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Abstract— Learning a comprehensive representation from
multiview data is crucial in many real-world applications. Multi-
view representation learning (MRL) based on nonnegative matrix
factorization (NMF) has been widely adopted by projecting
high-dimensional space into a lower order dimensional space
with great interpretability. However, most prior NMF-based
MRL techniques are shallow models that ignore hierarchical
information. Although deep matrix factorization (DMF)-based
methods have been proposed recently, most of them only focus
on the consistency of multiple views and have cumbersome
clustering steps. To address the above issues, in this article,
we propose a novel model termed deep autoencoder-like NMF for
MRL (DANMF-MRL), which obtains the representation matrix
through the deep encoding stage and decodes it back to the
original data. In this way, through a DANMF-based framework,
we can simultaneously consider the multiview consistency and
complementarity, allowing for a more comprehensive representa-
tion. We further propose a one-step DANMF-MRL, which learns
the latent representation and final clustering labels matrix in a
unified framework. In this approach, the two steps can negotiate
with each other to fully exploit the latent clustering structure,
avoid previous tedious clustering steps, and achieve optimal
clustering performance. Furthermore, two efficient iterative opti-
mization algorithms are developed to solve the proposed models
both with theoretical convergence analysis. Extensive experiments
on five benchmark datasets demonstrate the superiority of our
approaches against other state-of-the-art MRL methods.

Manuscript received 30 August 2022; revised 8 April 2023 and
22 June 2023; accepted 4 August 2023. This work was supported in part
by the National Natural Science Foundation of China under Grant 62073087,
Grant 62071132, Grant 62006045, Grant 61973090, and Grant U1911401;
in part by the National Science Foundation under Grant MRI 2215789
and Grant IIS 1909879; in part by Lehigh University under Grant S00010293
and Grant 001250; and in part by the China Scholarship Council (CSC) under
Grant 202208440315. (Corresponding author: Guoxu Zhou.)

Haonan Huang is with the School of Automation, Guangdong University of
Technology, Guangzhou 510006, China, and also with the RIKEN Center
for Advanced Intelligence Project (AIP), Tokyo 103-0027, Japan (e-mail:
libertyhhn@foxmail.com).

Guoxu Zhou and Shengli Xie are with the School of Automation
and the Key Laboratory of Intelligent Detection and The Internet of
Things in Manufacturing, Ministry of Education, Guangdong University
of Technology, Guangzhou 510006, China (e-mail: gx.zhou@gdut.edu.cn;
shlxie@gdut.edu.cn).

Qibin Zhao is with the RIKEN Center for Advanced Intelligence Project
(AIP), Tokyo 103-0027, Japan, and also with the School of Automation,
Guangdong University of Technology, Guangzhou 510006, China (e-mail:
qibin.zhao@riken.jp).

Lifang He is with the Department of Computer Science and Engineering,
Lehigh University, Bethlehem, PA 18015 USA (e-mail: lih319@lehigh.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3304626.

Digital Object Identifier 10.1109/TNNLS.2023.3304626

Index Terms— Clustering, deep matrix factorization (DMF),
multiview learning, nonnegative matrix factorization (NMF).

NOMENCLATURE

V Number of views.
m Number of layers.
pi i th layer size.
n Number of samples.
K Number of clusters.
αv Weight factor of vth view.
Xv
∈ Rlv×n Data matrix of the vth view.

Wv
i Basis matrix in the i th layer of the vth view.

Hv
m ∈ Rpv×n mth layer representation matrix of the vth

view.
H∗ ∈ Rpv×n Consensus representation matrix.
Lv
∈ Rn×n Graph Laplacian matrix of the vth view.

Fv
∈ RK×K Centroid matrix of the vth view.

Y ∈ RK×n Clustering label matrix.

I. INTRODUCTION

S INCE information of data typically comes from many
sources, a growing amount of data are created from multi-

ple views in the actual situations in recent years. For instance,
an image usually contains different characteristics, including
color, texture, and edge; a video consists of both visuals and
audio, and a piece of content may be narrated in a variety of
languages [1], [2]. All of these are referred to as multiview
data, where each view represents a learning challenge but also
has its own biases. The occurrence of multiview data in a
natural and frequent manner spawned a new learning paradigm
known as multiview representation learning (MRL) [3]. The
challenge of learning representations (or features) of multi-
view data that assist in extracting useful information while
creating prediction models is addressed by MRL. It has
gained popularity in the field of unsupervised learning and
has been used in numerous practical applications, including
object recognition [4] and medical image analysis [5], among
others. A basic approach of MRL is to concatenate all views
into one single view and use the single-view learning method.
The disadvantages of this strategy are that overfitting occurs
on relatively small datasets and that the individual statistical
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Fig. 1. (a) Overview of the proposed DANMF-MRL model. We take the data of two views as an example, and there are two key components, including the
deep autoencoder-like NMF and the learning of common representation H∗. The first part is composed of the deep encoder component (shown as the flow
with red arrows) and the deep decoder component (shown as the flow with green arrows). In the second part, we can learn the common representation through
the fusion strategy. (b) Learning of the consensus final clustering results Y is accomplished by the multiplication of V view-specific centroid matrices F.

feature of each view is neglected [6]. In the last several years,
many strategies (such as kernel methods [7], [8], subspace
clustering [9], [10], spectral learning [11], and autoencoder
and matrix factorization [12], [13]) have been employed to
tackle the MRL problem.

Among these approaches, one of the most widely used
MRL methods is based on nonnegative matrix factorization
(NMF) [14]. The sparse and nonnegative constraints in matrix
factorization make it possible to extract more discriminative
features, which can eventually result in semantically
meaningful representations of objects that are based on their
component parts. Inspired by this, Liu et al. [15] developed
a joint NMF-based multiview method with consensus term to
learn the underlying clustering space embedded in multiple
views. Liang et al. [16] designed a novel NMF method with
co-orthogonal constraints to capture the multiview diversity
attributes. Shi et al. [17] unified spectral clustering and NMF
into a novel model to improve computational efficiency.
Despite the impressive performance of NMF-based MRL
methods, we observe that most of them suffer from the
following drawbacks: 1) they are most shallow methods,
which cannot discover the complex hierarchical and structural
multiview information; 2) they cannot well simultaneously
capture the multiview consistency and complementary
information, resulting in inferior performance; and 3) most
methods generally regard representation learning and
clustering as two separated steps, which means that the learned
representation may not be appropriate for the clustering task.

In addition, autoencoder is a popular unsupervised repre-
sentation learning algorithm that is composed of two parts:
an encoder and a decoder. The former maps input data into
a latent space using latent representations, while the latter
reconstructs input data using latent representations [18], [19],
[20], [21]. However, these methods fail to consider the
nonnegative structure of data, which leads to inadequate inter-
pretability of learned representations. Moreover, the neural
network-based techniques lack theoretical analysis for conver-
gence in an unsupervised setting.

