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Abstract

Supervised learning models have been used in
various domains such as lending, college admis-
sion, face recognition, natural language process-
ing, etc. However, they may inherit pre-existing
biases from training data and exhibit discrimi-
nation against protected social groups. Various
fairness notions have been proposed to address un-
fairness issues. In this work, we focus on Equal-
ized Loss (EL), a fairness notion that requires
the expected loss to be (approximately) equalized
across different groups. Imposing EL on the learn-
ing process leads to a non-convex optimization
problem even if the loss function is convex, and
the existing fair learning algorithms cannot prop-
erly be adopted to find the fair predictor under the
EL constraint. This paper introduces an algorithm
that can leverage off-the-shelf convex program-
ming tools (e.g., CVXPY (Diamond and Boyd,
2016; Agrawal et al., 2018)) to efficiently find the
global optimum of this non-convex optimization.
In particular, we propose the ELminimizer al-
gorithm, which finds the optimal fair predictor un-
der EL by reducing the non-convex optimization
to a sequence of convex optimization problems.
We theoretically prove that our algorithm finds the
global optimal solution under certain conditions.
Then, we support our theoretical results through
several empirical studies.

1. Introduction

As machine learning (ML) algorithms are increasingly being
used in applications such as education, lending, recruitment,
healthcare, criminal justice, etc., there is a growing con-
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cern that the algorithms may exhibit discrimination against
protected population groups. For example, speech recog-
nition products such as Google Home and Amazon Alexa
were shown to have accent bias (Harwell, 2018). The COM-
PAS recidivism prediction tool, used by courts in the US
in parole decisions, has been shown to have a substantially
higher false positive rate for African Americans compared
to the general population (Dressel and Farid, 2018). Ama-
zon had been using automated software since 2014 to assess
applicants’ resumes, which were found to be biased against
women (Dastin, 2018). As a result, there have been several
works focusing on interpreting machine learning models to
understand how features and sensitive attributes contribute
to the output of the model (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Abroshan et al., 2023).

Various fairness notions have been proposed in the liter-
ature to measure and remedy the biases in ML systems;
they can be roughly classified into two categories: 1) in-
dividual fairness focuses on equity at the individual level
and it requires similar individuals to be treated similarly
(Dwork et al., 2012; Biega et al., 2018; Jung et al., 2019;
Gupta and Kamble, 2019); 2) group fairness requires certain
statistical measures to be (approximately) equalized across
different groups distinguished by some sensitive attributes
(Hardt et al., 2016; Conitzer et al., 2019; Khalili et al., 2020;
Zhang et al., 2020; Khalili et al., 2021; Diana et al., 2021;
Williamson and Menon, 2019; Zhang et al., 2022).

Several approaches have been developed to satisfy a given
definition of fairness; they fall under three categories: 1)
pre-processing, by modifying the original dataset such as
removing certain features and reweighing, (e.g., (Kamiran
and Calders, 2012; Celis et al., 2020; Abroshan et al.)); 2) in-
processing, by modifying the algorithms such as imposing
fairness constraints or changing objective functions during
the training process, (e.g., (Zhang et al., 2018; Agarwal et al.,
2018; 2019; Reimers et al., 2021; Calmon et al., 2017)); 3)
post-processing, by adjusting the output of the algorithms
based on sensitive attributes, (e.g., (Hardt et al., 2016)).

In this paper, we focus on group fairness, and we aim to
mitigate unfairness issues in supervised learning using an
in-processing approach. This problem can be cast as a con-
strained optimization problem by minimizing a loss function
subject to a group fairness constraint. We are particularly in-
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terested in the Equalized Loss (EL) fairness notion proposed
by Zhang et al. (2019), which requires the expected loss
(e.g., Mean Squared Error (MSE), Binary Cross Entropy
(BCE) Loss) to be equalized across different groups.'

The problem of finding fair predictors by solving con-
strained optimizations has been largely studied. Komiyama
et al. (2018) propose the coefficient of determination con-
straint for learning a fair regressor and develop an algorithm
for minimizing the mean squared error (MSE) under their
proposed fairness notion. Agarwal et al. (2019) propose an
approach to finding a fair regression model under bounded
group loss and statistical parity fairness constraints. Agar-
wal et al. (2018) study classification problems and aim to
find fair classifiers under various fairness notions includ-
ing statistical parity and equal opportunity. In particular,
they consider zero-one loss as the objective function and
train a randomized fair classifier over a finite hypothesis
space. They show that this problem can be reduced to a
problem of finding the saddle point of a linear Lagrangian
function. Zhang et al. (2018) propose an adversarial de-
biasing technique to find fair classifiers under equalized
odd, equal opportunity, and statistical parity. Unlike the
previous works, we focus on the Equalized Loss fairness
notion which has not been well studied. Finding an EL fair
predictor requires solving a non-convex optimization. Un-
fortunately, there is no algorithm in fair ML literature with
a theoretical performance guarantee that can be properly ap-
plied to EL fairness (see Section 2 for detailed discussion).

Our main contribution can be summarized as follows,

* We develop an algorithm with a theoretical performance
guarantee for EL fairness. In particular, we propose the
(ELminimizer) algorithm to solve a non-convex con-
strained optimization problem that finds the optimal fair
predictor under EL constraint. We show that such a
non-convex optimization problem can be reduced to a
sequence of convex constrained optimizations. The pro-
posed algorithm finds the global optimal solution and
is applicable to both regression and classification prob-
lems. Importantly, it can be easily implemented using
off-the-shelf convex programming tools.

* In addition to ELminimizer which finds the global op-
timal solution, we develop a simple algorithm for finding
a sub-optimal predictor satisfying EL fairness. We prove
there is a sub-optimal solution satisfying EL fairness that
is a linear combination of the optimal solutions to two
unconstrained optimizations, and it can be found without
solving any constrained optimizations.

* We conduct sample complexity analysis and provide a
generalization performance guarantee. In particular, we
show the sample complexity analysis found in (Donini

'Zhang et al. (2019) propose the EL fairness notion without
providing an efficient algorithm for satisfying this notion.

et al., 2018) is applicable to learning problems under EL.

* We also examine (in the appendix) the relation between
Equalized Loss (EL) and Bounded Group Loss (BGL),
another fairness notion proposed by (Agarwal et al., 2019).
We show that under certain conditions, these two notions
are closely related, and they do not contradict each other.

