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ABSTRACT. We prove an explicit characterization of the points in Thurston’s Master Teapot, which
can be implemented algorithmically to test whether a point in C × R belongs to the complement
of the Master Teapot. As an application, we show that the intersection of the Master Teapot with
the unit cylinder is not symmetrical under reflection through the plane that is the product of the
imaginary axis of C and R.

1. INTRODUCTION

The growth rate of a continuous dynamical system f : X → X , whereX is a compact topolog-
ical space, is the exponential of the topological entropy of f , ehtop(f). When such a dynamical
system admits a Markov partition – as is the case of for continuous, multimodal, postcritically
finite, self-maps of intervals, or pseudo-Anosov surface diffeomosphisms – a consequence of
the Perron Frobenius theorem is that the growth rate must be a weak Perron number, i.e. a real,
positive algebraic integer that is not less than the absolute value of any of its Galois conjugates.
In [Thu14], Thurston proved that every weak Perron number arises as the growth rate of some
continuous, multimodal, postcritically finite, self-maps of intervals. (The analogous question
for pseudo-Anosovs remains open.) By considering the set of all interval maps of any modality
and any postcritical orbit portrait, Thurston stabilized the question; the question of character-
izing the set of growth rates of all postcritically finite interval maps of any fixed modality d ≥ 2
is more subtle, and remains open. This work investigates growth rates of the family of all
continuous, unimodal, critically periodic interval self-maps, which we denote Fcp2 .

Since the growth rates of maps inFcp2 are known to satisfy a condition involving their Galois
conjugates (namely, they are weak Perron numbers), it is natural to consider, for any f ∈ Fcp2 ,
the set {z ∈ C : z is a Galois conjugate of the growth rate, ehtop(f), of f}. Another, related rea-
son to consider the set of Galois conjugates of ehtop(f) is that the Galois conjugates can be used
to construct a “lift” of this real, one-dimensional dynamical system defined by f to a dynamical
system defined on Cs × Rd, where r is the number of real Galois conjugates of ehtop(f) and s is
the number of non-real complex-conjugate pairs of Galois conjugates (see, e.g. Theorem 2.1 of
[Thu14]). The Master Teapot for the family Fcp2 is the set

Υcp
2 := {(z, λ) ∈ C× R | λ = ehtop(f) for some f ∈ Fcp2 , z is a Galois conjugate of λ}.

Thurston coined the term “Master Teapot” because plots of finite approximations of this set
resemble a teapot, with a roughly cylindrical body over the unit circle, a “spout” consisting
of points of the form {λ, λ}, and a “handle” protruding from the body opposite the spout.
(See Figure 1.) Clearly, the geometry and topology of this set encode information about which
growth rates are realized by maps in the family Fcp2 . While the geometry of the Master Teapot
retains information about which growth rate λ corresponds to which Galois conjugate z, it is
also interesting to consider the subset of C formed by plotting all the Galois conjugates (includ-
ing the growth rate λ) of all maps in Fcp2 in the same copy of C, and taking the closure. The
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Thurston set is the set

Ωcp2 := {z ∈ C | z is a Galois conjugate of ehtop(f) for some f ∈ Fcp2 }.
Equivalently, the Thurston set is the projection of the Master Teapot to the complex plane.

FIGURE 1. A plot of a finite approximation of Υcp
2 , showing all points coming

from maps in Fcp whose critical orbits have periods at most 23. The two black
circles are S1×{1} and S1×{2}, where S1 is the unit circle. The color gradients
show the height of the plotted points. This figure is from [BDLW19].

The Master Teapot and Thurston set have rich and mysterious geometrical and topological
structures that have been investigated in several recent works, including [Tio18, Tio15, CKW17,
Thu14, Tho17, BDLW19]. Describing the “shape” of the Master Teapot Υcp

2 or the Thurston set
Ωcp2 is a step towards towards refining Thurston’s result by characterizing which weak Perron
numbers arise as the growth rates of which PCF interval maps. In particular, the ability to
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prove that a specific point z is not in the Master Teapot – which the algorithms we present in
§8 accomplish – provides a necessary condition for a necessary condition for a growth rate to
be realized by a map in Fcp2 .

In [BDLW19], the authors prove that the Master Teapot Υcp
2 is connected and contains the

unit cylinder S1 × [1, 2]. Furthermore, the intersection of the height-λ slice of the Master Teapot,

Ξλ ∩Υcp
2 := {z ∈ C : (z, λ) ∈ Υcp

2 }

with the closed unit disk D grows monotonically with λ ([BDLW19]). Consequently, the part
of the top level slice of the Master Teapot that is inside the unit cylinder, Ξ2 ∩D, coincides with
Ωcp2 ∩ D, the part of the Thurston set inside the unit disk.

The growth rates of PCF self-maps of real intervals may be seen as a specific case of core
entropy for PCF complex polynomials. Indeed, the filled Julia set of a PCF complex polyno-
mial contains a forward invariant, finite topological tree, called the Hubbard tree, that contains
the critical points of the polynomial; the core entropy of such a polynomial is the topological
entropy of the restriction of the dynamics to the Hubbard tree. For a polynomial with real co-
efficients, the Hubbard tree is a real interval, and so the restriction of the map to the Hubbard
tree is a PCF multimodal self-map of an interval. Although we confine our investigation here to
self-maps of real polynomials, similar questions could be explored in the complex setting. The
interested reader may read more about core entropy for complex polynomials in [Tio16, GT21].

Another motivation for investigating PCF multimodal self-maps of real intervals is that
these maps may also be seen as one-dimensional analogues of pseduo-Anosov surface dif-
feomorphisms. A uniform expander is a continuous, piecewise affine-linear (with finitely many
pieces) self-map of an interval such that the derivative on each piece is ±λ for some expan-
sion factor λ > 0. Classical results in entropy theory imply that the growth rate of a uni-
form expander with expansion factor λ is λ. Milnor and Thurston proved that every continu-
ous, self-map of an interval with finitely many critical points and positive topological entropy
is semi-conjugate to a uniform expander with the same topological entropy ([MT88]). Both
PCF uniform expanders and pseudo-Anosov surface diffeomorphisms are uniformly expand-
ing maps except at finitely many points, admit Markov partitions, and their expansion factors
(called the dilatation of a pseduo-Anosov) coincide with their growth rates. Constructions of
pseduo-Anosovs from uniform expanders are explored in [Far21, BRW16]. Characterizing the
set of dilatations realized by pseudo-Anosovs remains an open question.

The Master Teapot and Thurston set are also closely related to the theory of β- and gen-
eralized β-expansions (cf. [G0́7, LSS16, DMP11, IS09, Ste13]), roots of Littlewood, Newman
and Borwein polynomials (cf. [BEL08, Kon99, Muk10, HM14, SS06, OP93]), and dynamics of
iterated function systems (cf. [BH85, Ban02, SX03, Sol04]).

Overview of main results. The main contribution of this paper is an explicit characterization
of the Master Teapot Υcp

2 – necessary and sufficient conditions for a point to be in Υcp
2 . (The

part of the Master Teapot inside the unit cylinder D × [1, 2] is described by Theorem 1 and the
part outside the unit cylinder by Theorem 2.) Theorem 1 establishes a new connection between
horizontal slices of the Master Teapot and iterated function systems. Specifically, the part in D
of each horizontal slice of the Teapot can be viewed as an analogue of the Mandelbrot set for a
family of “restricted iterated function systems” (c.f. Remark 1.12). From this characterization,
we prove an algorithm (Section 8) for showing that certain weak Perron numbers can not be
the exponent of the topological entropy of a critically periodic unimodal interval map. As
an application of this algorithm, we prove that the part of the Master Teapot inside the unit
cylinder is not symmetrical with respect to reflection across the imaginary axis (Theorem 3).
Conjecture 1.13 proposes that an analogy of the Mandelbrot-Julia set correspondence holds for
horizontal slices and limits sets of restricted iterated function systems.
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Precise statement of results and commentary. In order to state the results precisely, we intro-
duce some terminology and notation.

