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Abstract
Supervised learning models have been used in
various domains such as lending, college admis-
sion, face recognition, natural language process-
ing, etc. However, they may inherit pre-existing
biases from training data and exhibit discrimi-
nation against protected social groups. Various
fairness notions have been proposed to address un-
fairness issues. In this work, we focus on Equal-
ized Loss (EL), a fairness notion that requires
the expected loss to be (approximately) equalized
across different groups. Imposing EL on the learn-
ing process leads to a non-convex optimization
problem even if the loss function is convex, and
the existing fair learning algorithms cannot prop-
erly be adopted to find the fair predictor under the
EL constraint. This paper introduces an algorithm
that can leverage off-the-shelf convex program-
ming tools (e.g., CVXPY (Diamond and Boyd,
2016; Agrawal et al., 2018)) to efficiently find the
global optimum of this non-convex optimization.
In particular, we propose the ELminimizer al-
gorithm, which finds the optimal fair predictor un-
der EL by reducing the non-convex optimization
to a sequence of convex optimization problems.
We theoretically prove that our algorithm finds the
global optimal solution under certain conditions.
Then, we support our theoretical results through
several empirical studies.

1. Introduction
As machine learning (ML) algorithms are increasingly being
used in applications such as education, lending, recruitment,
healthcare, criminal justice, etc., there is a growing con-
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cern that the algorithms may exhibit discrimination against
protected population groups. For example, speech recog-
nition products such as Google Home and Amazon Alexa
were shown to have accent bias (Harwell, 2018). The COM-
PAS recidivism prediction tool, used by courts in the US
in parole decisions, has been shown to have a substantially
higher false positive rate for African Americans compared
to the general population (Dressel and Farid, 2018). Ama-
zon had been using automated software since 2014 to assess
applicants’ resumes, which were found to be biased against
women (Dastin, 2018). As a result, there have been several
works focusing on interpreting machine learning models to
understand how features and sensitive attributes contribute
to the output of the model (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Abroshan et al., 2023).

Various fairness notions have been proposed in the liter-
ature to measure and remedy the biases in ML systems;
they can be roughly classified into two categories: 1) in-
dividual fairness focuses on equity at the individual level
and it requires similar individuals to be treated similarly
(Dwork et al., 2012; Biega et al., 2018; Jung et al., 2019;
Gupta and Kamble, 2019); 2) group fairness requires certain
statistical measures to be (approximately) equalized across
different groups distinguished by some sensitive attributes
(Hardt et al., 2016; Conitzer et al., 2019; Khalili et al., 2020;
Zhang et al., 2020; Khalili et al., 2021; Diana et al., 2021;
Williamson and Menon, 2019; Zhang et al., 2022).

Several approaches have been developed to satisfy a given
definition of fairness; they fall under three categories: 1)
pre-processing, by modifying the original dataset such as
removing certain features and reweighing, (e.g., (Kamiran
and Calders, 2012; Celis et al., 2020; Abroshan et al.)); 2) in-
processing, by modifying the algorithms such as imposing
fairness constraints or changing objective functions during
the training process, (e.g., (Zhang et al., 2018; Agarwal et al.,
2018; 2019; Reimers et al., 2021; Calmon et al., 2017)); 3)
post-processing, by adjusting the output of the algorithms
based on sensitive attributes, (e.g., (Hardt et al., 2016)).

In this paper, we focus on group fairness, and we aim to
mitigate unfairness issues in supervised learning using an
in-processing approach. This problem can be cast as a con-
strained optimization problem by minimizing a loss function
subject to a group fairness constraint. We are particularly in-
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terested in the Equalized Loss (EL) fairness notion proposed
by Zhang et al. (2019), which requires the expected loss
(e.g., Mean Squared Error (MSE), Binary Cross Entropy
(BCE) Loss) to be equalized across different groups.1

The problem of finding fair predictors by solving con-
strained optimizations has been largely studied. Komiyama
et al. (2018) propose the coefficient of determination con-
straint for learning a fair regressor and develop an algorithm
for minimizing the mean squared error (MSE) under their
proposed fairness notion. Agarwal et al. (2019) propose an
approach to finding a fair regression model under bounded
group loss and statistical parity fairness constraints. Agar-
wal et al. (2018) study classification problems and aim to
find fair classifiers under various fairness notions includ-
ing statistical parity and equal opportunity. In particular,
they consider zero-one loss as the objective function and
train a randomized fair classifier over a finite hypothesis
space. They show that this problem can be reduced to a
problem of finding the saddle point of a linear Lagrangian
function. Zhang et al. (2018) propose an adversarial de-
biasing technique to find fair classifiers under equalized
odd, equal opportunity, and statistical parity. Unlike the
previous works, we focus on the Equalized Loss fairness
notion which has not been well studied. Finding an EL fair
predictor requires solving a non-convex optimization. Un-
fortunately, there is no algorithm in fair ML literature with
a theoretical performance guarantee that can be properly ap-
plied to EL fairness (see Section 2 for detailed discussion).

Our main contribution can be summarized as follows,
• We develop an algorithm with a theoretical performance

guarantee for EL fairness. In particular, we propose the
(ELminimizer) algorithm to solve a non-convex con-
strained optimization problem that finds the optimal fair
predictor under EL constraint. We show that such a
non-convex optimization problem can be reduced to a
sequence of convex constrained optimizations. The pro-
posed algorithm finds the global optimal solution and
is applicable to both regression and classification prob-
lems. Importantly, it can be easily implemented using
off-the-shelf convex programming tools.

• In addition to ELminimizer which finds the global op-
timal solution, we develop a simple algorithm for finding
a sub-optimal predictor satisfying EL fairness. We prove
there is a sub-optimal solution satisfying EL fairness that
is a linear combination of the optimal solutions to two
unconstrained optimizations, and it can be found without
solving any constrained optimizations.

• We conduct sample complexity analysis and provide a
generalization performance guarantee. In particular, we
show the sample complexity analysis found in (Donini

1Zhang et al. (2019) propose the EL fairness notion without
providing an efficient algorithm for satisfying this notion.

et al., 2018) is applicable to learning problems under EL.

• We also examine (in the appendix) the relation between
Equalized Loss (EL) and Bounded Group Loss (BGL),
another fairness notion proposed by (Agarwal et al., 2019).
We show that under certain conditions, these two notions
are closely related, and they do not contradict each other.

2. Problem Formulation
Consider a supervised learning problem where the train-
ing dataset consists of triples (XXX,A, Y ) from two social
groups.2 Random variable XXX ∈ X is the feature vector (in
the form of a column vector), A ∈ {0, 1} is the sensitive at-
tribute (e.g., race, gender) indicating the group membership,
and Y ∈ Y ⊆ R is the label/output.We denote realizations
of random variables by small letters (e.g., (xxx, a, y) is a re-
alization of (XXX,A, Y )). Feature vector XXX may or may not
include sensitive attribute A. Set Y can be either {0, 1}
or R: if Y = {0, 1} (resp. Y = R), then the problem of
interest is a binary classification (resp. regression) problem.

Let F be a set of predictors fwww : X → R parameter-
ized by weight vector www with dimension dwww.3 If the prob-
lem is binary classification, then fwww(xxx) is an estimate of
Pr(Y = 1|XXX = xxx).4 Consider loss function l : Y ×R→ R
where l(Y, fwww(XXX)) measures the error of fwww in predictingXXX .
We denote the expected loss with respect to the joint proba-
bility distribution of (XXX,Y ) by L(www) := E{l(Y, fwww(XXX))}.
Similarly, La(www) := E{l(Y, fwww(XXX))|A = a} denotes the
expected loss of the group with sensitive attribute A = a.
In this work, we assume that l(y, fwww(xxx)) is differentiable
and strictly convex in www (e.g., binary cross entropy loss).5

Without fairness consideration, a predictor that simply mini-
mizes the total expected loss, i.e., argminwww L(www), may be
biased against certain groups. To mitigate the risks of un-
fairness, we consider Equalized Loss (EL) fairness notion,
as formally defined below.

Definition 2.1 (γ-EL (Zhang et al., 2019)). We say fwww
satisfies the equalized loss (EL) fairness notion if L0(www) =
L1(www). Moreover, we say fwww satisfies γ−EL for some
γ > 0 if −γ ≤ L0(www)− L1(www) ≤ γ.

Note that if l(Y, fwww(XXX)) is a (strictly) convex function in
www, both L0(www) and L1(www) are also (strictly) convex in www.

2We use bold letters to represent vectors.
3Predictive models such as logistic regression, linear regression,

deep learning models, etc., are parameterized by a weight vector.
4Our framework can be easily applied to multi-class classifica-

tions, where fwww(XXX) becomes a vector. Because it only complicates
the notations without providing additional insights about our algo-
rithm, we present the method and algorithm in a binary setting.

5We do not consider non-differentiable losses (e.g., zero-one
loss) as they have already been extensively studied in the literature,
e.g., (Hardt et al., 2016; Zafar et al., 2017; Lohaus et al., 2020).
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However, L0(www) − L1(www) is not necessary convex6. As a
result, the following optimization problem for finding a fair
predictor under γ-EL is not a convex programming,

min
www

L(www) s.t. − γ ≤ L0(www)− L1(www) ≤ γ. (1)

We say a group is disadvantaged group if it experiences
higher loss than the other group. Before discussing how to
find the global optimal solution of the above non-convex
optimization problem and train a γ-EL fair predictor, we
first discuss why γ-EL is an important fairness notion and
why the majority of fair learning algorithms in the literature
cannot be used for finding γ-EL fair predictors.

2.1. Existing Fairness Notions & Algorithms

Next, we (mathematically) introduce some of the most com-
monly used fairness notions and compare them with γ-EL.
We will also discuss why the majority of proposed fair learn-
ing algorithms are not properly applicable to EL fairness.

