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Abstract

As one of the most important research topics in the unsuper-
vised learning field, Multi-View Clustering (MVC) has been
widely studied in the past decade and numerous MVC meth-
ods have been developed. Among these methods, the recently
emerged graph neural networks (GNN5s) shine a light on mod-
eling both topological structure and node attributes in the
form of graphs, to guide unified embedding learning and clus-
tering. However, existing GNN-based MVC methods gener-
ally do not give sufficient consideration to the use of self-
supervised information during the training process, which
prevents them from achieving better results. To this end, in
this paper we propose Self-Supervised Graph Attention Net-
works for Deep Weighted Multi-View Clustering (SGDMC),
which exploits the self-supervised information to enhance
the effectiveness of the graph-based deep MVC model from
two aspects. Firstly, a novel attention allocating approach
that considers both the similarity of node attributes and the
self-supervised information is developed to comprehensively
evaluate the relevance among different nodes. Secondly, to al-
leviate the negative impact caused by noisy samples and the
discrepancy of cluster structures, we further design a sample-
weighting strategy based on the attention graphs as well as the
discrepancy between the global pseudo-labels and the local
cluster assignment of each single view. Experimental results
on multiple real-world datasets demonstrate the effectiveness
of our method over existing approaches.

Introduction

Multi-view clustering aims to promote clustering perfor-
mance by utilizing the complementary knowledge from mul-
tiple views, which has been widely studied in the past
decade. Among numerous MVC methods (Yang and Wang
2018), the deep embedded multi-view clustering models (Li
et al. 2019; Xu et al. 2022a; Zhou and Shen 2020) per-
form superior clustering results owing to the representation
learning capability of deep networks and become increas-
ingly popular in these years. However, the effectiveness of
these methods is limited as they cannot exploit the topolog-
ical information of samples. To address this issue, a series
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of studies that introduce the Graph Neural Networks (Wu
et al. 2021) (GNN) to the deep embedded MVC framework
(Fan et al. 2020; Cheng et al. 2020) are proposed recently.
With the GNN structures, these models aggregate the latent
features of samples from their neighbors according to the
topological structures of nodes. In this way, the GNN-based
MVC models explore the clusters based on both attributes
and adjacent relationship of samples, thus obtaining much
better clustering results.

Although great progresses have been achieved, existing
GNN-based MVC methods often give insufficient consid-
eration to the usage of the self-supervised information dur-
ing the training, hindering their clustering performance. To
this end, we introduce Self-Supervised Graph Attention Net-
works for Deep Weighted Multi-View Clustering (SGDMC),
which improves GNN-based MVC models by utilizing self-
supervised information in the following two ways.

Firstly, to comprehensively evaluate the relevance of sam-
ples and improve the aggregating capability of the graph
attention layer, a novel attention allocating approach that
considers the similarity of both local node attributes and
global pseudo-labels is developed for the learned adjacent
graph. Specifically, in each epoch, SGDMC first employs
ENN graph algorithm (Fix and Hodges 1989) to construct
the adjacent graph on the latent embeddings of nodes in each
view. After that, the attention coefficient of each edge in
the adjacent graph is determined by the Gaussian similarity
of their features and the cosine similarity of their pseudo-
labels. In this way, the proposed SGDMC not only improve
the representation learning capability of model but also has
a much wider application scenario as it does not require ex-
plicit graphs as input like most GNN-based MVC models
(Fan et al. 2020; Cheng et al. 2020; Xia et al. 2022).

Secondly, based on attention graphs as well as the dis-
crepancy between the global pseudo-label and local cluster
assignment, a novel sample-weighting strategy is also pro-
posed in this paper. Since existing GNN-based MVC mod-
els generally treat all the samples equally, their clustering
performance is extremely sensitive to the existence of the
noisy samples and are easily stuck into the suboptimal so-
lutions. Meanwhile, during the self-supervised training pro-



cess, these models always force all the views to have the con-
sistent latent features or cluster distributions as the global
pseudo-labels. However, according to the complementary
principle, a single view generally cannot reflect the complete
cluster structure, and thus samples belonging to different
clusters may be very close to each other in a specific view.
Therefore, forcing the samples’ cluster assignment aligned
across all the views is not conducive to model training and
may even result in the loss of view-specific information.

