one can prove, via the renormalization
procedure described in Section 2.3, that the unit cylinder part of slices of height < /2 are
symmetrical under reflection across the imaginary axis.

Remark 1.12. Theorem(T|allow us to interpret each slice =, NID as an analogy of the Mandelbrot
set. The conclusion of Theorem [I|for the top slice (c.f. Remark allows one to characterize
E9 as the union of S; and the set of all parameters z € D such that the point 1 is an element of
the limit set A, associated of the iterated function system generated by f; . and f; .. Theorem
suggests viewing =, N D as the set of parameters z for which the point 1 is an element of the
“limit set” associated to the “restricted iterated function system” generated by fy ., and f; . in
which only the compositions represented by A-suitable sequences are allowed.

Based on numerical experiments, we propose the following conjectured analogy of the Julia-
Mandelbrot correspondence [Lei90, DHS85]:

Conjecture 1.13. For any complex number |z| < 1, any X € (1,2], E5 — z is asymptotically similar to
the set
J. = {G(w,z) — 1 :wis A — suitable}.

By these two sets being asymptotically similar, we mean there exists a real number » > 0 and
sequences (), (t,) € C with ¢,,,t], — oo such that, denoting Hausdorff distance by dtaus,

lim_ditaus (B (0) 01 (ta(En — 2)). B, (0) 1 (1,2)) = 0.

n—oo

If the Conjecture is true, or at least true for “enough” points z, we would also be able to
show the following:

Conjecture 1.14. There exists X € (1,2) such that =\ N D has infinitely many connected components.
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Figure [3[ shows a constructive plot (in black) of the slice =; g N D, while Figure EI shows (in
white) points of D \ Z; 5. Comparison of these images suggests the existence of multiple small
connected components in the region Re(z) < 0 near the inner boundary of the “ring.”

The Thurston set Q5" is known to be path-connected and locally connected (Theorem 1.3 of
[Tio18]). It follows from Theorem [2] that for many heights A € (1,2], the part of the slice of
height X that is outside the unit cylinder consists of more than one connected component.

Conjecture could be potentially proven by computation via an effective version of The-
orem [I|similar to Proposition[8.3] However, a tighter bound than that obtained in Proposition
[.3|would probably be needed for the computation to be feasible.

FIGURE 3. A constructive plot of an approximation of the slice 2, 3 N ID. The
plotted black points are all the roots of modulus < 1 of all Parry polynomials
for superattracting tent maps with growth rate < 1.8 and critical length at most
29.
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FIGURE 4. The upper half of the slice Y5” N (D x {1.8}) plotted using Theorem
Specifically, the plotted white points were shown to be in the complement
of T5” (by checking the condition of Theorem [1|for all m < 18).

The structure of the paper is as follows:

Preliminaries provide definitions and notation for Parry polynomials, admissible and
dominant words and sequences, growth rates, and the renormalization/doubling operators.

Properties of the doubling map proves some elementary results about the doubling
map which we will need in later sections to extend results about the top part of the teapot to
the part with height < v/2.

Roots in D of reducible Parry polynomials proves Theorem which implies that all
roots in the unit disk of all Parry polynomials associated to admissible words are in the teapot.

A-suitability discusses A-suitability and proves Lemma which is the key combinato-
rial result we need to prove Theorem I}

Characterization inside the unit cylinder uses Theorem [4.5|and Lemma [5.7] to prove
Theorem
Characterization outside the unit cylinder proves Theorem 2]

§8t Algorithms to test membership of =, presents algorithms, derived from Theorems
and [2| which will detect if a point (z,A) € C x R belongs to the complement of the height-\
slice =5, and proves lemmas that justify the algorithms.

Asymmetry proves Theorem B|by exhibiting a point (z, A) that is in the teapot and using
the algorithm from §8[to prove that (—Z, \) is in the complement of the slice =.

Acknowledgements. The authors thank Diana Davis for many helpful conversations. Kathryn
Lindsey was supported by the National Science Foundation under grant DMS-1901247.
2. PRELIMINARIES

2.1. Concatenation. We use - or just adjacency to denote concatenations, i.e. for any word
w = w1 ... wy, and any word or sequence v = v1vs .. .,

W V=WV =W ... WHRVIV2....

We denote the concatenation of n copies of a word w by w”, for n € NU {oo}.
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2.2. Parry polynomials. Let w be a word with positive cumulative sign. The Parry polynomial
of w, P, : C — C, is defined as

Py(z) := F(w,z) — 1

(cf. [BDLW19, Definition 2.7]). It is evident that if It, = w®°, then A is a root of P,,, and hence
all Galois conjugates of A must be roots of P,.

One can check by simple bookkeeping that for any word w of positive cumulative sign,
P,(z), G(Reverse(w)>, z) and H(w®, z) satisfy the following relationship:

Lemma 2.1. If w is of length n and has positive cumulative sign, then

Pu(z) = (1 — 2™)G (Reverse(w)™, z) = 2" (1 — z~")H(w™, 2).