Overall Misclassification Rate (OMR): It was considered
by (Zafar et al., 2017; 2019) for classification problems. Let
Ŷ = I(fwww(XXX) > 0.5), where I(.) ∈ {0, 1} is an indicator
function, and Ŷ = 1 if fwww(XXX) > 0.5. OMR requires
Pr(Ŷ ̸= Y |A = 0) = Pr(Ŷ ̸= Y |A = 1), which is not
a convex constraint. As a result, Zafar et al. (2017; 2019)
propose a method to relax this constraint using decision
boundary covariances. We emphasize that OMR is different
from EL fairness, that OMR only equalizes the accuracy
of binary predictions across different groups while EL is
capable of considering the fairness in estimating probability
Pr(Y = 1|XXX = xxx), e.g., by using binary cross entropy loss
function. Note that in many applications such as conversion
prediction, click prediction, medical diagnosis, etc., it is
critical to find Pr(Y = 1|XXX = xxx) accurately for different
groups besides the final predictions Ŷ . Moreover, unlike EL,
OMR is not applicable to regression problems. Therefore,
the relaxation method proposed by (Zafar et al., 2017; 2019)
cannot be applied to the EL fairness constraint.

Statistical Parity (SP), Equal Opportunity (EO): For bi-
nary classification, Statistical Parity (SP) (Dwork et al.,
2012) (resp. Equal Opportunity (EO) (Hardt et al., 2016))
requires the positive classification rates (resp. true positive
rates) to be equalized across different groups. Formally,

Pr(Ŷ = 1|A = 0) = Pr(Ŷ = 1|A = 1)

Pr(Ŷ = 1|A = 0, Y = 1) = Pr(Ŷ = 1|A = 1, Y = 1)

Both notions can be re-written in the expectation form us-
ing an indicator function. Specifically, SP is equivalent to
E{I(fwww(XXX) > 0.5)|A = 0} = E{I(fwww(XXX) > 0.5)|A =
1}, and EO equals to E{I(fwww(XXX) > 0.5)|A = 0, Y =
1} = E{I(fwww(XXX) > 0.5)|A = 1, Y = 1}. Since the indi-

6As an example, consider two functions h0(x) = x2 and
h1(x) = 2 · x2 − x. Although both h0 and h1 are convex, their
difference h0(x)− h1(x) is not a convex function.

cator function is neither differentiable nor convex, Donini
et al. (2018) use a linear relaxation of EO as a proxy. 7

However, linear relaxation may negatively affect the fair-
ness of the predictor (Lohaus et al., 2020). To address this
issue, Lohaus et al. (2020) and Wu et al. (2019) develop
convex relaxation techniques for SP and EO fairness criteria
by convexifying indicator function I(.). However, these
convex relaxation techniques are not applicable to EL fair-
ness notion because l(., .) in our setting is convex, not a
zero-one function. FairBatch (Roh et al., 2020) is another
algorithm that has been proposed to find a predictor under
SP or EO. FairBatch adds a sampling bias in the mini-batch
selection. However, the bias in mini-batch sampling distri-
bution leads to a biased estimate of the gradient, and there is
no guarantee FairBatch finds the global optimum solution.
FairBatch can be used to find a sub-optimal fair predictor
EL fairness notion. We use FairBatch as a baseline. Shen et
al. (2022) propose an algorithm for EO. This algorithm adds
a penalty term to the objective function, which is similar to
the Penalty Method (Ben-Tal and Zibulevsky, 1997). We
will use the Penalty method as a baseline as well.

Hardt et al. (2016) propose a post-processing algorithm that
randomly flips the binary predictions to satisfy EO or SP.
However, this method does not guarantee finding an optimal
classifier (Woodworth et al., 2017). Agarwal et al. (2018)
introduce a reduction approach for SP or EO. However, this
method finds a randomized classifier satisfying SP or EO
in expectation. In other words, to satisfy SP, the reduction
approach finds distribution Q over F such that,∑

f∈F Q(f)E{l(Y, f(XXX))|A = 0}
=
∑

f∈F Q(f)E{l(Y, f(XXX))|A = 1}
where Q(f) is the probability of selecting model f under
distribution Q. Obviously, satisfying a fairness constraint in
expectation may lead to unfair predictions because Q can
still assign a non-zero probability to unfair models.

In summary, maybe some of the approaches used for SP/EO
are applicable to EL fairness notion (e.g., linear relaxation
or FairBatch). However, they can only find sub-optimal
solutions (see Section 6 for more details).

Statistical Parity for Regression: SP can be adjusted to
be suitable for regression. As proposed by (Agarwal et al.,
2019), Statistical Parity for regressor fwww(.) is defined as:

Pr(fwww(XXX) ≤ z|A = a) = Pr(fwww(XXX) ≤ z), ∀z, a. (2)
To find a predictor that satisfies constraint (2), Agarwal et
al. (2019) use the reduction approach as mentioned above.
However, this approach only finds a randomized predic-
tor satisfying SP in expectation and cannot be applied to
optimization problem (1).8

7This linear relaxation is applicable to EL with some modifica-
tion. We use linear relaxation as one of our baselines.

8Appendix includes a detailed discussion on why the reduction
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Bounded Group Loss (BGL): γ-BGL was introduced by
(Agarwal et al., 2019) for regression problems. It requires
that the loss experienced by each group be bounded by γ.
That is, La(www) ≤ γ, ∀a ∈ {0, 1}. Agarwal et al. (2019)
use the reduction approach to find a randomized regression
model under γ-BGL. In addition to the reduction method,
if L(www), L0(www), and L1(www) are convex in www, then we can
directly use convex solvers (e.g., CVXPY (Diamond and
Boyd, 2016; Agrawal et al., 2018)) to find a γ-BGL fair
predictor. This is because the following is a convex problem,

min
www

L(www), s.t., La(www) ≤ γ, ∀a. (3)

However, for non-convex optimization problems such as (1),
the convex solvers cannot be used directly.

We want to emphasize that even though there are already
many fairness notions and algorithms in the literature to find
a fair predictor, none of the existing algorithms can be used
to solve the non-convex optimization (1) efficiently and find
a global optimal fair predictor under EL notion.

3. Optimal Model under γ-EL
In this section, we consider optimization problem (1) under
EL fairness constraint. Note that this optimization problem
is non-convex and finding the global optimal solution is
difficult. We propose an algorithm that finds the solution to
non-convex optimization (1) by solving a sequence of con-
vex optimization problems. Before presenting the algorithm,
we first introduce two assumptions, which will be used when
proving the convergence of the proposed algorithm.
Assumption 3.1. Expected losses L0(www), L1(www), and L(www)
are strictly convex and differentiable in www. Moreover, each
of them has a unique minimizer.

Let wwwGa
be the optimal weight vector minimizing the loss

associated with group A = a. That is,
wwwGa

= argmin
www

La(www). (5)

Since problem (5) is an unconstrained, convex optimization
problem, wwwGa

can be found efficiently by common convex
solvers. We make the following assumption about wwwGa .
Assumption 3.2. We assume the following holds,

L0(wwwG0
) ≤ L1(wwwG0

) and L1(wwwG1
) ≤ L0(wwwG1

).

Assumption 3.2 implies that when a group experiences its
lowest possible loss, this group is not the disadvantaged
group. Under Assumptions 3.1 and 3.2, the optimal 0-EL
fair predictor can be easily found using our proposed algo-
rithm (i.e., function ELminimizer(wwwG0

,wwwG1
, ϵ, γ) with

γ = 0); the complete procedure is shown in Algorithm 1, in
which parameter ϵ > 0 specifies the stopping criterion: as
ϵ→ 0, the output approaches to the global optimal solution.

approach is not appropriate for EL fairness.

Algorithm 1 Function ELminimizer
Input: wwwG0

,wwwG1
, ϵ, γ

Parameters: λ(0)
start = L0(wwwG0

), λ
(0)
end = L0(wwwG1

), i = 0

Define L̃1(www) = L1(www) + γ

1: while λ
(i)
end − λ

(i)
start > ϵ do

2: λ
(i)
mid = (λ

(i)
end + λ

(i)
start)/2

3: Solve the following convex optimization problem,

www∗
i = argmin

www
L̃1(www) s.t. L0(www) ≤ λ

(i)
mid (4)

4: λ(i) = L̃1(www
∗
i )

5: if λ(i) ≥ λ
(i)
mid then

6: λ
(i+1)
start = λ

(i)
mid; λ

(i+1)
end = λ

(i)
end;

7: else
8: λ

(i+1)
end = λ

(i)
mid; λ

(i+1)
start = λ

(i)
start;

9: i = i+ 1;
10: end if
11: end while
Output: www∗

i

Algorithm 2 Solving Optimization (1)
Input: wwwG0

, wwwG1
,ϵ,γ

1: wwwγ = ELminimizer(wwwG0 ,wwwG1 , ϵ, γ)
2: www−γ = ELminimizer(wwwG0

,wwwG1
, ϵ,−γ)

3: if L(wwwγ) ≤ L(www−γ) then
4: www∗ = wwwγ

5: else
6: www∗ = www−γ

7: end if
Output: www∗

Intuitively, Algorithm 1 solves non-convex optimization (1)
by solving a sequence of convex and constrained optimiza-
tions. When γ > 0 (i.e., relaxed fairness), the optimal γ-EL
fair predictor can be found with Algorithm 2 which calls
function ELminimizer twice. The convergence of Algo-
rithm 1 for finding the optimal 0-EL fair solution, and the
convergence of Algorithm 2 for finding the optimal γ-EL
fair solution are stated in the following theorems.