To tackle the above problems, the proposed sample-
weighting strategy evaluates the importance of samples in
each view based on the attention graph as well as the
discrepancy between their local cluster assignments and
pseudo-labels. In the attention graph, the received attention
of each node indicates its reference value for other nodes.
Intuitively, the important nodes generally receive more at-
tention, while the nodes ignored by others are more likely
to be the noisy samples. Thus the samples that receive more
attention are assigned with higher weights in our model and
vice versa. In addition, to alleviate the discrepancy issue,
the proposed SGDMC moderately decreases the weights of
samples whose local clusters assignments are dissimilar to
their pseudo-labels in each view.

With the novel sample-weighting strategy, samples with
higher reliability will play more important roles during the
training, thus the negative impact from noisy samples and
the discrepancy issue is significantly alleviated. Moreover,
the obtained sample weight information will be also used in
the attention allocation process in the following iterations, so
that the nodes will pay more attention to the more important
and reliable neighbors during the training and the clustering
performance will be further enhanced.

In summary, the contributions of this paper include:

* A novel attention allocating approach that considers both
node attributes and the self-supervised information is de-
veloped to comprehensively evaluate the relevance of
samples and enhance the aggregating capability of the
graph attention layer.

* A novel sample-weighting strategy based on atten-
tion graphs as well as the discrepancy between self-
supervised information and local embedding distribu-
tions is proposed to alleviate the negative impact from
noisy samples and the discrepancy between the global
pseudo-label and the local cluster assignment.

* Experimental results on multiple real-world datasets
demonstrate the state-of-the-art clustering effectiveness
of our method.

Related Work
Multi-View Clustering

By utilizing the complementary information from multiple
views, multi-view clustering achieves much better cluster-
ing results than the conventional single-view models (Mac-
Queen 1967; Ng, Jordan, and Weiss 2001; Ester et al. 1996)
and become increasingly popular in the past decade.

In Co-train (Kumar and Daumé 2011) and Co-reg (Ku-
mar, Rai, and Daumé 2011), to obtain a consistent cluster
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assignment, the authors enforce the view-specific eigenvec-
tors in different views to be similar. In (Zhang et al. 2019), a
joint framework that simultaneously learns the collaborative
binary codes for data and binary cluster structures is pro-
posed to decrease the time and storage cost of MVC meth-
ods. SAMVC (Ren et al. 2020) applies the {5 ; norm and
auto-weighting strategy to alleviate the impact caused by
noisy samples and corrupted views. To enhance the effec-
tiveness and robustness of MVC model, a novel dual self-
paced learning mechanism for both instances and features
learning is designed (Huang et al. 2021).

Although considerable progress has been made, the effec-
tiveness of the conventional MVC algorithms are still lim-
ited as they are shallow models. To this end, a series of
MVC methods that employ deep neural networks to pro-
mote the clustering performance has been proposed in the
past few years. In EAMC (Zhou and Shen 2020), a novel
end-to-end deep MVC model is developed to perform the
modality-specific feature learning, feature fusion and clus-
ter assignment in a joint manner. To extract the disentangled
features and improve the interpretability of the model, vari-
ation auto-encoder (Kingma and Welling 2014) is adopted
by (Yin, Huang, and Gao 2020) and (Xu et al. 2021b). A
recent work (Xu et al. 2022b) propose an effective multi-
view discriminative feature learning framework to alleviate
the impact from the views with unclear clustering structures.

With the representation learning capability of deep net-
works, the deep embedded MVC methods yield consider-
able clustering results, yet the inability to use topological
information impedes them from achieving better clustering
performance, until the emergence of graph neural networks.

Graph Neural Networks

Unlike the conventional deep models that can merely pro-
cess Euclidean data, by aggregating the information from the
node neighbors, Graph Neural Networks (GNN) success-
fully handle both topological information and attributes of
samples, thus attracting increasing attention in these years.
For instance, Graph Convolutional Networks (GCN) (Kipf
and Welling 2017) extends the idea of convolution to the
representation aggregating while learning the latent embed-
dings based on node attributes and graph structures. To de-
crease the training cost of graph convolutions, an induc-
tive aggregating approach which enables GCN to be trained
on the mini-batches is developed in GraphSAGE (Hamil-
ton, Ying, and Leskovec 2017). With the latent self-attention
layer, the Graph Attention Networks (GAT) (Velickovi¢
et al. 2018) enables the nodes to assign different weights to
their neighbors and thus enhance the aggregation capability.