2.3. Admissibility, itineraries and dominance. The shift map o is defined on sequences by
o(wywaws . ..) = (waws...) .
A sequence w = wywsz . .. is a generalized symbolic coding of f» for some A € (1, 2] iff
FX(Q) € Ly s

for every integer k& > 0. Because the point 1/X belongs to both intervals I ) and I ), there may
exist more than one generalized symbolic coding for the itinerary of the point 1 under fy. The
A-itinerary Ity is the least (with respect to <g) such generalized symbolic coding.
A sequence w starting with 10 is called admissible if
o (w) <p w

for all £k € N. A word w is called admissible if w has positive cumulative sign and w* is admis-
sible.
We will use the following immediate consequence of Theorem 12.1 of [MT88]

Theorem 2.2. For every A € (1,2], Ity is admissible.
Proposition 2.3 ([BDLW19], Proposition 2.10). Let w be a word with positive cumulative sign. If w

is admissible and the associated Parry polynomial, P, (z), can be written as the product of (z — 1) and
another irreducible factor, then w> = Ity for some A € (1, 2].

The following is a straightforward corollary of theorems of Milnor and Thurston ([MT88])):
Corollary 2.4. If1 < XA < XN <2, then Ity <g Ity

A word w is called dominant (cf. [BDLW19, Definition 4.1, Lemma 4.2]) if it has positive
cumulative sign, and forany 1 <k < |w| — 1,

Suffixy (w) - 1 <g Prefix;41(w.)

Every dominant word is admissible, but admissible words may not be dominant. A key prop-
erty of the dominant words is the following, which is proved in [Tiol5], and reviewed in
[BDLW19, Proposition 4.4]:

Proposition 2.5. If A € (V2,2) and Ity = w™>, then for any n > 0, there exists a word w' such that
w"w' is dominant. O
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2.4. Growth rates and critically periodic tent maps. When a continuous self-map f of an in-
terval is postcritically finite, the exponential of its topological entropy, e"t»(f) also called its
growth rate, is a weak Perron number — a real positive algebraic integer whose modulus is greater
than or equal to that of all of its Galois conjugates. This is because cutting the interval at
the critical and postcritical sets yields a Markov partition; each of the resulting subintervals is
mapped to a finite union of subintervals. The leading eigenvalue of the associated incidence
matrix is e”tor(f), which the Perron-Frobenius Theorem implies is a weak Perron number.

In the present work, we consider growth rates of critically periodic unimodal interval self-
maps. A unimodal map f is said to be critically periodic if, denoting the critical point of f by ¢,
there exists n € N such that f*(¢) = ¢. A theorem of Milnor and Thurston ([MT88, Theorem
7.4]) tells us that, from the point of view of entropy, instead of considering all critically periodic
unimodal maps, we only need to consider critically periodic tent maps. For tent maps, it is easy
to see that the growth rate is just the slope A.

2.5. Renormalization and doubling. As shown in [BDLW19, Section 3], for any 1 < A < V2,
the tent map f is critically periodic if and only if the tent map f)- is critically periodic. (This
phenomenon is related to renormalization of the Mandelbrot set.) Furthermore, whenever
1 < A < V/2, Ity can be obtained from Ity2 by replacing each 1 in Ity with 10 and each 0 in Ity
with 11. That is, the doubling map ® : {0,1}" — {0,1}*", n € NU {cc}, defined by

D(wrwz...)=1-(wy+1mod2)-1-(wz+1mod2)-...

satisfies D (Ity2) = Ity whenever f\ with 1 < A < 2is critically periodic. We say that a sequence
w is renormalizable if there exists a sequence w’ such that w = D(w’); in this case we say that
w is the doubling of w’ and call w’ the renormalization of w. We define renormalizable, doubling
and renormalization for words analogously.

3. PROPERTIES OF THE DOUBLING MAP

The goal of this section is to prove some elementary properties of renormalizable words and
sequences that we will use in later sections to extend results about the part of the teapot above
height v/2 to the lower part.

Lemma 3.1. The doubling map © preserves the twisted lexicographic ordering <p, cumulative signs,
and hence also admissibility.

Proof. If the number of 1s in a word w equals n, then for any letter a, the number of 1s in
Prefixy|,|+1(D(w - a)) equals 2|w| + 1 — n. It follows that if n is odd, w - 1 <g w - 0 and
D(w-1) <g D(w-0);ifniseven, w-0 <p w-1and D(w-0) <gp D(w - 1). Thus D preserves
<pg. Furthermore, if a word w has positive cumulative sign, then the number, n, of 1’s in w is
even, implying that ®(w), which contains 2w — n 1s, also has positive cumulative sign. O

Lemma 3.2. The doubling map © takes itineraries to itineraries. That is, if A2 = X, then D*(Ity) =
Ity

Proof. By induction, it is easy to see that we only need to prove it for k = 1, i.e. D(Ity2) = It,.
For any A < /2, the tent map f, sends the interval [2/(\ + 1),1] to [2 — \,2/(A + 1)] and vice
versa. Hence f7 is a tent map from [2/(\ + 1), 1] of slope A, and any = = f#*(1) lies on the left
hand side of the critical point of f7 if and only if x and f\(z) are both to the right of 1/}, while

2k (1) lies on the left hand side of the critical point of f} if and only if z is to the right of 1/A
and fy(z) is to the right of 1/}, and this finishes the proof for the case when It,2 is not periodic.
The case when It,: is periodic follows from this argument together with Lemma O
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Proposition 3.3. If w is a word with positive cumulative sign and w' is the renormalization of w, then

z—1

Py 22 .
241" (=)
Proof. Suppose w and w’ are words satisfying ® (w’) = w. Itis easy to see thatif w = wiw; ... wa,
has positive cumulative sign, then v’ = wjw} ... w], also has positive cumulative sign. So, the
proposition follows from the following more general statement: if w’ is any word, w is the
doubling of w’, then

Py(z) =

z—1
1 F -1= F(w',z*)—1).
() (0,2) 1= 2 (pf, ) 1)
We will prove (I) using induction on |w’|. In the base case |w'| = 1, w' = 1 or w’ = 0, and

the statement is true by calculation. Now assume the statement is true for all words w’ such
that |w'| < n — 1. Let w’ and w be words with |w'| = n and ©(w’) = w. Let w{ be w’ with the
last letter removed, and let wo be w with the last two letters removed. Then by the inductive
hypothesis,

z—1

F 1=
(wo, 2) z+1

(F(wf, 2%) —1).