Theorem 3.3 (Convergence of Algorithm 1 when γ = 0).
Let {λ(i)

mid|i = 0, 1, 2, . . .} and {www∗
i |i = 0, 1, 2, . . .} be two

sequences generated by Algorithm 1 when γ = ϵ = 0, i.e.,
ELminimizer(wwwG0

,wwwG1
, 0, 0). Under Assumptions 3.1

and 3.2, we have,
lim
i→∞

www∗
i = www∗ and lim

i→∞
λ
(i)
mid = E{l(Y, fwww∗(XXX))}

where www∗ is the global optimal solution to (1).

Theorem 3.3 implies that when γ = ϵ = 0 and i goes to
infinity, the solution to convex problem (4) is the same as
the solution to (1).
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Theorem 3.4 (Convergence of Algorithm 2). Assume that
L0(wwwG0)−L1(wwwG0) < −γ and L0(wwwG1)−L1(wwwG1) > γ.
If wwwO does not satisfy the γ-EL constraint, then, as ϵ→ 0,
the output of Algorithm 2 goes to the optimal γ-EL fair
solution (i.e., solution to (1)).

Complexity Analysis. The While loop in Algorithm 1
is executed for O(log(1/ϵ)) times. Therefore, Algorithm
1 needs to solve a constrained convex optimization prob-
lem for O(log(1/ϵ)) times. Note that constrained convex
optimization problems can be efficiently solved via sub-
gradient methods (Nedić and Ozdaglar, 2009), brier meth-
ods (Wright, 2001), stochastic gradient descent with one
projection (Mahdavi et al., 2012), interior point methods
(Nemirovski, 2004), etc. For instance, (Nemirovski, 2004)
shows that several convex optimization problems can be
solved in polynomial time. Therefore, the time complexity
of Algorithm 1 depends on the convex solver. If the time
complexity of solving (4) isO(p(dwww)), then the overall time
complexity of Algorithm 1 is O(p(dwww) log(1/ϵ)).

Regularization. So far we have considered a supervised
learning model without regularization. Next, we explain
how Algorithm 2 can be applied to a regularized problem.
Consider the following optimization problem,
min
www

Pr(A = 0)L0(www) + Pr(A = 1)L1(www) +R(www),

s.t., |L0(www)− L1(www)| < γ. (6)

where R(www) is a regularizer function. In this case, we can
re-write the optimization problem as follows,
min
www

Pr(A = 0)
(
L0(www) +R(www)

)
+Pr(A = 1)

(
L1(www) +R(www)

)
,

s.t., |
(
L0(www) +R(www)

)
−
(
L1(www) +R(www)

)
| < γ.

If we define L̄a(www) := La(www) + R(www) and L̄(www) :=
Pr(A = 0)L̄0(www) + Pr(A = 1)L̄1(www), then problem
(6) can be written in the form of problem (1) using
(L̄0(www), L̄1(www), L̄(www)) and solved by Algorithm 2.

4. Sub-optimal Model under γ-EL
In Section 3, we have shown that non-convex optimization
problem (1) can be reduced to a sequence of convex con-
strained optimizations (4), and based on this we proposed
Algorithm 2 that finds the optimal γ-EL fair predictor. How-
ever, the proposed algorithm still requires solving a convex
constrained optimization in each iteration. In this section,
we propose another algorithm that finds a sub-optimal so-
lution to optimization (1) without solving constrained op-
timization in each iteration. The algorithm consists of two
phases: (1) finding two weight vectors by solving two un-
constrained convex optimization problems; (2) generating
a new weight vector satisfying γ-EL using the two weight
vectors found in the first phase.

Phase 1: Unconstrained optimization. We ignore EL
fairness and solve the following unconstrained problem,

wwwO = argmin
www

L(www) (7)

Because L(www) is strictly convex in www, the above optimiza-
tion problem can be solved efficiently using convex solvers.
Predictor fwwwO

is the optimal predictor without fairness con-
straint, and L(wwwO) is the smallest overall expected loss
that is attainable. Let â = argmaxa∈{0,1} La(wwwO), i.e.,
group â is disadvantaged under predictor fwwwO

. Then, for the
disadvantaged group â, we find wwwGâ

by optimization (5).

Phase 2: Binary search to find the fair predictor. For
β ∈ [0, 1], we define the following two functions,

g(β) := Lâ

(
(1− β)wwwO + βwwwGâ

)
−L1−â

(
(1− β)wwwO + βwwwGâ

)
;

h(β) := L
(
(1− β)wwwO + βwwwGâ

)
,

where function g(β) can be interpreted as the loss dis-
parity between two demographic groups under predictor
f(1−β)wwwO+βwwwGâ

, and h(β) is the corresponding overall ex-
pected loss. Some properties of functions g(.) and h(.) are
summarized in the following theorem.

Theorem 4.1. Under Assumptions 3.1 and 3.2,
1. There exists β0 ∈ [0, 1] such that g(β0) = 0;
2. h(β) is strictly increasing in β ∈ [0, 1];
3. g(β) is strictly decreasing in β ∈ [0, 1].

Theorem 4.1 implies that in a dwww-dimensional space if we
start from wwwO and move toward wwwGâ

along a straight line,
the overall loss increases and the disparity between two
groups decreases until we reach (1− β0)wwwO + β0wwwGâ

, at
which 0-EL fairness is satisfied. Note that β0 is the unique
root of g. Since g(β) is a strictly decreasing function, β0

can be found using binary search.

For the approximate γ-EL fairness, there are multiple values
of β such that (1 − β)wwwO + βwwwGâ

satisfies γ-EL. Since
h(β) is strictly increasing in β, among all β that satisfy
γ-EL fairness, we would choose the smallest one. The
method for finding a sub-optimal solution to optimization
(1) is described in Algorithm 3. Note that while loop in
Algorithm 3 is repeated for O(log(1/ϵ)) times. Since the
time complexity of operations (i.e., evaluating gγ(β

(i)
mid))

in each iteration is O(dwww) , the total time complexity of
Algorithm 3 isO(dwww log(1/ϵ)). We can formally prove that
the output returned by Algorithm 3 satisfies γ-EL constraint.

Theorem 4.2. Assume that Assumptions 3.1 and 3.2 hold,
and let gγ(β) = g(β)− γ. If gγ(0) ≤ 0, then wwwO satisfies
the γ-EL fairness; if gγ(0) > 0, then limi→∞ β

(i)
mid = β

(∞)
mid

exists, and (1 − β
(∞)
mid )wwwO + β

(∞)
midwwwGâ

satisfies the γ-EL
fairness constraint.

Note that since h(β) is increasing in β, we only need to find
the smallest possible β such that (1−β)wwwO+βwwwGâ

satisfies

5



Loss Balancing for Fair Supervised Learning

Algorithm 3 Sub-optimal solution to optimization (1)
Input: wwwGâ

, wwwO, ϵ, γ
Initialization: gγ(β) = g(β) − γ, i = 0, β(0)

start = 0,
β
(0)
end = 1

1: if gγ(0) ≤ 0 then
2: www = wwwO, and go to line 13;
3: end if
4: while β

(i)
end − β

(i)
start > ϵ do

5: β
(i)
mid = (β

(i)
start + β

(i)
end)/2;

6: if gγ(β
(i)
mid) ≥ 0 then

7: β
(i+1)
start = β

(i)
mid, β

(i+1)
end = β

(i)
end;

8: else
9: β

(i+1)
start = β

(i)
start, β

(i+1)
end = β

(i)
mid;

10: end if
11: end while
12: www = (1− β

(i)
mid)wwwO + β

(i)
midwwwGâ

;
13: Output: www

γ-EL, which is β
(∞)
mid in Theorem 4.2. Since Algorithm 3

finds a sub-optimal solution, it is important to investigate the
performance of this sub-optimal fair predictor, especially
in the worst case scenario. The following theorem finds
an upper bound of the expected loss of fwww, where www is the
output of Algorithm 3.

Theorem 4.3. Under Assumptions 3.1 and 3.2, we have
the following: L(www) ≤ maxa∈{0,1} La(wwwO). That is, the
expected loss of fwww is not worse than the loss of the disad-
vantaged group under predictor fwwwO

.

Learning with Finite Samples. So far we proposed algo-
rithms for solving optimization (1). In practice, the joint
probability distribution of (XXX,A, Y ) is unknown and the
expected loss needs to be estimated using the empirical loss.
Specifically, given n i.i.d. samples {(XXXi, Ai, Yi)}ni=1 and a
predictor fwww, the empirical losses of the entire population
and each group are defined as follows,

L̂(www) = 1
n

∑n
i=1 l(Yi, fwww(XXXi)),

L̂a(www) = 1
na

∑
i:Ai=a l(Yi, fwww(XXXi)),

where na = |{i|Ai = a}|. Because γ-EL fairness con-
straint is defined in terms of expected loss, the optimization
problem of finding an optimal γ-EL fair predictor using
empirical losses is as follows,
ŵ̂ŵw = argmin

www
L̂(www), s.t. |L̂0(www)− L̂1(www)| ≤ γ̂. (8)

In this section, we aim to investigate how to determine γ̂ so
that with high probability, the predictor found by solving
problem (8) satisfies γ-EL fairness, and meanwhile ŵ̂ŵw is a
good estimate of the solution www∗ to optimization (1). We
aim to show that we can set γ̂ = γ if the number of samples
is sufficiently large. To understand the relation between (8)
and (1), we follow the general sample complexity analysis

found in (Donini et al., 2018) and show their sample com-
plexity analysis is applicable to EL. To proceed, we make
the assumption used in (Donini et al., 2018).

Assumption 4.4. With probability 1− δ, following holds:
supfwww∈F |L(www)− L̂(www)| ≤ B(δ, n,F),

where B(δ, n,F) is a bound that goes to zero as n→ +∞.