Up to now, GNN has been widely applied in many ma-
chine learning fields like recommendation systems (Ying
et al. 2018), image denoising (Chen et al. 2020), natural lan-
guage processing (Gao, Chen, and Ji 2019) and information
retrieval (Yu et al. 2018) etc. Recently, there are also some
studies that employ the GNN structures to promote the ef-
fectiveness of deep embedded MVC models. O2MGC (Fan
et al. 2020) makes the first attempt to apply the GNN tech-
nique in multi-view clustering. Specifically, this model re-
constructs all predefined graphs based on the latent embed-
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Figure 1: The framework of SGDMC. SGDMC is composed of four kinds of modules: 1) feature learning encoder projects the
original data into the low-dimensional latent embeddings; 2) self-supervised graph attention layer aggregates the node features
based on both attributes and self-supervised information; 3) clustering layer concatenates the latent representations from all the
views and generates the pseudo-labels for the self-supervised training; 4) sample-weighting module assigns different weights
to the nodes based on the attention graphs and the discrepancy between their local cluster assignments and pseudo-labels.

ding of samples. In MAGCN (Cheng et al. 2020), the at-
tention mechanism is employed to reduce the noise and re-
dundancy of the multi-view graph data. Another work (Xia
et al. 2022) incorporates the graph convolutional network
with the deep subspace clustering model, in which the self-
supervised information is applied to assist both latent repre-
sentation learning and coefficient representation learning.

By taking advantage of the GNN structures, these meth-
ods achieve state-of-the-art clustering performance. How-
ever, since they require explicit graph data as input, their
application is extremely limited. Meanwhile, the value of
the self-supervised information during the training process
is also overlooked in these studies. To this end, the proposed
SGDMC not only learns the graph from the sample attributes
but also exploits the self-supervised information in the atten-
tion allocating and the instance learning process.

Methodology
Problem Definition

Given a dataset X = {X"}"" | with n samples in m views,
where XV = {a¥;2%;...;2%} € R™?", d¥ denotes the
dimension of the feature vector in the v-th view. Our target
is to partition n instances into k clusters based on the com-
plementary information of different views. Specifically, we
aim to improve clustering results by making full use of self-
supervised information during training.
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Network Architecture

As Figure 1 shows, the network architecture of SGDMC is
composed of four different types of modules, i.e., feature
learning encoder, self-supervised graph attention layer, clus-
tering layer, and sample-weighting module. The details and
functions of each module are introduced as follows.

Feature Learning Encoder Like most existing deep em-
bedded MVC models, the auto-encoder structure is applied
in our method to learn the low-dimensional latent features of
the samples in each view. Let fj, and g denote the encoder
and decoder, where 6" and ¢" are learnable parameters, then
the latent features of i-th sample in the v-th view is:

zi = [ (x7), (D
After the encoding process, the decoder gz, is applied to
reconstruct the original data by decoding z;':

2

& =940 (2)),

where £7 represents the reconstructed data.
Then, the feature learning encoder in each view is trained
by optimizing the reconstruction loss [? () for each node:

() = |l = g5 (f3 (x))[5. 3)

Self-Supervised Graph Attention Layer To enhance la-
tent representation of samples with their neighbors and the
self-supervised information, a graph attention layer based on



the novel attention allocating mechanism is applied to ag-
gregate the latent features learned by the auto-encoders. Let
70 ={aY; 28, 20} € R™*d, denotes the latent features
learned by the auto-encoder of the v-th view. As our method
is designed for the data that do not have explicit graph struc-
tures, we first construct the adjacent graph GV via the kNN
graph algorithm for each view. Concretely, the edge G (3, j)
exists only when z? is one of k-nearest neighbors of 2} or
i = j. After obtaining the adjacent graphs, our method as-
signs different weights to these edges based on a novel atten-
tion allocating approach. Specifically, in a certain iteration,
the weight e; assigned to the edge G (4, j) is computed by:

<piapj ) (4)

[l 1]

where «y is the control parameter of the Gaussian kernel,
and wy, p;, p; respectively represent the reliability of the j-
th sample, the self-supervised pseudo-labels of the ¢-th and
j-th samples, all of these variables are generated in the ear-
lier iteration and the details of them will be illustrated in the
following two sections.