To address the aforementioned limitations, in this article,
we propose a novel framework termed deep autoencoder-like

NMF for MRL (DANMF-MRL). Different from existing
deep autoencoder-based works, we first leverage the deep
autoencoder-like NMF (DANMF) structure to discover the
hierarchical mappings between the original data and the
final representation to improve the model’s learning ability.
Specifically, as shown in Fig. 1(a), our method uses a unified
framework to perform multiview consistency learning (with
the deep encoder component) and each view information
decoding (with the deep decoder component), allowing us to
balance the consistency and complementarity among multiple
views and learn a common intact representation. We further
improve DANMF-MRL and develop another variant, termed
one-step DANMF-MRL (OS-DANMF-MRL), to perform mul-
tiview matrix factorization with clustering partition generation
in a unified model, as shown in Fig. 1(b). To the best of our
knowledge, DANMF-MRL is the first effort to benefit MRL
in a DANMF way. As a result, DANMF might provide some
fresh insights to the MRL community. The contributions and
novelties of ours can be summed up as follows when compared
to well-studied matrix factorization-based MRL methods.

1) Aiming at MRL, we propose a new MRL model, i.e.,
DANMF-MRL, which considers loss terms quantified
by the deep encoder and deep decoder parts, to consider
the consistency and complementarity among multiple
views simultaneously and obtain a final comprehensive
representation. The new model also includes a graph
regularization, which can retain the original data’s man-
ifold topology to improve its ability of representation
learning.

2) We further develop the OS-DANMF-MRL, which uni-
fies the latent representation learning and clustering
assignments in a one-step model. This joint optimization
technique successfully exploits multiview representa-
tion and clustering structure information, resulting in
more precise clustering results. Two iterative algorithms
are proposed to solve the resulting optimization prob-
lems with mathematical convergence analysis. Exten-
sive experiments on five multiview benchmark datasets
demonstrate the effectiveness of our models compared
to other state-of-the-art techniques.
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Fig. 2. Factorization process of different NMF-based methods: (a) traditional
shallow NMF [29], (b) NSED presented in [23], and (c) DANMF [26].

The rest of this article is organized as follows. Section II
outlines the background and related works of MRL. The
proposed DANMF-MRL, OS-DANMF-MRL, and two corre-
sponding algorithms with convergence analysis are introduced
in Section III. Section IV shows the experiment results with
evaluation. Section V concludes this article. Some results in
this article were presented in [22].1

II. BACKGROUND AND RELATED WORKS

In this section, we first revisit the single-view autoencoder-
like NMF models and then review the previous matrix
factorization-based MRL methods that are related to our
works. The Nomenclature lists the main notations used in this
article.

A. Single-View Autoencoder-Like NMF

Given a single-view data matrix X ∈ Rl×n with l dimension
and n samples, as shown in Fig. 2(a), NMF decomposes it into
two nonnegative subspace matrices W ∈ Rl×p and H ∈ Rp×n ,
where p is the dimension of subspace. Its cost function can
be expressed as

min
W,H

ONMF = ∥X−WH∥2
F s.t. W, H ≥ 0. (1)

To improve the representation ability of traditional
NMF, Sun et al. [23] integrated a decoder component and
an encoder component into a unified objective function,
as shown in Fig. 2(b), called nonnegative symmetric encoder–
decoder (NSED), as follows:

min
W,H

ONSED = ∥X−WH∥2
F︸ ︷︷ ︸

decoder

+
∥∥H−WT X

∥∥2
F︸ ︷︷ ︸

encoder

s.t. W, H ≥ 0. (2)

The symmetry of the encoder and decoder imposes a natural
soft orthogonality restriction on the basis matrix W. The
corresponding representation matrix has superior clustering
performance when the column vectors of the learned basis
matrix are more independent in the NMF frame [24]. However,
there is only one layer mapping between the original data and
the low-dimensional space in NSED, which cannot capture the
complex hierarchical patterns of real-world data. Inspired by

1Upon our short conference version [22], this article designs a novel OS-
DANMF-MRL method (see Section III-C), analyzes the convergence of the
proposed algorithms (see Section III-F), and conducts more comprehensive
experiments to validate the advantages of key components (see Section IV).

the development of deep learning [25], Ye et al. [26] extended
NSED to a multilayer version and designed the DANMF to
automatically uncover the hierarchical mappings of attributes
to facilitate clustering tasks. Mathematically, the data matrix
X ∈ Rl×n is factorized into m nonnegative basis matrices
{W1, . . . , Wm} and a nonnegative representation matrix Hm .
The process of multilayer factorization can be expressed as

X ≈WH
X ≈W1W2H2

...

X ≈W1, . . . , WmHm . (3)

As shown in Fig. 2(c), the deep decoder stage obtains
the best basis matrices and low-dimensional representation
matrix Hm to reconstruct the input data X. The deep encoder
stage fine-tunes submatrices to transform the original data X
into the distributed representation Hm . While DANMF has the
NSED algorithm capabilities mentioned above, this architec-
ture enables it to better inherit the learning ability of deep
autoencoder. In addition to community detection, autoencoder-
like NMF has previously proven to be effective in a variety
of additional applications, including remote sensing [27] and
data clustering [28]. Nevertheless, the advanced autoencoder-
like NMF-based methods fail to solve the problem of MRL.

B. Related Works

In recent years, numerous multiview representation methods
have been proposed in order to tackle pervasive multiview data
analysis problems. K-nearest neighbor (KNN) is a classical
learning method to predict the labels of test samples and has
been successful in multiple applications, including graph learn-
ing [30], spectral learning, and multiview learning [31], [32].
A novel joint model called NMF-KNN is designed to tackle
the problem of dataset imbalance [33]. In [34], an effective
KNN variant model is proposed to handle the issue of the
problematic selection of k by automatically learning the
optimal k values for different test data. Recently, an adaptive
KNN and multiview spectral learning unified framework
have been presented to fully exploit the heterogeneous
information among different views [35] Canonical correlation
analysis (CCA)-based models are one of the existing methods
for MRL. Andrew et al. [36] introduced deep CCA to
learn complex nonlinear transformations of two data views to
produce highly linearly correlated representations. CCA-based
methods are all seeking to multiview correlation, and they
are limited to only two-view data.

Multiview subspace clustering methods are to find a low-
rank self-representation of multiview data that represent its
segmentation in a low-dimensional space [37], [38]. To dis-
cover the common underlying information shared by dif-
ferent views, Zhang et al. [39] proposed a novel method
called latent multiview subspace clustering. Recently, moti-
vated by the tensor learning [40], Xiao et al. [41] proposed
a prior knowledge regularized multiview self-representation
to make use of labeled information and high-order cor-
relation to learn an accurate multiview self-representation
tensor. Based on the characteristics of the Laplacian graph
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and its eigenvectors, spectral learning methods determine
a division of the affinity graph. Nie et al. [11] presented
a parameter-free spectral learning framework for multiview
clustering and semisupervised classification. In order to
learn the common affinity matrix as the clustering outcome,
Zhu et al. [42] presented a unified one-step spectral clustering
model. Wang et al. [43] introduced a general graph-based
multiview clustering with a novel multiview automatically
fusion technique. However, spectral-based methods are rel-
atively limited in practical applications due to their high
complexity, especially for large-scale datasets. Combining
deep CCA with autoencoder, Wang et al. [18] designed a
deep canonically correlated autoencoders (DCCAE) to find
the multiview correlation-based representation and achieve
head-to-head comparison. To learn disentangled visual mul-
tiview representations, Xu et al. [19] designed a novel gen-
erative model for multiview clustering called multi-VAE.
More recently, Zhang et al. [20] proposed an unsupervised
multiview learning framework, which consists of inner and
outer autoencoder networks to learn a compact representation.
Yang et al. [21] presented a robust multiview clustering,
which adopts a unified autoencoder structure to face the
partially view-unaligned and sample missing cases. However,
existing deep autoencoder methods suffer from the following
drawbacks: 1) they neglect the nonnegativity nature of data
and unavoidably hamper interpretability of the learned rep-
resentations and 2) despite being rooted in neural network,
these algorithms lack theoretical convergence guarantees in
unsupervised scenarios.