2. Problem Formulation

Consider a supervised learning problem where the train-
ing dataset consists of triples (X, A,Y") from two social
groups.” Random variable X € X is the feature vector (in
the form of a column vector), A € {0, 1} is the sensitive at-
tribute (e.g., race, gender) indicating the group membership,
and Y € Y C R is the label/output.We denote realizations
of random variables by small letters (e.g., (z, a,y) is a re-
alization of (X, A,Y")). Feature vector X may or may not
include sensitive attribute A. Set ) can be either {0,1}
or R: if Y = {0,1} (resp. Y = R), then the problem of
interest is a binary classification (resp. regression) problem.

Let F be a set of predictors f, : X — R parameter-
ized by weight vector w with dimension d,,.* If the prob-
lem is binary classification, then f,, () is an estimate of
Pr(Y = 1|X = z).* Consider loss function/ : Y x R — R
where [(Y, f (X)) measures the error of f,, in predicting X .
We denote the expected loss with respect to the joint proba-
bility distribution of (X,Y") by L(w) := E{I(Y, fw(X))}.
Similarly, L,(w) := E{I(Y, fuw(X))|A = a} denotes the
expected loss of the group with sensitive attribute A = a.
In this work, we assume that [(y, f(x)) is differentiable
and strictly convex in w (e.g., binary cross entropy loss).?

Without fairness consideration, a predictor that simply mini-
mizes the total expected loss, i.e., arg min,, L(w), may be
biased against certain groups. To mitigate the risks of un-
fairness, we consider Equalized Loss (EL) fairness notion,
as formally defined below.

Definition 2.1 (y-EL (Zhang et al., 2019)). We say fy
satisfies the equalized loss (EL) fairness notion if Lo(w) =
Li(w). Moreover, we say fy, satisfies y—EL for some
v > 0if —y < Lo(w) — Li(w) <.

Note that if [(Y, fop (X)) is a (strictly) convex function in
w, both Lo(w) and L, (w) are also (strictly) convex in w.

2We use bold letters to represent vectors.

3Predictive models such as logistic regression, linear regression,
deep learning models, etc., are parameterized by a weight vector.

*Our framework can be easily applied to multi-class classifica-
tions, where fy, (X ') becomes a vector. Because it only complicates
the notations without providing additional insights about our algo-
rithm, we present the method and algorithm in a binary setting.

>We do not consider non-differentiable losses (e.g., zero-one
loss) as they have already been extensively studied in the literature,
e.g., (Hardt et al., 2016; Zafar et al., 2017; Lohaus et al., 2020).
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However, Lo(w) — L;(w) is not necessary convex®. As a
result, the following optimization problem for finding a fair
predictor under y-EL is not a convex programming,

min L(w) st. -7y < Lo(w) — Li(w) <v. (D

We say a group is disadvantaged group if it experiences
higher loss than the other group. Before discussing how to
find the global optimal solution of the above non-convex
optimization problem and train a v-EL fair predictor, we
first discuss why ~-EL is an important fairness notion and
why the majority of fair learning algorithms in the literature
cannot be used for finding -EL fair predictors.

2.1. Existing Fairness Notions & Algorithms

Next, we (mathematically) introduce some of the most com-
monly used fairness notions and compare them with -EL.
We will also discuss why the majority of proposed fair learn-
ing algorithms are not properly applicable to EL fairness.

Overall Misclassification Rate (OMR): It was considered
by (Zafar et al., 2017; 2019) for classification problems. Let
Y = I(fw(X) > 0.5), where I(.) € {0,1} is an indicator
function, and Y = 1 if f,(X) > 0.5. OMR requires
Pr(Y # Y]A = 0) = Pr(Y # Y|A = 1), which is not
a convex constraint. As a result, Zafar et al. (2017; 2019)
propose a method to relax this constraint using decision
boundary covariances. We emphasize that OMR is different
from EL fairness, that OMR only equalizes the accuracy
of binary predictions across different groups while EL is
capable of considering the fairness in estimating probability
Pr(Y = 1|X = z), e.g., by using binary cross entropy loss
function. Note that in many applications such as conversion
prediction, click prediction, medical diagnosis, etc., it is
critical to find Pr(Y = 1|X = z) accurately for different
groups besides the final predictions Y. Moreover, unlike EL,
OMR is not applicable to regression problems. Therefore,
the relaxation method proposed by (Zafar et al., 2017; 2019)
cannot be applied to the EL fairness constraint.

Statistical Parity (SP), Equal Opportunity (EO): For bi-
nary classification, Statistical Parity (SP) (Dwork et al.,
2012) (resp. Equal Opportunity (EO) (Hardt et al., 2016))
requires the positive classification rates (resp. true positive
rates) to be equalized across different groups. Formally,

Pr(Y =1|A=0) = Pr(Y =1/A=1)
Pr(Y =1/A=0,Y =1) Pr(Y =1|A=1,Y =1)
Both notions can be re-written in the expectation form us-
ing an indicator function. Specifically, SP is equivalent to
E{I(fw(X) > 0.5)|A =0} = E{I(fw(X) > 0.5)|A =
1}, and EO equals to E{I(fw(X) > 0.5)|A = 0,Y =
1} = E{I(fw(X) > 0.5)|A = 1,Y = 1}. Since the indi-

SAs an example, consider two functions ho(z) = z? and
hi(x) = 2 - 2% — x. Although both ho and h; are convex, their
difference ho(x) — hi(x) is not a convex function.

cator function is neither differentiable nor convex, Donini
et al. (2018) use a linear relaxation of EO as a proxy. ’
However, linear relaxation may negatively affect the fair-
ness of the predictor (Lohaus et al., 2020). To address this
issue, Lohaus et al. (2020) and Wu et al. (2019) develop
convex relaxation techniques for SP and EO fairness criteria
by convexifying indicator function I(.). However, these
convex relaxation techniques are not applicable to EL fair-
ness notion because [(.,.) in our setting is convex, not a
zero-one function. FairBatch (Roh et al., 2020) is another
algorithm that has been proposed to find a predictor under
SP or EO. FairBatch adds a sampling bias in the mini-batch
selection. However, the bias in mini-batch sampling distri-
bution leads to a biased estimate of the gradient, and there is
no guarantee FairBatch finds the global optimum solution.
FairBatch can be used to find a sub-optimal fair predictor
EL fairness notion. We use FairBatch as a baseline. Shen et
al. (2022) propose an algorithm for EO. This algorithm adds
a penalty term to the objective function, which is similar to
the Penalty Method (Ben-Tal and Zibulevsky, 1997). We
will use the Penalty method as a baseline as well.