Note that according to (Shalev-Shwartz and Ben-David,
2014), if the classF is learnable with respect to loss function
l(., .), then always there exists such a bound B(δ, n,F) that
goes to zero as n goes to infinity.9

Theorem 4.5. Let F be a set of learnable functions, and let
ŵww and www∗ be the solutions to (8) and (1) respectively, with
γ̂ = γ +

∑
a∈{0,1} B(δ, na,F). Then, with probability at

least 1− 6δ, the followings hold,
L(ŵ̂ŵw)− L(www∗) ≤ 2B(δ, n,F) and

|L0(ŵ̂ŵw)− L1(ŵ̂ŵw)| ≤ γ + 2B(δ, n0,F) + 2B(δ, n1,F).

Theorem 4.5 shows that as n0, n1 go to infinity, γ̂ → γ,
and both empirical loss and expected loss satisfy γ-EL. In
addition, as n goes to infinity, the expected loss at ŵww goes
to the minimum possible expected loss. Therefore, solving
(8) using empirical loss is equivalent to solving (1) if the
number of data points from each group is sufficiently large.

5. Beyond Linear Models
So far, we have assumed that the loss function is strictly
convex. This assumption is mainly valid for training linear
models (e.g., Ridge regression, regularized logistic regres-
sion). However, it is known that training deep models lead
to minimizing non-convex objective functions. To train a
deep model under the equalized loss fairness notion, we can
take advantage of Algorithm 2 for fine-tuning under EL as
long as the objective function is convex with respect to the
parameters of the output layer.10 To clarify how Algorithm
2 can be used for deep models, for simplicity, consider a
neural network with one hidden layer for regression. Let
W be an m by d matrix (d is the size of feature vector XXX
and m is the number of neurons in the first layer) denoting
the parameters of the first layer of the Neural Network, and
www be a vector corresponding to the output layer. To find a
neural network satisfying the equalized loss fairness notion,
first, we train the network without any fairness constraint

9As an example, if F is a compact subset of linear predictors in
Reproducing Kernel Hilbert Space (RKHS) and loss l(y, f(x)) is
Lipschitz in f(x) (second argument), then Assumption 4.4 can be
satisfied (Bartlett and Mendelson, 2002). Vast majority of linear
predictors such as support vector machine and logistic regression
can be defined in RKHS.

10In classification or regression problems with l2 regularizer, the
objective function is strictly convex with respect to the parameters
of the output layer. This is true regardless of the network structure
before the output layer.
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using common gradient descent algorithms (e.g., stochastic
gradient descent). Let W̃ and w̃ww denote the network param-
eters after training the network without fairness constraint.
Now we can take advantage of Algorithm 2 to fine-tune the
parameters of the output layer under the equalized loss fair-
ness notion. Let us define X̃XX := [1, W̃ ·XXX]T . The problem
for fine-tuning the output layer can be written as follows,
www∗ = argmin

www
E{l(Y,wwwTX̃XX)}, (9)

s.t.,
∣∣∣E{l(Y,wwwTX̃XX)|A = 0} − E{l(Y,wwwTX̃XX)|A = 1}

∣∣∣ ≤ γ.

The objective function of the above optimization problem
is strictly convex, and the optimization problem can be
solved using Algorithm 2. After solving the above problem,
[W̃ ,www∗] will be the final parameters of the neural network
model satisfying the equalized loss fairness notion. Note
that a similar optimization problem can be written for fine-
tuning any deep model with classification/regression task.

6. Experiments
We conduct experiments on two real-world datasets to eval-
uate the performance of the proposed algorithm. In our
experiments, we used a system with the following config-
urations: 24 GB of RAM, 2 cores of P100-16GB GPU,
and 2 cores of Intel Xeon CPU@2.3 GHz processor. More
information about the experiments and the instructions on
reproducing the empirical results are provided in Appendix.
The codes are available at https://github.com/
KhaliliMahdi/Loss_Balancing_ICML2023.

Baselines. As discussed in Section 2, not all the fair learning
algorithms are applicable to EL fairness. The followings are
three baselines that are applicable to EL fairness.

Penalty Method (PM): The penalty method (Ben-Tal and
Zibulevsky, 1997) finds a fair predictor under γ-EL fairness
constraint by solving the following problem,
min
www

L̂(www) + t ·max{0, |L̂0(www)− L̂1(www)| − γ}2 +R(www), (10)

where t is the penalty parameter, and R(www) = 0.002 · ||www||22
is the regularizer. The above optimization problem cannot
be solved with a convex solver because it is not generally
convex. We solve problem (10) using Adam gradient de-
scent (Kingma and Ba, 2014) with a learning rate of 0.005.
We use the default parameters of Adam optimization in Py-
torch. We set the penalty parameter t = 0.1 and increase
this penalty coefficient by a factor of 2 every 100 iteration.

Linear Relaxation (LinRe): Inspired by (Donini et al.,
2018), for the linear regression, we relax the EL constraint
as −γ ≤ 1

n0

∑
i:Ai=a(Yi − wwwTXXXi) − 1

n1

∑
i:Ai=1(Yi −

wwwTXXXi) ≤ γ. For the logistic regression, we relax the
constraint as −γ ≤ 1

n0

∑
i:Ai=a(Yi − 0.5) · (wwwTXXXi) −

1
n1

∑
i:Ai=1(Yi − 0.5) · (wwwTXXXi) ≤ γ. Note that the sign of

(Yi−0.5) ·(wwwTXXXi) determines whether the binary classifier
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Figure 1: Trade-off between over-
all MSE and unfairness. A lower
curve implies a better trade-off.
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Figure 2: Trade-off between over-
all BCE and unfairness. A lower
curve implies a better trade-off.

makes a correct prediction or not.

FairBatch (Roh et al., 2020): This method was originally
proposed for equal opportunity, statistical parity, and equal-
ized odds. With some modifications (see the appendix for
more details), this can be applied to EL fairness. This al-
gorithm measures the loss of each group in each epoch and
changes the Minibatch sampling distribution in favor of the
group with a higher empirical loss. When implementing
FairBatch, we use Adam optimization with default parame-
ters, a learning rate of 0.005, and a batch size of 100.

Linear Regression and Law School Admission Dataset.
In the first experiment, we use the law school admission
dataset, which includes the information of 21,790 law stu-
dents studying in 163 different law schools across the United
States (Wightman, 1998). This dataset contains entrance
exam scores (LSAT), grade-point average (GPA) prior to
law school, and the first year average grade (FYA). Our goal
is to train a γ-EL fair regularized linear regression model
to estimate the FYA of students given their LSAT and GPA.
In this study, we consider Black and White Demographic
groups. In this dataset, 18285 data points belong to White
students, and 1282 data points are from Black students. We
randomly split the dataset into training and test datasets
(70% for training and 30% for testing), and conduct five in-
dependent runs of the experiment. A fair predictor is found
by solving the following optimization problem,
min
www

L̂(www) + 0.002 · ||www||22 s.t., |L̂0(www)− L̂1(www)| ≤ γ, (11)

with L̂ and L̂a being the overall and the group specific
empirical MSE, respectively. Note that 0.002 · ||www||22 is
the regularizer. We use Algorithm 2 and Algorithm 3 with
ϵ = 0.01 to find the optimal linear regression model under
EL and adopt CVXPY python library (Diamond and Boyd,
2016; Agrawal et al., 2018) as the convex optimization
solver in ELminimizer algorithm.

Table 1 illustrates the means and standard deviations of
empirical loss and the loss difference between Black and
White students. The first row specifies desired fairness level
(γ = 0 and γ = 0.1) used as the input to each algorithm.
Based on Table 1, when desired fairness level is γ = 0, the
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Table 1: Linear regression model under EL fairness. The loss
function in this example is the mean squared error loss.

γ = 0 γ = 0.1

test loss 0.9246± 0.0083 0.9332± 0.0101

PM test |L̂0 − L̂1| 0.1620± 0.0802 0.1438± 0.0914

test loss 0.9086± 0.0190 0.8668± 0.0164

L
in

R
e

test |L̂0 − L̂1| 0.2687± 0.0588 0.2587± 0.0704

test loss 0.8119± 0.0316 0.8610± 0.0884

F a
ir

B
at

ch

test |L̂0 − L̂1| 0.2862± 0.1933 0.2708± 0.1526

test loss 0.9186± 0.0179 0.8556± 0.0217

ou
rs

A
lg

2

test |L̂0 − L̂1| 0.0699± 0.0469 0.1346± 0.0749

test loss 0.9522± 0.0209 0.8977± 0.0223

ou
rs

A
lg

3

test |L̂0 − L̂1| 0.0930± 0.0475 0.1437± 0.0907

model fairness level trained by LinRe and FairBatch method
is far from γ = 0. We also realized that the performance of
FairBatch highly depends on the random seed. As a result,
the fairness level of the model trained by FairBatch has a
high variance (0.1933 in this example) in these five inde-
pendent runs of the experiment, and in some of these runs,
it can achieve desired fairness level. This is because the
FairBatch algorithm does not come with any performance
guarantee, and as stated in (Roh et al., 2020), FairBatch cal-
culates a biased estimate of the gradient in each epoch, and
the mini-batch sampling distribution keeps changing from
one epoch to another epoch. We observed that FairBatch
has better performance with a non-linear model (see Table
3). Both Algorithms 2 and 3 can achieve a fairness level
close to γ = 0. However, Algorithm 3 finds a sub-optimal
solution and achieves higher MSE compared to Algorithm 2.
For γ = 0.1, in addition to Algorithms 2 and 3, the penalty
method also achieves a fairness level close to desired fair-
ness level γ = 0.1 (i.e., |L̂1 − L̂0| = 0.0892). Algorithm 2
still achieves the lowest MSE compared to Algorithm 3 and
the penalty method. The model trained by FairBatch also
suffers from high variance in the fairness level. We want
to emphasize that even though Algorithm 3 has a higher
MSE compared to Algorithm 2, it is much faster, as stated
in Section 3.