NMF [29], a powerful tool that can learn low-dimensional
representations with more discriminative features, has also
drawn a lot of interest in MRL and has shown significant
promise for clustering. Liu et al. [15] constructed coefficient
matrices by executing NMF on each data view and then drove
them toward a consensus representation. Based on this, a uni-
form distribution multiview NMF (MultiNMF) was proposed
to reduce distribution divergences among different views by
jointly learning a common representation [44]. Orthogonality
is extensively investigated in single-view NMF, with promising
performance [24]. To exploit the complementary information
between different views, a diversity-induced NMF (DiNMF)
with orthogonal constraints is presented in [45]. Following
this, Liang et al. [16] designed an NMF with co-orthogonal
constraints (NMFCC) on both the basis matrix and represen-
tation matrix to enhance the clustering performance.

However, the abovementioned methods are shallow frame-
works that rely on a linear mapping from the original
data matrix to the newly mapped space [46], [47]. In real-
world applications, this linear mapping is unable to mine
the hierarchical structure that might express several degrees
of abstraction to represent objects [48], [49]. To solve this
problem, Zhao et al. [50] proposed a deep matrix factoriza-
tion multiview framework [DMF-based multiview clustering
(DMVC)] to maximize the consistency among multiple views.
Based on this work, Huang et al. [51] presented a novel deep
MF model to automatically learn the weights of different
views. In [52], a semisupervised partially shared deep matrix
factorization (PSDMF) is presented to extract the correlated

and uncorrelated features of multiview data. Zhao et al. [53]
also developed a deep multiview concept learning technique
in a semisupervised paradigm. Nevertheless, as they depend
on the labels, the suggested objective functions cannot guar-
antee their success. Recently, Chang et al. [54] proposed a
deep concept factorization for MRL to catch the compre-
hensive and hierarchical information of the multiview data.
Luong et al. [55] designed a deep NMF model with both
orthonormality and graph constraints to learn complementary
and compatible information embedded in multiview data.

Despite the good representation performance of the afore-
mentioned deep matrix factorization-based MRL approaches,
they mostly only consider the consistency of multiview data
and neglect the complementary information existing in each
view. In addition, they regard performing representation learn-
ing and clustering operations as two separate steps. Because
the resulting representations are fixed after unsupervised
extraction, they cannot be refined further to provide bet-
ter clustering performance. To cope with these issues, the
proposed methods minimize DANMF and multiview fusion
terms, which help us to explore the multiview complementary
and consistent information and achieve one-step clustering
label learning. After learning the multiview representation
matrices, the proposed OS-DANMF-MRL adopts clustering
partition level fusion, avoiding the addition k-means or spec-
tral clustering step in previous works [50], [54]. Since the
following clustering phase and the representation learning
step are connected, our method can achieve better clustering
performance. Section III will introduce two proposed models
and their corresponding optimizations.

III. PROPOSED METHODS

A. DANMF-MRL Model

In the multiview setting, let us denote X = {X1, . . . , XV
}

as the input data, and we can naturally extend the DANMF as
follows:

min
Wv

1,...,Wv
m ,Hv

m

O =
V∑

v=1

(∥∥Xv
−Wv

1Wv
2, . . . , Wv

mHv
m

∥∥2
F

+
∥∥Hv

m −Wv
m

T
, . . . , Wv

2
T Wv

1
T Xv

∥∥2
F

+ λtr
(
Hv

mLvHv
m

T ))
s.t. Wv

1, . . . , Wv
m, Hv

m ≥ 0 (4)

where Lv denotes the graph Laplacian matrix Lv
= Dv

− Av

and Dv is a diagonal matrix whose entries are row sums of Av ,
i.e., Dv

j j =
∑

q Av
jq . According to [56], 0–1 weighting is one of

the most prevalent methods for defining the weight matrix Av

on the graph, which is defined as

Av
jq =

{
1, if xv

q ∈ L
(
xv

j

)
or xv

j ∈ L
(
xv

q

)
0, otherwise

(5)

where L(xv
q) is the set of k-nearest neighbor (k-NN) of the

example xv
q .

According to [3], MRL assumes that different patterns
among distinct viewpoints should be compatible. Following
that, we try to find each viewpoint’s relevance while forcing
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their latent representation to be a common representation. Let
H∗ denote the common representation of all the views, and
the multiview fusion term can be formulated as

min
H∗,αv

V∑
v=1

(αv)γ
∥∥Hv

m −H∗
∥∥2

F s.t. H∗ ≥ 0,

V∑
v=1

αv
= 1 (6)

where αv is the weight for the vth view and γ is the hyper-
parameter to control the weights distribution. For (6), we can
find that we will get equal weight factors when γ →∞. Also,
when γ → 1+, we will give 1 to the weight factor of the view
with least ∥Hv

m−H∗∥2
F value and 0 to the weights of the other

views. Employing such an approach, we can avoid the trivial
solution to the weight distribution of the different views when
γ > 1. In addition, in the light of [15], we need to normalize
factors to make the disagreement measure appropriate for
different Hv

m values when compared to the same consensus
H∗ and improve the accuracy of the approximation. Let
9v

i = Wv
1Wv

2, . . . , Wv
i , and the normalization imposed

on Hv
m and 9v

i is achieved by

Hv
m ← Hv

m(Qv)
−1

, 9v
m ← 9v

mQv (7)

where Qv
= diag(

∑
i (Hv

m)i,1,
∑

i (Hv
m)i,2, . . . ,

∑
i (Hv

m)i,k).
Therefore, considering the above two aspects, the proposed

DANMF-MRL can be finally formulated as

min
Wv

1,...,W
v
m ,

Hv
m ,H∗,αv

O =
V∑

v=1

(∥∥Xv
−Wv

1Wv
2, . . . , Wv

mHv
m

∥∥2
F

+
∥∥Hv

m −Wv
m

T
, . . . , Wv

2
T Wv

1
T Xv

∥∥2
F

+ λtr
(
Hv

mLvHv
m

T )
+ (αv)γ

∥∥Hv
m −H∗

∥∥2
F

)
s.t. Wv

1, . . . , Wv
m, Hv

m, H∗ ≥ 0,

V∑
v=1

αv
= 1. (8)

For our objective function, the first term is the deep
decoder stage, which obtains the best basis matrices and
low-dimensional representation matrix Hv

m to reconstruct the
input data Xv . The second term is the deep encoder stage,
which fine-tunes submatrices to transform the original data Xv

into the distributed representation Hv
m . With the DANMF,

we also achieve latent orthogonality constraint on basis
matrices, which would be helpful in discovering the more dis-
criminative representation. The third term respects the intrinsic
geometrical structure of original data. Also, the fourth term
fuses multiple Hv

m into a consensus H∗ with updated weights.
In general, the deep encoder and the fusion components learn
a consistent representation together. At the same time, the
representation can be decoded back to the original data space
by the deep decoder, and the manifold structure of each
view is preserved by graph regularization, which together
ensures the view-specific information of the data, i.e., the
complementarity among multiple views. To summarize, the
proposed model can automatically balance the consistency
and complementarity between different views and learn a
comprehensive representation through encoding the original
data and decoding back.