After the normalization via softmax function, the element
within the attention matrix of the v-th view A" has:

v v
eufwj*

i (eap(—yll= — 2I") +

exp(ey;) . .
~ ey JEN;
aj; = ,-g\“/;; exp(e};) 5
0 J¢ENT,

where N denotes the set of index that G (i, j) exists.

From Eq. (4), the attention assigned to G (%, j) is mainly
determined by the Gaussian similarity of latent features
and the cosine similarity of pseudo-labels between the end
points. Therefore, the relevance of different nodes is eval-
uated based on information from both local attributes and
global cluster assignment, so that the aggregation capability
of the self-attention layer is significantly enhanced. In ad-
dition, by considering the sample weights of the referenced
nodes, the proposed attention allocation approach further re-
duces the influence of the less reliable samples.

After obtaining the attention matrix, a weighted two-layer
plain residual network is applied to refine the latent features:

Z%mh”
Z ap =1,
h=0

where o [af, ¥, al] are learnable layer weights.
Through the residual network, each node aggregates the in-
formation of samples in multi-level receptive fields, which
brings better generalization and effectiveness to our model.

(6)

Clustering Layer At the top of the self-supervised graph
attention layer, a clustering layer is constructed to ex-
plore the cluster structures of each view. Let ZV
{3v;29;...;2%} € R™*% be the refined latent features in
the v-th view. Following most existing deep embedded clus-
tering models, based on the Student’s ¢-distribution (Maaten
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and Hinton 2008), the probability of the i-th example be-
longing to the j-th cluster in the v-th view is:

v v 2,1
(1+ 1127 — w57

sv v)12y "1
2 (12 = u3ll)

J

(7

4ij = Cpo

where ©” denotes the learnable cluster centroids.

Let Q° = {¢¥;q5;...;¢°} € R™ ¥ denote the cluster
assignments in the v-th view. In this module, we adopt the
self-training strategy proposed in (Xu et al. 2022b), which
uses self-supervised information to train the whole model
by optimizing the discrepancy between the local cluster as-
signment )V and the global pseudo-label P.

Specifically, to obtain P, the refined embeddings in all the
views are firstly concatenated as a unified representation Z:

Z=[Z"7%,...,2" € R Xu=1 (8)

Then, to alleviate the noisy issue, each sample is weighted
based on the attention 7); it receives from all the view:

-3

v=1 k#i

9

In Eq. (9), the value of 7; stands for the sum of attention paid
to the ¢-th sample by other samples in all views. Intuitively,
samples that receive more attention tend to be more impor-
tant while the ones generally ignored by others maybe the
noises. Therefore the global weight w; of each sample is:

(10)

where ) is set to the median value of ) = 11,72, ..., M,] to
ensure at least half of the samples are treated normally.

After that, the weighted k-means is applied to generate
the global cluster centroids c;:

n k
. - 2
min E E wi||Z — ¢]]”.
C1,C2,4...,Cf

i=1 j=1

w; = man(n; /A, 1),

(11
Based on Student’s ¢-distribution, the soft assignment s;;
of each node and each cluster centroid is:
- 2.1
(1 + 12 — o)
= - =
> L+ 1z —gl)

Finally, by sharpening the soft assignment, the global
pseudo-label P has:

(12)

ICTh VY
G EN)
where p;; denotes the probability that the -th example be-
longs to the j-th cluster.

After obtaining P, we define the Kullback-Leibler diver-
gence between the pseudo-label p; and g} as the clustering
loss {¥(7) for each sample, which will be optimized during
the self-supervised training process:

Zp”log

13)

12(1) = Drr(pillgi) (14)



Sample-Weighting Module To alleviate the impact from
noisy samples and the discrepancy between the local and
global cluster assignments, we further propose a novel
sample-weighting mechanism based on the attention graphs
and self-supervised information. Specifically, after obtaining
the pseudo-labels in every T iterations, our method updates
the sample weights in different views by:

. < piqt >
w; = min(nd /A", 1)emp(7pt qZU — 1Y), (15)
[pallllgg |l
where 7V = maxjexp(#ﬁj]a)

Similar to the computation ‘of the global weights, in Eq.
(15), ; represents the attention that the ¢-th sample receives
in the v-th view and \" is the median value of ”. Addition-
ally, as we have obtained global cluster assignment P and lo-
cal cluster assignment ), we can also evaluate the samples
from the perspective of assignment consistency. With the
complementary principle in multi-view clustering, the data
in a single view generally cannot reflect the cluster struc-
tures completely, samples in different clusters maybe very
close to each other in a certain view. Therefore, enforcing
the consistent cluster assignment across all the views is not
conducive to model training and may even lead to the loss
of view-specific information in the latent features.