First, we define words and sequences in the alphabet {0, 1}:

Definition 1.1.
(1) A sequence w = w1w2 . . . is an element in {0, 1}N. The shift map σ : {0, 1}N → {0, 1}N is

defined by removing the first element of a sequence, i.e. σ(w1w2w3 . . . ) := w2w3 . . . .
(2) A word w = w1w2 . . . wn is an element in {0, 1}n for some positive integer n. The num-

ber n is called the length of the word w and is denoted by |w|.
(3) For n ∈ N, the reverse function Reverse : {0, 1}n → {0, 1}n is defined as

Reverse(w1w2 . . . wn) := wnwn−1 . . . w1

(4) For k ∈ N, the k-prefix of a sequence w = w1w2 . . . is the word

Prefixk(w) := w1 . . . wk

(5) For a word w = w1 . . . wn of length n and a natural number k ≤ n, the k-prefix and
k-suffix of w are the words

Prefixk(w) := w1 . . . wk

Suffixk(w) := wn−k+1wn−k+2 . . . wn

Next, we relate words and sequences with dynamics on C via the following definitions:

Definition 1.2.
(1) For any z ∈ C, define maps f0,z, f1,z : C→ C by

f0,z(x) := zx, f1,z(x) := 2− zx.
(2) For any w = w1 . . . wn and z ∈ C, set

F (w, z) := fwn,z ◦ · · · ◦ fw1,z(1)

(3) For any sequence w = w1w2 . . . and any z ∈ C with |z| > 1, set

H(w, z) := lim
n→∞

(−1)(
∑n

i=1 wi)z−nF (Prefixn(w), z)

= lim
n→∞

(−1)(
∑n

i=1 wi)z−nfwn,z ◦ . . . ◦ fw1,z(1)

(4) For any sequence w = w1w2 . . . and z ∈ C with |z| < 1, set

G(w, z) := lim
n→∞

F (Reverse(Prefixn(w)), z)

= lim
n→∞

fw1,z ◦ . . . ◦ fwn,z(1)

The following definition is partly from [MT88]:

Definition 1.3.
(1) The cumulative sign of a word w = w1w2 . . . wn is defined as s(w) := (−1)

∑
i wi .

(2) The twisted lexicographic order ≤E is a total ordering on the set of sequences, defined
as follows: w <E w′, if and only if there is some k ∈ N, such that Prefixk−1(w) =
Prefixk−1(w′), and s(Prefixk−1(w))(w′k − wk) > 0. In other words, w <E w′ if and only
if, denoting by k the index of the first letter where w and w′ differ, either w′k > wk and
the common (k − 1)-prefix has positive cumulative sign, or w′k < wk and the common
(k − 1)-prefix has negative cumulative sign.
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(3) We define the total order ≤E on the set of words of length n exactly the same way as
above.

Definition 1.4.
(1) Let λ ∈ (1, 2]. We call the map fλ : [0, 1]→ [0, 1] given by by

fλ(x) =

{
λx x ≤ 1/λ

2− λx x > 1/λ

the λ-tent map. Let I0,λ = [0, 1/λ], I1,λ = [1/λ, 1].
(2) The λ-itinerary, denoted as Itλ, is the minimum (with respect to ≤E) sequence w such

that for any k ≥ 0, fkλ (1) ∈ Iwk+1,λ.

One can easily check that Itλ is the itinerary of 1 under fλ in the convention of Milnor-
Thurston kneading theory.

Now we introduce a combinatorial condition on sequences:

Definition 1.5. For λ ∈ (1, 2], a sequence w is called λ-suitable if for every λ′ ∈ (λ, 2], the
following conditions hold:

(1) Reverse(Prefixn(w)) ≤E Prefixn(Itλ′) for all n ∈ N.
(2) If Reverse(Prefixn(w)) = Prefixn(Itλ′), then the cumulative sign s(Prefixn(w)) = −1.
(3) If Itλ′ = 1 · 0k · 1 . . . , k ∈ N, then w does not contain k + 1 consecutive 0s.

(That is, if Itλ′ starts with 1 followed by k 0s and then 1, writing w as w = w1w2 . . . ,
there does not exist n ∈ N such that wi = 0 for all n ≤ i ≤ n+ k.)

(4) If k ∈ N satisfies
√

2 ≤ λ2
k

< 2, then w = D′
k
(w′) for some sequence w′, where

D′ is the map that replaces 0 with 11 and 1 with 01, such that for every λ′ > λ2
k

, if
Itλ′ = 1 · 0k · 1 . . . then w′ does not contain k + 1 consecutive 0s.

Remark 1.6. Every sequence is (vacuously) 2-suitable.

For λ ∈ (1, 2), let Ξλ be height-λ slice of the Master Teapot Υ2:

Ξλ := {z : (z, λ) ∈ Υ2}

We will use the following notation:

D := {z ∈ C : |z| < 1}, the open unit disk

D := {z ∈ C : |z| ≤ 1}, the closed unit disk

S1 := {z ∈ C : |z| = 1}, the unit circle

C := D× [1, 2], the closed “unit cylinder”

Our main theorem is:

Theorem 1. For any λ ∈ (1, 2], the part of the slice Ξλ inside the closed unit disk can be characterized
as:

Ξλ ∩ D = S1 ∪ {z ∈ D : G(w, z) = 1 for some λ-suitable sequence w} .

There is a similar characterization for outside the unit disc, which follows directly from
results in in [Tio18]:

Theorem 2. For any λ ∈ [1, 2), the part of the slice Ξλ outside the unit disk is:

Ξλ \ D =
{
z ∈ C \ D : H(Itλ, z) = 0

}
.
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Remark 1.7. Theorems 1 and 2 both provide algorithms to certify that a point is in the com-
plement of Ξλ. This is useful since the definition of Υcp

2 is constructive and involves taking a
closure. Section 8 describes these algorithms. Figure 4 is a finite approximation of Ξ1.8 ∩ D
using Theorem 1, and Figure 2 is a finite approximation of Υcp

2 \(D× [1, 2]) using Theorem 2.

FIGURE 2. A constructive approximation of the part of Υcp
2 outside the unit

cylinder. This plot shows the 56737 points outside the cylinder S1 × [1, 2] that
are roots of the degree 100 partial sums of the kneading power series for 1000
different growth rates λ in [1, 2]. The "spout" on the right side of the image
consists of points of the form (λ, λ).

Remark 1.8. Since the set of λ-suitable sequences is semicontinuous with λ (Lemma 5.5), The-
orem 1 implies that if 1 < λ < λ′ ≤ 2, then

Ξλ ∩ D ⊆ Ξλ′ ∩ D,

which is the “Persistence Theorem” proved in [BDLW19]. However, our proof of Theorem 1
depends on the Persistence Theorem in [BDLW19].
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Remark 1.9. Tiozzo showed in [Tio18] that

Ωcp2 ∩ D = S1 ∪ {z ∈ D : G(w, z) = 1 for some sequence w},

and the Persistence Theorem ([BDLW19]) shows that Ω2 ∩ D = Ξ2 ∩ D. It is also known that
the unit cylinder is in the teapot, i.e. S1 × [1, 2] ⊂ Υcp

2 ([BDLW19]). Since every sequence
is 2-suitable, this proves the conclusion of Theorem 1 for the top level of the teapot, the case
λ = 2.

Remark 1.10. Our first step towards proving Theorem 1 is proving Theorem 4.5, and alterna-
tive characterization of slices Ξλ ∩ D. A corollary of Theorem 4.5 is that all roots in D of all
Parry polynomials coming from admissible words – even reducible Parry polynomials – are in
the Thurston set Ωcp2 .

Corollary 1.11. Ωcp2 ∩ D is the closure of the set of all roots in D of all Parry polynomials associated to
admissible words.

In particular, when using Parry polynomials to plot approximations of Ωcp2 , it is not necessary
to check whether the Parry polynomials are irreducible.

As an application of Theorem 1, we will show that:

Theorem 3. The part of the Master Teapot inside the unit cylinder is not symmetrical with respect to
reflection across the imaginary axis, i.e. Υcp

2 ∩ C is not invariant under the map (z, λ) 7→ (−z, λ).

Since Galois conjugates occur in complex conjugate pairs, it is immediate that (x+ iy, λ) ∈ Υcp
2

if and only if (x− iy, λ) ∈ Υcp
2 .

Theorem 3 is suprising because the Thurston set, Ωcp2 , which is the projection to C of Υcp
2 ,

is symmetrical under the map z 7→ −z (Proposition 9.1). However, this asymmetry in the
Master Teapot is confined to the slices of heights ≥

√
2; one can prove, via the renormalization

procedure described in Section 2.3, that the unit cylinder part of slices of height <
√

2 are
symmetrical under reflection across the imaginary axis.