B. DANMF-MRL Optimization

In this section, we mainly discuss how to solve (8). For
brevity, we first define Pv

= Hv
m − H∗ and the objective

function of DANMF-MRL can be further rewritten with the
properties of matrix trace as follows:

O =
V∑

v=1

{
tr
(

XvT Xv
+Hv

m
T Hv

m − 4XvT 9v
i−1Wv

i 8
v
i+1Hv

m

+Hv
m

T 8v
i+1

T Wv
i

T 9v
i−1

T 9v
i−1Wv

i 8
v
i+1Hv

m

+XvT 9v
i−1Wv

i 8
v
i+18

v
i+1

T Wv
i

T 9v
i−1

T Xv
)

+λtr
(

Hv
mLvHv

m
T
)
+ (αv)γ tr(PvT Pv)

}
s.t. Wv

i , Hv
m, H∗ ≥ 0,

V∑
v=1

αv
= 1 ∀i = 1, . . . , m (9)

where 9v
i−1 =Wv

1Wv
2, . . . , Wv

i−1 and 8v
i+1 =Wv

i+1, . . . , Wv
m .

It is worth noting that we denote 9v
0 = I and 8v

m+1 = I.
1) Update Rule for Hidden Matrix Wv

i (m ≥ i ≥ 0): We
minimize O over Wv

i , with Hv
m , H∗, and αv being fixed. Then,

the objective function in (9) can be reduced to

O
(
Wv

i

)
= tr

(
−4XvT 9v

i−1Wv
i 8

v
i+1Hv

m

+Hv
m

T 8v
i+1

T Wv
i

T 9v
i−1

T 9v
i−1Wv

i 8
v
i+1Hv

m

+XvT 9v
i−1Wv

i 8
v
i+18

v
i+1

T Wv
i

T 9v
i−1

T Xv
)

s.t. Wv
i ≥ 0. (10)

Let 2v
i be the Lagrange multiplier for nonnegative con-

straint on Wv
i , resulting in the following Lagrangian function:

L
(
Wv

i , 2
v
i

)
= tr

(
−4XvT 9v

i−1Wv
i 8

v
i+1Hv

m

+Hv
m

T 8v
i+1

T Wv
i

T 9v
i−1

T 9v
i−1Wv

i 8
v
i+1Hv

m

+XvT 9v
i−1Wv

i 8
v
i+18

v
i+1

T Wv
i

T 9v
i−1

T Xv
−2v

i Wv
i

T
)
.

(11)

By setting the partial derivative of L(Wv
i , 2

v
i ) with respect

to Wv
i to 0, we have

2v
i = −49v

i−1
T XvHv

m
T 8v

i+1
T
+ 25v

i (12)

where

5v
i = 9v

i−1
T 9v

i−1Wv
i 8

v
i+1Hv

mHv
m

T 8v
i+1

T

+9v
i−1

T XvXvT 9v
i−1Wv

i 8
v
i+18

v
i+1

T
. (13)

From the complementary slackness condition of the
Karush–Kuhn–Tucker (KKT) conditions, we obtain

2v
i Wv

i =

(
−49v

i−1
T XvHv

m
T 8v

i+1
T
+ 25v

i

)
Wv

i = 0. (14)

Equation (14) is the fixed-point equation that the solution
must satisfy at convergence. By solving this equation,
we derive the following updating rule for Wv

i :

Wv
i =Wv

i ⊙
29v

i−1
T XvHv

m
T 8v

i+1
T

5v
i

(15)

where ⊙ denotes the elementwise product.
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2) Update Rule for Representation Matrix Hv
m: The

objective function in (9) can be reduced to (16) by fixing all
the variables except for Hv

m

O
(
Hv

m

)
= tr

(
Hv

m
T Hv

m +Hv
m

T 9v
m

T 9v
mHv

m

− 4XvT 9v
mHv

m + λHv
mLvHv

m
T

+ (αv)γ
(
Hv

m −H∗
)T (Hv

m −H∗
))

s.t. Hv
m ≥ 0. (16)

We set the graph Laplacian matrix Lv
= Dv

−Sv and follow
the similar derivation process of the update rule for Wi , and
the update rule for Hv

m is obtained as follows:

Hv
m = Hv

m ⊙
29v

m
T Xv
+ λHv

mSv
+ (αv)γH∗

9v
m

T 9v
mHv

m + λHv
mDv + (1+ (αv)γ)Hv

m

. (17)

3) Update Rule for Consensus Matrix H∗: Optimizing
the consensus matrix H∗ amounts to solving the following
function:

O
(
H∗
)
=

V∑
v=1

(αv)γ tr
((

Hv
m−H∗

)T (Hv
m −H∗

))
, s.t. H∗ ≥ 0.

(18)

We take the derivative of (18) with respect to H∗, set it to 0,
and obtain an exact solution for H∗

H∗ =
∑V

v (αv)γHv
m∑V

v (αv)γ
. (19)

4) Update Rule for Weight Factors αv: To optimize the
weight factor, we only consider the term that is relevant to αv .
Equation (9) can be rewritten as

O(αv) =

V∑
v=1

(αv)γPv, s.t.
V∑

v=1

αv
= 1 (20)

where Pv
= ∥Pv

∥
2
F . Therefore, let 3v be the multiplier, and

the Lagrange function of (20) is

L(αv, 3v) =

V∑
v=1

(αv)γPv
−3v

(
V∑

v=1

αv
− 1

)
. (21)

Then, we set the derivative of (21) with respect to αv to
zero and have

αv
=

(
3v

γPv

) 1
γ−1

. (22)

After substituting the resultant αv in (22) into the constraint∑V
v=1 αv

= 1, we can obtain the optimal solution as follows:

αv
=

(Pv)
1

1−γ∑V
v=1(Pv)

1
1−γ

. (23)

C. One-Step DANMF-MRL

Although the proposed DANMF-MRL in Section III-A
demonstrates promising clustering performance in MRL,
we find that it works by learning a consensus representation
matrix H∗ and then applying k-means on this matrix to
generate the final clustering labels. This suggests that these

two steps lack negotiation to reach optimality. To address
the above concern, we propose an OS-DANMF-MRL, which
directly learns the discrete clustering labels. The k-means
method attempts to split the representation matrix H∗ into K
distinct clusters, each defined by its centroid, which can be
expressed as

min
F,Y
∥H∗ − FY∥2

F

s.t. Yk j ∈ {0, 1},
K∑

k=1

Yk j = 1 ∀ j = 1, . . . , n (24)

where F ∈ RK×K is a centroid matrix and Y ∈ RK×n is an
indicator matrix, which stores the final clustering results about
samples. Thus, we design a one-step multiview fusion term by
combining (6) and (24) as follows:

min
Fv ,Y,αv

V∑
v=1

(αv)γ
∥∥Hv

m − FvY
∥∥2

F

s.t.
V∑

v=1

αv
= 1, Yk j ∈ {0, 1},

K∑
k=1

Yk j=1 ∀ j=1, . . . , n.

