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ABSTRACT 

 
Shallow water equations (SWE) are the governing equations for the open channel flow. The 

numerical solution is widely considered the most effective approach for solving the SWE in the 
past few decades. However, numerical solutions are inefficient and need to compromise many 
aspects, such as order of scheme accuracy, Courant numbers, boundness, etc. In recent years, 
deep learning (DL) has been one of the rapidly rising techniques that have been widely used in 
the engineering field. DL models can bridge approximation relations between input and output 
variables by conducting multiple elementary operations constructed by artificial neural networks. 
Many researchers achieved success in hydrology and hydraulic problems by using DL models. 
However, there are still some drawbacks to the previous DL models. These DL models are often 
purely empirical and not constrained by real physics, which may cause a larger prediction error 
when test conditions are not included in the training data set. Besides, training this model 
requires big data, which is mostly expensive in hydrology and hydraulic problems. In this paper, 
we will introduce a novel and data-free neural network framework that can solve the SWE. The 
architecture of the framework will be demonstrated in detail, and the framework can be applied 
to any SWE problems. Additionally, we employed a numerical solver, HEC-RAS, as reference to 
verify the solution accuracy. As a result, this framework shows great agreement with numerical 
solutions. 

INTRODUCTION 
 

Shallow water equations (SWEs), derived from depth-averaged Navier Stroke equations, are 
the governing equations for all open channel flow problem by its nature (Brunner 2002; Zhou 
1995; Stansby and Zhou 1998). SWEs belongs to hyperbolic partial differential equations 
(PDEs). Since most PDEs are proven that have no analytical solution, the numerical approaches 
are widely used to the best method for solving these PDEs (Eivazi et al. 2022; Huang et al. 
2022). However, numerical solutions are inefficient and need to compromise many aspects, such 
as order of scheme accuracy, Courant numbers, boundness, etc. In recent years, many researchers 
have investigated on new techniques to solve the non-linear PDEs for conventional engineering 
problems. Deep learning (DL) is one of the rapidly rising and latest techniques that have been 
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widely used in the engineering field. Instead of solving PDEs directly, DL can bridge 
approximation relations between input and output variables by conducting multiple elementary 
operations constructed by artificial neural networks (ANN). The loss function is normally 
constructed to describe the difference between ANN outputs and observational ground truth. An 
optimizer will be used in the models to minimize the loss value. By minimizing the loss function, 
ideally to zero, through various optimizations, the ANN model can predict the very close result 
to real solutions. 

In water resource engineering problems, may researchers achieved great success by using 
this end-to-end, black-box DL model (Yin et al. 2022, Zhang et al. 2020, Zahura et al. 2020, 
Adnan et al. 2021, Tamiru and Dinka 2021). However, this black-box data-driven DL model 
have several drawbacks. Firstly, it requires a large amount of on-site monitoring data for 
training. Lack amount of data will significantly harm the model accuracy. However, such amount 
of on-site monitoring data is mostly very expensive to obtain in most water systems. This type of 
data-driven model will not even work if there is no data for feeding. Secondly, since this type of 
ML is a pure black box model, the computation process is almost impossible to be interpreted 
and transferred to human knowledge. This situation is often described as “data rich, knowledge 
poor” (Iskhakov and Dinh 2020). Lastly, many of these DL models are not real physics-based 
models even most of them are using physical parameters. In real physics-based models, the input 
variables need to be sufficient, which is sometimes hard to achieve in many cases. Besides, since 
there is not any constraints during the optimization process, the regression results may become 
nonsense when using insufficient input variables. This problem is more obvious when facing a 
complicated problem. 

To overcome this problem, a new class of deep learning: Physic-informed Neural Networks 
(PINN) was composed in recent years (Cai et al. 2022). Instead of minimizing L1 or L2 norm 
from training data, PINN minimizes the L1 or L2 norm of the loss function that is constructed by 
the governing equations (PDEs mostly). PINN has achieved great success in many fields, 
including computational fluid dynamics (CFD) (Mao et al. 2020, Yang et al. 2019, Jin et al. 
2021), heat transfer (Cai et al. 2021, Bararnia and Esmaeilpour 2022), etc. My previous research 
is the first paper that coupled PINN with terrain information to solve 1D unsteady SWEs in real 
applications level. The test case is validated by a hypothetical scenario on an artificial channel 
and a historical scenario on downstream Cypress Creek, Houston, TX. The PINN showed a great 
agreement with both water station records and numerical solver (HEC-RAS). 