Hardt et al. (2016) propose a post-processing algorithm that
randomly flips the binary predictions to satisfy EO or SP.
However, this method does not guarantee finding an optimal
classifier (Woodworth et al., 2017). Agarwal et al. (2018)
introduce a reduction approach for SP or EO. However, this
method finds a randomized classifier satisfying SP or EO
in expectation. In other words, to satisfy SP, the reduction
approach finds distribution @) over F such that,

> orer QUIELIY, f(X))[A = 0}

=2 rer QUOE{IY, f(X))|A =1}
where Q(f) is the probability of selecting model f under
distribution (). Obviously, satisfying a fairness constraint in

expectation may lead to unfair predictions because () can
still assign a non-zero probability to unfair models.

In summary, maybe some of the approaches used for SP/EO
are applicable to EL fairness notion (e.g., linear relaxation
or FairBatch). However, they can only find sub-optimal
solutions (see Section 6 for more details).

Statistical Parity for Regression: SP can be adjusted to
be suitable for regression. As proposed by (Agarwal et al.,
2019), Statistical Parity for regressor fy,(.) is defined as:

Pr(fw(X) < z|A =a) =Pr(fw(X) < 2),Vz,a. (2)
To find a predictor that satisfies constraint (2), Agarwal et
al. (2019) use the reduction approach as mentioned above.
However, this approach only finds a randomized predic-
tor satisfying SP in expectation and cannot be applied to
optimization problem (1).2

"This linear relaxation is applicable to EL with some modifica-
tion. We use linear relaxation as one of our baselines.
8 Appendix includes a detailed discussion on why the reduction
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Bounded Group Loss (BGL): v-BGL was introduced by
(Agarwal et al., 2019) for regression problems. It requires
that the loss experienced by each group be bounded by ~.
That is, L (w) < 7,Va € {0,1}. Agarwal et al. (2019)
use the reduction approach to find a randomized regression
model under y-BGL. In addition to the reduction method,
if L(w), Lo(w), and L, (w) are convex in w, then we can
directly use convex solvers (e.g., CVXPY (Diamond and
Boyd, 2016; Agrawal et al., 2018)) to find a y-BGL fair
predictor. This is because the following is a convex problem,

min L(w), s.t., Lg(w) <%, Ya. 3)

w

Howeyver, for non-convex optimization problems such as (1),
the convex solvers cannot be used directly.

We want to emphasize that even though there are already
many fairness notions and algorithms in the literature to find
a fair predictor, none of the existing algorithms can be used
to solve the non-convex optimization (1) efficiently and find
a global optimal fair predictor under EL notion.

3. Optimal Model under v-EL

In this section, we consider optimization problem (1) under
EL fairness constraint. Note that this optimization problem
is non-convex and finding the global optimal solution is
difficult. We propose an algorithm that finds the solution to
non-convex optimization (1) by solving a sequence of con-
vex optimization problems. Before presenting the algorithm,
we first introduce two assumptions, which will be used when
proving the convergence of the proposed algorithm.

Assumption 3.1. Expected losses Lo (w), L1 (w), and L(w)
are strictly convex and differentiable in w. Moreover, each
of them has a unique minimizer.

Let wg, be the optimal weight vector minimizing the loss
associated with group A = a. That is,

wg, = argmin L, (w). 5)
w

Since problem (5) is an unconstrained, convex optimization
problem, w¢, can be found efficiently by common convex
solvers. We make the following assumption about w,, .

Assumption 3.2. We assume the following holds,
Lo(weg,) < Li(weg,) and Ly (we, ) < Lo(we,)-

Assumption 3.2 implies that when a group experiences its
lowest possible loss, this group is not the disadvantaged
group. Under Assumptions 3.1 and 3.2, the optimal 0-EL
fair predictor can be easily found using our proposed algo-
rithm (i.e., function ELminimizer(wg,,wq,,€,y) with
~ = 0); the complete procedure is shown in Algorithm 1, in
which parameter € > 0 specifies the stopping criterion: as
e — 0, the output approaches to the global optimal solution.

approach is not appropriate for EL fairness.

Algorithm 1 Function ELminimizer

Input: wg,, wg,, €,y
Parameters: Agg,)l,.t = Lo(wg,), /\Sjl)d = Lo(wg, ),i=0
Define Ly (w) = Ly (w) + v

1: while A7) — ALY > cdo

2 A= 00+ A0 /2

3:  Solve the following convex optimization problem,

w} = argmin Ly (w) s.t. Lo(w) < AD 4)
w

maid

4: )\(7) = il(w:‘)

50 ifA® >\ then

6: Aot = )\gli)id; )\e(si'j:il) = )‘gd;
7. else } ‘ ‘

8 A = Aas Miart = N
9: i=1+1;

10:  endif

11: end while
Output: w}

Algorithm 2 Solving Optimization (1)

Input: weg,, weg, €,y

I: wy =ELminimizer(wg,,wq,,¢€ 7)
2: w_, =ELminimizer(wg,,wq,, € —7)
3: if L(w,) < L(w_,) then
4w =w,y
5.
6
7

: end if
Output: w*

Intuitively, Algorithm 1 solves non-convex optimization (1)
by solving a sequence of convex and constrained optimiza-
tions. When v > 0 (i.e., relaxed fairness), the optimal y-EL
fair predictor can be found with Algorithm 2 which calls
function ELminimizer twice. The convergence of Algo-
rithm 1 for finding the optimal O-EL fair solution, and the
convergence of Algorithm 2 for finding the optimal vy-EL
fair solution are stated in the following theorems.

Theorem 3.3 (Convergence of Algorithm 1 when v = 0).
Let (A i =0,1,2,...} and {w}|i = 0,1,2, ...} be two
sequences generated by Algorithm 1 when v = € = 0, i.e.,
ELminimizer(wg,, Wa,,0,0). Under Assumptions 3.1
and 3.2, we have,

lim w} = w* and lim A9 B{U(Y, fur (X))}
where w* is the global optimal solution to (1).