(25)

Because the hard partition is unique in multiview clustering
tasks, we employ Fv to represent the view-specific centroid
matrix and a consensus label indicator matrix Y across all
views. Combining this one-step fusion strategy with the objec-
tive function of DANMF (4) gives rise to our OS-DANMF-
MRL, which minimizes the objective function as follows:

min
Wv

1,...,W
v
m ,

Hv
m ,Fv ,Y,αv

O =
V∑

v=1

(∥∥Xv
−Wv

1Wv
2, . . . , Wv

mHv
m

∥∥2
F

+
∥∥Hv

m −
(
Wv

m

)T
, . . . ,

(
Wv

2

)T (Wv
1

)T Xv
∥∥2

F

+ λtr
(
Hv

mLv
(
Hv

m

)T )
+(αv)γ

∥∥Hv
m − FvY

∥∥2
F

)
s.t. Wv

i , Hv
m ≥ 0,

V∑
v=1

αv
= 1 ∀i = 1, . . . , m

Yk j ∈ {0, 1},
K∑

k=1

Yk j = 1 ∀ j = 1, . . . , n. (26)

Compared with DANMF-MRL, (26) improves multiview
clustering by jointly optimizing the deep matrix represen-
tation and the latent cluster assignment, and no additional
hyperparameters will be added. As a result, our proposal
can make use of the latent clustering structure to generate
better subspace representations, which can lead to more exact
clustering assignments.

D. OS-DANMF-MRL Optimization

This section will introduce the optimization of the
OS-DANMF-MRL method. In particular, the optimization
algorithms about the related variables are the same as
the DANMF-MRL algorithm with the exception of the
representation matrix Hv

m , the centroid matrix F, and the
cluster label matrix Y. Therefore, the details about their
update rules will be derived as follows.
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1) Update Rule for Representation Matrix Hv
m: Fixing other

variables Wv
i , αv , Fv , and Y, the optimization problem for

updating variable Hv
m can be rewritten as

O
(
Hv

m

)
= tr

(
Hv

m
T Hv

m +Hv
m

T 9v
m

T 9v
mHv

m

− 4XvT 9v
mHv

m + λHv
mLvHv

m
T

+ (αv)γ
(
Hv

m − FvY
)T (Hv

m − FvY
))

s.t. Hv
m ≥ 0. (27)

Following the similar derivation process of the update rule
for Wv

i and Hv
m in Section III-B, the update rule for Hv

m is
formulated as follows:

Hv
m = Hv

m ⊙
29v

m
T Xv
+ λHv

mSv
+ (αv)γFvY

9v
m

T 9v
mHv

m + λHv
mDv + (1+ (αv)γ)Hv

m

. (28)

2) Update Rule for Centroid Matrix Fv: Fixing Hv
m and Y,

the optimization in (26) with respect to F is transformed to

O(Fv) = Tr
(

YT FvT FvY− 2HmYT FvT
)
. (29)

With setting the derivation with respect to Fv to zero, the
minimum can be found when

Fv
= Hv

mYT (YYT )−1. (30)

3) Update Rule for Cluster Label Matrix Y: Fixing Hv
m and

Fv , the optimization in (26) with respect to Y is reduced to

min
Y

V∑
v=1

(αv)γ∥Hv
m − FvY∥2

F

s.t. Yk j ∈ {0, 1},
K∑

k=1

Yk j = 1 ∀ j = 1, . . . , n. (31)

Then, we do an exhaustive search to find out the optimal
solution of (31) as

y j =

{
ek | k = arg min

V∑
v=1

(αv)γ
∥∥∥(Hv

m

)
j − (Fv)k

∥∥∥2

F

}
. (32)

In addition, we summarize the whole alternating strategy
of the OS-DANMF-MRL in Algorithm 1. Let the recon-
struction error be Ei , and we utilize the convergence rule
Ei − Ei+1 ≤ 10−4 max(1, Ei ) to terminate the iteration when
the reconstruction error between the current and prior update
is sufficiently reduced.

E. Algorithm Complexity Analysis

The proposed algorithm’s implementation consists of two
phases, an initialization phase and a fine-tuning phase, as can
be seen from Algorithm 1. For the initialization phase,
the computation of graph Laplacian on all views requires
O(n2lvV ), where n is the number of samples, lv is the
number of vth view’s features, and V is the number of views.
In addition, both DANMF-MRL and OS-DANMF-MRL are
initialized through traditional NMF layer by layer, with the
complexity of order O(ti (nlv p)mV ), where ti is the number
of iterations to stop in the initialization phase, m is the number
of layers, and p is the maximal layer size. For the fine-
tuning phase, let k denote the average nonzero elements on

Algorithm 1 OS-DANMF-MRL Algorithm
Input: Multi-view Data {Xv

}
V
v=1, the number of layer m, layer

sizes {pi }
m
i=1, hyperparameters λ.

Output: The clustering results Y.
1: Initialization phase:
2: for v = 1 to V do
3: Compute graph Laplacian matrix Lv from Xv;
4: for i = 1 to m do
5: (Wv

i , Hv
i )← NMF(Hv

i−1, pi );
6: end for
7: end for
8: Fine-tuning phase:
9: while not converged do

10: for v = 1 to V do
11: for i = 1 to m do
12: Update Wv

i via Eq. (15);
13: end for
14: Update Hv

m via Eq. (28);
15: Normalize Wv and Hv by Eq. (7);
16: Update αv via Eq. (23);
17: Update Fv via Eq. (30);
18: end for
19: for j = 1 to n do
20: Update y j via Eq. (32);
21: end for
22: end while

each row of the graph weight matrix A, we summarize the
arithmetic operations for DANMF-MRL and OS-DANMF-
MRL in Table I.

As p, k, and K are very small compared to n, let t f be the
number of iterations to stop in fine-tuning phase, the overall
computational complexities for both DANMF-MRL and OS-
DANMF-MRL are the same, i.e., O(n2kV + ti (nlv p)mV +
t f (lvnp)mV ).

F. Convergence of the Algorithm

In this section, we will theoretically prove the convergence
of the proposed algorithm. Note that we update one variable
by fixing the others during the process of optimization. As a
result, a local minimization of the objective function can be
achieved if the convergence of all subproblems can be proven.

1) Convergence of the DANMF-MRL: In our proposed
DANMF-MRL algorithm, since we can find the optimal solu-
tion to subproblems of αv and H∗, we only need to prove the
convergence of update rules for Wv

i and Hv
m .

Theorem 1: The objective function in (8) is nonincreasing
under the update rule in (15) and (17).

To prove Theorem 1, we first give the following definition
and lemma according to [29], [57], and [58].

Definition 1: If the following conditions are satisfied, then
F(V, Vt ) is an auxiliary function for O(V):

F(V, Vt ) ≥ O(V), F(Vt , Vt ) = O(Vt ) (33)

where Vt means the value of V in the t th iteration.
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TABLE I
FLOATING-POINT ADDITION, MULTIPLICATION, AND DIVISION FOR FINE-TUNING PHASE IN DANMF-MRL AND OS-DANMF-MRL

Lemma 1: If F is an auxiliary function, then O(V) is
nonincreasing under the update rule

Vt+1
= arg min

V
F(V, Vt ). (34)

Based on Lemma 1, finding a suitable auxiliary function for
the proposed lost function is essential to proving Theorem 1.
Then, we provide an existing notion that will be used to define
the auxiliary function according to [24].

