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ABSTRACT 

 
A combined sewer system (CSS) collects rainwater runoff, domestic sewage, and industrial 

wastewater in the same pipe. The volume of wastewater can sometimes exceed the system 
capacity during heavy rainfall events. When this occurs, untreated stormwater and wastewater 
discharge directly to nearby streams, rivers, and other water bodies. This would threaten public 
health and the environment, contributing to drinking water contamination and other concerns. 
Minimizing sewer overflows requires an optimization method that can provide an optimal 
sequence of decision variables at control gates. Conventional strategies use classical 
optimization algorithms, such as genetic algorithms and pattern search, to find the optimal 
sequence of decision variables. However, these conventional frameworks are very time-
consuming, and it is almost impossible to achieve near real-time optimal control. This paper 
presents a faster optimization framework by using a new optimal control tool: reinforcement 
learning. The environment (flow modeler) used in this paper is the numerical model: 
Environmental Protection Agency’s Storm Water Management Model (EPA SWMM) to 
ensure the accuracy of environment response. The reward function is constructed based on the 
calculated water depth and overflow rate from SWMM. The process keeps minimizing the 
reward function to obtain the optimal flow release sequence at each controlled orifice gate. The 
combined sewer system (CSS) of the Puritan-Fenkell 7-mile facility in Detroit, MI, is chosen 
as the case study. 
 
INTRODUCTION 

 
A combined sewer system collects rainwater runoff, domestic sewage, and industrial 

wastewater in the same pipe. The volume of wastewater can sometimes exceed the system 
capacity during heavy rainfall events. When this occurs, untreated stormwater and wastewater 
discharge directly to nearby streams, rivers, and other water bodies. The combined sewer 
overflows would threaten public health and the environment, contributing to drinking water 
contamination and other concerns. With the increasing frequency and intensity of storms due to 
climate change (Ezer and Atkinson 2014; Miller and Hutchins 2017; Mounce et al. 2020; NASA 
2017), the possibilities and risks of sewer overflow are also increasing. The cost of stormwater 
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flooding in the United States is estimated at billions of dollars per year, including human body 
damage and property loss (Smith and Katz 2013). 

Most current sewer infrastructure does not have the full capability to handle dynamic storm 
events and rapid changes in runoff volumes (Saliba et al. 2020). To retrofit the storm system, 
many researchers have shown that real-time active control could provide a promising solution 
(Mynett and Vojinovic 2009; Kerkez et al. 2016; Mullapudi et al. 2019). Real-time control 
showed significant performance improvement in flood mitigation compared to passive control 
(Jin et al. 2020). Using active control to minimize sewer overflows requires an optimization 
approach to obtain the optimal sequence of decision variables at control units. Conventionally, 
classical optimization algorithms, for example, genetic algorithms and pattern search, were 
adapted to minimize the objective function in order to achieve optimal control (Leon et al. 2020; 
Leon et al. 2021). However, these conventional frameworks are very time-consuming, and it is 
almost impossible to achieve near real-time optimal control. 

Machine learning is a fast-rising strategy that can solve problems in an ultrafast manner. 
Many studies have adapted machine learning or deep learning to solve the water resource 
management problem in the past years (Sadler et al. 2018; Sajedi‐Hosseini et al. 2018; Zhao et 
al. 2019; Abdalla et al. 2021; Adnan et al. 2021; Yin et al. 2022; Li et al. 2022). Reinforcement 
learning (RL), a type of machine learning that learns from trial and error, is an emerging 
approach to optimization problems. RL has been successfully adapted in many famous fields for 
years (AlphaGo, Automated driving) (Chen 2016; Sallab et al. 2017; Kiran et al. 2021). The RL 
does not know the optimal answer but keeps trying different actions. The actions are delivered to 
the environment, and RL tries to maximize the rewards that are based on the environment 
feedback. Many researchers have tried this promising approach in water resource engineering. 
RL has been used in multi-objective reservoirs in many studies, and the results show RL has 
better performance than conventional optimization algorithms (Pianosi et al. 2013; Delipetrev et 
al. 2017). Hajgató et al. (2020) adapted deep reinforcement learning (deep Q learning) for real-
time pump optimization in water distribution systems. Several pieces of research have also 
shown that reinforcement learning shows superior performance when compared with passive 
control (rule-based on control law) in coastal area storm flood mitigation (Saliba et al. 2020; 
Bowes et al. 2021; Mullapudi and Kerkez 2018). 