We also investigate the trade-off between fairness and over-
all loss under different algorithms. Figure 1 illustrates
the MSE loss as a function of the loss difference between
Black and White students. Specifically, we run Algorithm
2, Algorithm 3, and the baselines under different values of
γ = [0.0250, 0.05, 0.1, 0.15, 0.2]. For each γ, we repeat the
experiment five times and calculate the average MSE and
average MSE difference over these five runs using the test
dataset. Figure 1 shows the penalty method, linear relax-
ation, and FairBatch are not sensitive to input γ. However,
Algorithm 2 and Algorithm 3 are sensitive to γ; As γ in-
creases, |L̂0(www

∗)− L̂1(www
∗)| increases and MSE decreases.

Table 2: Logistic Regression model under EL fairness. The loss
function in this example is binary cross entropy loss.

γ = 0 γ = 0.1

test loss 0.5594± 0.0101 0.5404± 0.0046

PM test |L̂0 − L̂1| 0.0091± 0.0067 0.0892± 0.0378

test loss 0.3468± 0.0013 0.3441± 0.0012

L
in

R
e

test |L̂0 − L̂1| 0.0815± 0.0098 0.1080± 0.0098

test loss 1.5716± 0.8071 1.2116± 0.8819

Fa
ir

B
at

ch

test |L̂0 − L̂1| 0.6191± 0.5459 0.3815± 0.3470

test loss 0.3516± 0.0015 0.3435± 0.0012

O
ur

s
A

lg
2

test |L̂0 − L̂1| 0.0336± 0.0075 0.1110± 0.0140

test loss 0.3521± 0.0015 0.3377± 0.0015

O
ur

s
A

lg
3

test |L̂0 − L̂1| 0.0278± 0.0075 0.1068± 0.0138

Logistic Regression and Adult Income Dataset. We con-
sider the adult income dataset containing the information of
48,842 individuals (Kohavi, 1996). Each data point consists
of 14 features, including age, education, race, etc. In this
study, we consider race (White or Black) as the sensitive
attribute and denote the White demographic group by A = 0
and the Black group by A = 1. We first pre-process the
dataset by removing the data points with a missing value
or with a race other than Black and White; this results in
41,961 data points. Among these data points, 4585 belong
to the Black group. For each data point, we convert all the
categorical features to one-hot vectors with 110 dimension
and randomly split the dataset into training and test data
sets (70% of the dataset is used for training). The goal is to
predict whether the income of an individual is above $50K
using a γ-EL fair logistic regression model. In this experi-
ment, we solve optimization problem (11), with L̂ and L̂a

being the overall and the group specific empirical average of
binary cross entropy (BCE) loss, respectively. The compari-
son of Algorithm 2, Algorithm 3, and the baselines is shown
in Table 2, where we conduct five independent runs of ex-
periments, and calculate the mean and standard deviation
of overall loss and the loss difference between two demo-
graphic groups. The first row in this table shows the value
of γ used as an input to the algorithms. The results show
that linear relaxation, algorithm 2 and Algorithm 3 have
very similar performances. All of these three algorithms
are able to satisfy the γ-EL with small test loss. Similar to
Table 1, we observe the high variance in the performance of
FairBatch, which highly depends on the random seed.

In Figure 2, we compare the performance-fairness trade-off.
We focus on binary cross entropy on the test dataset. To
generate this figure, we run Algorithm 2, Algorithm 3, and
the baselines (we do not include the curve for FairBatch due
to large overall loss and high variance in performance) under
different values of γ = [0.02, 0.04, 0.06, 0.08, 0.1] for five
times and calculate the average BCE and the average BCE

8



Loss Balancing for Fair Supervised Learning

difference. We observe Algorithms 2 and 3 and the linear
relaxation have a similar trade-off between L̂ and |L̂0− L̂1|.

Experiment with a non-linear model We repeat our first
experiment with nonlinear models to demonstrate how we
can use our algorithms to fine-tune a non-linear model. We
work with the Law School Admission dataset, and we train
a neural network with one hidden layer which consists of
125 neurons. We use sigmoid as the activation function for
the hidden layer. We run the following algorithms,
• Penalty Method: We solve optimization problem (10). In

this example, L̂ and L̂a are not convex anymore. The
hyperparameters except for the learning rate remain the
same as in the first experiment. The learning rate is set to
be 0.001.

• FairBatch: we train the whole network using FairBatch
with mini-batch Adam optimization with a batch size of
100 and a learning rate of 0.001.

• Linear Relaxation: In order to take advantage of CVXPY,
first, we train the network without any fairness constraint
using batch Adam optimization (i.e., the batch size is
equal to the size of the training dataset) with a learning
rate of 0.001. Then, we fine-tune the parameters of the
output layer. Note that the output layer has 126 parame-
ters, and we fine-tune those under relaxed EL fairness. In
particular, we solve problem (9) after linear relaxation.

• Algorithm 2 and Algorithm 3: We can run Algorithm 2
and Algorithm 3 to fine-tune the neural network. After
training the network without any constraint using batch
Adam optimization, we solve (9) using Algorithm 2 and
Algorithm 3.

Table 3 illustrates the average and standard deviation of
empirical loss and the loss difference between Black and
White students. Both Algorithm 2 and Algorithm 3 can
achieve a fairness level (i.e., |L̂0 − L̂1|) close to desired
fairness level γ. Also, we can see that the MSE of Algorithm
2 and Algorithm 3 under the nonlinear model is slightly
lower than the MSE under the linear model.

We also investigate how MSE L̂ changes as a function of fair-
ness level |L̂1 − L̂0|. Figure 3 illustrates the MSE-fairness
trade-off. To generate this plot, we repeat the experiment
for γ = [0.025, 0.05, 0.1, 0.15, 0.2]. For each γ, we ran the
experiment 5 times and calculated the average of MSE L̂
and the average of MSE difference using the test dataset.
Based on Figure 3, we observe that FairBatch and LinRe
are not very sensitive to the input γ. However, FairBatch
may sometimes show a better trade-off than Algorithm 2. In
this example, PM, Algorithm 2, and Algorithm 3 are very
sensitive to γ, and as γ increases, MSE L̂ decreases and
|L̂0 − L̂1| increases.

Limitation and Negative Societal Impact. 1) Our theo-
retical guarantees are valid under the stated assumptions

Table 3: Neural Network training under EL fairness. The loss
function in this example is the mean squared error loss.

γ = 0 γ = 0.1

test loss 0.9490± 0.0584 0.9048± 0.0355

PM test |L̂0 − L̂1| 0.1464± 0.1055 0.1591± 0.0847

test loss 0.8489± 0.0195 0.8235± 0.0165

L
in

R
e

test |L̂0 − L̂1| 0.6543± 0.0322 0.5595± 0.0482

test loss 0.9012± 0.1918 0.8638± 0.0863

F a
ir

B
at

ch

test |L̂0 − L̂1| 0.2771± 0.1252 0.1491± 0.0928

test loss 0.9117± 0.0172 0.8519± 0.0195

ou
rs

A
lg

2

test |L̂0 − L̂1| 0.0761± 0.0498 0.1454± 0.0749

test loss 0.9427± 0.0190 0.8908± 0.0209

ou
rs

A
lg

3

test |L̂0 − L̂1| 0.0862± 0.0555 0.1423± 0.0867

0.1 0.2 0.3 0.4 0.5 0.6
test l ss difference | ̂L0− ̂L1|

0.800

0.825

0.850

0.875

0.900

0.925

0.950

te
st
 l 
ss
 
̂ L

Overall l ss v.s. l ss difference
PM
LinRe
FairBatch
Alg2
Alg3

Figure 3: Trade-off between overall MSE and unfairness. A lower
curve implies a better trade-off.

(e.g., the convexity of L(www), i.i.d. samples, binary sensi-
tive attribute). These assumptions have been clearly stated
throughout this paper. 2) In this paper, we develop an algo-
rithm for finding a fair predictor under EL fairness. How-
ever, we do not claim this notion is better than other fairness
notions. Depending on the scenario, this notion may or may
not be suitable for mitigating unfairness.

7. Conclusion
In this work, we studied supervised learning problems under
the Equalized Loss (EL) fairness (Zhang et al., 2019), a no-
tion that requires the expected loss to be balanced across dif-
ferent demographic groups. By imposing the EL constraint,
the learning problem can be formulated as a non-convex
problem. We proposed two algorithms with theoretical
performance guarantees to find the global optimal and a
sub-optimal solution to this non-convex problem.
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Angelia Nedić and Asuman Ozdaglar. Subgradient methods
for saddle-point problems. Journal of optimization theory
and applications, 142(1):205–228, 2009.

Arkadi Nemirovski. Interior point polynomial time methods
in convex programming. Lecture notes, 42(16):3215–
3224, 2004.

Christian Reimers, Paul Bodesheim, Jakob Runge, and
Joachim Denzler. Towards learning an unbiased classifier
from biased data via conditional adversarial debiasing.
arXiv preprint arXiv:2103.06179, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin.
Why should i trust you?” explaining the predictions of
any classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 1135–1144, 2016.

Yuji Roh, Kangwook Lee, Steven Euijong Whang, and
Changho Suh. Fairbatch: Batch selection for model fair-
ness. In International Conference on Learning Represen-
tations, 2020.