Proposition 1: For any matrices A ∈ Rm×m , A ∈ Rr×r ,
V ∈ Rm×r , and V̂ ∈ Rm×r , A ≥ 0, B ≥ 0, V ≥ 0, and V̂ ≥ 0,
it holds that ∑

j,q

(AVB) jq v̂
2
jq

v jq
≥ Tr

(
V̂T AV̂B

)
. (35)

Proof of Theorem 1: To prove the convergence of Wv
i

and Hv
m , we define O

(
Wv

i

)
and O

(
Hv

m

)
be the parts of

O containing Wv
i [i.e., (10)] and Hv

m [i.e., (16)], respectively.
The first derivatives of O

(
Wv

i

)
and O

(
Hv

m

)
are

O′
(
Wv

i

)
= −49v

i−1
T XvHv

m
T 8v

i+1
T

+ 29v
i−1

T 9v
i−1Wv

i 8
v
i+1Hv

mHv
m

T 8v
i+1

T

+ 29v
i−1

T XvXvT 9v
i−1Wv

i 8
v
i+18

v
i+1

T (36)

O′
(
Hv

m

)
= 2Hv

m + 29v
m

T 9v
mHv

m − 49v
m

T Xv

+ λ2Hv
m(Dv

− Sv)+ 2(αv)γ
(
Hv

m −H∗
)
. (37)

Also, the second derivatives of O
(
Wv

i

)
and O

(
Hv

m

)
are

O′′
(
Wv

i

)
= 29v

i−1
T 9v

i−18
v
i+1Hv

mHv
m

T 8v
i+1

T

+ 29v
i−1

T XvXvT 9v
i−18

v
i+18

v
i+1

T (38)

O′′
(
Hv

m

)
= 2I+ 29v

m
T 9v

m + 2λ(Dv
− Sv)+ 2(αv)γI. (39)

Following Definition 1 and Lemma 1, an auxiliary function
F(Hv

m, Hv
m

t ) is constructed for O(Hv
m) as follows:

F
(
Hv

m, Hv
m

t)
= O

(
Hv

m

)
+

∑
j,q

O′
(
Hv

m

)
jq

(
Hv

m −Hv
m

t)
jq

+

∑
j,q

(
ξ v
+ λHv

mDv
)

jq

Hv
m

t
jq

(
Hv

m −Hv
m

t)2
jq

(40)

where ξ v
= ((1+ (αv)γ)I+9v

m
T 9v

m)Hv
m .

Since F(Hv
m, Hv

m) = O(Hv
m) is obvious according to Defi-

nition 1, we only need to show F(Hv
m, Hv

m
t ) ≥ O(Hv

m). Thus,
a second-order Taylor series expansion O(Hv

m) is performed

O
(
Hv

m

)
= O

(
Hv

m
t)
+

∑
j,q

O′
(
Hv

m
t)

jq

(
Hv

m −Hv
m

t)
jq

+

∑
j,q

O′′
(
Hv

m
t)

jq

2

(
Hv

m −Hv
m

t)2
jq . (41)

It can be found that the formula F(Hv
m, Hv

m
t ) ≥ O(Hv

m)

holds only when (42) is true(
ξ v
+ λHv

mDv
)

jq

Hv
m

t
jq

≥

O′′
(
Hv

m
t)

jq

2
. (42)

Since we have((
(1+ (αv)γ)I+9v

m
T 9v

m

)
Hv

m

)
jq

=

p∑
l=1

(
(1+ (αv)γ)I+9v

m
T 9v

m

)
jl

(
Hv

m

)
lq

≥

(
(1+ (αv)γ)I+9v

m
T 9v

m

)
j j
(Hv

m) jq (43)

(
λHv

mDv
)

jq =

n∑
s=1

(
Hv

m

)
js(D

v)sq ≥
(
Hv

m

)
jq(D

v
− Sv)qq .

(44)

Thus, we can conclude that F(Hv
m, Hv

m
t ) ≥ O(Hv

m) and
F(Hv

m, Hv
m

t ) is an auxiliary function for O(Hv
m). We can obtain

the update rule for Hv
m by minimizing the auxiliary function

for O(Hv
m) according to Lemma 1. Since F(Hv

m, Hv
m

t ) is a
convex quadratic function, its optimal solution is obtained

Hv
m =

(
Hv

m

)
jq −

(
Hv

m

)
jq

O′
((

Hv
m

)
jq

)
2
(
ξ v + λHv

mDv
)

jq

=
(
Hv

m

)
jq

(
29v

m
T Xv
+ λHv

mSv
+ (αv)γH∗

)
jq(

ξ v + λHv
mDv

)
jq

. (45)

The value of the cost function is nonincreasing under
the above rule. Similarly, the update rules for Wv

i can be
obtained

Wv
i = (Wv

i ) jq −
(
Wv

i

)
jq

O′
((

Wv
i

)
jq

)
2
(
5v

i

)
jq

=
(
Wv

i

)
jq

(
29v

i−1
T XvHv

m
T 8v

i+1
T )

jq(
5v

i

)
jq

(46)

where

5v
i = 9v

i−1
T 9v

i−1Wv
i 8

v
i+1Hv

mHv
m

T 8v
i+1

T

+9v
i−1

T XvXvT 9v
i−1Wv

i 8
v
i+18

v
i+1

T
. (47)

It can be observed that the two update rules in (17) and (15)
are equivalent to (45) and (46), respectively. Therefore,
Theorem 1 is proved. ■
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2) Convergence of the OS-DANMF-MRL: We just need to
prove the convergence of update rules for Hv

m in our presented
OS-DANMF-MRL algorithm since we can obtain the optimal
solution to subproblems αv , Fv and Y, and the proof of Wv

i is
the same as in the DANMF-MRL.

Theorem 2: The objective function in (26) is nonincreasing
under the update rule in (28).

Proof of Theorem 2: To prove the convergence of Hv
m , let

O(Hv
m) denote the part of O containing Hv

m [i.e., (27)]. The
first and second derivatives of O(Hv

m) are

O′
(
Hv

m

)
= 2Hv

m + 29v
m

T 9v
mHv

m − 49v
m

T Xv

+ λ2Hv
m(Dv

− Sv)+ 2(αv)γ
(
Hv

m − FvY
)

(48)

O′′
(
Hv

m

)
= 2I+ 29v

m
T 9v

m + 2λ(Dv
− Sv)+ 2(αv)γI. (49)

Similar to DANMF-MRL, we prove that each Hv
m is non-

increasing under the update rule (28) based on an auxiliary
function as follows:

F
(
Hv

m, Hv
m

t)
= O

(
Hv

m

)
+

∑
j,q

O′
(
Hv

m

)
jq

(
Hv

m −Hv
m

t)
jq

+

∑
j,q

(
δv
+ λHv

mDv
)

jq

Hv
m

t
jq

(
Hv

m −Hv
m

t)2
jq (50)

where δv
= ((1 + (αv)γ)I + 9v

m
T 9v

m)Hv
m . Then, the Taylor

series expansion of O(Hv
m) can be derived as

O
(
Hv

m

)
= O

(
Hv

m
t)
+

∑
j,q

O′
(
Hv

m
t)

jq

(
Hv

m −Hv
m

t)
jq

+

∑
j,q

O′′
(
Hv

m
t)

jq

2

(
Hv

m −Hv
m

t)2
jq . (51)

Similar to the proof in (42)–(44), we can conclude that
F(Hv

m, Hv
m

t ) is an auxiliary function for O(Hv
m). Accordingly,

we can obtain the update rule for the Hv
m as

Hv
m =

(
Hv

m

)
jq −

(
Hv

m

)
jq

O′
((

Hv
m

)
jq

)
2
(
δv + λHv

mDv
)

jq

=
(
Hv

m

)
jq

(
29v

m
T Xv
+ λHv

mSv
+ (αv)γFvY

)
jq(

δv + λHv
mDv

)
jq

. (52)

Obviously, the update rule regarding Hv
m is the same as rule

in (28), and thus, Theorem 2 is proved. ■

IV. EXPERIMENTS

In this section, we first describe the used datasets, evaluation
metrics, and compared methods. Second, we analyze the
parameter sensitivity of our methods. Third, we give the
detailed clustering experimental results and several key
observations, where the datasets with different scales are
tested. Finally, we discuss the convergence of two methods.