However, steady flow simulation is more popular in the industry field, and there is no PINN 
framework to solve the steady shallow water problem. Furthermore, using PINN for solving 
steady SWEs have several advantages that unsteady PINN solver cannot achieve. In unsteady 
PINN solver, extrapolation along the spatial direction and temporal direction is the major feature 
that numerical solver cannot achieve. However, the neural network still needs to be trained again 
if a completely different event needs to be simulated. Due to complexity of time series data, 
coupling boundary conditions as input variables for unsteady PINN will become a higher 
dimensional problem, and it is meaningless because it requires an impossible long period for 
training the neural network. This problem does not exist in steady PINN solver because the 
boundary conditions in 1D steady SWEs is scalar, and coupling it as input variable will be much 
less complicated and more realistic. To achieve this objective, this paper will demonstrate the 
structure and mechanism of PINN in details. Tenmile Canal downstream of US 41 in Lee County 
will be used as the case study for validate the model. The numerical solver (HEC-RAS) will be 
used as the reference to test the model performance. 
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METHODOLOGY 
 
Study Area 
 

Tenmile canal is a 20.3 mile stream, which drains an area that starts in Fort Myers and travel 
south to Mullock Creek. In the past decades, it shows high level of environmental diversity. 
However, the floods usually occur in many significant stormwater events. During the heavy 
stormwater event on 08/29/2017 and 04/02/2020, severe flooding scenario was observed, and it 
caused a number of property loss. The Photograph of flooding situation during the stormwater 
event on 08/29/2017 is taken by Mark White, South Florida Water Management District 
(SFWMD) (shown in Figure 1a). Thus, using Tenmile canal, FL as study area is meaningful and 
representative. The terrain information is shown as RAS map format in Figure 1b. The HEC-
RAS used as reference in this paper is built and calibrated by Johnson Engineering, Inc and 
SFWMD. Same digital elevation model and bathymetry data will be used to extract the cross 
sectional terrain shape in steady PINN model. Similar to unsteady PINN model, this steady 
PINN model will also be a data-free model, and will not take any HEC-RAS model to train the 
neural network.  

 

 
(a)  

(b) 
 

Figure 1. (a) Photograph of flooding situation during the stormwater event on 08/29/2017; 
(b) elevation map of the study area: Tenmile canal, FL 

 
PINN framework 

 
The 1D steady PINN frameworks have three steps to solve the problem: forward, loss 

function construction, and backward. The overall PINN framework diagram for 1D SWEs used 
in this paper is shown in Figure 2. In the forward step, a fully connected neural network is 
employed to predict the output: 𝑢̂ and ℎ̂ based on the input: 𝑥 and 𝑄. Since the downstream 
boundary conditions are usually given as friction slope for normal depth, the downstream 
boundary condition does not need to change to simulate different scenario. That is also the 
reason that there is only upstream boundary condition, flow rate: Q, used as input variables in 
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this work. Once the equation outputs, 𝑢̂ and ℎ̂, are predicted, automatic differentiation can be 
used to get two first-order partial derivative terms of outputs: 𝜕𝑞

𝜕𝑥
, and 𝜕ℎ

𝜕𝑥
. Besides, with the 

information of DEM data, the numerical methods are employed to get three hydraulic 
parameters: 𝐴, 𝑅, 𝑃. Since all these elements are available, it is possible to construct the mass and 
momentum of SWEs. Before constructing the loss function, L2 norm operation is added both on 
the shallow water equations and boundary conditions to make sure the loss value is always 
positive in this paper. The L2 norm operation can be expressed as Eq. (1). 

 

‖𝑥‖2 = √∑𝑥𝑘
2

𝑛

𝑘=1

 (1) 

 
where 𝑛 is the total number of sample points. 

In this paper, the loss function is constructed by the summation of four components: loss on 
the mass equation, loss on the momentum equation, loss on the upstream boundary condition, 
and loss on the downstream boundary condition. Once the loss function is constructed, the 
backward process can be conducted. In the backward process, Adam optimizer is employed to 
optimize the loss function. The final loss function value will be sent back to the beginning of the 
framework to achieve a closed-loop optimization. 

 

 
 

Figure 2. Physic-informed Neural Network (PINN) Framework Diagram for 1D Steady 
Shallow Water Equations 
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Numerical Calculations on Hydraulic Parameters 
 

The hydraulic parameters at each cross section are needed in order to construct the SWEs. 
These hydraulic parameters are usually hard to obtain analytically because the shape of the cross 
sections is highly irregular and complex most of the time. To overcome this problem and 
generalize the framework, a numerical method based on DEM data is used in this work to obtain 
the hydraulic parameters: 𝐴, 𝑅, 𝑃. From the DEM data, we can get a finite number of sample 
points depending on the DEM resolution. Each sample point contains two values: [x, y] where x 
represents the cross-sectional distance from the start point, and y stands for the elevation on these 
sample points. To simplify the numerical calculation, the x-axis is transformed from the original 
position to the predicted water depth by subtracting the entire elevation value from the predicted 
water depth. The transformation for numerical calculations is illustrated in Figure 3. 