Remark 1.12. Theorem 1 allow us to interpret each slice Ξλ∩D as an analogy of the Mandelbrot
set. The conclusion of Theorem 1 for the top slice (c.f. Remark 1.9) allows one to characterize
Ξ2 as the union of S1 and the set of all parameters z ∈ D such that the point 1 is an element of
the limit set Λz associated of the iterated function system generated by f0,z and f1,z . Theorem
1 suggests viewing Ξλ ∩ D as the set of parameters z for which the point 1 is an element of the
“limit set” associated to the “restricted iterated function system” generated by f0,z and f1,z in
which only the compositions represented by λ-suitable sequences are allowed.

Based on numerical experiments, we propose the following conjectured analogy of the Julia-
Mandelbrot correspondence [Lei90, DH85]:

Conjecture 1.13. For any complex number |z| < 1, any λ ∈ (1, 2], Ξλ− z is asymptotically similar to
the set

Jz = {G(w, z)− 1 : w is λ− suitable}.

By these two sets being asymptotically similar, we mean there exists a real number r > 0 and
sequences (tn), (t′n) ∈ C with tn, t′n →∞ such that, denoting Hausdorff distance by dHaus,

lim
n→∞

dHaus

(
Br(0) ∩ (tn(Ξλ − z)), Br(0) ∩ (t′nJz)

)
= 0.

If the Conjecture 1.13 is true, or at least true for “enough” points z, we would also be able to
show the following:

Conjecture 1.14. There exists λ ∈ (1, 2) such that Ξλ ∩D has infinitely many connected components.
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Figure 3 shows a constructive plot (in black) of the slice Ξ1.8 ∩ D, while Figure 4 shows (in
white) points of D \ Ξ1.8. Comparison of these images suggests the existence of multiple small
connected components in the region Re(z) < 0 near the inner boundary of the “ring.”

The Thurston set Ωcp2 is known to be path-connected and locally connected (Theorem 1.3 of
[Tio18]). It follows from Theorem 2 that for many heights λ ∈ (1, 2], the part of the slice of
height λ that is outside the unit cylinder consists of more than one connected component.

Conjecture 1.14 could be potentially proven by computation via an effective version of The-
orem 1 similar to Proposition 8.3. However, a tighter bound than that obtained in Proposition
8.3 would probably be needed for the computation to be feasible.

FIGURE 3. A constructive plot of an approximation of the slice Ξ1.8 ∩ D. The
plotted black points are all the roots of modulus ≤ 1 of all Parry polynomials
for superattracting tent maps with growth rate< 1.8 and critical length at most
29.
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FIGURE 4. The upper half of the slice Υcp
2 ∩ (D×{1.8}) plotted using Theorem

1. Specifically, the plotted white points were shown to be in the complement
of Υcp

2 (by checking the condition of Theorem 1 for all m ≤ 18).

The structure of the paper is as follows:
§2: Preliminaries provide definitions and notation for Parry polynomials, admissible and

dominant words and sequences, growth rates, and the renormalization/doubling operators.
§3: Properties of the doubling map proves some elementary results about the doubling

map which we will need in later sections to extend results about the top part of the teapot to
the part with height <

√
2.

§4: Roots in D of reducible Parry polynomials proves Theorem 4.5, which implies that all
roots in the unit disk of all Parry polynomials associated to admissible words are in the teapot.

§5: λ-suitability discusses λ-suitability and proves Lemma 5.7, which is the key combinato-
rial result we need to prove Theorem 1.

§6: Characterization inside the unit cylinder uses Theorem 4.5 and Lemma 5.7 to prove
Theorem 1.

§7: Characterization outside the unit cylinder proves Theorem 2.
§8: Algorithms to test membership of Ξλ presents algorithms, derived from Theorems 1

and 2, which will detect if a point (z, λ) ∈ C × R belongs to the complement of the height-λ
slice Ξλ, and proves lemmas that justify the algorithms.

§9: Asymmetry proves Theorem 3 by exhibiting a point (z, λ) that is in the teapot and using
the algorithm from §8 to prove that (−z̄, λ) is in the complement of the slice Ξλ.

Acknowledgements. The authors thank Diana Davis for many helpful conversations. Kathryn
Lindsey was supported by the National Science Foundation under grant DMS-1901247.

2. PRELIMINARIES

2.1. Concatenation. We use · or just adjacency to denote concatenations, i.e. for any word
w = w1 . . . wn and any word or sequence v = v1v2 . . .,

w · v = wv = w1 . . . wnv1v2 . . . .

We denote the concatenation of n copies of a word w by wn, for n ∈ N ∪ {∞}.
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2.2. Parry polynomials. Let w be a word with positive cumulative sign. The Parry polynomial
of w, Pw : C→ C, is defined as

Pw(z) := F (w, z)− 1

(cf. [BDLW19, Definition 2.7]). It is evident that if Itλ = w∞, then λ is a root of Pw, and hence
all Galois conjugates of λ must be roots of Pw.

One can check by simple bookkeeping that for any word w of positive cumulative sign,
Pw(z), G(Reverse(w)∞, z) and H(w∞, z) satisfy the following relationship:

Lemma 2.1. If w is of length n and has positive cumulative sign, then

Pw(z) = (1− zn)G (Reverse(w)∞, z) = zn(1− z−n)H(w∞, z).

�

2.3. Admissibility, itineraries and dominance. The shift map σ is defined on sequences by

σ(w1w2w3 . . .) = (w2w3 . . .) .

A sequence w = w1w2 . . . is a generalized symbolic coding of fλ for some λ ∈ (1, 2] iff

fkλ (1) ∈ Iwk+1,λ

for every integer k ≥ 0. Because the point 1/λ belongs to both intervals I0,λ and I1,λ, there may
exist more than one generalized symbolic coding for the itinerary of the point 1 under fλ. The
λ-itinerary Itλ is the least (with respect to ≤E) such generalized symbolic coding.

A sequence w starting with 10 is called admissible if

σk(w) ≤E w

for all k ∈ N. A word w is called admissible if w has positive cumulative sign and w∞ is admis-
sible.

We will use the following immediate consequence of Theorem 12.1 of [MT88]

Theorem 2.2. For every λ ∈ (1, 2], Itλ is admissible.

Proposition 2.3 ([BDLW19], Proposition 2.10). Let w be a word with positive cumulative sign. If w
is admissible and the associated Parry polynomial, Pw(z), can be written as the product of (z − 1) and
another irreducible factor, then w∞ = Itλ for some λ ∈ (1, 2].

The following is a straightforward corollary of theorems of Milnor and Thurston ([MT88]):

Corollary 2.4. If 1 < λ < λ′ ≤ 2, then Itλ <E Itλ′ .

A word w is called dominant (cf. [BDLW19, Definition 4.1, Lemma 4.2]) if it has positive
cumulative sign, and for any 1 ≤ k ≤ |w| − 1,

Suffixk(w) · 1 <E Prefixk+1(w.)

Every dominant word is admissible, but admissible words may not be dominant. A key prop-
erty of the dominant words is the following, which is proved in [Tio15], and reviewed in
[BDLW19, Proposition 4.4]:

Proposition 2.5. If λ ∈ (
√

2, 2) and Itλ = w∞, then for any n > 0, there exists a word w′ such that
wnw′ is dominant. �
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2.4. Growth rates and critically periodic tent maps. When a continuous self-map f of an in-
terval is postcritically finite, the exponential of its topological entropy, ehtop(f), also called its
growth rate, is a weak Perron number – a real positive algebraic integer whose modulus is greater
than or equal to that of all of its Galois conjugates. This is because cutting the interval at
the critical and postcritical sets yields a Markov partition; each of the resulting subintervals is
mapped to a finite union of subintervals. The leading eigenvalue of the associated incidence
matrix is ehtop(f), which the Perron-Frobenius Theorem implies is a weak Perron number.

In the present work, we consider growth rates of critically periodic unimodal interval self-
maps. A unimodal map f is said to be critically periodic if, denoting the critical point of f by c,
there exists n ∈ N such that fn(c) = c. A theorem of Milnor and Thurston ([MT88, Theorem
7.4]) tells us that, from the point of view of entropy, instead of considering all critically periodic
unimodal maps, we only need to consider critically periodic tent maps. For tent maps, it is easy
to see that the growth rate is just the slope λ.