A. Description of Datasets

In this section, we select five benchmark multiview datasets
that are widely used for our experiments, including the fol-
lowing.

TABLE II
STATISTICS OF DATASETS USED IN EXPERIMENTS

1) Washington2: There are 230 web documents of five
categories, i.e., student, project, course, staff, and fac-
ulty. Each document is described by two views, i.e., the
content of the document (1703 dimension) and the link
of the same document (690 dimension).

2) BBCSports3: This dataset contains 544 documents sam-
ples from the BBC Sport web in five topical areas: rugby,
tennis, cricket, football, and athletics. Each document is
split into two related segments as our views, and the
feature dimensions of different views are 3183 and 3203.

3) MSRCV14: This is a scene image set, which contains
seven categories, i.e., tree, building, airplane, cow,
face, car, and bicycle. Each image is represented
by five kinds of features: color moment (CM) with
24 dimensions, histogram of oriented gradient with
576 dimensions, GIST with 512 dimensions, local
binary pattern with 256 dimensions, and centrist feature
with 254 dimensions.

4) Leaves5: It contains 1600 samples from 100 plant
species. The shape descriptor, fine scale margin, and
texture histogram are used as three types of features,
all with 64 dimensions.

5) ALOI6: This is an image dataset consisting of 11 025
samples of 100 objects. Each sample is represented by
four types of features, i.e., RGB, HSV, color similarity,
and Haralick. All datasets’ statistics are listed in Table II.

B. Competitors and Experimental Setting

For a comprehensive comparison, we compare the proposed
DANMF-MRL with the following methods.

1) Shallow Matrix Factorization-Based Methods: We com-
pareour methods with five shallow matrix factorization-
based models, including NMF [29], NSED [23],
MultiNMF [15], NMFCC [16],7 Consensus and
Complementary information for MULTIVIEW data
(2CMV) [59].8

2) Deep Learning-Based Methods: Five deep matrix
factorization-based methods, including DMF [48],9

2Dataset available: https://lig-membres.imag.fr/grimal/data.html
3Dataset available: http://mlg.ucd.ie/datasets/segment.html
4Dataset available: http://research.microsoft.com/en-us/projects/

objectclassrecognition/
5Dataset available: https://archive.ics.uci.edu/ml/datasets/One-hundred+

plant+species+leaves+data+set
6Dataset available: http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView
7Code available: https://github.com/liangnaiyao/NMFCC
8Code available: https://github.com/khanhluongds/Multi-view-Clustering-

2CMV
9Code available: https://github.com/libertyhhn/DeepMF
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DANMF [26],10 DMVC [50],11 PSDMF [52],12 and
multiview clustering via deep concept factorization
(MCDCF) [54],13 are adopted. Two recent deep
autoencoder neural network-based methods, including
autoencoder in autoencoder networks (AE2-Nets) [20]14

and robust multiview clustering with incomplete
information (SURE) [21].15 Two convolutional
neural network (CNN)-based methods, including a
CNN multiview clustering (CNN-MVC) baseline and a
convolutional autoencoder network-based method, called
deep embedded multiview clustering (DEMVC) [60].16

Since NMF, NSED, DMF, and DANMF are single-view
methods, we first concatenate the features from multiple
views and then use them for concatenated data representation
learning, as in [15]. Furthermore, NMFCC, 2CMV, DMVC,
PSDMF, MCDCF, and ours all need the graph Laplacian
matrix to be constructed using the k-NN method, where k is set
to 5, as suggested in [54]. In addition, as AE2-Nets and SURE
can only handle two-view data, we report their results based on
the two best data views. As for two CNN-based approaches,
we follow parameter settings in [60], the 1-D convolutional
kernel sizes are set to 5-5-3 with a stride of 2 by default,
and the number of channels increases from 32 to 64 and 128.
Eventually, the dimensionality is reduced to 10 through the
use of an embedding layer comprised of ten neurons that are
fully connected.

To eliminate randomness, we run each comparative
algorithm ten times and report the averages and standard
deviation. To facilitate readers’ intuitive understanding, all
numerical results are displayed in the form of percentage. The
experimental environment is implemented on a server with
Intel17 Xeon17 E5-2640 @2.40-GHz CPU and 128-GB RAM,
under the Linux operating system. Also, the source code can be
downloaded at: https://github.com/libertyhhn/DANMF-MRL.

Evaluation Metrics: The basic evaluation measures, accu-
racy (ACC), normalized mutual information (NMI), Purity,
adjusted Rand (AR) index, F-score, precision, and recall, are
used in this article to generally evaluate the performance of
clustering. Details of these evaluation metrics can be found
in [61], and higher values of metrics imply better performance
for all algorithms.

C. Parameter Sensitivity Analysis

1) Influence of the Number of Layers: To investigate the
influence of a different number of layers adopted by the
proposed methods, we conduct numerical experiments on all
five datasets, varying the models’ number of layers, as reported
in Figs. 3 and 4. The experiments are carried out by changing
the number of layers m from 1 to 4, and the corresponding

10Code available: https://github.com/smartyfh/DANMF
11Code available: https://github.com/hdzhao/DMF_MVC
12Code available: https://github.com/libertyhhn/PartiallySharedDMF
13Code available: https://github.com/AeroAsukara/Multi-view-clustering-

via-deep-concept-factorization
14Code available: https://github.com/willow617/AE2-Nets
15Code available: https://github.com/XLearning-SCU/2022-TPAMI-SURE
16Code available: https://github.com/JieXuUESTC/DEMVC
17Registered trademark.

Fig. 3. Clustering results ACC and NMI of DANMF-MRL with a different
number of layers on five datasets.

Fig. 4. Clustering results ACC and NMI of OS-DANMF-MRL with a
different number of layers on five datasets.

layer size is set as [50], [50, 100], [50, 100, 200], and [50, 100,
200, 300], respectively. From Figs. 3 and 4, we can see that
the multilayer methods perform better than the single-layer
method on all datasets, whether in ACC or NMI. This indicates
that deep models may discover the hidden hierarchical infor-
mation of data, so it has stronger representation ability than the
shallow models. At the same time, we can find that when the
depth of the models increases, the performance will initially
increase until the peak performance is reached. After that, due
to overfitting, when the depth of the model further increases,
the performance will decrease. Thus, we need to select the
appropriate number of layers for different datasets. More
specifically, we adopt a two-layer DANMF-MRL structure
for BBCSports, MSRCV1, and Leaves, a three-layer structure
for Washington, and a four-layer structure for ALOI datasets.
Also, for the OS-DANMF-MRL, we configure a two-layer
structure for the Washington, BBCSports, MSRCV1, and
ALOI, and a three-layer structure for Leaves datasets.