Theorem 3.3 implies that when v = € = 0 and ¢ goes to
infinity, the solution to convex problem (4) is the same as
the solution to (1).
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Theorem 3.4 (Convergence of Algorithm 2). Assume that
Lo(we,) — L1(wa,) < —yand Lo(wg,) — Li(we,) > 7.
Ifwo does not satisfy the v-EL constraint, then, as ¢ — 0,
the output of Algorithm 2 goes to the optimal v-EL fair
solution (i.e., solution to (1)).

Complexity Analysis. The While loop in Algorithm 1
is executed for O(log(1/e€)) times. Therefore, Algorithm
1 needs to solve a constrained convex optimization prob-
lem for O(log(1/¢)) times. Note that constrained convex
optimization problems can be efficiently solved via sub-
gradient methods (Nedi¢ and Ozdaglar, 2009), brier meth-
ods (Wright, 2001), stochastic gradient descent with one
projection (Mahdavi et al., 2012), interior point methods
(Nemirovski, 2004), etc. For instance, (Nemirovski, 2004)
shows that several convex optimization problems can be
solved in polynomial time. Therefore, the time complexity
of Algorithm 1 depends on the convex solver. If the time
complexity of solving (4) is O(p(dy)), then the overall time
complexity of Algorithm 1 is O(p(dy ) log(1/¢)).

Regularization. So far we have considered a supervised
learning model without regularization. Next, we explain
how Algorithm 2 can be applied to a regularized problem.
Consider the following optimization problem,

Pr(A =0)Lo(w) + Pr(A =1)L;(w) + R(w),
S.t., |L0(w) — Ll(’l.U)| <. (6)

min
w

where R(w) is a regularizer function. In this case, we can
re-write the optimization problem as follows,

Pr(A = 0)(Lo(w) + R(w))
+Pr(A =1)(L(w) + R(w)),

st,  |(Lo(w)+ R(w)) — (Li(w) + R(w))| < 7.
If we define L,(w) = L,(w) + R(w) and L(w) :=
Pr(A = 0)Lo(w) + Pr(A = 1)L;(w), then problem

(6) can be written in the form of problem (1) using
(Lo(w), L1 (w), L(w)) and solved by Algorithm 2.

min
w

4. Sub-optimal Model under v-EL

In Section 3, we have shown that non-convex optimization
problem (1) can be reduced to a sequence of convex con-
strained optimizations (4), and based on this we proposed
Algorithm 2 that finds the optimal ~y-EL fair predictor. How-
ever, the proposed algorithm still requires solving a convex
constrained optimization in each iteration. In this section,
we propose another algorithm that finds a sub-optimal so-
lution to optimization (1) without solving constrained op-
timization in each iteration. The algorithm consists of two
phases: (1) finding two weight vectors by solving two un-
constrained convex optimization problems; (2) generating
a new weight vector satisfying y-EL using the two weight
vectors found in the first phase.

Phase 1: Unconstrained optimization. We ignore EL
fairness and solve the following unconstrained problem,

wo = argmin L(w) @)

Because L(w) is strictly convex in w, the above optimiza-
tion problem can be solved efficiently using convex solvers.
Predictor f,,, is the optimal predictor without fairness con-
straint, and L(wo) is the smallest overall expected loss
that is attainable. Let @ = argmax,eqo,1} Lo(wo), i.e.,
group @ is disadvantaged under predictor fy,,. Then, for the
disadvantaged group @, we find wg, by optimization (5).

Phase 2: Binary search to find the fair predictor. For
B € [0, 1], we define the following two functions,

9(8) = La((1 - Blwo + fwe,)
—Li_a((1 = B)wo + Pwg, );
hMB) = L((1-PBwo + fwe,),

where function g(f) can be interpreted as the loss dis-
parity between two demographic groups under predictor
Ja-Bywo+pw o, and h(p) is the corresponding overall ex-
pected loss. Some properties of functions g(.) and h(.) are
summarized in the following theorem.

Theorem 4.1. Under Assumptions 3.1 and 3.2,
1. There exists By € [0, 1] such that g(5p) = 0;
2. h(p) is strictly increasing in B € [0,1];
3. g(B) is strictly decreasing in 8 € [0, 1].

Theorem 4.1 implies that in a d,,-dimensional space if we
start from wo and move toward wg, along a straight line,
the overall loss increases and the disparity between two
groups decreases until we reach (1 — Sp)wo + Bowg, , at
which O-EL fairness is satisfied. Note that 3y is the unique
root of g. Since g(f) is a strictly decreasing function, 3y
can be found using binary search.

For the approximate «-EL fairness, there are multiple values
of § such that (1 — S)we + Pwg, satisfies y-EL. Since
h(p) is strictly increasing in /3, among all g that satisfy
~v-EL fairness, we would choose the smallest one. The
method for finding a sub-optimal solution to optimization
(1) is described in Algorithm 3. Note that while loop in
Algorithm 3 is repeated for O(log(1/¢)) times. Since the
time complexity of operations (i.e., evaluating 97(57(72 2)
in each iteration is O(d,,) , the total time complexity of
Algorithm 3 is O(dy log(1/€)). We can formally prove that
the output returned by Algorithm 3 satisfies -EL constraint.

Theorem 4.2. Assume that Assumptions 3.1 and 3.2 hold,
and let g-,(8) = g(B8) — 7. If g4(0) < 0, then wo satisfies
the y-EL fairness; if g,(0) > 0, then lim;_, o 57(7?1 g = 57(,10?3
exists, and (1 — /37(”0?(3)100 + /B'r(noicnga satisfies the ~y-EL
fairness constraint.

Note that since h(f) is increasing in 3, we only need to find
the smallest possible 8 such that (1—8)wo+fw¢, satisfies
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Algorithm 3 Sub-optimal solution to optimization (1)

Input: wg,, wo, €, v

Initialization: ¢.(3) = g(8) — 7, @
0) _
Bend =1
1: if g, (0) < 0 then
w = wo, and go to line 13;
endif .
while 8, — 5521“ > edo
Bmzd (ﬂetarf + end)/2

1fgq,(ﬂ( 9 4) = 0 then

0 ng()zrf =

+1) _ (i+1)
59?&&% 5mzd’ 6e;d /Bend’
else ) _ (i+1) _ 5(4)
(i+1 i+1
9: Bstart Bstartﬂ ﬂend 6mzd;
10:  endif

11: end while

12: w=(1- Bmld)wo + ,6’( i dWGas
13: Qutput: w

~-EL, which is Bfm 4 in Theorem 4.2. Since Algorithm 3
finds a sub-optimal solution, it is important to investigate the
performance of this sub-optimal fair predictor, especially
in the worst case scenario. The following theorem finds
an upper bound of the expected loss of f,,, where w is the
output of Algorithm 3.