2.5. Renormalization and doubling. As shown in [BDLW19, Section 3], for any 1 < λ <
√

2,
the tent map fλ is critically periodic if and only if the tent map fλ2 is critically periodic. (This
phenomenon is related to renormalization of the Mandelbrot set.) Furthermore, whenever
1 < λ <

√
2, Itλ can be obtained from Itλ2 by replacing each 1 in Itλ with 10 and each 0 in Itλ

with 11. That is, the doubling map D : {0, 1}n → {0, 1}2n, n ∈ N ∪ {∞}, defined by

D(w1w2 . . .) = 1 · (w1 + 1 mod 2) · 1 · (w2 + 1 mod 2) · . . .

satisfies D(Itλ2) = Itλ whenever fλ with 1 < λ < 2 is critically periodic. We say that a sequence
w is renormalizable if there exists a sequence w′ such that w = D(w′); in this case we say that
w is the doubling of w′ and call w′ the renormalization of w. We define renormalizable, doubling
and renormalization for words analogously.

3. PROPERTIES OF THE DOUBLING MAP

The goal of this section is to prove some elementary properties of renormalizable words and
sequences that we will use in later sections to extend results about the part of the teapot above
height

√
2 to the lower part.

Lemma 3.1. The doubling map D preserves the twisted lexicographic ordering ≤E , cumulative signs,
and hence also admissibility.

Proof. If the number of 1s in a word w equals n, then for any letter a, the number of 1s in
Prefix2|w|+1(D(w · a)) equals 2|w| + 1 − n. It follows that if n is odd, w · 1 <E w · 0 and
D(w · 1) <E D(w · 0); if n is even, w · 0 <E w · 1 and D(w · 0) <E D(w · 1). Thus D preserves
≤E . Furthermore, if a word w has positive cumulative sign, then the number, n, of 1’s in w is
even, implying that D(w), which contains 2w − n 1s, also has positive cumulative sign. �

Lemma 3.2. The doubling map D takes itineraries to itineraries. That is, if λ2
k

= λ′, then Dk(Itλ′) =
Itλ.

Proof. By induction, it is easy to see that we only need to prove it for k = 1, i.e. D(Itλ2) = Itλ.
For any λ ≤

√
2, the tent map fλ sends the interval [2/(λ + 1), 1] to [2 − λ, 2/(λ + 1)] and vice

versa. Hence f2λ is a tent map from [2/(λ+ 1), 1] of slope λ2, and any x = f2kλ (1) lies on the left
hand side of the critical point of f2λ if and only if x and fλ(x) are both to the right of 1/λ, while
f2kλ (1) lies on the left hand side of the critical point of f2λ if and only if x is to the right of 1/λ
and fλ(x) is to the right of 1/λ, and this finishes the proof for the case when Itλ2 is not periodic.
The case when Itλ2 is periodic follows from this argument together with Lemma 3.1. �
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Proposition 3.3. If w is a word with positive cumulative sign and w′ is the renormalization of w, then

Pw(z) =
z − 1

z + 1
Pw′(z

2).

Proof. Supposew andw′ are words satisfying D(w′) = w. It is easy to see that ifw = w1w2 . . . w2n

has positive cumulative sign, then w′ = w′1w
′
2 . . . w

′
n also has positive cumulative sign. So, the

proposition follows from the following more general statement: if w′ is any word, w is the
doubling of w′, then

(1) F (w, z)− 1 =
z − 1

z + 1

(
F (w′, z2)− 1

)
.

We will prove (1) using induction on |w′|. In the base case |w′| = 1, w′ = 1 or w′ = 0, and
the statement is true by calculation. Now assume the statement is true for all words w′ such
that |w′| ≤ n − 1. Let w′ and w be words with |w′| = n and D(w′) = w. Let w′0 be w′ with the
last letter removed, and let w0 be w with the last two letters removed. Then by the inductive
hypothesis,

F (w0, z)− 1 =
z − 1

z + 1

(
F (w′0, z

2)− 1
)
.

We divide the inductive step into two cases:
• Case 1: w′n = 0. This implies w = w0 · 11, so

F (w, z)− 1 = 2− z (2− z(F (w0, z)))− 1

= 2− z
(

2− z
(
z − 1

z + 1
(F (w′0, z

2)− 1) + 1

))
− 1

=
z − 1

z + 1

(
z2F (w′0, z

2)− 1
)

=
z − 1

z + 1

(
F (w′, z2)− 1

)
• Case 2: w′n = 1. This implies w = w0 · 10, so

F (w, z)− 1 = z (2− z(F (w0, z)))− 1

= z

(
2− z

(
z − 1

z + 1
(F (w′0, z

2)− 1) + 1

))
− 1

=
z − 1

z + 1

(
2− z2F (w′0, z

2)− 1
)

=
z − 1

z + 1

(
F (w′, z2)− 1

)
�

Proposition 3.4. Let w be an admissible word. Then w∞ renormalizable if only if

w∞ <E It√2 (= 10 · 1∞).

Proof. Firstly, it is easy to see that a sequence is renormalizable if and only if all its odd index
letters are 1, and a word is renormalizable if and only if it has even length and all its odd
indexed letters are 1. Because any admissible word starts with 10, an admissible word w is
renormalizable if and only if w∞ is admissible and renormalizable.

Now suppose w∞ is admissible and renormalizable. Suppose the second 0 in w∞ is at the
kth location. It suffices to show that Prefixk−1(w∞) has positive cumulative sign, which is
equivalent to showing that k is even, because the (k− 1)-prefix of w∞ and 10 · 1∞ are the same.
This is an immediate consequence of the admissibility of w∞.
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Now we prove the other direction. The sequence w∞ being admissible implies that the first
0 in w∞ is at the second location. If we can further prove that the distance between any two
consecutive 0s is even, then all 0s are at even locations, hence w∞ is admissible. Denote by ik
the location of the kth 0. Let km is the smallest number such that ikm − ikm−1

is odd. Then by
definition of <E ,

σikm−1
−1(w∞) >E 10 · 1∞.

�

Remark 3.5. By kth renormalization or kth doubling, we mean carrying out the renormalization
or doubling on a word or sequence k times. Proposition 3.3 above implies that if w′ is the kth

renormalization of w, then the roots of Pw not on the unit circle are the (2k)th roots of the roots
of Pw′ that are not on the unit circle.

Furthermore, because renormalization of sequences preserves <E (Lemma 3.1), we can ap-
ply part Proposition 3.4 above repeatedly to show that if the wk is the kth doubling of 10 · 1∞,
w is admissible and w∞ <E wk, then w has a kth renormalization.

4. ROOTS IN D OF REDUCIBLE PARRY POLYNOMIALS

The purpose of this section is to prove Theorem 4.5, an alternative characterization of sets
Ξλ ∩ D, for λ ∈ (1, 2], using the results in [BDLW19]. An upshot of Theorem 4.5 is that we do
not need to worry about extraneous roots in D from reducible Parry polynomials.

We will use the following four results from [BDLW19]:

Theorem 4.1. [BDLW19, Theorem 1 (“Persistence Theorem”), Theorem 2] If (z, λ) ∈ Υcp
2 , |z| ≤

1, then so is (z, y) for any y ∈ [λ, 2].

Proposition 4.2. [BDLW19, Lemma 5.3] Let w1 be dominant, w1 >E 10 · 1|w1|−2, w2 be admissible,
w∞1 >E w∞2 , and assume that there is some m such that

2m|w2| > |w1| > m|w2|.

Then there is some w′, some integer m′ ≥ m, such that (w1w
′wm

′

2 )∞ is admissible,

|w1|+ |w′| ≥ m′|w2|,
and the Parry polynomial Pw1w′wm′

2
(z) can be written as the product of (z− 1) and another polynomial

Q(z) such that Q(z2
k

) is irreducible for all integers k ≥ 0.

Proposition 4.3. [BDLW19, Lemma 5.5] If w2 is an admissible word and z ∈ D is a root of Pw2
, then

for any ε > 0 there exists N ∈ N such that for any word w1 and any integer n ≥ N , Pw1wn
2

has a root
within distance ε of z.

Proposition 4.4. [BDLW19, Lemma 5.7, Remark 5.8] If y ∈ [
√

2, 2], for any ε > 0, there exists a
dominant word w1 such that for any word w2, the leading root of Pw1w2

is within distance ε of y, and
w1 >E 10 · 1|w1|−2.