2) Influence of the Graph Regularization and Weights Dis-
tribution: To evaluate the influence of different components in
the proposed models, we investigate two important hyperpa-
rameters λ and γ. Specifically, λ and γ control the contribution
of the graph regularization and distribution for the fusion
weights α on different views, respectively. λ is chosen from
the range {0.01, 0.1, 0.1, 10, 100, 1000} and γ is chosen from
the range {1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} according to the grid
search strategy. Taking a document dataset Washington and
an image dataset ALOI as examples, as shown in Fig. 5,
we can observe that DANMF-MRL is sensitive to the change
of λ but is relatively stable with varying γ, which shows the
importance of considering graph regularization. From Fig. 6,
we can find that when λ is set to a relatively small value
and γ is set to a relatively large value, OS-DANMF-MRL can
achieve better performance in most cases. This further verified
that the performance of OS-DANMF-MRL is relatively robust
to hyperparameters tuning.

D. Experimental Results and Analysis

In order to demonstrate the superiority of DANMF-MRL
and OS-DANMF-MRL over the comparison techniques,
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Fig. 5. ACC and NMI versus parameters λ and γ of DANMF-MRL on (a) Washington dataset and (b) ALOI dataset.

Fig. 6. (a) ACC and NMI versus parameters λ and γ of OS-DANMF-MRL on (a) Washington dataset and (b) ALOI dataset.

TABLE III
CLUSTERING PERFORMANCE ON THE WASHINGTON DATASET (MEAN ± STANDARD DEVIATION %)

TABLE IV
CLUSTERING PERFORMANCE ON THE BBCSPORTS DATASET (MEAN ± STANDARD DEVIATION %)

we carried out various experiments in this section. On five
benchmark multiview datasets, we show extensive clustering
performance in Tables III–VII, and the bold numbers in

each column show the performance that is greatest for
the corresponding dataset. In Table VII, “N/A” indicates
that the MCDCF encountered an out-of-memory issue on
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TABLE V
CLUSTERING PERFORMANCE ON THE MSRCV1 DATASET (MEAN ± STANDARD DEVIATION %)

TABLE VI
CLUSTERING PERFORMANCE ON THE LEAVES DATASET (MEAN ± STANDARD DEVIATION %)

TABLE VII
CLUSTERING PERFORMANCE ON THE ALOI DATASET (MEAN ± STANDARD DEVIATION %)

our device. Based on the results, we have the following
observations.

1) In general, compared to most baselines, the proposed
DANMF-MRL and OS-DANMF-MRL offer quite
competitive and steady clustering performance.

In particular, compared with the second-best approach
PSDMF on the BBCSports dataset, our methods achieve
improvements around 2%, 4%, and 7% in terms of ACC,
NMI, and AR, respectively. For the Leaves dataset,
our methods outperform the second-best approach

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on September 09,2023 at 22:08:43 UTC from IEEE Xplore.  Restrictions apply. 



HUANG et al.: COMPREHENSIVE MRL VIA DEEP AUTOENCODER-LIKE NMF 13

Fig. 7. Convergence curves about the proposed DANMF-MRL on five
multiview datasets. (a) Washington. (b) BBCSports. (c) MSRCV1. (d) Leaves.
(e) ALOI.

MCDCF by 6%, 4%, and 6% in terms of average
ACC, Purity, and AR. This indicates that by using deep
autoencoder structures to consider the consistency and
complementarity of multiple views, our approaches can
learn more comprehensive representations to improve
the clustering performance.

2) From a holistic perspective, OS-DANMF-MRL per-
forms better than DANMF-MRL in most cases. Taking
the Washington and MSRCV1 datasets for example,
OS-DANMF-MRL achieves 1.3% and 1.14% higher
than DANMF-MRL on the ACC metric. We think that
the possible reason is that OS-DANMF-MRL unifies
representation matrix learning and partition genera-
tion closely, which can exploit the clustering structure
of multiview data effectively. Moreover, OS-DANMF-
MRL has a smaller standard deviation than the method
on all datasets. This is because OS-DANMF-MRL does
not need to use k-means for clustering, which reduces
the impact caused by the random initialization of cluster
centers.

3) Our proposed methods are remarkably higher than the
performance attained from three single-view approaches:
1) NMF; 2) NSED; and 3) DANMF. We think that the
potential reason is that the strategy of simply concate-
nating multiview features into a lengthy vector ignores
the fact that these views are constructed from various
feature spaces with different statistical distributions.

4) On the five datasets, our methods typically outper-
form CNN-based techniques such as CNN-MVC and
DEMVC. We believe that two factors may have con-
tributed to this: 1) they did not consider the nonneg-
ative structure of the data, particularly for text data
(i.e., Washington and BBCsports dataset), and 2) our
methods automatically fuse various views’ representa-
tions via updatable weights, as opposed to their direct
addition of partitions from different views.

E. Convergence Study and Running Time Analysis

According to the description in Section III-F, we have
demonstrated that the updating rules for optimizing the
proposed objective are convergent. Here, we experimentally
examine the speed of convergence for these rules. The
convergence curves about the proposed DANMF-MRL and
OS-DANMF-MRL are shown in Figs. 7 and 8, respectively.
The vertical axis for each figure represents the objective value,
and the horizontal axis is the number of iterations. From
Figs. 7 and 8, it can be observed that although DANMF-MRL
is a little faster than OS-DANMF-MRL on the Washington
dataset, the two methods have similar convergence speed
on other datasets. In general, two methods can achieve fast

Fig. 8. Convergence curves about the proposed OS-DANMF-MRL on five
multiview datasets. (a) Washington. (b) BBCSports. (c) MSRCV1. (d) Leaves.
(e) ALOI.

Fig. 9. Relative running time of the different approaches on five datasets.
The empty bar means that the corresponding approach is out of memory on
that dataset.

convergence within about 90 iterations, further showing the
rationality of our theoretical analysis.

In order to assess the computational efficiency of the
presented algorithms, Fig. 9 shows the running time of the dif-
ferent deep learning-based MRL algorithms on all benchmark
datasets. As shown in Fig. 9, our methods outperform most
approaches (AE2-Nets, SURE, CNN-MVC, and DEMVC) in
terms of running time, illustrating the proposed methods’
computational effectiveness. Although MCDCF has the least
running time in the Washington dataset, it is difficult to handle
large-scale data problems due to its high complexity, such as
ALOI dataset. As a consequence, theoretical and experimental
results indicate that our methods are highly effective for MRL.

V. CONCLUSION

MRL is an essential task in many real-world applications.
In this article, we propose a novel DANMF-MRL model
to learn a comprehensive embedding representation matrix.
Through the multilayer encoder and decoder, DANMF-MRL
can exploit the consistency and complementary properties of
multiview data in a unified optimization framework. Taking a
step further, we introduce a one-step version of DANMF-MRL
to address the unsatisfactory clustering performance caused
by the multistage separated clustering approach. Two effi-
cient optimization algorithms with convergence analysis are
designed to solve our proposed models. Experimental compar-
isons on five multiview benchmark datasets demonstrate the
effectiveness and superiority of our methods over state-of-the-
art methods. Considering that the real-world multiview data
may contain missing data in some views [62], [63], in future
works, we will improve the robustness of the DANMF and
extend it to tackle the incomplete multiview learning problem.
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