Theorem 4.3. Under Assumptions 3.1 and 3.2, we have
the following: L(w) < maxX,c(0,1} La(wo). That is, the
expected loss of fu is not worse than the loss of the disad-
vantaged group under predictor fy,,.

Learning with Finite Samples. So far we proposed algo-
rithms for solving optimization (1). In practice, the joint
probability distribution of (X, A,Y") is unknown and the
expected loss needs to be estimated using the empirical loss.
Specifically, given n i.i.d. samples {(X;, A;,Y;)}" , anda
predictor f,,, the empirical losses of the entire population
and each group are defined as follows,

Lw) = 53 UV fu(X0).
La(’U)) = nLaZi:A,;:al(}/i’fw(Xi))?
where n, = |{i|4; = a}|. Because y-EL fairness con-

straint is defined in terms of expected loss, the optimization
problem of finding an optimal «-EL fair predictor using
empirical losses is as follows,

|Lo(w) — Li(w)| < 4. (8)

In this section, we aim to investigate how to determine 4 so
that with high probability, the predictor found by solving
problem (8) satisfies v-EL fairness, and meanwhile @ is a
good estimate of the solution w* to optimization (1). We
aim to show that we can set 4y = + if the number of samples
is sufficiently large. To understand the relation between (8)
and (1), we follow the general sample complexity analysis

W = arg min L(w),
w

found in (Donini et al., 2018) and show their sample com-
plexity analysis is applicable to EL. To proceed, we make
the assumption used in (Donini et al., 2018).

Assumption 4.4. With probability 1 — 6, following holds:
SquweF |L(’UI) - L(w)| < B((Sa n, ]:)a
where B(d, n, F) is a bound that goes to zero as n — +00.

Note that according to (Shalev-Shwartz and Ben-David,
2014), if the class F is learnable with respect to loss function
I(.,.), then always there exists such a bound B(d, n, F) that
goes to zero as n goes to infinity.’

Theorem 4.5. Let F be a set of learnable functions, and let
w and w* be the solutions to (8) and (1) respectively, with
A=+ Zae{O,l} B(0,n4, F). Then, with probability at
least 1 — 60, the followings hold,

L(w) — L(w*) < 2B(4,n,F) and
|L0(’lf))—L1(’lf])| < 7—}—23(6,710,]:)4—23(6,111,}").

Theorem 4.5 shows that as ng, n; go to infinity, ¥ — -,
and both empirical loss and expected loss satisfy v-EL. In
addition, as n goes to infinity, the expected loss at w goes
to the minimum possible expected loss. Therefore, solving
(8) using empirical loss is equivalent to solving (1) if the
number of data points from each group is sufficiently large.

5. Beyond Linear Models

So far, we have assumed that the loss function is strictly
convex. This assumption is mainly valid for training linear
models (e.g., Ridge regression, regularized logistic regres-
sion). However, it is known that training deep models lead
to minimizing non-convex objective functions. To train a
deep model under the equalized loss fairness notion, we can
take advantage of Algorithm 2 for fine-tuning under EL as
long as the objective function is convex with respect to the
parameters of the output layer.'® To clarify how Algorithm
2 can be used for deep models, for simplicity, consider a
neural network with one hidden layer for regression. Let
W be an m by d matrix (d is the size of feature vector X
and m is the number of neurons in the first layer) denoting
the parameters of the first layer of the Neural Network, and
w be a vector corresponding to the output layer. To find a
neural network satisfying the equalized loss fairness notion,
first, we train the network without any fairness constraint

°As an example, if F is a compact subset of linear predictors in
Reproducing Kernel Hilbert Space (RKHS) and loss I(y, f(x)) is
Lipschitz in f(z) (second argument), then Assumption 4.4 can be
satisfied (Bartlett and Mendelson, 2002). Vast majority of linear
predictors such as support vector machine and logistic regression
can be defined in RKHS.

1%In classification or regression problems with 12 regularizer, the
objective function is strictly convex with respect to the parameters
of the output layer. This is true regardless of the network structure
before the output layer.
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using common gradient descent algorithms (e.g., stochastic
gradient descent). Let 1V and @ denote the network param-
eters after training the network without fairness constraint.
Now we can take advantage of Algorithm 2 to fine-tune the
parameters of the output layer under the equalized loss fair-
ness notion. Let us define X := [1, W - X7 The problem
for fine-tuning the output layer can be written as follows,

w* = argminE{l(Y,wTX)}, )

st, |E{(Y,w"X)|A =0} —E{(Y,wX)A=1} <.

The objective function of the above optimization problem
is strictly convex, and the optimization problem can be
solved using Algorithm 2. After solving the above problem,
[W,w*] will be the final parameters of the neural network
model satisfying the equalized loss fairness notion. Note
that a similar optimization problem can be written for fine-
tuning any deep model with classification/regression task.

6. Experiments

We conduct experiments on two real-world datasets to eval-
uate the performance of the proposed algorithm. In our
experiments, we used a system with the following config-
urations: 24 GB of RAM, 2 cores of P100-16GB GPU,
and 2 cores of Intel Xeon CPU@2.3 GHz processor. More
information about the experiments and the instructions on
reproducing the empirical results are provided in Appendix.
The codes are available at https://github.com/
KhaliliMahdi/Loss_Balancing_ICML2023.

Baselines. As discussed in Section 2, not all the fair learning
algorithms are applicable to EL fairness. The followings are
three baselines that are applicable to EL fairness.

Penalty Method (PM): The penalty method (Ben-Tal and

Zibulevsky, 1997) finds a fair predictor under -EL fairness
constraint by solving the following problem,

min L(w) + t - max{0, |Lo(w) — L1 (w)| —v}* + R(w), (10)

where ¢ is the penalty parameter, and R(w) = 0.002- ||w||3
is the regularizer. The above optimization problem cannot
be solved with a convex solver because it is not generally
convex. We solve problem (10) using Adam gradient de-
scent (Kingma and Ba, 2014) with a learning rate of 0.005.
We use the default parameters of Adam optimization in Py-
torch. We set the penalty parameter ¢ = 0.1 and increase
this penalty coefficient by a factor of 2 every 100 iteration.