We divide the inductive step into two cases:
e Case 1: w), = 0. This implies w = wy - 11, so
Flw,z)—1=2—-2(2—2(F(wg,2))) — 1

:2-2(2—z(z_1(F(wg,z2)—1)+1)>—1

z+1
z—1
— po (z2F(w6,22) — 1)
z—1
— Fw', 2% —1
z+1( (w', %) )
e Case 2: w), = 1. This implies w = wy - 10, so

F(w,2) — 1= 2 (2 — 2(F(wo, 2))) — 1
zz(Z—z (z;i(F(w'o,zg)—l)—&-l)) —1

z—1

= (2 = 2°F(wp,2%) — 1)
z—1
= Z+1 (F(w/722)_1>

Proposition 3.4. Let w be an admissible word. Then w* renormalizable if only if
w™ <E If\/i (: 10 - 100).

Proof. Firstly, it is easy to see that a sequence is renormalizable if and only if all its odd index
letters are 1, and a word is renormalizable if and only if it has even length and all its odd
indexed letters are 1. Because any admissible word starts with 10, an admissible word w is
renormalizable if and only if w* is admissible and renormalizable.

Now suppose w™ is admissible and renormalizable. Suppose the second 0 in w™ is at the
k™ location. It suffices to show that Prefixj_1(w®) has positive cumulative sign, which is
equivalent to showing that k is even, because the (k — 1)-prefix of w> and 10 - 1°° are the same.
This is an immediate consequence of the admissibility of w*°.
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Now we prove the other direction. The sequence w* being admissible implies that the first
0 in w* is at the second location. If we can further prove that the distance between any two
consecutive 0s is even, then all Os are at even locations, hence w™ is admissible. Denote by iy,
the location of the k™ 0. Let k,,, is the smallest number such that i5, — iy, _, is odd. Then by
definition of < g,

m

ohm—1 N w™) >5 10 1%,
O

Remark 3.5. By k' renormalization or k™ doubling, we mean carrying out the renormalization
or doubling on a word or sequence k times. Proposition 3.3{above implies that if w’ is the k'
renormalization of w, then the roots of P, not on the unit circle are the (2¥)™ roots of the roots
of P, that are not on the unit circle.

Furthermore, because renormalization of sequences preserves <p (Lemma [3.1), we can ap-
ply part Proposition above repeatedly to show that if the wy, is the k" doubling of 10 - 1°°,
w is admissible and w™ < g wg, then w has a k™ renormalization.

4. ROOTS IN D OF REDUCIBLE PARRY POLYNOMIALS

The purpose of this section is to prove Theorem an alternative characterization of sets
EaND, for A € (1,2], using the results in [BDLW19]. An upshot of Theorem 4.5|is that we do
not need to worry about extraneous roots in I from reducible Parry polynomials.

We will use the following four results from [BDLW19]:

Theorem 4.1. [BDLW19, Theorem 1 (“Persistence Theorem”), Theorem 2] If (2, \) € T3, |z| <
1, then so is (z,y) for any y € [\, 2].

Proposition 4.2. [BDLW19, Lemma 5.3] Let w be dominant, wy >g 10 - 11w1l=2 45 be admissible,
wi® >p ws®, and assume that there is some m such that
2mlws| > |wy| > m|ws.
Then there is some w', some integer m’ > m, such that (wyw’ w’g@/)‘x’ is admissible,
Jwi] + |w'] = mwal,
and the Parry polynomial P, ..,/ (2) can be written as the product of (z — 1) and another polynomial
Q(z) such that Q(zzk) is irreducible for all integers k > 0.

Proposition 4.3. [BDLW19| Lemma 5.5] If wy is an admissible word and =z € D is a root of P,,,, then
for any e > O there exists N € N such that for any word wy and any integer n > N, Py, .,y has a root
within distance € of z.

Proposition 4.4. [BDLW19, Lemma 5.7, Remark 5.8] If y € [v/2,2], for any € > 0, there exists a
dominant word wy such that for any word wy, the leading root of P, .., is within distance € of y, and
wy >p 10 - 1wrl=2,

We now use the above results to establish the following characterization of the sets Z, N D,
which will be the starting point of our proof of Theorem T}

Theorem 4.5. Fix 1 < X\ < 2. For each \' > ), define Yy to be the closure of the set of roots in D of all
Parry polynomials Py, such that w is admissible and w™ <g It union with St ie.

Yy = S*U{z € D: P,(2) = 0 for some admissible word w such that w> <g Ity }.
Then



14 KATHRYN LINDSEY AND CHENXI WU

Remark 4.6. The condition “w™ <g It for every X' > \” is different from “w* < It,” because
there could exist a symbolic coding for the itinerary of 1 under the tent map f, thatis >g Ity.