Shai Shalev-Shwartz and Shai Ben-David. Understanding
machine learning: From theory to algorithms. Cambridge
university press, 2014.

Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin,
and Lea Frermann. Optimising equal opportunity fair-
ness in model training. arXiv preprint arXiv:2205.02393,
2022.

Linda F Wightman. Lsac national longitudinal bar passage
study. lsac research report series. 1998.

Robert Williamson and Aditya Menon. Fairness risk mea-
sures. In International Conference on Machine Learning,
pages 6786–6797. PMLR, 2019.

Blake Woodworth, Suriya Gunasekar, Mesrob I Ohannes-
sian, and Nathan Srebro. Learning non-discriminatory
predictors. In Conference on Learning Theory, pages
1920–1953. PMLR, 2017.

Stephen J Wright. On the convergence of the newton/log-
barrier method. Mathematical programming, 90(1):71–
100, 2001.

Yongkai Wu, Lu Zhang, and Xintao Wu. On convexity and
bounds of fairness-aware classification. In The World
Wide Web Conference, pages 3356–3362, 2019.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Ro-
driguez, and Krishna P Gummadi. Fairness beyond dis-
parate treatment & disparate impact: Learning classifi-
cation without disparate mistreatment. In Proceedings
of the 26th international conference on world wide web,
pages 1171–1180, 2017.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-
Rodriguez, and Krishna P Gummadi. Fairness constraints:
A flexible approach for fair classification. The Journal of
Machine Learning Research, 20(1):2737–2778, 2019.

Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell.
Mitigating unwanted biases with adversarial learning. In
Proceedings of the 2018 AAAI/ACM Conference on AI,
Ethics, and Society, pages 335–340, 2018.

Xueru Zhang, Mohammadmahdi Khaliligarekani, Cem
Tekin, and Mingyan Liu. Group retention when using
machine learning in sequential decision making: the in-
terplay between user dynamics and fairness. Advances
in Neural Information Processing Systems, 32:15269–
15278, 2019.

Xueru Zhang, Mohammad Mahdi Khalili, and Mingyan Liu.
Long-term impacts of fair machine learning. Ergonomics
in Design, 28(3):7–11, 2020.

Xueru Zhang, Mohammad Mahdi Khalili, Kun Jin, Pari-
naz Naghizadeh, and Mingyan Liu. Fairness interven-
tions as (dis) incentives for strategic manipulation. In
International Conference on Machine Learning, pages
26239–26264. PMLR, 2022.

11



Loss Balancing for Fair Supervised Learning

A. Appendix
A.1. Some notes on the code for reproducibility

In this part, we provide a description of the files provided in our GitHub repository.

• law data.py: This file includes a function called law data(seed) which processes the law school admission dataset
and splits the dataset randomly into training and test datasets (we keep 70% of the datapoints for training). Later, in our
experiments, we set the seed equal to 0, 1, 2, 3, and 4 to get five different splits to repeat our experiments five times.

• Adult data.py: This file includes a function called Adult dataset(seed) which processes the adult income dataset
and splits the dataset randomly into training and test datasets. Later, in our experiments, we set the seed equal to 0, 1,
2, 3, 4 to get five different splits to repeat our experiments five times.

• Algorithms.py: This file includes the following functions,

– ELminimizer(X0, Y 0, X1, Y 1, gamma, eta,model): This function implements Elminimizer algorithm.
(X0, Y 0) are the training datapoints belonging to group A = 0 and (X1, Y 1) are the datapoits belonging to
group A = 1. gamma is the fairness level for EL constraint. η is the reqularizer parameter (in our experiments,
η = 0.002). model determines the model that we want to train. If model = ”linear”, then we train a linear
regression model. If model = ”logistic”, then we train a logisitic regression model. This function returns five
variables (w, b, l0, l1, l). w, b are the weight vector and bias term of the trained model. l0, l1 are the average
training loss of group 0 and group 1, respectively. l is the overall training loss.

– Algorithm2(X0, Y 0, X1, Y 1, gamma, eta,model): This function implements Algorithm 2 which calls
Elminimizer algorithm twice. This function also returns five variables (w, b, l0, l1, l). These variables
have been defined above.

– Algorithm3(X0, Y 0, X1, Y 1, gamma, eta,model): This function implements Algorithm 3 which finds a sub-
optimal solution under EL fairness. This function also returns five variables (w, b, l0, l1, l). These variables have
been defined above.

– solve constrained opt(X0, Y 0, X1, Y 1, eta, landa,model): This function uses the CVXPY package to solve
the optimization problem (4). We set landa equal to λ

(i)
mid to solve the optimization problem (4) in iteration i of

Algorithm 1.
– calculate loss(w, b,X0, Y 0, X1, Y 1,model): This function is used to find the test loss. w, b are model parame-

ters (trained by Algorithm 2 or 3). It returns the average loss of group 0 and group 1 and the overall loss based on
the given dataset.

– solve lin constrained opt(X0, Y 0, X1, Y 1, gamma, eta,model): This function is for solving optimization
problem (8) after linear relaxation.

• Baseline.py: this file includes the following functions,

– penalty method(method,X 0, y 0, X 1, y 1, num itr, lr, r, gamma, seed, epsilon) where method can be ei-
ther ”linear” for linear regression or ”logistic” for logistic regression. This function uses the penalty method
and trains the model under EL using the Adam optimization. num itr is the maximum number of iterations. r is
the regularization parameter (it is set to 0.002 in our experiment). lr is the learning rate and gamma is the fairness
level. ϵ is used for the stopping criterion. This function returns the trained model (which is a torch module), and
training loss of group 0 and group 1, and the overall training loss.

– fair batch(method,X 0, y 0, X 1, y 1, num itr, lr, r, alpha, gamma, seed, epsilon): This function is used
to simulate the FairBatch algorithm (Roh et al., 2020). The input parameters are similar to the input parameters of
penalty method except for alpha. This parameter determines how to adjust the sub-sampling distribution for
mini-batch formation. Please look at the next section for more details. This function returns the trained model
(which is a torch module), and training loss of group 0 and group 1, and the overall training loss.

table1 2.py uses the above functions to reproduce the results in Table 1 and Table 2. figure1 2.py uses the above functions
to reproduce Figure 1 and Figure 2. We provide some comments in these files to make the code more readable. We have
also provided code for training non-linear models. Please use Table3.py and figure3.py to generate the results in Table 3
and Figure 3, respectively.
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Lastly, use the following command to generate results in Table 1:

• python3 table1 2.py --experiment=1 --gamma=0.0

• python3 table1 2.py --experiment=1 --gamma=0.1

Use the following command to generate results in Table 2:

• python3 table1 2.py --experiment=2 --gamma=0.0

• python3 table1 2.py --experiment=2 --gamma=0.1

Use the following command to generate results in Table 3:

• python3 table3.py --gamma=0.0

• python3 table3.py --gamma=0.1

Use the following command to generate results in Figure 1:

• python3 figure1 2.py --experiment=1

Use the following command to generate results in Figure 2:

• python3 figure1 2.py --experiment=2

Use the following command to generate results in Figure 3:

• python3 figure3.py

Note that you need to install packages in requirements.txt

A.2. Notes on FairBatch (Roh et al., 2020)

This method has been proposed to find a predictor under equal opportunity, equalized odd or statistical parity. In each epoch,
this method identifies the disadvantaged group and increases the subsampling rate corresponding to the disadvantaged group
in mini-batch selection for the next epoch. We modify this approach for γ-EL as follows,

• We initialize the sub-sampling rate of group a (denoted by SR
(0)
a ) for mini-batch formation by SR

(0)
a = na

n , a = 0, 1.
We Form the mini-batches using SR

(0)
0 and SR

(0)
1 .

• At epoch i, we run gradient descent using the mini-batches formed by SR
(i−1)
0 and SR

(i−1)
1 , and we obtain new model

parameters wwwi.

• After epoch i, we calculate the empirical loss of each group. Then, we update SR
(i)
a as follows,

SR(i)
a ←− SR(i−1)

a + α if L̂a(wwwi)− L̂1−a(wwwi) > γ

SR(i)
a ←− SR(i−1)

a − α if L̂a(wwwi)− L̂1−a(wwwi) < −γ
SR(i)

a ←− SR(i−1)
a o.w.,

where is α is a hyperparameter and, in our experiment, is equal to 0.005.
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A.3. Details of numerical experiments and additional numerical results

Due to the space limits of the main paper, we provide more details on our experiments here,

• Stopping criteria for penalty method and FairBatch: For stopping criteria, we stopped the learning process when the
change in the objective function is less than 10−6 between two consecutive epochs. The reason that we used 10−6 was
that we did not observe any significant change by choosing a smaller value.

• Learning rate for penalty method and FairBatch: We chose 0.005 for the learning rate for training a linear model. For
the experiment with a non-linear model, we set the learning rate to be 0.001.

• Stopping criteria for Algorithm 2 and Algorithm 3: As we stated in the main paper, we set ϵ = 0.01 in ELminimizer
and Algorithm 3. Choosing smaller ϵ did not change the performance significantly.

• Linear Relaxation: Note that equation (8) after linear relaxation is a convex optimization problem. We directly solve
this optimization problem using CVXPY.

The experiment has been done on a system with the following configurations: 24 GB of RAM, 2 cores of P100-16GB GPU,
and 2 cores of Intel Xeon CPU@2.3 GHz processor. We used GPUs for training FairBatch.