Linear Relaxation (LinRe): Inspired by (Donini et al.,
2018), for the linear regression, we relax the EL constraint
as —7vy S %0 Zi:Aiza(Y; - wTXl) - nil Zi:A,;:l(}/i -
wlX;) < ~. For the logistic regression, we relax the
constraint as —y < L35, _ (Vi — 0.5) - (w'X;) —
1’%1 > iin,—1(Yi—0.5) - (wTX;) < . Note that the sign of
(Y; —0.5) - (w? X ;) determines whether the binary classifier

Overall loss v.s. loss difference Overall loss v.s. loss difference
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Figure 1: Trade-off between over- Figure 2: Trade-off between over-
all MSE and unfairness. A lower all BCE and unfairness. A lower
curve implies a better trade-off.  curve implies a better trade-off.

makes a correct prediction or not.

FairBatch (Roh et al., 2020): This method was originally
proposed for equal opportunity, statistical parity, and equal-
ized odds. With some modifications (see the appendix for
more details), this can be applied to EL fairness. This al-
gorithm measures the loss of each group in each epoch and
changes the Minibatch sampling distribution in favor of the
group with a higher empirical loss. When implementing
FairBatch, we use Adam optimization with default parame-
ters, a learning rate of 0.005, and a batch size of 100.

Linear Regression and Law School Admission Dataset.
In the first experiment, we use the law school admission
dataset, which includes the information of 21,790 law stu-
dents studying in 163 different law schools across the United
States (Wightman, 1998). This dataset contains entrance
exam scores (LSAT), grade-point average (GPA) prior to
law school, and the first year average grade (FYA). Our goal
is to train a y-EL fair regularized linear regression model
to estimate the FYA of students given their LSAT and GPA.
In this study, we consider Black and White Demographic
groups. In this dataset, 18285 data points belong to White
students, and 1282 data points are from Black students. We
randomly split the dataset into training and test datasets
(70% for training and 30% for testing), and conduct five in-
dependent runs of the experiment. A fair predictor is found
by solving the following optimization problem,

min L(w) + 0.002 - |Jw||? s.t.,|Lo(w) — L1 (w)| <, (11)
w

with L and L, being the overall and the group specific
empirical MSE, respectively. Note that 0.002 - ||lw|3 is
the regularizer. We use Algorithm 2 and Algorithm 3 with
€ = 0.01 to find the optimal linear regression model under
EL and adopt CVXPY python library (Diamond and Boyd,
2016; Agrawal et al., 2018) as the convex optimization
solver in ELminimizer algorithm.

Table 1 illustrates the means and standard deviations of
empirical loss and the loss difference between Black and
White students. The first row specifies desired fairness level
(y = 0 and v = 0.1) used as the input to each algorithm.
Based on Table 1, when desired fairness level is v = 0, the
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Table 1: Linear regression model under EL fairness. The loss
function in this example is the mean squared error loss.

Table 2: Logistic Regression model under EL fairness. The loss
function in this example is binary cross entropy loss.

v=0 v=0.1

v=0 v=0.1

= test loss 0.9246 & 0.0083  0.9332 & 0.0101 = test loss 0.5594 + 0.0101  0.5404 + 0.0046
&~ test|Lo— Ly| 0.1620 £0.0802 0.1438 +0.0914 & test|Lo— Ly|  0.0091 +0.0067 0.0892 % 0.0378
& test loss 0.9086 = 0.0190  0.8668 & 0.0164 & test loss 0.3468 £ 0.0013  0.3441 + 0.0012
3 test|Lo— Ly| 0.2687 +0.0588 0.2587 4 0.0704 3 test|Lo— Ly| 0.0815+0.0098 0.1080 4 0.0098
Ef,; test loss 0.8119 4 0.0316  0.8610 & 0.0884 Ef,; test loss 1.5716 + 0.8071  1.2116 + 0.8819
A test|Lo— L] 0.286240.1933  0.2708 £ 0.1526 =@ test Lo — Ly 0.6191 4 0.5459  0.3815 4 0.3470
2% test loss 0.9186 & 0.0179  0.8556 & 0.0217 ) test loss 0.3516 £ 0.0015  0.3435 + 0.0012
28<  test|Lo— Li| 0.0699 +0.0469 0.1346 + 0.0749 8% test|Lo— Ly| 0.0336+0.0075 0.1110 + 0.0140
-0, test loss 0.9522 4 0.0209  0.8977 + 0.0223 2% test loss 0.3521 £ 0.0015  0.3377 + 0.0015
8<  test|Lo— Ly| 0.0930£0.0475 0.1437 + 0.0907 O< test|Lo— Li| 0.0278+£0.0075 0.1068 & 0.0138

model fairness level trained by LinRe and FairBatch method
is far from v = 0. We also realized that the performance of
FairBatch highly depends on the random seed. As a result,
the fairness level of the model trained by FairBatch has a
high variance (0.1933 in this example) in these five inde-
pendent runs of the experiment, and in some of these runs,
it can achieve desired fairness level. This is because the
FairBatch algorithm does not come with any performance
guarantee, and as stated in (Roh et al., 2020), FairBatch cal-
culates a biased estimate of the gradient in each epoch, and
the mini-batch sampling distribution keeps changing from
one epoch to another epoch. We observed that FairBatch
has better performance with a non-linear model (see Table
3). Both Algorithms 2 and 3 can achieve a fairness level
close to v = 0. However, Algorithm 3 finds a sub-optimal
solution and achieves higher MSE compared to Algorithm 2.
For v = 0.1, in addition to Algorithms 2 and 3, the penalty
method also achieves a fairness level close to desired fair-
ness level v = 0.1 (i.e., |L1 — Lo| = 0.0892). Algorithm 2
still achieves the lowest MSE compared to Algorithm 3 and
the penalty method. The model trained by FairBatch also
suffers from high variance in the fairness level. We want
to emphasize that even though Algorithm 3 has a higher
MSE compared to Algorithm 2, it is much faster, as stated
in Section 3.