Proof. Forany 1 < A < 2, let
g\ = ﬂ Yy.
>N
We will first prove =, C Z=). For any X, define the set Zy to be the closure of the set of
Galois conjugates of critically periodic growth rates that are at most X/, union with S*. By the
Persistence Theorem, A; < Ay implies Z5, C Z,,. So if any point z € ﬂ/\,>/\ Zy,thenz € 2y,
since T3" is closed; similarly, if z & (,,. , Z», then 2 ¢ Z,. Hence

=x N D= ﬂ -
N>A
The conclusion will now follow from the statement that Zy, C Yy for all \. If z is a Galois
conjugate of a critically periodic growth rate \” that is at most \’, then z is a root of the Parry
polynomial P,, such that w*> = Ity», and Ity» <g Itys by Corollary 2.4l Thus, Z), C Yy for all
N.
We will now prove = C =,. To do this, it suffices to show

Yy C ﬂ A
AT>S A

We first consider the case \ > /2. Suppose z is the root of some F,,, where w is admissible
and the leading root of P, is no larger than . (Y, is the closure of all such z’s). For any
e > 0, Proposition guarantees the existence of a dominant word w; such that for any wy,
Py, isin [N, N +€) and wy > 10 - 1lwil=2, By monotonicity (Corollary , wi® >p w™.
Without loss of generality, we may choose w; so that its length, |w.|, is arbitrarily big (this is
because as we let ¢ — 0, we get arbitrarily many such dominant strings, and there are finitely
many strings of at most any given length). Thus we may assume that w; and w satisfy the
assumptions of Proposition [4.2| with the m of Proposition |4.2| being arbitrarily large, and in
particular, m is > the N of Proposition using w for w,. Let w3 be the word constructed by
Proposition[4.2] Because ws is admissible, has positive cumulative sign, and Py, (z)/(z — 1) is
irreducible, w3® = Ity, for some A3 by Proposition We know A3 € [\, ) + €] because w3 has
the prefix w,. Also, any root of P,,, in D will be a Galois conjugate of A3, and by construction
P, has a root close to z. The containment now follows from letting € — 0.

Now we deal with the case 1 < )\ < /2. Let k be the unique natural number such that
(\)?" € [v2,2). Remark ﬁ implies that w has a k" renormalization w,, and 22" is a root of
P,,. Using wy in place of w in the argument in the previous paragraph, we get a critically
periodic growth rate A4 close to (X )2", such that one of its Galois conjugates 2 is close to 22",
The conclusion in Proposition 4.2 further implies that any (2¥)™ root of z; must be a Galois
conjugate of the (2¥)™ root of A, as well, which implies that there is a Galois conjugate of )\?fk
which is close to z, which finishes the proof of the proposition. O

The following corollary is not used to prove any further results in the present work.

Corollary 4.7. Let V denote the set of all real numbers \ € (1,2) such that
(1) the tent map f is critically periodic,
(2) there exists a word w such that It = w,
(3) the Parry polynomial P,,(z) can be written as the product of an irreducible polynomial (in Z[z])
and some cyclotomic polynomials.

Then V is dense in [1, 2].
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Proof. The growth rates A3, as well as the growth rates )\gfk, k € N, constructed in the proof of
Theorem [.5]all satisfy conditions (1)-(3). O

5. A-SUITABILITY

In this section, we establish some basic properties of A-suitability and prove the technical
lemmas about A-suitability that we will need in Section
For convenience, we reproduce the definition of A-suitability here: For A € (1,2), a sequence
w is called A-suitable if for every A € (), 2], the following conditions hold:
(1) Reverse(Prefix, (w)) <g Prefix, (Ity/) for alln € N.
(2) If Reverse(Prefix,, (w)) = Prefix, (Ity/), then the cumulative sign s(Prefix,, (w)) = —1.
(3) IfItyy =1-0%-1..., k € N, then w does not contain k + 1 consecutive 0s.
(That is, if Ity starts with 1 followed by k Os and then 1, writing w as w = wjws .. .,
there does not exist n € N such that w; = 0foralln <i <n+k.)
(4) If n € N satisfies v2 < (\)?" < 2, then w = D" (w’) for some sequence w’, where D’
is the map that replaces 0 with 11 and 1 with 01. Furthermore, if

Ityen =1-0%-1...,
then w’ does not contain k& + 1 consecutive 0s.

The intuition behind the definition of A-suitability is that we need a condition on sequences
w so that Lemma[5.7lworks.

Remark 5.1. An immediate consequence of monotonicity (Corollary is that if \' satisfies
conditions (1)-(4) of Definition [1.5/for a sequence w, then so does every A" > \'.

Remark 5.2. Every itinerary Ity is admissible (by Theorem[2.2), so the admissibility condition
implies thatif Ity =1 - 0k .1..., then Ity does not contain k + 1 consecutive 0Os.

Remark 5.3. Note that the map ©’ defined in the definition of A-suitability is related to the
doubling map © by

Reverse o Prefixy, 0o ® = D’ o Reverse o Prefix,, (w)
for every sequence w and n € N.
Lemma 5.4. The set of A-suitable sequences is closed.

Proof. We will show that the set of all sequences that are not A-suitable is open. To do this, it
suffices to show that given any sequence w which is not A-suitable, we can find a prefix of w
such that every sequence that shares this prefix is not A-suitable. It is clear that conditions (1)
and (2) are closed conditions. For condition (3), we choose the prefix to be one that contains
the first k + 1 consecutive 0s. Condition (4) is similar. O

The following lemma is immediate because the definition of A-suitability is of the form “for
all X > A\, P(w, \'),” where P is a predicate.