We now use the above results to establish the following characterization of the sets Ξλ ∩ D,
which will be the starting point of our proof of Theorem 1.

Theorem 4.5. Fix 1 < λ < 2. For each λ′ > λ, define Yλ′ to be the closure of the set of roots in D of all
Parry polynomials Pw such that w is admissible and w∞ ≤E Itλ′ , union with S1, i.e.

Yλ′ := S1 ∪ {z ∈ D : Pw(z) = 0 for some admissible word w such that w∞ ≤E Itλ′}.
Then

Ξλ ∩ D =
⋂
λ′>λ

Yλ′ .
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Remark 4.6. The condition “w∞ <E Itλ′ for every λ′ > λ” is different from “w∞ ≤ Itλ” because
there could exist a symbolic coding for the itinerary of 1 under the tent map fλ that is >E Itλ.

Proof. For any 1 < λ < 2, let
Ξ′λ =

⋂
λ′>λ

Yλ′ .

We will first prove Ξλ ⊆ Ξ′λ. For any λ′, define the set Zλ′ to be the closure of the set of
Galois conjugates of critically periodic growth rates that are at most λ′, union with S1. By the
Persistence Theorem, λ1 < λ2 implies Zλ1 ⊆ Zλ2 . So if any point x ∈

⋂
λ′>λ Zλ, then x ∈ Ξλ′

since Υcp
2 is closed; similarly, if x 6∈

⋂
λ′>λ Zλ, then x 6∈ Ξλ. Hence

Ξλ ∩ D =
⋂
λ′>λ

Zλ′ .

The conclusion will now follow from the statement that Zλ′ ⊆ Yλ′ for all λ′. If z is a Galois
conjugate of a critically periodic growth rate λ′′ that is at most λ′, then z is a root of the Parry
polynomial Pw such that w∞ = Itλ′′ , and Itλ′′ ≤E Itλ′ by Corollary 2.4. Thus, Zλ′ ⊆ Yλ′ for all
λ′.

We will now prove Ξ′λ ⊆ Ξλ. To do this, it suffices to show

Yλ′ ⊆
⋂

λ′′>λ′

Zλ′′ .

We first consider the case λ′ ≥
√

2. Suppose z is the root of some Pw, where w is admissible
and the leading root of Pw is no larger than λ′. (Yλ′ is the closure of all such z’s). For any
ε > 0, Proposition 4.4 guarantees the existence of a dominant word w1 such that for any w2,
Pw1w2 is in [λ′, λ′ + ε) and w1 >E 10 · 1|w1|−2. By monotonicity (Corollary 2.4), w∞1 >E w∞.
Without loss of generality, we may choose w1 so that its length, |w1|, is arbitrarily big (this is
because as we let ε → 0, we get arbitrarily many such dominant strings, and there are finitely
many strings of at most any given length). Thus we may assume that w1 and w satisfy the
assumptions of Proposition 4.2 with the m of Proposition 4.2 being arbitrarily large, and in
particular, m is ≥ the N of Proposition 4.3 using w for w2. Let w3 be the word constructed by
Proposition 4.2. Because w3 is admissible, has positive cumulative sign, and Pw3(z)/(z − 1) is
irreducible, w∞3 = Itλ3

for some λ3 by Proposition 2.3. We know λ3 ∈ [λ′, λ′+ ε] because w3 has
the prefix w1. Also, any root of Pw3

in D will be a Galois conjugate of λ3, and by construction
Pw3

has a root close to z. The containment now follows from letting ε→ 0.
Now we deal with the case 1 < λ′ <

√
2. Let k be the unique natural number such that

(λ′)2
k ∈ [

√
2, 2). Remark 3.5 implies that w has a kth renormalization w0, and z2

k

is a root of
Pw0

. Using w0 in place of w in the argument in the previous paragraph, we get a critically
periodic growth rate λ4 close to (λ′)2

k

, such that one of its Galois conjugates z2 is close to z2
k

.
The conclusion in Proposition 4.2 further implies that any (2k)th root of z2 must be a Galois
conjugate of the (2k)th root of λ4 as well, which implies that there is a Galois conjugate of λ2

−k

4

which is close to z, which finishes the proof of the proposition. �

The following corollary is not used to prove any further results in the present work.

Corollary 4.7. Let V denote the set of all real numbers λ ∈ (1, 2) such that
(1) the tent map fλ is critically periodic,
(2) there exists a word w such that Itλ = w∞,
(3) the Parry polynomial Pw(z) can be written as the product of an irreducible polynomial (in Z[z])

and some cyclotomic polynomials.
Then V is dense in [1, 2].
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Proof. The growth rates λ3, as well as the growth rates λ2
−k

3 , k ∈ N, constructed in the proof of
Theorem 4.5 all satisfy conditions (1)-(3). �

5. λ-SUITABILITY

In this section, we establish some basic properties of λ-suitability and prove the technical
lemmas about λ-suitability that we will need in Section 6.

For convenience, we reproduce the definition of λ-suitability here: For λ ∈ (1, 2), a sequence
w is called λ-suitable if for every λ′ ∈ (λ, 2], the following conditions hold:

(1) Reverse(Prefixn(w)) ≤E Prefixn(Itλ′) for all n ∈ N.
(2) If Reverse(Prefixn(w)) = Prefixn(Itλ′), then the cumulative sign s(Prefixn(w)) = −1.
(3) If Itλ′ = 1 · 0k · 1 . . . , k ∈ N, then w does not contain k + 1 consecutive 0s.

(That is, if Itλ′ starts with 1 followed by k 0s and then 1, writing w as w = w1w2 . . . ,
there does not exist n ∈ N such that wi = 0 for all n ≤ i ≤ n+ k.)

(4) If n ∈ N satisfies
√

2 ≤E (λ′)2
n

< 2, then w = D′n(w′) for some sequence w′, where D′

is the map that replaces 0 with 11 and 1 with 01. Furthermore, if

Itλ′2n = 1 · 0k · 1 . . . ,

then w′ does not contain k + 1 consecutive 0s.

The intuition behind the definition of λ-suitability is that we need a condition on sequences
w so that Lemma 5.7 works.

Remark 5.1. An immediate consequence of monotonicity (Corollary 2.4) is that if λ′ satisfies
conditions (1)-(4) of Definition 1.5 for a sequence w, then so does every λ′′ > λ′.

Remark 5.2. Every itinerary Itλ′ is admissible (by Theorem 2.2), so the admissibility condition
implies that if Itλ′ = 1 · 0k · 1 . . . , then Itλ does not contain k + 1 consecutive 0s.

Remark 5.3. Note that the map D′ defined in the definition of λ-suitability is related to the
doubling map D by

Reverse ◦ Prefix2n ◦D = D′ ◦ Reverse ◦ Prefixn(w)

for every sequence w and n ∈ N.

Lemma 5.4. The set of λ-suitable sequences is closed.

Proof. We will show that the set of all sequences that are not λ-suitable is open. To do this, it
suffices to show that given any sequence w which is not λ-suitable, we can find a prefix of w
such that every sequence that shares this prefix is not λ-suitable. It is clear that conditions (1)
and (2) are closed conditions. For condition (3), we choose the prefix to be one that contains
the first k + 1 consecutive 0s. Condition (4) is similar. �

The following lemma is immediate because the definition of λ-suitability is of the form “for
all λ′ > λ, P (w, λ′),” where P is a predicate.

Lemma 5.5. LetMλ denote the set of λ-suitable sequences. Then

Mλ =
⋂

λ′′∈(λ,2]

Mλ′′ .

�

Lemma 5.6. If w is an admissible word that satisfies w∞ ≤E Itλ for λ ∈ (1, 2), then (Reverse(w))∞

is λ-suitable.
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Proof. Observe that for any n ∈ N

(2) Reverse(Prefixn(Reverse(w)∞)) = Prefixn(σk(w∞))

for some k ∈ N, where n+ k is some multiple of |w|. Since w is admissible, Prefixn(σk(w∞) ≤E
Prefixn(w∞) for all k, n ∈ N. By Corollary 2.4, for any λ′ > λ,

(3) Itλ <E Itλ′ .