A.4. Notes on the Reduction Approach (Agarwal et al., 2018; 2019)

Let Q(f) be a distribution over F . In order to find optimal Q(f) using the reduction approach, we have to solve the
following optimization problem,

min
Q

∑
f∈F

Q(f)E{l(Y, f(XXX))}

s.t.,
∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 0} =
∑
f∈F

Q(f)E{l(Y, f(XXX))}

∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 1} =
∑
f∈F

Q(f)E{l(Y, f(XXX))}

Similar to (Agarwal et al., 2018; 2019), we can re-write the above optimization problem in the following form,

min
Q

∑
f∈F

Q(f)E{l(Y, f(XXX))}

s.t.,
∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 0} −
∑
f∈F

Q(f)E{l(Y, f(XXX))} ≤ 0

−
∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 0}+
∑
f∈F

Q(f)E{l(Y, f(XXX))} ≤ 0

∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 1} −
∑
f∈F

Q(f)E{l(Y, f(XXX))} ≤ 0

−
∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 1}+
∑
f∈F

Q(f)E{l(Y, f(XXX))} ≤ 0
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Then, the reduction approach forms the Lagrangian function as follows,

L(Q,µ) =
∑
f∈F

Q(f)E{l(Y, f(XXX))}

− µ1 ·

∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 0} −
∑
f∈F

Q(f)E{l(Y, f(XXX))}


− µ2 ·

−∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 0}+
∑
f∈F

Q(f)E{l(Y, f(XXX))}


− µ3 ·

∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 1} −
∑
f∈F

Q(f)E{l(Y, f(XXX))}


− µ4 ·

−∑
f∈F

Q(f)E{l(Y, f(XXX))|A = 1}+
∑
f∈F

Q(f)E{l(Y, f(XXX))}

 ,

µ1 ≥ 0, µ2 ≥ 0, µ3 ≥ 0, µ4 ≥ 0.

Since f is parametrized with www, we can find distribution Q(www) over Rdwww . Therefore, we rewrite the problem in the following
form,

L(Q(www), µ1, µ2, µ3, µ4) =
∑
www

Q(www)L(www)

− µ1

(∑
www

Q(www)L0(www)−
∑
www

Q(www)L(www)

)

− µ2

(
−
∑
www

Q(www)L0(www) +
∑
www

Q(www)L(www)

)

− µ3

(∑
www

Q(www)L1(www)−
∑
www

Q(www)L(www)

)

− µ4

(
−
∑
www

Q(www)L1(www) +
∑
www

Q(www)L(www)

)
The reduction approach updates Q(www) and (µ1, µ2, µ3, µ4) alternatively. Looking carefully at Algorithm 1 in (Agarwal et al.,
2018), after updating (µ1, µ2, µ3, µ4), we need to have access to an oracle that is able to solve the following optimization
problem in each iteration,

min
www

(1 + µ1 − µ2 + µ3 − µ4)L(www) + (−µ1 + µ2)L0(www) + (−µ3 + µ4)L1(www)

The above optimization problem is not convex for all µ1, µ2, µ3, µ4. Therefore, in order to use the reduction approach, we
need to have access to an oracle that is able to solve the above non-convex optimization problem which is not available.
Note that the original problem (1) is a non-convex optimization problem and using the reduction approach just leads to
another non-convex optimization problem.

A.5. Equalized Loss & Bounded Group Loss

In this section, we study the relation between EL and BGL fairness notions. It is straightforward to see that any predictor
satisfying γ-BGL also satisfies the γ-EL. However, it is unclear to what extend an optimal fair predictor under γ-EL satisfies
the BGL fairness notion. Next, we theoretically study the relation between BGL and EL fairness notions.

Let www∗ be denoted as the solution to (1) and fwww∗ the corresponding optimal γ-EL fair predictor. Theorem A.1 below shows
that under certain conditions, it is impossible for both groups to experience a loss larger than 2γ under the optimal γ-EL fair
predictor.

Theorem A.1. Suppose there exists a predictor that satisfies γ-BGL fairness notion. That is, the following optimization
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problem has at least one feasible point.
min
www

L(www) s.t. La(www) ≤ γ, ∀a ∈ {0, 1}. (12)

Then, the followings hold,
min{L0(www

∗), L1(www
∗)} ≤ γ;

max{L0(www
∗), L1(www

∗)} ≤ 2γ.

Theorem A.1 shows that γ-EL implies 2γ-BGL if γ-BGL is a feasible constraint. Therefore, if γ is not too small (e.g.,
γ = 0), then EL and BGL are not contradicting each other.

We emphasize that we are not claiming that whether EL fairness is better than BGL. Instead, these relations indicate the
impacts the two fairness constraints could have on the model performance; the results may further provide the guidance for
policy-makers.

16



Loss Balancing for Fair Supervised Learning

A.6. Proofs

In order to prove Theorem 3.3, we first introduce two lemmas.

Lemma A.2. Under assumption 3.2, there exists www ∈ Rdwww such that L0(www) = L1(www) = L(www) and λ
(0)
start ≤ L(www) ≤ λ

(0)
end.

Proof. Let q0(β) = L0((1−β)wwwG0
+βwwwG1

) and q1(β) = L1((1−β)wwwG0
+βwwwG1

), and q(β) = q0(β)−q1(β), β ∈ [0, 1].
Note that∇wwwLa(wwwGa

) = 0 because wwwGa
is the minimizer of La(www).

First, we show that L0((1− β)wwwG0
+ βwwwG1

) is an increasing function in β, and L1((1− β)wwwG0
+ βwwwG1

) is a decreasing
function in β. Note that q′0(0) = (wwwG1

−wwwG0
)T∇wwwL0(wwwG0

) = 0, and q0(β) is convex because L0(www) is convex. This
implies that q′(β) is an increasing function, and q′0(β) ≥ 0, ∀β ∈ [0, 1]. Similarly, we can show that q′1(β) ≤ 0, ∀β ∈ [0, 1].

Note that under Assumption (3.2), q(0) < 0 and q(1) > 0. Therefore, by the intermediate value theorem, the exists
β ∈ (0, 1) such that q(β) = 0. Define www = (1− β)wwwG0

+ βwwwG1
. We have,

q(β) = 0 =⇒ L0(www) = L1(www) = L(www)

wwwG0
is minimizer of L0 =⇒

L(www) = L0(www) ≥ λ
(0)
start

q′0(β) ≥ 0, ∀β ∈ [0, 1] =⇒ q0(1) ≥ q0(β) =⇒
λ
(0)
end ≥ L0(www) = L(www)

Lemma A.3. L0(www
∗
i ) = λ

(i)
mid, where www∗

i is the solution to (4).

Proof. We proceed by contradiction. Assume that L0(www
∗
i ) < λ

(i)
mid (i.e., www∗

i is an interior point of the feasible set of (4)).
Notice that wwwG1

cannot be in the feasible set of (4) because L0(wwwG1
) = λ

(0)
end > λ

(i)
mid. As a result, ∇wwwL1(www

∗
i ) ̸= 0. This

is a contradiction because www∗
i is an interior point of the feasible set of a convex optimization and cannot be optimal if

∇wwwL1(www
∗
i ) is not equal to zero.

Proof [Theorem 3.3]

Let Ii = [λ
(i)
start, λ

(i)
end] be a sequence of intervals. It is easy to see that I1 ⊇ I2 ⊇ · · · and λ

(i)
end − λ

(i)
start → 0 as i→∞.

Therefore, by the Nested Interval Theorem, ∩∞i=1Ii consists of exactly one real number λ∗, and both λ
(i)
start and λ

(i)
end

converge to λ∗. Because λ
(i)
mid =

λ
(i)
start+λ

(i)
end

2 , λ(i)
mid also converges to λ∗.

Now, we show that L(www∗) ∈ Ii for all i (www∗ is the solution to (1) when γ = 0. As a result, L0(www
∗) = L1(www

∗) = L(www∗)).
Note that L(www∗) = L0(www

∗) ≥ λ
(0)
start because wwwG0

is the minimizer of L0. Moreover, λ(0)
end ≥ L(www∗) otherwise L(www) <

L(www∗) (www is defined in Lemma A.2) and www∗ is not optimal solution under 0-EL. Therefore, L(www∗) ∈ I0.

Now we proceed by induction. Suppose L(www∗) ∈ Ii. We show that L(www∗) ∈ Ii+1 as well. We consider two cases.

• L(www∗) ≤ λ
(i)
mid. In this case www∗ is a feasible point for (4), and L1(www

∗
i ) = λ(i) ≤ L1(www

∗) = L(www∗) ≤ λ
(i)
mid. Therefore,

L(www∗) ∈ Ii+1.

• L(www∗) > λ
(i)
mid. In this case, we proceed by contradiction to show that λ(i) ≥ λ

(i)
mid. Assume that λ(i) < λ

(i)
mid. Define

r(β) = r0(β)−r1(β), where ra(β) = La((1−β)wwwG0
+βwww∗

i ). Note that λ(i) = r1(1) By Lemma A.3, r0(1) = λ
(i)
mid.

Therefore, r(1) = λ
(i)
mid − λ(i) > 0. Moreover, under Assumption 3.2, r(0) < 0. Therefore, by the intermediate value

theorem, there exists β0 ∈ (0, 1) such that r(β0) = 0. Similar to the proof of Lemma A.2, we can show that r0(β) in
an increasing function for all β ∈ [0, 1]. As a result r0(β0) < r0(1) = λ

(i)
mid. Define www0 = (1− β0)wwwG0 + β0www

∗
i . We

have,
r0(β0) = L0(www0) = L1(www0) = L(www0) < λ

(i)
mid (13)

L(www∗) > λ
(i)
mid (14)

The last two equations imply that www∗ is not a global optimal fair solution under 0-EL fairness constraint and it is not
the global optmal solution to (1). This is a contradiction. Therefore, if L(www∗) > λ

(i)
mid, then λ(i) ≥ λ

(i)
mid. As a result,

L(www∗) ∈ Ii+1
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By two above cases and the nested interval theorem, we conclude that,

L(www∗) ∈ ∩∞i=1Ii, lim
i→∞

λ
(i)
mid = L(www∗),

defineλ∞
mid := lim

i→∞
λ
(i)
mid

Therefore, limi→∞www∗
i would be the solution to the following optimziation problem,

argmin
www

L1(www)s.t., L0(www) ≤ λ∞
mid = L(www∗)

By lemma A.3, the solution to above optimization problem (i.e., limi→∞www∗
i ) satisfies the following, L0(limi→∞www∗

i ) =
λ∞
mid = L(www∗). Therefore, limi→∞www∗

i is the global optimal solution to optimization problem (1).