Lemma 5.5. Let M denote the set of A-suitable sequences. Then

My= () M
AE(N,2]
Il

Lemma 5.6. If w is an admissible word that satisfies w™ <g Ity for X € (1,2), then (Reverse(w))>
is A-suitable.
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Proof. Observe that for any n € N

(2) Reverse(Prefix,, (Reverse(w)>)) = Prefix,, (o (w™))

for some k € N, where n + k is some multiple of |w|. Since w is admissible, Prefix,, (o (w™) <g
Prefix,, (w>) for all k, n € N. By Corollary 2.4} for any \' > ),

©) Ity <g Ity

We thus have that for any n € N,

Reverse(Prefix,, (Reverse(w)>)) = Prefix,, (¢ (w*)) <p Prefix, (w™)
<g Prefix,, (Ity) <g Prefix, (Ity ),
which is condition (1) of the definition of A-suitability.
Now suppose that for some A" > ),
Reverse(Prefix,, (Reverse(w)>) = Prefix, (Ity/)
and Prefix, (Ity/) has positive cumulative sign. Then from (2) we have
Prefix,, (o* (w™)) = Prefix,, (Ity').
Admissibility of w and (3) together imply that
4) ak(woo) <gw™® <g Ity.
Because Prefix,, (Ity/) is the common prefix of o (w™) and Ity, () implies it must also be a
prefix of w*°. Removing this common n-prefix with positive cumulative sign from both sides
of the inequality (by applying ¢") yields
w> <g o"(w™).
However, admissibility also implies that 6" (w>) < w®, so in fact
w™ = o™ (w™).
Therefore
®) w™ = (Prefix,, (Ity/))*°.

Let j be the index of the first place w> differs from Ity,. Clearly, j > n. Pick m € N such
that mn < j < (m 4+ 1)n. Then, after removing the common prefix of length mn and positive
cumulative sign from both w> and Ity., we get from (5) and (@) that

g

mn(w

) = w™ <g Ity,
and hence
Prefix,,(Ity/) = Prefix,,(w™) <g Prefix,, (¢""(Itx/)),

which contradicts with the fact that Ity is admissible (by Theorem[2.2). Thus, condition (2) of
the definition of A-suitability holds.

Now condition (3) of the definition of A-suitability follows from the assumption that w™ <g
It,.

For condition (4), suppose for some \ > )\, v/2 < (\V)?" < 2. Then \?" < 2,s0by Lemma
w = D" (w’) for some w’. Hence,

(Reverse(w))™ = (D" (Reverse(w’))>.

Because D preserves <p and sends itineraries to itineraries (Lemma 3.2), the number of con-
secutive 0s in (Reverse(w’))*°, which is the number of consecutive 0s in w’>, can not be more

than the number of consecutive 0s in Ity 2.
O
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The key combinatorial result we need to prove Theorem[l]is the following:

Lemma 5.7. Fix A\ € [1,2) and let wq be a finite dominant word such that Ity, <p wg® for some
X > X Let o be a word such that o

(1) ends with 1,

(2) is a prefix of some A-suitable sequence,

(3) has positive cumulative sign, and

(4) |wo| > |al.
Then the word wy - Reverse(«) is admissible.
Proof. Let o/ = Reverse(a). It suffices to show that the admissibility criterion

o*((woa')*) <p (woa)™

holds for all 1 < k < |a| + |wp.

Case 1: k < |wp|. This implies that the comparison between o*((wpa’)>°) and (wpa')™ is
equivalent to the comparison of a proper suffix of wy concatenated with 1 with a prefix of wo
of the same length. Hence

" ((woa')®) < (woa)™
because wq is dominant.

Case 2: |wo| < k < |a| + |wg|. Suppose the first place o* ((wpa’)*°) and (wpa')> differ is at
the j position. It is evident that 1 < j < |a| + |wo|. We divide this into two subcases:

o Case 2A: j < |wg| + |a| — k. The fact that |wg| > |a| and k > |wy| implies that j <
|wo|. Hence, the comparison between o*((wpa’)>®) and (wpa’)™ is equivalent to the
comparison of a proper suffix of o/ with a prefix of wy. Hence, item (1) of Definition[L.5]
gives us

" (woe!)>®) <p (woa')™.

e Case 2B: j > |wg| + || — k. The word 3 := Suffix|, |4 |a|—k(a’), which is a common
prefix of 0% ((wpa’)>) and (wpa’)>°, is identical to a prefix of wg, which is > than a
prefix of Ity for some A’ > A. Hence, due to item (2) of Definition B has negative
cumulative sign. Now, using the conclusion of Case 1, we have:

O_Lw0|+\a|7k(o_k((w0al)00)) _ (’LU()O/)OO S5 g’\conla\*’f((woa/)oo)

Hence,
o*((woa')™) <p (woa)™
because 3 has negative cumulative sign.
a

Lemma 5.8. Let w and w' be sequences, and let\ € (1,2) and k € N satisfy v/2 < A2 <2, Ifwis
A-suitable and w = ©'* (w'), then w' is \2" -suitable.