We thus have that for any n ∈ N,

Reverse(Prefixn(Reverse(w)∞)) = Prefixn(σk(w∞)) ≤E Prefixn(w∞)

≤E Prefixn(Itλ) ≤E Prefixn(Itλ′),

which is condition (1) of the definition of λ-suitability.
Now suppose that for some λ′ > λ,

Reverse(Prefixn(Reverse(w)∞) = Prefixn(Itλ′)

and Prefixn(Itλ′) has positive cumulative sign. Then from (2) we have

Prefixn(σk(w∞)) = Prefixn(Itλ′).

Admissibility of w and (3) together imply that

(4) σk(w∞) ≤E w∞ <E Itλ′ .

Because Prefixn(Itλ′) is the common prefix of σk(w∞) and Itλ′ , (4) implies it must also be a
prefix of w∞. Removing this common n-prefix with positive cumulative sign from both sides
of the inequality (by applying σn) yields

w∞ ≤E σn(w∞).

However, admissibility also implies that σn(w∞) ≤ w∞, so in fact

w∞ = σn(w∞).

Therefore

(5) w∞ = (Prefixn(Itλ′))∞.

Let j be the index of the first place w∞ differs from Itλ′ . Clearly, j > n. Pick m ∈ N such
that mn < j ≤ (m + 1)n. Then, after removing the common prefix of length mn and positive
cumulative sign from both w∞ and Itλ′ , we get from (5) and (3) that

σmn(w∞) = w∞ <E Itλ′ ,

and hence
Prefixn(Itλ′) = Prefixn(w∞) <E Prefixn(σmn(Itλ′)),

which contradicts with the fact that Itλ′ is admissible (by Theorem 2.2). Thus, condition (2) of
the definition of λ-suitability holds.

Now condition (3) of the definition of λ-suitability follows from the assumption that w∞ ≤E
Itλ.

For condition (4), suppose for some λ′ > λ,
√

2 ≤ (λ′)2
n

< 2. Then λ2
n

< 2, so by Lemma 3.4,
w = Dn(w′) for some w′. Hence,

(Reverse(w))∞ = (D′n(Reverse(w′))∞.

Because D preserves ≤E and sends itineraries to itineraries (Lemma 3.2), the number of con-
secutive 0s in (Reverse(w′))∞, which is the number of consecutive 0s in w′∞, can not be more
than the number of consecutive 0s in Itλ′2n .

�
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The key combinatorial result we need to prove Theorem 1 is the following:

Lemma 5.7. Fix λ ∈ [1, 2) and let w0 be a finite dominant word such that Itλ′ ≤E w∞0 for some
λ′ > λ. Let α be a word such that α

(1) ends with 1,
(2) is a prefix of some λ-suitable sequence,
(3) has positive cumulative sign, and
(4) |w0| > |α|.

Then the word w0 · Reverse(α) is admissible.

Proof. Let α′ = Reverse(α). It suffices to show that the admissibility criterion

σk((w0α
′)∞) ≤E (w0α

′)∞

holds for all 1 ≤ k < |α|+ |w0|.
Case 1: k < |w0|. This implies that the comparison between σk((w0α

′)∞) and (w0α
′)∞ is

equivalent to the comparison of a proper suffix of w0 concatenated with 1 with a prefix of w0

of the same length. Hence
σk((w0α

′)∞) ≤E (w0α
′)∞

because w0 is dominant.
Case 2: |w0| ≤ k < |α| + |w0|. Suppose the first place σk((w0α

′)∞) and (w0α
′)∞ differ is at

the jth position. It is evident that 1 ≤ j ≤ |α|+ |w0|. We divide this into two subcases:
• Case 2A: j ≤ |w0| + |α| − k. The fact that |w0| > |α| and k ≥ |w0| implies that j ≤
|w0|. Hence, the comparison between σk((w0α

′)∞) and (w0α
′)∞ is equivalent to the

comparison of a proper suffix of α′ with a prefix of w0. Hence, item (1) of Definition 1.5
gives us

σk ((w0α
′)∞) ≤E (w0α

′)∞.

• Case 2B: j > |w0| + |α| − k. The word β := Suffix|w0|+|α|−k(α′), which is a common
prefix of σk((w0α

′)∞) and (w0α
′)∞, is identical to a prefix of w0, which is ≥E than a

prefix of Itλ′ for some λ′ > λ. Hence, due to item (2) of Definition 1.5, β has negative
cumulative sign. Now, using the conclusion of Case 1, we have:

σ
|w0|+|α|−k
k (σk((w0α

′)∞)) = (w0α
′)∞ >E σ

|w0|+|α|−k
k ((w0α

′)∞)

Hence,
σk((w0α

′)∞) ≤E (w0α
′)∞

because β has negative cumulative sign.
�

Lemma 5.8. Let w and w′ be sequences, and letλ ∈ (1, 2) and k ∈ N satisfy
√

2 ≤ λ2
k

< 2. If w is
λ-suitable and w = D′

k
(w′), then w′ is λ2

k

-suitable.

Proof. By induction we only need to prove it for k = 1. Assume w = D′(w′) is λ-suitable, we
will now show that w′ satisfies (1)-(4) of Definition 1.5. By definition,

Reverse(D′(v)) = D(Reverse(v))

for any word v, so for any λ′ > λ.

Reverse(Prefix2n(D′(w′)) = Reverse(D′(Prefixn(w′)))

= D(Reverse(Prefixn(w′))) ≤ Prefix2n(Itλ′) = D(Prefixn(Itλ′2))

Hence (1) is true for w′ because of Lemma 3.1 and 3.2. Condition (2) of Definition 1.5 can be
verified similarly. It is easy to see that w satisfies (4) implies that w′ satisfies (4). Lastly, we
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will now show that w satisfies (4) will imply w′ satisfies (3): if λ2 ≥
√

2, this follows from the
statement of (4). If λ2 <

√
2, (4) implies that w′ = D′(w′′) for some w′′, which implies that w′

can never have more than one consecutive 0, hence it also satisfies (3). �

6. CHARACTERIZATION INSIDE THE UNIT CYLINDER

Lemma 6.1. LetK denote the space of compact subsets of R3 with the Hausdorff metric topology. Given
any compact subset K of K, the union of the elements of K is a compact subset of R3.

Proof. First, we claim there exists R > 0 such that k ⊂ BR(0) for all k ∈ K. If this was not the
case, then there exist k1 and k2 in K such that dHaus(k1, k2) is arbitrarily large, contradicting the
fact that K is compact. Thus the claim is true.

ConsiderK×BR(0). As a product of compact sets, it is compact. Consider the subsetC ⊆ K
such that C consists of all pairs (k, x) such that x ∈ k. We claim C is closed, and thus as a closed
subset of a compact set, C is compact. To see this, we will show that C is sequentially closed,
i.e. if (ki, xi) is a sequence in C converging to (k∞, x∞) ∈ K × BR(0), then (k∞, x∞) ∈ C. We
have that ki → k∞ and xi → x∞, so suppose x∞ 6∈ k∞. Since k∞ is a compact set, x 6∈ k∞
implies there exists ε > 0 such that Bε(x) is contained in the complement of k∞. This implies
that lim inf dHaus(ki, k∞) ≥ ε, contradicting the fact that ki → k∞ in the Hausdorff metric. So
we have a continuous map from C to R3 sending (k, x) to x. The image under this map is
compact. �

The following two Lemmas, which we state without proof, are immediate consequences of
Rouché’s theorem:

Lemma 6.2. Let A be the set of power series with bounded coefficients equipped with the product topol-
ogy. Let C be the set of compact subsets of C equipped with the Hausdorff topology. Then the map
ρ : A→ C defined by

ρ(f) = S1 ∪ {z ∈ D : f(z) = 0}
is continuous.

Lemma 6.3. Fix real numbersM > 0, 0 < r < 1, ε > 0. Suppose α is a power series whose coefficients
are all bounded in absolute value by M . Then there exists a real number N = N(α, r, ε,M) such that
for every power series β whose coefficients are all bounded in absolute value by M and whose first N
terms equal the first N terms of α, for each root z of α with |z| < r there exists a root z′ of β such that
|z − z′| < ε. �

Now we prove the first main theorem:

Proof of Theorem 1. For the reader’s convenience, we reproduce here the statement of Theorem
1: For any λ ∈ (1, 2],

Ξλ ∩ D = S1 ∪ {z ∈ D : G(w, z) = 1 for some λ-suitable sequence w} .