In this work, reinforcement learning is adapted to the real-world combined sewer system to 
minimize sewer overflows. The previous flood mitigation studies were only conducted in a very 
small ideal domain with only a few elements (one or two catchments with one or two junctions 
and control units). The key factor that the previous literature used to achieve significantly better 
performance is that they added a non-existing hypothetical huge capacity retention pond into the 
system. That hypothetical pond can provide a lot more space to temporarily restore the water 
volume during extreme stormwater events. This work will be the first study to test the RL 
performance in a real-world combined sewer system with no hypothetical hydraulic structure. 
Every structure was already there in the real world. Thus, the performance of RL is more realistic 
and instructive. Furthermore, this work employs a novel and emerging deep reinforcement 
learning algorithm: Deep Deterministic Policy Gradient (DDPG). The DDPG performance will 
be compared with other reinforcement learning algorithms in this paper. Lastly, to test and 
compare its overflow mitigation performance, conventional rule-based control was also 
conducted and reported in this paper. 
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METHODOLOGY 
 
Study area 

 
Detroit (42.3314° N, 83.0458° W) is the largest and most populous city in the U.S. state of 

Michigan and the largest U.S. city on the United States–Canada border. Flood prediction and 
mitigation for urban areas are crucial. The Puritan Fenkell/Seven-Mile Collection System 
(PFSMC), is located on the northwest side of Detroit, Michigan. The sewer prototype for this 
work is the Puritan Fenkell/Seven-Mile Collection System (PFSMC), located on the northwest 
side of Michigan. The PFSMC system, owned by the Great Lakes Water Authority (Detroit, 
Michigan), is a relatively isolated system comprising two CSO treatment facilities. These 
facilities were designed to capture and treat small storms and provide screening, settling, 
skimming, and disinfection before overflowing into the local river for more significant storms. 
The schematic of the study region, sub-catchment division, and impervious percentages is shown 
in Fig. 1a. 

The combined sewer system (PFSMC in this paper) simulation was carried out by The U.S. 
Environmental Protection Agency’s Stormwater Management Model (EPA SWMM) version 5.1. 
The schematic of the SWMM model is shown in Fig. 1b, c, and d. Due to the complexity of the 
system, the SWMM model consists of 19 sub-catchments, 37 junctions, 6 outfalls, 4 storage 
units, 38 conduits, 3 pumps, 7 orifices, and 4 weirs. The two most downstream sides (located at 
the upper right and lower right in Fig. 1c) were defined as outfalls, and most hydraulic structures, 
including pumps, orifices, and weirs, are located upstream of the outfall. After running the 
simulation for multiple return periods of rainfall, all the key locations that potentially have nodal 
flooding are marked in Fig. 1b. The hydraulic information in these locations will be used to 
construct the reward function in the following sections. 

In any combined sewer system, wastewater may discharge to the other water bodies if the 
volume of water in the system exceeds a certain amount. Under this situation, untreated water 
may go directly to the other water bodies that cause CSOs. Fig. 1c shows the outfall 
information at the two most downstream locations. Water can potentially flow both to the 
wastewater treatment plant and rivers, which caused the CSOs. More specifically, on the upper 
right downstream side, JCT 3090 is connected to the wastewater treatment plant for the sewer 
water, and Outfall 65 is connected to the outside river system. Similarly, on the lower right 
downstream side, JCT 2112 is connected to the wastewater treatment plant for the sewer water, 
and Outfall 54 is connected to the outside river system. In PFSMC, two water divider systems, 
consisting of weirs, orifice, pumps, and storage units, are used to control the CSOs. However, 
the untreated water could still go through outfalls 65 and 54 under heavy stormwater 
conditions. 