We also investigate the trade-off between fairness and over-
all loss under different algorithms. Figure 1 illustrates
the MSE loss as a function of the loss difference between
Black and White students. Specifically, we run Algorithm
2, Algorithm 3, and the baselines under different values of
~ = [0.0250,0.05,0.1,0.15, 0.2]. For each ~, we repeat the
experiment five times and calculate the average MSE and
average MSE difference over these five runs using the test
dataset. Figure 1 shows the penalty method, linear relax-
ation, and FairBatch are not sensitive to input . However,
Algorithm 2 and Algorithm 3 are sensitive to v; As 7y in-
creases, | Lo(w*) — Ly (w*)| increases and MSE decreases.

Logistic Regression and Adult Income Dataset. We con-
sider the adult income dataset containing the information of
48,842 individuals (Kohavi, 1996). Each data point consists
of 14 features, including age, education, race, etc. In this
study, we consider race (White or Black) as the sensitive
attribute and denote the White demographic group by A = 0
and the Black group by A = 1. We first pre-process the
dataset by removing the data points with a missing value
or with a race other than Black and White; this results in
41,961 data points. Among these data points, 4585 belong
to the Black group. For each data point, we convert all the
categorical features to one-hot vectors with 110 dimension
and randomly split the dataset into training and test data
sets (70% of the dataset is used for training). The goal is to
predict whether the income of an individual is above $50K
using a y-EL fair logistic regression model. In this experi-
ment, we solve optimization problem (11), with L and Jia
being the overall and the group specific empirical average of
binary cross entropy (BCE) loss, respectively. The compari-
son of Algorithm 2, Algorithm 3, and the baselines is shown
in Table 2, where we conduct five independent runs of ex-
periments, and calculate the mean and standard deviation
of overall loss and the loss difference between two demo-
graphic groups. The first row in this table shows the value
of v used as an input to the algorithms. The results show
that linear relaxation, algorithm 2 and Algorithm 3 have
very similar performances. All of these three algorithms
are able to satisfy the y-EL with small test loss. Similar to
Table 1, we observe the high variance in the performance of
FairBatch, which highly depends on the random seed.

In Figure 2, we compare the performance-fairness trade-off.
We focus on binary cross entropy on the test dataset. To
generate this figure, we run Algorithm 2, Algorithm 3, and
the baselines (we do not include the curve for FairBatch due
to large overall loss and high variance in performance) under
different values of v = [0.02,0.04, 0.06, 0.08, 0.1] for five
times and calculate the average BCE and the average BCE
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difference. We observe Algorithms 2 and 3 and the linear
relaxation have a similar trade-off between L and | Lo — L1]|.

Experiment with a non-linear model We repeat our first

experiment with nonlinear models to demonstrate how we

can use our algorithms to fine-tune a non-linear model. We
work with the Law School Admission dataset, and we train

a neural network with one hidden layer which consists of

125 neurons. We use sigmoid as the activation function for

the hidden layer. We run the following algorithms,

* Penalty Method: We solve optimization problem (10). In
this example, L and L, are not convex anymore. The
hyperparameters except for the learning rate remain the
same as in the first experiment. The learning rate is set to
be 0.001.

 FairBatch: we train the whole network using FairBatch
with mini-batch Adam optimization with a batch size of
100 and a learning rate of 0.001.

* Linear Relaxation: In order to take advantage of CVXPY,
first, we train the network without any fairness constraint
using batch Adam optimization (i.e., the batch size is
equal to the size of the training dataset) with a learning
rate of 0.001. Then, we fine-tune the parameters of the
output layer. Note that the output layer has 126 parame-
ters, and we fine-tune those under relaxed EL fairness. In
particular, we solve problem (9) after linear relaxation.

* Algorithm 2 and Algorithm 3: We can run Algorithm 2
and Algorithm 3 to fine-tune the neural network. After
training the network without any constraint using batch
Adam optimization, we solve (9) using Algorithm 2 and
Algorithm 3.

Table 3 illustrates the average and standard deviation of

empirical loss and the loss difference between Black and

White students. Both Algorithm 2 and Algorithm 3 can

achieve a fairness level (i.e., ﬁo — ﬁl\) close to desired

fairness level . Also, we can see that the MSE of Algorithm

2 and Algorithm 3 under the nonlinear model is slightly

lower than the MSE under the linear model.

We also investigate how MSE L changes as a function of fair-
ness level |L; — Lo|. Figure 3 illustrates the MSE-fairness
trade-off. To generate this plot, we repeat the experiment
for v = [0.025,0.05,0.1,0.15, 0.2]. For each ~y, we ran the
experiment 5 times and calculated the average of MSE L
and the average of MSE difference using the test dataset.
Based on Figure 3, we observe that FairBatch and LinRe
are not very sensitive to the input . However, FairBatch
may sometimes show a better trade-off than Algorithm 2. In
this example, PM, Algorithm 2, and Algorithm 3 are very
sensitive to 7, and as ~y increases, MSE L decreases and
|Lo — L1 increases.

Limitation and Negative Societal Impact. 1) Our theo-
retical guarantees are valid under the stated assumptions

Table 3: Neural Network training under EL fairness. The loss
function in this example is the mean squared error loss.

v=0 v=0.1
= test loss 0.9490 £ 0.0584  0.9048 £ 0.0355
A~ test|Lo— Ly| 0.1464 +£0.1055 0.1591 4 0.0847
% test loss 0.8489 £ 0.0195 0.8235 £ 0.0165
3 test|Lo — Ly 0.6543+0.0322  0.5595 =+ 0.0482
Efé test loss 0.9012 £ 0.1918  0.8638 £ 0.0863
A test |[Lo — Ly 0.2771+0.1252  0.1491 + 0.0928
» o test loss 0.9117 £0.0172  0.8519 £ 0.0195
2<  test |Lo — Li| 0.0761 £0.0498 0.1454 + 0.0749
o test loss 0.9427 £ 0.0190  0.8908 £ 0.0209
2<  test |Lo — Li| 0.0862 4 0.0555 0.1423 + 0.0867
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Figure 3: Trade-off between overall MSE and unfairness. A lower
curve implies a better trade-off.

(e.g., the convexity of L(w), i.i.d. samples, binary sensi-
tive attribute). These assumptions have been clearly stated
throughout this paper. 2) In this paper, we develop an algo-
rithm for finding a fair predictor under EL fairness. How-
ever, we do not claim this notion is better than other fairness
notions. Depending on the scenario, this notion may or may
not be suitable for mitigating unfairness.