By Remark 1.9, the result holds for λ = 2. So fix λ ∈ (1, 2). For brevity, let

Zλ := {z ∈ D : G(w, z) = 1 for some λ-suitable sequence w}.
First, we show that S1 ∪ Zλ is compact. For each sequence w, the function from D to C given
by z 7→ G(w, ·) − 1 is a power series with bounded coefficients. Furthermore, the map from
the set of sequences w (with the product topology) to the set of power series (with the product
topology on coefficients) given by w 7→ G(w, ·)−1 is continuous. Therefore, Lemma 6.2 implies
that the map ρ from the set of sequences with the product topology to C, the set of compact
subsets of C with the Hausdorff topology, given by

ρ(w) = S1 ∪ {z ∈ D : G(w, z) = 1}
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is continuous. By Lemma 5.4, the set of all λ-suitable sequences is closed (in the product topol-
ogy on the set of sequences), and hence compact. Therefore, since ρ is continuous,

{ρ(w) : w is λ− suitable}

is a compact subset of C. Hence, Lemma 6.1 implies that⋃
w is λ-suitable

ρ(w)

is compact. But this set is precisely S1 ∪ Zλ, so we have shown S1 ∪ Zλ is compact for any
λ ∈ [1, 2].

Next, we show that
Ξλ ∩ D ⊆ S1 ∪ Zλ.

Theorem 4.5 shows that

(6) Ξλ ∩ D =
⋂
λ′>λ

Yλ′ ,

where Yλ′ is defined to be the closure of the set of roots in D of all Parry polynomials Pw such
that w is admissible and w∞ ≤E Itλ′ , union with S1. For each such w let wr be the sequence

wr := (Reverse(w))∞.

So fix λ′ > λ and consider any admissible word w such that w∞ ≤E Itλ′ . By Lemma 2.1,

Pw(z) = (1− z|w|)G(wr, z).

By Lemma 5.6, wr is λ′-suitable. Hence, all roots in D of Pw are in S1 ∪ Zλ′ . Then, since Zλ′ is
closed, we have that

(7) Yλ′ ⊆ S1 ∪ Zλ′ .

Now, combining (6) and (7) shows that for any point z ∈ Ξλ ∩D, for each n ∈ N, there exists
a (λ + 1

n )-suitable sequence vn such that G(vn, z) = 1. Let v∞ be an accumulation point of the
set {vn : n ∈ N}. By Lemma 5.5, the sequence v∞ is λ-suitable. The continuity of w 7→ G(w, ·)
implies that G(v∞, z) = 1. Hence Ξλ ∩ D ⊆ S1 ∪ Zλ.

Lastly, we show that S1 ∪ Zλ ⊆ Ξλ ∩ D. We know from [BDLW19] that S1 × [1, 2] ⊂ Υcp
2 .

Thus S1 ⊂ Ξλ, so it suffices to show that Zλ ⊂ Ξλ. Fix a point z ∈ Zλ and let w be a λ-suitable
sequence such that G(w, z) = 1. By condition (4) of Definition 1.5, there exists a sequence w′

such that w = D′
k
(w′), and by Lemma 5.8, w′ is λ2

k

-suitable, and λ2
k ≥

√
2. In particular, if

λ ≥
√

2, we can let k = 0 and w′ = w. As a consequence, there are infinitely many prefixes of
w′ that end with 1 and have positive cumulative sign.

For any m ∈ N such that Prefixm(w′) has positive cumulative sign and any word w′′ with
positive cumulative sign, it follows immediately from the definitions of a Parry polynomial
and of G that the first m terms of the power series G(w′, z) − 1 and Pw′′·Reverse(Prefixm(w′))(z)
agree. Therefore, for any fixed ε1 > 0, by Lemma 6.3 there exists N ∈ N such that PrefixN (w′)
ends with 1 and has positive cumulative sign, and for any word w′′ with positive cumulative
sign, there exists a point z′ ∈ Bε1(z2

k

) such that

(8) Pw′′·Reverse(PrefixN (w′))(z
′) = 0.

For any fixed λ′ satisfying 2 > λ′ > λ2
k

, pick a critically periodic growth rate λ′′ ∈ (λ2
k

, λ′)
and word w0 with positive cumulative sign such that Itλ′′ = w∞0 . Since λ′′ < λ′, for sufficiently
large n,

wn0 <E Prefixn|w0|(Itλ′).
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Hence, by Proposition 2.5, there exists n ∈ N and a word w′1 such that the word

w1 := wn0w
′
1

is dominant, |w1| > |w′|, and

(9) w1 <E Prefix|w1|(Itλ′).

By Lemma 5.7,
w1 · Reverse(PrefixN (w))′

is admissible. By (8),
Pw1·Reverse(PrefixN (w′))

has a root within distance ε1 of z2
k

. By (9),

(w1 · Reverse(PrefixN (w′)))∞ <E Itλ′ .

Hence, the kth doubling of w1 · Reverse(PrefixN (w′)), denoted as wd, satisfies

w∞d <E It
(λ′)1/2k

and Pwd
has leading root in [λ, (λ′)1/2

k

] and a root in Bε′1(z), where ε′1 is the diameter of the
preimage of Bε′(z2

k

) under the map z 7→ z2
k

.
Now, since ε1 > 0 and λ′ > λ were arbitrary, and since Υcp

2 is closed, we obtain that (z, λ) ∈
Υcp

2 , and hence z ∈ Ξλ. �

7. CHARACTERIZATION OUTSIDE THE UNIT CYLINDER

The goal of this section is to prove Theorem 2, a characterization of the part of the Master
Teapot that is outside the unit cylinder. This follows largely from arguments in [Tio18], but we
will include a proof here for the sake of completeness.

The following proposition is essentially a restatement of [Tio18, Proposition 3.3]:

Proposition 7.1. The map Φ : (1, 2)→ {compact subsets of D} given by

Φ(λ) = S1 ∪
{
z : H(λ, z−1) = 0

}
is continuous in the Hausdorff topology.

Proof. We only need to show that it is continuous at every point λ0 ∈ (1, 2). If Itλ0 is not
periodic, the forward orbit of 1 under fλ0 never hits 1/λ0, hence It : λ 7→ Itλ is continuous at
λ0. This is because for any cylinder set [a1, . . . , aj ], the set

{λ1 ∈ (1, 2] : Prefixj(Itλ1
) = a1 . . . aj}

is open. The continuity of Φ follows from the definition of H (Definition 1.2) and Lemma 6.3.
If Itλ0

is periodic, let w0 be the word of shortest length such that Itλ0
= w∞0 , and let w′0 be

the word with the same length as w0 such that Prefix|w0|−1(w0) = Prefix|w0|−1(w′0) but whose
last digit differs from that of w0. Then the proof of Lemma 12.2 in [MT88] implies

lim
λ→λ−0

Itλ = w∞0

and
lim
λ→λ+

0

Itλ = w′0
∞
.

However, a simple computation (which we leave to the reader) shows that H(w∞0 , z
−1) and

H(w′0
∞
, z−1) differ by cyclotomic factors, and hence have the same roots inside D. �
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Proof of Theorem 2. For convenience of notation, set

Rλ = {z : H(Itλ, z) = 0}
Let I be a small closed neighborhood of λ in (1, 2). To show Theorem 2, we only need to show⋃

λ∈I

(
(Ξλ\D) ∪ S1

)
=
⋃
λ∈I

(
(Rλ\D) ∪ S1

)
.

The fact that the right hand side is compact is due to Proposition 7.1. Furthermore, due to
Remark 6.3, a dense subset of the left hand side is dense in the right hand side, so they are
identical. �

8. ALGORITHMS TO TEST MEMBERSHIP OF Ξλ

In this section we will describe an algorithm to check if a point z0 ∈ C is in the complement
of a slice Ξλ, for λ ∈ (1, 2).

Firstly, if λ <
√

2, Theorems 1 and 2 implies that z ∈ Ξλ if and only if z2 ∈ Ξλ2 , so we can
always reduce the question to the case λ ∈ [

√
2, 2).