To address this issue, in Eq. (15), we moderately decrease
the weights of samples whose local clusters assignments are
dissimilar to their pseudo-labels in each view. Besides, as
Eq. (4) shows, the sample-weights are also utilized to com-
pute the edge weights in the self-supervised graph attention
layer. In this way, the nodes aggregate the information from
more important and convincing neighbors, thus providing
better robustness and effectiveness to the model.

Incorporating the sample weights Eq. (15), reconstruction
loss Eq. (3) and clustering loss Eq. (14) into a unified frame-
work, the objective function of the SGDMC is:

L ZL’U XU Xv WU)+LU(PU QU W’U)

Il + Zpulog
(16)

Optimization

The optimization of SGDMC is composed by two proce-
dures, i.e., initialization and finetuning. In the initialization
stage, for each view, we firstly pretrain auto-encoders fg.,
and f7. by optimizing the reconstruction loss in Eq. (3). Set-
ting all the w7 to 1 and not considering the pseudo-labels,
the attention matrlx A" and the refined representation Z! are
computed by Eq. (5) and Eq. (6). Based on the uniﬁed rep-
resentation Z, the initial pseudo-label P is obtained by Eq.
(13) and the global cluster centroids are decomposed to ini-
tialize ¢} for each view. As the last step of the initialization,
the initial sample weights w; are generated by Eq. (15).

Algorithm 1: The SGDMC model.

Input: Dataset X, v =1,2,...,
Align rate threshold 6.
Output: Cluster assignments Y = {y1,y2, ... ,yn}
1: Pretrain the auto-encoder separately in each view by op-
timizing Eq. (3).
2: Initialize the pseudo-labels by Eq. (13).
Initialize initialize ¢j,. by the decomposing the global
cluster centroids.
Initialize the sample weights w; by Eq. (15).
while Not reach the maximum iteration 7},,,, do
repeat
Finetune all parameters of the entire network by
optimizing Eq. (16).
until The iteration time is divisible by 7.
9:  Update pseudo-labels P and the sample weights w;
by Eq. (13) and Eq. (15).
10:  Compute the aligned rate (AR).
11:  if AR > 6 then
12: Stop training.
13:  endif
14: end while
15: Compute the final pseudo-labels P by Eq. (13).
16: Compute y; for each sample by Eq. (17).

m; Cluster number £k;

w

AN A

*®

Then, during the finetuning stage, the whole network of
SGDMC is trained by optimizing the objective function Eq.
(16). At the end of every 7' iterations during the finetuning
stage, the sample weights w; and pseudo-labels P are up-
dated by Eq. (15) and Eq. (13) respectively.

Besides, following (Xu et al. 2022b), our method termi-
nates when the aligned rate is over a predefined threshold or
exceeds the maximum iteration number 7,,,,. Specifically,
the i-th example is aligned when y} = y? = --- = y
(y; = argmin;(g;;)), and the aligned rate is rate of aligned
examples in all examples. When the whole training process
is completed, we compute the pseudo-label P once again
and the final clustering assignment y; for the i-th sample is:

y; = arg max(pi;). (17)
J
The workflow of SGDMC is summarized in Algorithm 1.

Experiments
Experimental Setup

Datasets Three widely used and publicly available multi-
view datasets are implemented in our study:

BDGP (Cai et al. 2012) consists of 2500 samples of 5
different kinds of drosophila embryos. Each sample is de-
scribed by 1750 visual features and 79 textual features.