Proof. By induction we only need to prove it for k& = 1. Assume w = ©’(w’) is A-suitable, we
will now show that w’ satisfies (1)-(4) of Definition[L.5} By definition,

Reverse(D’(v)) = D(Reverse(v))
for any word v, so for any A’ > .
Reverse(Prefixa, (D'(w')) = Reverse(D’(Prefix, (v')))
= D (Reverse(Prefix,, (w'))) < Prefixa, (Ity) = D (Prefix,, (Ity2))

Hence (1) is true for w’ because of Lemma [3.1] and Condition (2) of Definition [L.5] can be
verified similarly. It is easy to see that w satisfies (4) implies that w’ satisfies (4). Lastly, we
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will now show that w satisfies (4) will imply w’ satisfies (3): if \? > /2, this follows from the
statement of (4). If A2 < v/2, (4) implies that w’ = D’(w") for some w”, which implies that w’
can never have more than one consecutive 0, hence it also satisfies (3). O

6. CHARACTERIZATION INSIDE THE UNIT CYLINDER

Lemma 6.1. Let K denote the space of compact subsets of R with the Hausdorff metric topology. Given
any compact subset K of K, the union of the elements of K is a compact subset of R3.

Proof. First, we claim there exists R > 0 such that k¥ C Bg(0) for all £ € K. If this was not the
case, then there exist k1 and ks in K such that dpays (K1, k2) is arbitrarily large, contradicting the
fact that K is compact. Thus the claim is true.

Consider K x Br(0). As a product of compact sets, it is compact. Consider the subset C' C K
such that C' consists of all pairs (k, =) such that x € k. We claim C is closed, and thus as a closed
subset of a compact set, C' is compact. To see this, we will show that C is sequentially closed,
ie. if (k;, x;) is a sequence in C' converging to (koo, o) € K x Bg(0), then (koo, zoo) € C. We
have that k; — koo and z; = xo, SO sUPpOse T & koo. Since ko, is a compact set, © ¢ koo
implies there exists ¢ > 0 such that B.(z) is contained in the complement of k. This implies
that lim inf digays (ki, koo ) > €, contradicting the fact that k; — ko in the Hausdorff metric. So
we have a continuous map from C to R? sending (k,z) to x. The image under this map is
compact. g

The following two Lemmas, which we state without proof, are immediate consequences of
Rouché’s theorem:

Lemma 6.2. Let A be the set of power series with bounded coefficients equipped with the product topol-
ogy. Let C be the set of compact subsets of C equipped with the Hausdorff topology. Then the map
p: A — C defined by

p(f)=5"U{zeD: f(z) =0}
is continuous.

Lemma 6.3. Fix real numbers M > 0,0 < r < 1, e > 0. Suppose o is a power series whose coefficients
are all bounded in absolute value by M. Then there exists a real number N = N(«,r, ¢, M) such that
for every power series [3 whose coefficients are all bounded in absolute value by M and whose first N
terms equal the first N terms of «, for each root z of o with |z| < r there exists a root 2’ of B such that
|z — 7| <e O

Now we prove the first main theorem:

Proof of Theorem |1} For the reader’s convenience, we reproduce here the statement of Theorem
For any \ € (1,2],

ExND=S'U{zeD:G(w,z) =1 for some \-suitable sequence w} .
By Remark[1.9} the result holds for A = 2. So fix A € (1,2). For brevity, let
Zy:={z€D:G(w,z) =1 for some A-suitable sequence w}.

First, we show that S U Z, is compact. For each sequence w, the function from D to C given
by z — G(w,-) — 1 is a power series with bounded coefficients. Furthermore, the map from
the set of sequences w (with the product topology) to the set of power series (with the product
topology on coefficients) given by w — G(w, -) —1 is continuous. Therefore, Lemma[6.2)implies
that the map p from the set of sequences with the product topology to C, the set of compact
subsets of C with the Hausdorff topology, given by

p(w)=S'"U{zeD: G(w,z) =1}
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is continuous. By Lemma5.4} the set of all A-suitable sequences is closed (in the product topol-
ogy on the set of sequences), and hence compact. Therefore, since p is continuous,

{p(w) : wis X\ — suitable}
is a compact subset of C. Hence, Lemma [6.T)implies that

U »w)

w is A-suitable

is compact. But this set is precisely S* U Z,, so we have shown S* U Z, is compact for any
Aell,2].
Next, we show that

Theorem (4.5 shows that
(6) E)\OEZ m Y)\/,

where Y, is defined to be the closure of the set of roots in D of all Parry polynomials P,, such
that w is admissible and w™ <g It)+, union with S*. For each such w let w, be the sequence

wy := (Reverse(w))*.

So fix A’ > X and consider any admissible word w such that w™ <g Ity.. By Lemma
Pu(z) = (1 - z*hG(w,, 2).

By Lemma w, is N'-suitable. Hence, all roots in D of P,, are in S! U Z).. Then, since Zy is
closed, we have that

7) Yy C STU Zy.

Now, combining @ and @ shows that for any point z € =y ND, for each n € N, there exists
a (A + 1)-suitable sequence v,, such that G(v,, z) = 1. Let v, be an accumulation point of the
set {v,, : n € N}. By Lemma 5.5} the sequence v, is A-suitable. The continuity of w — G(w, )
implies that G(veo, z) = 1. Hence 2y ND C ST U Z,.

Lastly, we show that S* U Z, C =, N D. We know from [BDLW19] that S* x [1,2] C T5P.
Thus S! C =), so it suffices to show that Z, C Z,. Fixa point z € Z and let w be a A-suitable
sequence such that G(w, z) = 1. By condition (4) of Definition [1.5} there exists a sequence w’
such that w = ®’ k(w’ ), and by Lemma w' is A2" -suitable, and A2" > /2. In particular, if
A > /2, wecan let k = 0 and w’ = w. As a consequence, there are infinitely many prefixes of
w’ that end with 1 and have positive cumulative sign.