Finding the control units is always the first step in any optimal control problems. In our test 
case: Puritan Fenkell/Seven-Mile Collection System (PFSMC), 7 gated orifices are ideally to 
serve as the control units. The location of these 7 gated orifices is shown in Fig. 1d. Three gated 
orifices (O35281B, O1360, O1360B) are majorly used to control the CSOs in the upper half, and 
the other three (O35291B, O3530, O3530B) are majorly used to control the CSOs in the lower 
half. The Orifice (O35262) sits on the only pipeline that connects the upper and lower half of the 
system so that can significantly help to distribute the water amount in the upper and lower half of 
the system. 

World Environmental and Water Resources Congress 2023 713

© ASCE

 World Environmental and Water Resources Congress 2023 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Fl
or

id
a 

In
te

rn
at

io
na

l U
ni

ve
rs

ity
 o

n 
09

/0
9/

23
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 1. (a) Schematic of sewer prototype study area (top left), sub-catchment division 
(top middle), and impervious percentages (top right); (b) Key positions that potentially 

have nodal flooding in the SWMM model; (c) Detailed information on the downstream; (d) 
The location of the gated orifice. 

 
SWMM model setup and rainfall data 

 
The accuracy of environment response is critical in any optimization problem. Using 

forecasting machine learning models could extremely speed up the process, however, it is also 
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risky in terms of reliability because the accuracy of environment response is hard to guarantee. 
Thus, the conventional numerical model, SWMM, is used as the environment (flow modeler) in 
this paper. To get the most achievable accurate simulation results, our SWMM model is 
calibrated and validated by ten events occurring between 9/22/2016 and 6/24/2017. To test the 
performance of reinforcement learning, the SWMM model is run from 6/2/2018 to 6/5/2018, 
however, the rainfall data used in the model is the hypothetical 25-year return period rainfall 
rather than the real historical rainfall. 

The rainfall data were generated by using the Detroit local Intensity Duration Frequency 
(IDF) curve. According to the City of Detroit Water and Sewerage Department (2018), the local 
rainfall characteristics correspond to the NOAA Atlas 14 Precipitation-Frequency Atlas of the 
United States. Thus, the local IDF is expressed by Eq. (1). Natural Resources Conservation 
Service (NRCS) Midwest-Southeast (MSE) type 3 was used to get the continuous rainfall 
distribution based on the instruction of [30]. 

 

𝑖 =
38.4164𝑇0.2082

(12.3258 + 𝐷)0.8405
 (1) 

 
where i denotes rainfall intensity in inches per hour, T represents the return period in years, and 
D stands for the rainfall duration in min. 
 
Control strategies 

 
For any optimal control problems, a closed loop with the signal transfer of actions and states 

is necessary. The schematic of the optimization framework using reinforcement learning is 
shown in Fig. 2. At the beginning of the optimization, reinforcement learning will first initiate a 
set of actions (position of control units) and pass it to the environment (pyswmm). The 
environment will run the model based on the position of control units given from the 
reinforcement learning, and provide the observation (hydraulic information including depth, flow 
rate, etc.). The pre-defined reward function will take the observation results to construct a 
magnitude reward value, and the reward value will be sent back to reinforcement learning. 
Reinforcement learning will evaluate the reward value and provide other actions in order to 
maximize the reward. The optimal sequence on the control units will be found after thousands of 
iterations. 

DDPG, a novel and emerging deep reinforcement learning algorithm, is used as the major 
algorithm in this paper. The DDPG is an actor-critic algorithm, which has two networks: actor 
and critic. The actor network can provide the mean action to keep trial-and-error. The critic 
network will take the current step action and the next step observation, and it will use temporal 
differences error to judge if the quality of the current step action, 𝜇. The observation will be 
passed to both the actor network and the critic network. The actor network will give an action 
mean vector after the observation information passes to the actor network. The critic network 
will take both mean action and the observation value to update the Q value based on the error of 
the temporal differences. In the training phase, the target of the critic network can be expressed 
as Eq. (2), and the target of the actor network can be expressed as Eq. (3). 