Handwritten Numerals' sources from UCI machine
learning repository, which contains 2000 handwritten nu-
meral images over 10 classes (0-9). Each instance has six
visual views, including 216 profile correlations, 76 Fourier

'https://archive.ics.uci.edu/ml/datasets.php



Dataset BDGP

Handwritten Numerals

Reuters

Methods ACC(%) | NMI(%) | ARI(%)

ACC(%)

NMI(%) | ARI(%) | ACC(%) | NMI(%) | ARI(%)

KM (1967)
SC (2001)
IDEC (2017)

57.68(2.93)
59.98(8.17)
91.28(7.55)

47.35(2.43)
50.98(5.57)
85.64(6.95)

19.38(3.90)
26.20(5.14)
81.98(8.82)

75.45(5.00)
77.69(0.08)
84.13(8.65)

78.58(4.14)
86.91(0.15)
84.61(3.97)

66.72(4.32)
75.26(0.17)
78.37(8.03)

29.12(6.33)
17.89(0.11)
45.98(2.78)

13.53(8.87)
2.71(0.24)
25.17(2.71)

6.80(6.33)
0.05(0.01)
18.02(2.22)

MVKKM (2012)
MLAN (2017)
AMVCD (2020)
GMC (2020)
SAMVC (2020)
DEMVC (2021)
SDMVC (2022)
SGDMC (ours)

42.02(3.02)
47.32(0.00)
56.87(5.41)
59.12(0.00)
51.31(7.48)
92.78(1.55)
97.89(0.52)
98.78(0.15)

27.33(1.78)
31.30(0.00)
43.58(5.72)
62.61(0.00)
45.15(6.49)
83.31(3.35)
93.41(1.24)
96.07(0.41)

12.69(1.53)
24.29(0.00)
22.71(4.29)
43.13(0.00)
19.60(5.96)
82.64(3.89)
94.85(1.20)
96.99(0.36)

67.21(3.09)
97.35(0.00)
79.66(9.32)
88.20(0.00)
76.37(7.36)
67.69(6.15)
97.18(0.51)
98.24(0.17)

67.70(0.28)
94.00(0.00)
84.90(3.58)
90.73(0.00)
84.41(2.50)
70.61(2.99)
94.44(0.52)
95.86(0.39)

55.76(0.79)
94.17(0.00)
75.99(8.69)
85.40(0.00)
73.87(6.25)
58.86(4.92)
93.93(0.97)
96.09(0.37)

24.81(5.82)
21.50(0.00)
27.38(2.73)
19.75(0.00)
18.83(1.92)
46.71(0.85)
47.07(0.79)
60.08(1.11)

11.67(6.79)
15.04(0.00)
10.51(2.58)
12.95(0.00)
4.58(3.40)
25.31(1.43)
27.12(1.20)
36.16(0.99)

3.76(3.57)
1.49(0.00)
4.29(1.65)
1.29(0.00)
0.32(0.62)
20.41(1.06)
21.22(0.99)
30.11(1.09)

Table 1: Clustering results of compared methods on three multi-view datasets, the best result in each column is highlighted in

red and the second best result is denoted by underline.

coefficients of the character shapes, 64 Karhunen-Love co-
efficients, 6 morphological features, 240 pixel averages in 2
x 3 windows, and 47 Zernike moments.

Reuters” is comprised of 1200 articles in 6 categories
(C15, CCAT, E21, ECAT, GCAT and M11), each providing
200 articles. For each article, it is written in five different
languages (English, French, German, Italian, and Spanish).

Comparing Methods To demonstrate the effectiveness
of the proposed SGDMC, we compare it with seven ex-
isting state-of-the-art multi-view clustering methods, i.e.,
MVKKM (Tzortzis and Likas 2012), MALN (Nie, Cai,
and Li 2017), AMVCD(Huang, Kang, and Xu 2020),
GMC(Wang, Yang, and Liu 2020), SAMVC(Ren et al.
2020), DEMVC(Xu et al. 2021a), SDMVC(Xu et al. 2022b).

To make a comprehensive comparison, we also employ
some single-view methods, i.e., KMeans (KM) (MacQueen
1967), Spectral Clustering (SC) (Ng, Jordan, and Weiss
2001), and Improved Deep Embedded Clustering (IDEC)
(Guo et al. 2017) by concatenating features from all views.