For any m € N such that Prefix,, (w") has positive cumulative sign and any word w"” with
positive cumulative sign, it follows immediately from the definitions of a Parry polynomial
and of G that the first m terms of the power series G(w’, 2) — 1 and P, Reverse(Prefix,, (w')) (%)
agree. Therefore, for any fixed ¢; > 0, by Lemma there exists N € N such that Prefixy (w’)
ends with 1 and has positive cumulative sign, and for any word w” with positive cumulative

sign, there exists a point 2’ € B, (sz) such that
(8) Pw”AReverse(PreﬁxN(w’))(z/) =0.

For any fixed )’ satisfying 2 > A’ > A2", pick a critically periodic growth rate A” € (A2*, )
and word wy with positive cumulative sign such that Ity» = wg°. Since X < X, for sufficiently
large n,

wg <E Prefixn|w0|(lt>\/).
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Hence, by Proposition[2.5, there exists n € N and a word w{ such that the word
wy = wiw]
is dominant, |wy| > |w’|, and
) wy <g Prefix|,, |(Ity).
By Lemmal[5.7}

wy - Reverse(Prefix y (w))’

is admissible. By (8),
-Pw1 -Reverse(Prefix ny (w’))

has a root within distance ¢; of 22" By @]),
(w; - Reverse(Prefixy (w')))™ <g Ity
Hence, the kth doubling of w; - Reverse(Prefixy (w')), denoted as w,, satisfies

ws" <E It()\/)l/zk

and P, has leading root in [\, (\')"/ 2k] and a root in B, (z), where ¢ is the diameter of the

preimage of B (22") under the map z — 22"
Now, since €; > 0 and \' > \ were arbitrary, and since Y5 is closed, we obtain that (z, \) €
Y57, and hence z € E,. O

7. CHARACTERIZATION OUTSIDE THE UNIT CYLINDER

The goal of this section is to prove Theorem [2| a characterization of the part of the Master
Teapot that is outside the unit cylinder. This follows largely from arguments in [Tiol8], but we
will include a proof here for the sake of completeness.

The following proposition is essentially a restatement of [Tio18} Proposition 3.3]:

Proposition 7.1. The map ® : (1,2) — {compact subsets of D} given by
d(N\) =S'u{z:H(\ 2" =0}
is continuous in the Hausdorff topology.

Proof. We only need to show that it is continuous at every point Ao € (1,2). If It), is not
periodic, the forward orbit of 1 under f), never hits 1/X¢, hence It : A — Ity is continuous at
Xo- This is because for any cylinder set [ay, . .., a;], the set

{)\1 € (1,2] : PI‘eﬁX]‘(It)\l) =aj. ..aj}

is open. The continuity of ® follows from the definition of H (Definition and Lemma
If It,, is periodic, let wy be the word of shortest length such that Ity, = w§°, and let w; be
the word with the same length as wg such that Prefix,,,|—1 (wo) = Prefix|,,,|—1(w) but whose
last digit differs from that of wy. Then the proof of Lemma 12.2 in [MT88] implies
lim Ity = w8°
A=Ay
and
lim Ity = w}™.
A=AG
However, a simple computation (which we leave to the reader) shows that H(wg°, 2~ ') and
H(w},™, z—1) differ by cyclotomic factors, and hence have the same roots inside D. O
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Proof of Theorem 2} For convenience of notation, set
R)\ = {Z : H(It)\,z) = 0}
Let I be a small closed neighborhood of A in (1,2). To show Theorem 2} we only need to show
U (@\p)us) = (B\p)us?).
Ael Ael

The fact that the right hand side is compact is due to Proposition Furthermore, due to
Remark a dense subset of the left hand side is dense in the right hand side, so they are
identical. O

8. ALGORITHMS TO TEST MEMBERSHIP OF =)

In this section we will describe an algorithm to check if a point 2y € C is in the complement
of a slice 2y, for A € (1,2).

Firstly, if A < /2, Theorems [1{and implies that z € =, if and only if 2% € =2, so we can
always reduce the question to the case \ € [v/2,2).

8.1. Testing zy with |z9| > 1. When |zo| > 1, Theorem[2|gives us a straightforward way to test
if 29 € Ex: calculating the first few terms of the power series H (Ity, 2~1), then checking if z, !
is a root of this power series. More precisely, we have the following algorithm:

Algorithm 1: Algorithm to verify that |zy| > 1is notin =y

forn > 1do
Calculate Prefix,, 1 (Ity);
Find the polynomial P,, which consists of the first n-terms of power series
H(Ity, z71);

If |Pn(z0_1)| > 22017 then 20 € Ex;

1—‘20‘ 4

Remark 8.1. If instead of checking if zp ¢ =), we want to see if an e-neighborhood of z is
contained in the complement of Z,, we can change the last line of Algorithm [I|to make use of
Rouché’s theorem.