 

 
 

Figure 3. Transformation for Numerical Method to Calculate Hydraulic Parameters 
 

After the transformation, all sample points with positive elevation values can be ignored. The 
remaining sample points, from 𝑁𝑘 to 𝑁𝑚 as shown in Figure 3, are used for the numerical 
calculation. By applying the trapezoidal rule, the cross-sectional wetted area can be expressed as 
Eq. (2). The wetted perimeters can be written as the summation of the truncated length of all 
neighboring points, which is expressed as Eq. (3). The hydraulic radius, expressed as Eq. (4), is 
from simply dividing cross-sectional wetted area by wetted parameters. Since water free surface 
is always parallel to the x-axis, the top width can be calculated by a simple subtraction between 
the first and the last used points, which is expressed as Eq. (5). 

 

𝐴 = −∑
(𝑦𝑖+1 + 𝑦𝑖) + (𝑥𝑖+1 − 𝑥𝑖)

2

𝑚−1

𝑖=𝑘

 (2) 
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𝑃 = ∑ √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2
𝑚−1

𝑖=𝑘

 (3) 

 

𝑅 =
𝐴

𝑃
 (4) 

 
𝐵 = 𝑥𝑚 − 𝑥𝑘                                                               (5) 

 
Automatic Differentiation 
 

The differentiation in the conventional numerical methods is approximately calculated by the 
discretization, and its accuracy are highly dependent on the order of scheme. Furthermore, it 
could cause many problems during this procedure, such as convergence, conservativeness, 
boundness, and transportive. One of the benefits of neural networks is that the partial derivatives 
can be calculated easily by automatic differentiation. Thus, these problems do not exist in this 
framework. Automatic differentiation used in this framework can calculate the partial derivatives 
of neural network outputs evaluating their trace of composition. Since the computations in the 
neural networks consist of a finite set of elementary mathematical operations, the values in each 
elementary operation are known, and its derivatives can be calculated. Thus, the first-order 
partial derivatives of the neural network outputs, 𝜕𝑞

𝜕𝑥
 and 𝜕ℎ

𝜕𝑥
, can be calculated by forward 

propagating the derivatives of each elementary mathematical operations. A reserve mode of 
automatic differentiation is applied to obtain the derivatives of any constructed variables, which 
is also used during the backward optimization process. 

RESULT AND DISCUSSION 

Streamwise water stage prediction 

The water stage prediction for upstream flow rate of 31 m3/s from 1D steady PINN model is 
shown in Figure 4. The model results matches numerical solver (HEC-RAS) very well. If HEC-
RAS results is used as ground truth, the mean absolute error for PINN model is 0.0238 m, and 
the root mean square error is 0.0042 m. 

 
Figure 4. Water stage prediction along streamwise direction when upstream flow rate is 31 

m3/s. 
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Extrapolation on upstream boundary conditions 
 

The upstream flow rate used in training phase is ranged from 15-31 m3/s. By the feature of 
neural networks, we could extrapolate results from different upstream flow rate as the test case. 
The water stage prediction for upstream flow rate of 32 m3/s is shown in Figure 5. As Figure 5 
shows, the accuracy of extrapolation is not very different from the trained case, which matches 
the expectation because the upstream boundary flow rate is coupled as the input variables in our 
framework. 

 
Figure 5. Extrapolated water stage prediction along streamwise direction when upstream 

flow rate is 32 m3/s 
 

CONCLUSION 
 

In conclusion, this paper presented and tested a Physic-informed Neural Network (PINN) for 
solving the 1D steady shallow water equations with coupled upstream flow rate as input variable. 
The framework is tested by using Tenmile Canal downstream of US 41 in Lee County, FL, and 
the results showed a good agreement with numerical solver. The results also matched very well 
with HEC-RAS solutions in terms of extrapolation. One of the advance of this framework 
compared to other PINN models is that it converts the upstream boundary conditions into the 
input variables in the neural network so that it achieve the situation called “one training for all 
scenarios”. In the future work, this framework are suggested to be applied on more complex 2D 
shallow water equations and it is able to visualize the 2D flood area.  

 
NOMENCLATURE 

 
Shallow water equations SWEs 

partial differential equations PDEs 
Machine learning ML 

Deep learning DL 
Artificial neural networks ANN 

Physic-informed Neural Network PINN 
Computational fluid dynamics CFD 

Digital elevation model DEM 
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Wetted cross sectional area 𝐴 
Wetted perimeter 𝑃 
Hydraulic radius 𝑅 

Top width of river 𝐵 
Water depth ℎ 

Predicted water depth ℎ̂ 
Cross sectional velocity 𝑢 

Predicted cross sectional velocity 𝑢̂ 
Cross sectional flow rate Q 

Mean squared error MSE 
Exponential linear unit ELU 
Boundary conditions B.C. 

Hydrologic Engineering Center's River 
Analysis System 

HEC-RAS 

Hydrologic Engineering Center's Hydrologic 
Modeling System 

HEC-HMS 

Mean absolute error MAE 
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