 
𝑦𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾 ∙ 𝑄(𝑠𝑡+1, 𝜇(𝑠𝑡+1))                                           (2) 
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∇𝜃𝜇𝐽 ≈ 𝔼𝑠𝑡[∇𝑎𝑄(𝑠, 𝑎) ∙ ∇𝜃𝜇𝜇(𝑠)]                                                (3) 
 

Where 𝑟(𝑠𝑡, 𝑎𝑡) refers to the reward function of current step states and actions, 𝛾 stands for a 
discount function with the range of [0, 1], 𝑄 represents the critic function that is constructed in 
the critic network, 𝐽 is the initial distribution of the parameters, and ∇ mean the gradient that can 
be calculated based on the chain rule. 

 

 
 

Figure 2. Schematic of the optimization framework 
 

The reward function is critical because it is the only parameter that reinforcement learning 
evaluates. From the water resource engineering perspective, eliminating CSOs is ideal, however, 
completely closing the waterway to the river will cause extreme flooding on nodes. To avoid this 
situation, the water depth on all nodes needs to be controlled within a safety range. This paper 
considers 2 feet from the maximum allowable depth as the safety limit. Thus, nodal water depth 
could serve as parameter to control nodal flooding. Two weirs are located upstream of outfall 54 
and 65. The CSOs rate is actually equal to the flow rate through two weirs. Thus, the flow rate 
through the weir could be served as parameter to control the CSOs rate. By combining both 
points, the reward function is constructed based on the nodal water depth and flow rate through 
the weir. Since nodal flooding could result in more serious damage than CSOs, we need to give it 
a higher priority to avoid it. The mathematical expression of the reward function on the single 
timestep could be written as Eq. (4). 

 

𝑟𝑒 = −𝑤1∑𝑊𝐷𝑖 − (𝑊𝐷lim⁡_𝑖 − 2)

𝑛

𝑖=1

⁡− 𝑤2∑𝑊𝑒𝑖𝑟_𝑓𝑙𝑜𝑤𝑗

𝑚

𝑗=1

 (4) 

 

World Environmental and Water Resources Congress 2023 716

© ASCE

 World Environmental and Water Resources Congress 2023 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Fl
or

id
a 

In
te

rn
at

io
na

l U
ni

ve
rs

ity
 o

n 
09

/0
9/

23
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



Where 𝑟𝑒 denotes reward value, 𝑤1 denotes the weights to control nodal flooding, 𝑊𝐷 
stands for the SWMM model calculated water depth, 𝑊𝐷lim⁡ represents maximum allowable 
nodal water depth, 𝑛 is the total number of manholes, 𝑤2 denotes the weights to control the CSO, 
𝑊𝑒𝑖𝑟_𝑓𝑙𝑜𝑤𝑗 denotes the flow rate through the weir. 
 
RESULT AND DISCUSSION 
 
Reinforcement Learning Performance on 10-year return period rainfall event 

 
In this section, 10-year return period rainfall is used as the precipitation event in the SWMM 

model. The comparison of CSOs rate between active control by reinforcement learning and rule-
based passive control is shown in Fig. 3a. 10-year rainfall is a good choice for the baseline case 
because it can significantly show the difference between active control and passive control. As 
shown in Fig. 3a, CSOs occur on both downstream positions, weir 35391 and 35444, based on 
the rule-based control. However, these CSOs can be eliminated by optimal control. As the 
orange and red lines show, the CSO rates keep zeros for the entire event period. Also, the 
accumulated reward value is also zero, which indicates both CSOs and nodal flooding did not 
occur in the entire period. The optimal orifice gate position is shown in Fig. 3b. The gate position 
changes occurred in the entire period, and it changes more rapidly during the time periods with 
high rainfall intensity. From the optimal gate position, we can see that reinforcement learning 
can control the orifice gate much more precisely. Conventional rule-based control is unable to 
achieve gate operation with such high precision. 
 