Proof [Theorem 3.4 ] Let’s assume that wwwO does not satisfy the γ-EL.11 Let www∗ be the optimal weight vector under γ-EL.
It is clear that www∗ ̸= wwwO.

Step 1. we show that one of the following holds,
L0(www

∗)− L1(www
∗) = γ (15)

L0(www
∗)− L1(www

∗) = −γ (16)
Proof by contradiction. Assume −γ < L0(www

∗)− L1(www
∗) < γ. This implies that www∗ is an interior point of the feasible set

of optimization problem (1). Since www∗ ̸= wwwO, then ∇L(www∗) ̸= 0. As a result, object function of (1) can be improved at www∗

by moving toward −∇L(www∗). This a contradiction. Therefore, |L0(www
∗)− L1(www

∗)| = γ.

Step 2. Function wwwγ = ELminimizer(wwwG0
,wwwG0

, ϵ, γ) is the solution to the following optimization problem,
min
www

Pr{A = 0}L0(www) + Pr{A = 1}L1(www),

s.t., L0(www)− L1(www) = γ (17)

To show the above claim, notice that the solution to optimization problem (17) is the same as the following,

min
www

Pr{A = 0}L0(www) + Pr{A = 1}L̃1(www),

s.t., L0(www)− L̃1(www) = 0, (18)
where L̃1(www) = L1(www) + γ. Since L0(wwwG0

) − L̃1(wwwG0
) < 0 and L0(wwwG1

) − L̃1(wwwG1
) > 0, by Theorem 3.3, we know

that wwwγ = ELminimizer(wwwG0
,wwwG0

, ϵ, γ) find the solution to (18) when ϵ goes to zero.

Lastly, because |L0(www
∗)− L1(www

∗)| = γ, we have,

www∗ =

{
wwwγ if L(wwwγ) ≤ L(www−γ)
www−γ o.w. (19)

Thus, Algorithm 2 finds the solution to (1).

Proof [Theorem 4.1]

1. Under Assumption 3.2, g(1) < 0. Moreover, g(0) ≥ 0. Therefore, by the intermediate value theorem, there exists
β0 ∈ [0, 1] such that g(β0) = 0.

2. Since wwwO is the minimizer of L(www), h′(0) = 0. Moreover, since L(www) is strictly convex, h(β) is strictly convex and
h′(β) is strictly increasing function. As a result, h′(β) > 0 for β > 0, and h(β) is strictly increasing.

3. Similar to the above argument, s(β) = Lâ((1− β)wwwO + βwwwGâ
) is strictly decreasing function (notice that s′(1) = 0

and s(β) is strictly convex).

11If wwwO satisfies γ-EL, it will be the optimal predictor under γ-EL fairness. Therefore, there is no need to solve any constrained
optimization problem. Note that wwwO is the solution to problem (7).
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Note that since h(β) = Pr{A = â}Lâ((1− β)wwwO + βwwwGâ
) + Pr{A = 1− â}L1−â((1− β)wwwO + βwwwGâ

) is strictly
increasing and Lâ((1− β)wwwO + βwwwGâ

) is strictly decreasing. Therefore, we conclude that L1−â((1− β)wwwO + βwwwGâ
)

is strictly increasing. As a result, g(β) should be strictly decreasing.

Proof [Theorem 4.2] First, we show that if gγ(0) ≤ 0, then wwwO satisfies γ-EL.

gγ(0) ≤ 0 =⇒ g(β)− γ ≤ 0 =⇒ Lâ(wwwO)− L1−â(wwwO) ≤ γ

Moreover, Lâ(wwwO)− L1−â(wwwO) ≥ 0 because â = argmaxa La(wwwO). Therefore, γ-EL is satisfied.

Now, let gγ(0) > 0. Note that under Assumption 3.2, gγ(1) = Lâ(wwwGâ
) − L1−â(wwwGâ

) − γ < 0. Therefore, by the
intermediate value theorem, there exists β0 such that gγ(β0) = 0. Moreover, based on Theorem 4.2, gγ is a strictly
decreasing function. Therefore, the binary search proposed in Algorithm 3 converges to the root of gγ(β). As a result,
(1− β

(∞)
mid )wwwO + β

(∞)
midwwwGâ

satisfies γ-EL. Note that since g(β) is strictly decreasing, and g(β
(∞)
mid ) = γ, and β

(∞)
mid is the

smallest possible β under which (1− β)wwwO + βwwwGâ
satisfies γ-EL. Since h is increasing, the smallest possible β gives us a

better accuracy.

Proof [Theorem 4.3] If gγ(0) ≤ 0, then wwwO satisfies γ-EL, and www = wwwO. In this case, it is easy to see that L(wwwO) ≤
maxa∈{0,1} La(wwwO) (because L(wwwO) is a weighted average of L0(wwwO) and L1(wwwO)).

Now assume that gγ(0) > 0. Note that if we prove this theorem for γ = 0, then the theorem will hold for γ > 0. This is
because the optimal predictor under 0-EL satisfies γ-EL condition as well. In other words, 0-EL is a stronger constraint
than γ-EL.

Let γ = 0. In this case, Algorithm 3 finds www = (1− β0)wwwO + β0wwwGâ
, where β0 is defined in Theorem 4.1. We have,

(∗) g(β0) = 0 = Lâ(www)− L1−â(www)

In the proof of theorem 4.1, we showed that Lâ((1− β)wwwO + βwwwGâ
) is decreasing in β. Therefore, we have,

(∗∗) Lâ(www) ≤ Lâ(wwwO)

Therefore, we have,
L(www) = Pr(A = 0) · Lâ(www) + (1− Pr(A = 1)) · L1−â(www) (20)

(By (∗)) = Lâ(www) (21)
(By (∗∗)) ≤ Lâ(wwwO) (22)

Proof [Theorem 4.5]

By the triangle inequality, the following holds,

sup
fwww∈F

||L0(www)− L1(www)| − |L̂0(www)− L̂1(www)|| ≤ (23)

sup
fwww∈F

|L0(www)− L̂0(www)|+ sup
fwww∈F

|L1(www)− L̂1(www)|. (24)

Therefore, with probability at least 1− 2δ we have,
sup
fwww∈F

||L0(www)− L1(www)| − |L̂0(www)− L̂1(www)|| ≤

B(δ, n0,F) +B(δ, n1,F) (25)
As a result, with probability 1− 2δ holds,

{www|fwww ∈ F , |L0(www)− L1(www)| ≤ γ} ⊆
{www|fwww ∈ F , |L̂0(www)− L̂1(www)| ≤ γ̂} (26)

Now consider the following,

L(ŵ̂ŵw)− L(www∗) = L(ŵ̂ŵw)− L̂(ŵ̂ŵw) + L̂(ŵ̂ŵw)− L̂(www∗) + L̂(www∗)− L(www∗) (27)

19



Loss Balancing for Fair Supervised Learning

By (26), L̂(ŵ̂ŵw)− L̂(www∗) ≤ 0 with probability 1− 2δ. Thus, with probability at least 1− 2δ, we have,

L(ŵ̂ŵw)− L(www∗) ≤ L(ŵ̂ŵw)− L̂(ŵ̂ŵw) + L̂(www∗)− L(www∗). (28)

Therefore, under assumption 4.4, we can conclude with probability at least 1 − 6δ, L(ŵ̂ŵw) − L(www∗) ≤ 2B(δ, n,F). In
addition, by (25), with probability at least 1− 2δ, we have,

|L0(ŵ̂ŵw)− L1(ŵ̂ŵw)| ≤ B(δ, n0,F) +B(δ, n1,F) + |L̂0(www)− L̂1(www)|
≤ γ̂ +B(δ, n0,F) +B(δ, n1,F)
= γ + 2B(δ, n0,F) + 2B(δ, n1,F)

Proof [Theorem A.1] Let w̃̃w̃w be a feasible point of optimization problem (12), then w̃̃w̃w is also a feasible point to (1).

We proceed by contradiction. We consider three cases,

• If min{L0(www
∗), L1(www

∗)} > γ and max{L0(www
∗), L1(www

∗)} > 2γ. In this case,
L(www∗) > γ ≥ L(w̃̃w̃w).

This is a contradiction because it implies that www∗ is not an optimal solution to (1), and w̃ww is a better solution for (1).

• If min{L0(www
∗), L1(www

∗)} > γ and max{L0(www
∗), L1(www

∗)} ≤ 2γ. This case is similar to above.
min{L0(www

∗), L1(www
∗)} > γ implies that L(www∗) > γ ≥ L(w̃̃w̃w). This is a contradiction because it implies that www∗

is not an optimal solution to (1).

• If min{L0(www
∗), L1(www

∗)} ≤ γ and max{L0(www
∗), L1(www

∗)} > 2 · γ. We have:
max{L0(www

∗), L1(www
∗)} −min{L0(www

∗), L1(www
∗)} > γ,

which shows that www∗ is not a feasible point for (1). This is a contradiction.

Therefore, max{L0(www
∗), L1(www

∗)} ≤ 2γ and min{L0(www
∗), L1(www

∗)} ≤ γ.
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