8.2. Testing z, with |z < 1. If |z9| < 1, a way to certify that zy ¢ =, is by first finding the
set of all words of length IV that satisfy Conditions (1)-(3) of Definition (Condition (4) is
trivial because A > /2), denoted as M N, for each word w = (w1 ... wy) € My 5, evaluating

w20 © faomw_ 120+ Jiorz, (1) and checking that they are all sufficiently large. More precisely,
the algorithm can be described as follows:

Algorithm 2: Algorithm to verify that |z| < 1is not in =, where ) € [v/2,2).

for N > 1do

Let My, be the set of all words of length N that satisfies Conditions (1)-(3) in
Definition

Let flag < False;

for w «+ (w1 . ..wN) S MN,A do

if 7;1\1r,20 °© 1;13771720 1;11720(1) < 1—?20\ then
flag < True;
Break;

If flag = False, then zg € Zy;




22 KATHRYN LINDSEY AND CHENXI WU

The reason that Algorithm [2]is true is due to the following proposition:

Proposition 8.2. Let \ € [\/2,2), and let My ) be defined as in Algorithm |2} Suppose |z| < 1, then
z & 2y if and only if there exists N € N such that for every word w = w; ... wy € My,

Ji,zo---o 1;11,2(1)> + e

Rt

Proof. First, we assume that there is some N such that for every word w = w; ... wny € My,

wns @00 funa(1) 2 1= B
and prove that z ¢ Z). Suppose z € Z). Then by Theorem [1} there must be some A-suitable
sequence v = v1vz . .. such that

1=G(v,2) = ILm for,z0...0 fu, (1)
In other words, for any ¢ > 0, there is some n > N such that

|fv1,z ©...0 fvn,Z(l) -1]<é
By the definition of My, theword vy ...vx € M. Letu = f,, .0...0f,, -(1). Then|u—1| < 6.

Because f,! . o...o f; !, is continuous, we can pick § small enough such that
2

1=z

+ €

1 o oft (u) >

UN % V1,2

However,
u_Nl,z 0...0 v_l}z(u) = va+1,z ©...0 fvn,Z(l)

By calculation, it is easy to verify that 1 is in the disc

2
D > =<¢2eC:|z|<—,
SE T4
and both f;, , and f; ., send D_- ‘ to itself. Hence

1—|z

2
1— 2]’

| fonsnz©-em0 fu, (1)) <

a contradiction.
Now, for the other direction, we assume that for any V € N there is some word w =
wy ... wy € My such that

_ _ 2
w;’z 0...0 fwll,z(l) < - |Z‘

and prove that z ¢ =,. Let Cy be the set of sequences such that an N-prefix of it is in My, and
this N prefix is of the form w; ... wy such that

2

—1 -1 —1
WN,Z o WN—1,2 """ wl,z( ) =1 |Z|

The fact that f; ., and f; , both send D% to itself implies that Cy41 C Cy, and all these sets

-z

are non empty and compact under the product topology, hence their intersection is non-empty.

Let w € (5 Cn, then w is A-suitable and it is easy to see that G(w, z) = 1. O
Furthermore, we have an effective version of the Proposition[8.2]above:

Proposition 8.3. Let \, z, N and e as in Propositionabove, 1 < |z| < 1. Then forany y € C, if

(1= z] (1—]z])% 1 €
ol sming T g F g v

then y & =).
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Remark 8.4. The assumption |z| > % is a reasonable one because it is well known (cf. [Tio18]])
thatif |z| < § then z ¢ 2, forany X € (1,2).
Proof. It is easy to see that as long as |y| < 1,

2 2

— - —| < €/2
L—lz[ 1—1yl ’
and forany w = wy ... wy € My,
wnz © fuwrz e Fun ) = funy © sy Fuly (D] < /2

then y also satisfy the assumption in Proposition[8.2} The first condition, |y| < 1, holds because

ly — 2] < 1;|Z|, which implies |y| < Hlel < 1. The second condition,
2 2
— < €/2,
L—[zl 1—1yl
holds because |y| < 1+T|Z‘ and |y — 2| < %@I)%. The third condition,
u_u\l;,z o ;j\lf,l,z cee u_)ll,z(l) - 1;1373; o 7;137,1,@/ cee u_)ll,y(]') < 6/27

holds because of the following argument: As a polynomial of 1,

o © fonaz o fanz(1)
has degree N and coefficients bounded between —2 and 2, hence has its derivative bounded by
N2N=1.2 =N -2V on the annulus {y € C: 1 < |y| < 2}. Because |y — z| < |z| — %, y is inside
this annulus, so this third condition follows from the assumption that |y — z| < {55+ and the
mean value theorem. O

9. ASYMMETRY OF =

The following proposition is likely well-known to experts; we include the proof for com-
pleteness.

Proposition 9.1. Q5" N D is invariant under reflection across the real axis and across the imaginary
axis.

Proof. The set Q5”ND is invariant under reflection across the real axis because Galois conjugates
come in complex conjugate pairs. Tiozzo [Tio18] showed that Q57 N D\S! is the set of all the
roots in D of all power series with all coefficients in {£1}. So if z € D is a root of a power series
S with coefficients in {£1}, then —z is a root of the power series formed from S by flipping the
sign of the coefficients on all terms of odd degree. Therefore the complex conjugate, —z, is in
QP O

However, our Algorithm [2]in the previous section can be used to show that =5 NID does not
necessarily have such symmetry, which proves Theorem B}

Proof of Theorem We only need to show that there is some z € =; g2 N D such that —z ¢
=1.82 N D. Consider the tent map with growth rate being the leading root of

1422 — 2 428 — 227 4328 —42° 4 3210 — 221 4 212 2,13 4 M,

which is approximately 1.8149185987640513 and is smaller than 1.82, hence any Galois con-
jugate of this leading root must be in =; g5. Let z be the Galois conjugate near the point
—0.5840341196392905 + 0.4820600149798202i. Applying Algorithm[2]to —z for N = 20 shows
that —z g 51.82' O
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