Reinforcement Learning Performance on various return period rainfall events 

 
The comparison of CSOs rate between control by active reinforcement and rule-based 

passive control for various rainfall events is shown in Fig. 4. As Fig. 4 shows, CSOs are found in 
all the rainfall events when using rule-based control. It also makes sense that the CSOs rate 
under rule-based control increases with the increase in rainfall intensity because higher rainfall 
intensity results in a larger amount of water in the system. For mild to middle levels of rainfall 
intensity, less than 15-year rainfall, reinforcement learning can eliminate all CSOs without 
causing any nodal flooding. However, as the intensity increases, optimization results from 
reinforcement learning cannot always be perfect. The CSOs will occur on the upper half of the 
system through weir 35444 even when using reinforcement learning. However, the peak value of 
CSOs rate is minimized by around a half in 20 and 25-year rainfall. Additionally, the total 
volume of CSOs is significantly minimized to nearly 1/10 of rule-based control results. This 
could potentially relieve property loss and health issues under extreme events. Lastly, there is no 
nodal flooding found in the system for all rainfall events because it is constrained by a larger 
weight. 
 
Performance comparison among various reinforcement learning algorithms 

 
Reinforcement learning, as one of three basic machine learning paradigms besides supervised 

and unsupervised learning, has multiple algorithms to choose from in this project. Since both 
actions and observations are classified as the continuous numbers, three more acceptable 
algorithms can be used to test the performance: Proximal Policy Optimization (PPO), Advantage 
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Actor Critic (A2C), Soft Actor Critic (SAC). To make the comparison fair, the weight on nodal 
flooding terms is large enough so that there is no nodal flooding found in this section. The 
comparison of CSOs rate among four different reinforcement learning algorithms are shown in 
Fig. 5. All reinforcement learning algorithms can solve the CSOs issue for the lower half of the 
system (CSOs through weir 35391), however, they showed major differences in the upper half 
system (CSOs through weir 35444). Although PPO algorithm can solve the CSOs issue through 
weir 35391, it provided an even worse CSOs rate than rule-based control in the upper half 
system. DDPG, one of the novel and emerging algorithms, provided the best performance, and it 
can solve the CSOs in the entire computational domain. A2C and SAC showed much better 
performance than the rule-based control, even though they cannot completely eliminate the 
CSOs in the system. 

 

 
(a) 

 
(b) 

 
Figure 3. Optimal Control on 10-year return period stormwater event. (a) Comparison of 

CSOs rate between RL and rule-based control; (b) Optimal gate Position 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4. Comparison of CSOs rate between RL and rule-based control on various return 

period rainfalls: (a) 5-year return period; (b) 15-year return period; (c) 20-year return 
period; (d) 25-year return period. 
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(a) 

 
(b) 

 
Figure 5. Comparison of CSOs among different reinforcement learning algorithms for 15-
year return period rainfall: (a) CSOs through weir 35391; (b) CSOs through weir 35444. 

 
CONCLUSION 

In conclusion, reinforcement learning was applied to the real-world combined sewer system, 
Puritan Fenkell/Seven-Mile Collection System, to test the active control performance. Seven 
orifice gates in the system were chosen to serve as the control unit. The key conclusions are as 
follows: 

• Reinforcement learning shows the ability to actively control the gate at a high precision 
and complexity level, while rule-based control is hard to achieve. These results showed 
that reinforcement learning is able to handle and eliminate CSOs in the more intense 
rainfall event. 

• Reinforcement learning can fully eliminate the CSOs for the rainfall event with less than 
20-year return period. As the rainfall intensity increases, reinforcement can only 
minimize the CSOs and reduce the loss. 

• By comparing multiple reinforcement learning algorithms, we found that DDPG shows 
the best performance in our cases. That also matches the expectation of many researchers, 
which stated that the DDPG algorithm is recommended for time-series optimal control 
problems. The performance rank from best to worse is DDPG, SAC, A2C, and PPO. 
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