8.1. Testing z0 with |z0| > 1. When |z0| > 1, Theorem 2 gives us a straightforward way to test
if z0 6∈ Ξλ: calculating the first few terms of the power series H(Itλ, z−1), then checking if z−10

is a root of this power series. More precisely, we have the following algorithm:

Algorithm 1: Algorithm to verify that |z0| > 1 is not in Ξλ

for n > 1 do
Calculate Prefixn+1(Itλ);
Find the polynomial Pn which consists of the first n-terms of power series
H(Itλ, z−1);

If
∣∣Pn(z−10 )

∣∣ > 2|z0|−n

1−|z0| , then z0 6∈ Ξλ;

Remark 8.1. If instead of checking if z0 6∈ Ξλ, we want to see if an ε-neighborhood of z0 is
contained in the complement of Ξλ, we can change the last line of Algorithm 1 to make use of
Rouché’s theorem.

8.2. Testing z0 with |z0| < 1. If |z0| < 1, a way to certify that z0 6∈ Ξλ is by first finding the
set of all words of length N that satisfy Conditions (1)-(3) of Definition 1.5 (Condition (4) is
trivial because λ ≥

√
2), denoted asMN,λ, for each word w = (w1 . . . wN ) ∈ MN,λ, evaluating

f−1wN ,z0 ◦ f
−1
wN−1,z0 . . . f

−1
w1,z0(1) and checking that they are all sufficiently large. More precisely,

the algorithm can be described as follows:

Algorithm 2: Algorithm to verify that |z0| < 1 is not in Ξλ, where λ ∈ [
√

2, 2).

for N > 1 do
LetMN,λ be the set of all words of length N that satisfies Conditions (1)-(3) in
Definition 1.5;

Let flag ← False;
for w ← (w1 . . . wN ) ∈MN,λ do

if f−1wN ,z0 ◦ f
−1
wN−1,z0 . . . f

−1
w1,z0(1) ≤ 2

1−|z0| then
flag ← True;
Break;

If flag = False, then z0 6∈ Ξλ;
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The reason that Algorithm 2 is true is due to the following proposition:

Proposition 8.2. Let λ ∈ [
√

2, 2), and letMN,λ be defined as in Algorithm 2. Suppose |z| < 1, then
z 6∈ Ξλ if and only if there exists N ∈ N such that for every word w = w1 . . . wN ∈MN ,

f−1wN ,z ◦ . . . ◦ f
−1
w1,z(1) ≥ 2

1− |z|
+ ε.

Proof. First, we assume that there is some N such that for every word w = w1 . . . wN ∈MN ,

f−1wN ,z ◦ . . . ◦ f
−1
w1,z(1) ≥ 2

1− |z|
+ ε

and prove that z 6∈ Ξλ. Suppose z ∈ Ξλ. Then by Theorem 1, there must be some λ-suitable
sequence v = v1v2 . . . such that

1 = G(v, z) = lim
n→∞

fv1,z ◦ . . . ◦ fvn,z(1)

In other words, for any δ > 0, there is some n > N such that

|fv1,z ◦ . . . ◦ fvn,z(1)− 1| < δ

By the definition ofMN , the word v1 . . . vN ∈MN . Let u = fv1,z◦. . .◦fvn,z(1). Then |u−1| < δ.
Because f−1vN ,z ◦ . . . ◦ f

−1
v1,z is continuous, we can pick δ small enough such that

f−1vN ,z ◦ . . . ◦ f
−1
v1,z(u) >

2

1− |z|
.

However,
f−1vN ,z ◦ . . . ◦ f

−1
v1,z(u) = fvN+1,z ◦ . . . ◦ fvn,z(1)

By calculation, it is easy to verify that 1 is in the disc

D 2
1−|z|

=

{
z ∈ C : |z| ≤ 2

1− |z|

}
,

and both f0,z and f1,z send D 2
1−|z|

to itself. Hence∣∣fvN+1,z ◦ . . . ◦ fvn,z(1)
∣∣ ≤ 2

1− |z|
,

a contradiction.
Now, for the other direction, we assume that for any N ∈ N there is some word w =

w1 . . . wN ∈MN such that

f−1wN ,z ◦ . . . ◦ f
−1
w1,z(1) ≤ 2

1− |z|
and prove that z 6∈ Ξλ. Let CN be the set of sequences such that an N -prefix of it is inMN , and
this N prefix is of the form w1 . . . wN such that

f−1wN ,z ◦ f
−1
wN−1,z . . . f

−1
w1,z(1) ≤ 2

1− |z|
.

The fact that f0,z and f1,z both send D 2
1−|z|

to itself implies that CN+1 ⊂ CN , and all these sets
are non empty and compact under the product topology, hence their intersection is non-empty.
Let w ∈

⋂
N CN , then w is λ-suitable and it is easy to see that G(w, z) = 1. �

Furthermore, we have an effective version of the Proposition 8.2 above:

Proposition 8.3. Let λ, z, N and ε as in Proposition 8.2 above, 1
2 < |z| < 1. Then for any y ∈ C, if

|y − z| < min

{
1− |z|

2
,

(1− |z|)2ε
16

, |z| − 1

2
,

ε

N · 2N+1

}
,

then y 6∈ Ξλ.



A CHARACTERIZATION OF THURSTON’S MASTER TEAPOT 23

Remark 8.4. The assumption |z| > 1
2 is a reasonable one because it is well known (cf. [Tio18])

that if |z| < 1
2 then z 6∈ Ξλ for any λ ∈ (1, 2).

Proof. It is easy to see that as long as |y| < 1,∣∣∣∣ 2

1− |z|
− 2

1− |y|

∣∣∣∣ < ε/2,

and for any w = w1 . . . wN ∈MN ,∣∣∣f−1wN ,z ◦ f
−1
wN−1,z . . . f

−1
w1,z(1)− f−1wN ,y ◦ f

−1
wN−1,y . . . f

−1
w1,y(1)

∣∣∣ < ε/2

then y also satisfy the assumption in Proposition 8.2. The first condition, |y| < 1, holds because
|y − z| < 1−|z|

2 , which implies |y| < 1+|z|
2 < 1. The second condition,∣∣∣∣ 2

1− |z|
− 2

1− |y|

∣∣∣∣ < ε/2,

holds because |y| < 1+|z|
2 and |y − z| < (1−|z|)2ε

16 . The third condition,∣∣∣f−1wN ,z ◦ f
−1
wN−1,z . . . f

−1
w1,z(1)− f−1wN ,y ◦ f

−1
wN−1,y . . . f

−1
w1,y(1)

∣∣∣ < ε/2,

holds because of the following argument: As a polynomial of 1
z ,

f−1wN ,z ◦ f
−1
wN−1,z . . . f

−1
w1,z(1)

has degreeN and coefficients bounded between−2 and 2, hence has its derivative bounded by
N2N−1 · 2 = N · 2N on the annulus {y ∈ C : 1 ≤ |y| ≤ 2}. Because |y − z| < |z| − 1

2 , y is inside
this annulus, so this third condition follows from the assumption that |y− z| < ε

N ·2N+1 and the
mean value theorem. �

9. ASYMMETRY OF Ξλ

The following proposition is likely well-known to experts; we include the proof for com-
pleteness.

Proposition 9.1. Ωcp2 ∩ D is invariant under reflection across the real axis and across the imaginary
axis.

Proof. The set Ωcp2 ∩D is invariant under reflection across the real axis because Galois conjugates
come in complex conjugate pairs. Tiozzo [Tio18] showed that Ωcp2 ∩ D\S1 is the set of all the
roots in D of all power series with all coefficients in {±1}. So if z ∈ D is a root of a power series
S with coefficients in {±1}, then −z is a root of the power series formed from S by flipping the
sign of the coefficients on all terms of odd degree. Therefore the complex conjugate, −z, is in
Ωcp2 . �

However, our Algorithm 2 in the previous section can be used to show that Ξλ ∩D does not
necessarily have such symmetry, which proves Theorem 3:

Proof of Theorem 3. We only need to show that there is some z ∈ Ξ1.82 ∩ D such that −z 6∈
Ξ1.82 ∩ D. Consider the tent map with growth rate being the leading root of

−1 + z2 − z4 + z6 − 2z7 + 3z8 − 4z9 + 3z10 − 2z11 + z12 − 2z13 + z14,

which is approximately 1.8149185987640513 and is smaller than 1.82, hence any Galois con-
jugate of this leading root must be in Ξ1.82. Let z be the Galois conjugate near the point
−0.5840341196392905 + 0.4820600149798202i. Applying Algorithm 2 to −z for N = 20 shows
that −z 6∈ Ξ1.82. �
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