Implementation Details Following (Guo et al. 2017), we
use the same fully connected auto-encoder structure on all
three datasets. Specifically, for each view, the structure of
encoder is: Input(d”) - Fc500 - Fc500 - Fc2000 - Fel0(d)),
and the decoder is symmetric with the encoder. All fea-
ture learning encoders are pretrained for 2000 epochs. The
aligned rate threshold § is 0.8 and the number of neighbors
[ applied to construct the adjacent graph is set to 10. The
batch size is set to the instance number n. During the fine-
tuning stage, the pseudo-label P and the sample weights W
are updated for every 7" = 1000 epochs. The training pro-
cess compulsively terminates when the epoch number ex-
ceeds Tq, = 10000. As for the comparing methods, we
directly use the open-source codes and follow the parameter
settings by the corresponding publications.

*http://lig-membres.imag fr/grimal/data.html
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Evaluation Measures Three widely used metrics accu-
racy (ACC), normalized mutual information (NMI) and ad-
justed rand index (ARI) are applied to evaluate the cluster-
ing performance, higher values of these metrics indicate bet-
ter clustering performance. The average results and standard
deviations of ten independent runs of each method on three
datasets are reported.

Clustering Results

In this subsection, we investigate the effectiveness of the
proposed SGDMC through the comparison with the base-
lines, the embedding visualization during training and the
analysis of parameter sensitivity .

Comparison with Baselines Table 1 shows the cluster-
ing results of the baseline methods compared with SGDMC,
where the best result is highlighted in boldface and the sec-
ond best result is denoted by underline in each column. From
the results, we can find that the proposed SGDMC achieves
the highest average result on all three metrics over the multi-
view datasets with different view compositions. This is be-
cause through a novel attention allocation approach, the rel-
evance among different nodes is evaluated in a more com-
prehensive manner, so that nodes aggregate the information
from more important and convincing neighbors in the graph
attention layer. Meanwhile, the small variances also illus-
trate the better robustness of the proposed method, which
indicates that the developed sample-weighting strategy can
effectively alleviate the influence from noisy samples.

Visualization of Learning Process To visually investi-
gate the effectiveness of the SGDMC, the ¢-SNE algorithm
(Maaten and Hinton 2008) is applied to reduce the dimen-
sion of the refined latent representations of different views
Z" to 2D and demonstrate the separability/non-separability
of the data at iterations 7' = 0, 1000, 2000 during the fine-
tuning stage. From Figure 2, we can observe that even if
the discriminative degree of features is very low in the be-
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Figure 2: Visualization of each view’s refined latent embeddings during the training on BDGP dataset, different colors denote

the labels of corresponding nodes.

0.93

Figure 3: Clustering performance w.r.t. different parameter settings on BDGP dataset.

ginning of the finetuning stage, as the training forwards, the
cluster structures become increasingly clear, which demon-
strates the effectiveness of the proposed SGDMC.
Parameter Sensitivity We investigate the two main
hyper-parameters in constructing attention graphs, i.e., the
control parameter ~y utilized in the Gaussian kernel and the
number of neighbors /3 applied in kNN graph algorithm. To
study the influence of these hyper-parameters on the cluster-
ing results, we employ the grid search strategy and test the
average clustering performance of ten independent runs on
BDGP dataset. From Figure 3, while the proposed method
achieves relatively stable results on different values of ~,
the clustering performance promotes when the value of
rises from 5 to 10 and declines as 3 further increases. This
is mainly because when the number of neighbors used to ag-
gregate the target node is too small, the nodes cannot make
full use of the information from its neighbors, thus limit-
ing the clustering performance. On the other hand, when the
value of  is too large, the nodes will aggregate the informa-
tion from the less relevant nodes and affect clustering results.

Conclusion

To promote the effectiveness of the GNN-based MVC model
with self-supervised information, in this paper we pro-
pose Self-Supervised Graph Attention Networks for Deep
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Weighted Multi-View Clustering (SGDMC). Specifically, a
novel attention allocating strategy considering both local
and self-supervised information is developed to accurately
evaluate the relevance of samples and enhance the aggregat-
ing capability of the graph attention layer. Besides, to alle-
viate the negative impact from noisy samples and discrep-
ancies between global and local cluster structures, a novel
sample-weighting mechanism based on attention graphs and
the discrepancy between global pseudo-labels and local
cluster assignments is also proposed. Experiments on dif-
ferent types of multi-view real-world datasets demonstrate
the state-of-the-art performance of the proposed method.
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