7. Conclusion

In this work, we studied supervised learning problems under
the Equalized Loss (EL) fairness (Zhang et al., 2019), a no-
tion that requires the expected loss to be balanced across dif-
ferent demographic groups. By imposing the EL constraint,
the learning problem can be formulated as a non-convex
problem. We proposed two algorithms with theoretical
performance guarantees to find the global optimal and a
sub-optimal solution to this non-convex problem.
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A. Appendix
A.1. Some notes on the code for reproducibility

In this part, we provide a description of the files provided in our GitHub repository.

¢ law_data.py: This file includes a function called law_data(seed) which processes the law school admission dataset
and splits the dataset randomly into training and test datasets (we keep 70% of the datapoints for training). Later, in our
experiments, we set the seed equal to 0, 1, 2, 3, and 4 to get five different splits to repeat our experiments five times.

o Adult_data.py: This file includes a function called Adult_dataset(seed) which processes the adult income dataset
and splits the dataset randomly into training and test datasets. Later, in our experiments, we set the seed equal to 0, 1,
2, 3, 4 to get five different splits to repeat our experiments five times.

e Algorithms.py: This file includes the following functions,

— ELminimizer(X0,Y0,X1,Y1, gamma, eta, model): This function implements Elminimizer algorithm.
(X0,Y0) are the training datapoints belonging to group A = 0 and (X1,Y1) are the datapoits belonging to
group A = 1. gammua is the fairness level for EL constraint. 7 is the reqularizer parameter (in our experiments,
n = 0.002). model determines the model that we want to train. If model = ”linear”, then we train a linear
regression model. If model = ”logistic”, then we train a logisitic regression model. This function returns five
variables (w, b,10,11,1). w,b are the weight vector and bias term of the trained model. ly,[; are the average
training loss of group 0 and group 1, respectively. [ is the overall training loss.

— Algorithm2(X0,Y0, X1,Y1, gamma, eta, model): This function implements Algorithm 2 which calls
Elminimizer algorithm twice. This function also returns five variables (w,b,10,11,1). These variables
have been defined above.

— Algorithm3(X0,Y0, X1,Y1, gamma, eta, model): This function implements Algorithm 3 which finds a sub-
optimal solution under EL fairness. This function also returns five variables (w, b, [0, 11,1). These variables have
been defined above.

— solve_constrained_opt(X0,Y0, X1,Y1, eta,landa, model): This function uses the CVXPY package to solve

)

the optimization problem (4). We set landa equal to AC ;4 10 solve the optimization problem (4) in iteration 7 of

Algorithm 1. "

— calculate_loss(w,b, X0,Y0, X1,Y 1, model): This function is used to find the test loss. w, b are model parame-
ters (trained by Algorithm 2 or 3). It returns the average loss of group 0 and group 1 and the overall loss based on
the given dataset.

- solve_lin_constrained_opt(X0,Y0, X1,Y 1, gamma, eta, model): This function is for solving optimization
problem (8) after linear relaxation.

* Baseline.py: this file includes the following functions,

— penalty_-method(method, X 0,y.0, X _1,y_1, num_itr, lr,r, gammea, seed, epsilon) where method can be ei-
ther ”linear” for linear regression or ”logistic” for logistic regression. This function uses the penalty method
and trains the model under EL using the Adam optimization. num_itr is the maximum number of iterations. r is
the regularization parameter (it is set to 0.002 in our experiment). [r is the learning rate and gamma is the fairness
level. € is used for the stopping criterion. This function returns the trained model (which is a torch module), and
training loss of group 0 and group 1, and the overall training loss.

— fair_batch(method, X 0,y.0, X _1,y_1, num_itr,lr, r, alpha, gamma, seed, epsilon): This function is used
to simulate the FairBatch algorithm (Roh et al., 2020). The input parameters are similar to the input parameters of
penalty_method except for alpha. This parameter determines how to adjust the sub-sampling distribution for
mini-batch formation. Please look at the next section for more details. This function returns the trained model
(which is a torch module), and training loss of group 0 and group 1, and the overall training loss.

tablel_2.py uses the above functions to reproduce the results in Table 1 and Table 2. figurel_2.py uses the above functions
to reproduce Figure 1 and Figure 2. We provide some comments in these files to make the code more readable. We have
also provided code for training non-linear models. Please use T'able3.py and figure3.py to generate the results in Table 3
and Figure 3, respectively.
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Lastly, use the following command to generate results in Table 1:

* python3 tablel 2.py —--experiment=1 --gamma=0.0

e python3 tablel 2.py —--experiment=1 --gamma=0.1
Use the following command to generate results in Table 2:

e python3 tablel 2.py —-—-experiment=2 --gamma=0.0

e python3 tablel 2.py —-—-experiment=2 --gamma=0.1
Use the following command to generate results in Table 3:

e python3 table3.py —-—-gamma=0.0

* python3 table3.py —-—gamma=0.1
Use the following command to generate results in Figure 1:
e python3 figurel 2.py —-—-experiment=1
Use the following command to generate results in Figure 2:
e python3 figurel 2.py —-—-experiment=2
Use the following command to generate results in Figure 3:
e python3 figure3.py

Note that you need to install packages in requirements.txt

A.2. Notes on FairBatch (Roh et al., 2020)

This method has been proposed to find a predictor under equal opportunity, equalized odd or statistical parity. In each epoch,
this method identifies the disadvantaged group and increases the subsampling rate corresponding to the disadvantaged group
in mini-batch selection for the next epoch. We modify this approach for v-EL as follows,

e We initialize the sub-sampling rate of group a (denoted by SR((LO)) for mini-batch formation by SR((IO) ="2a=0,1
We Form the mini-batches using S Réo) and S REO).

* Atepoch i, we run gradient descent using the mini-batches formed by S R(()i_l) and S Rgi_l), and we obtain new model

parameters w;.

* After epoch i, we calculate the empirical loss of each group. Then, we update S Réi) as follows,
SRW «— SRU=D 4o if Lo(w;) — Li_o(w;) > v
SRW «— SRUY — o if Lo (w;) — Ly_q(w;) < —v
SRW «— SRU=D  ow,
where is « is a hyperparameter and, in our experiment, is equal to 0.005.
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A.3. Details of numerical experiments and additional numerical results

Due to the space limits of the main paper, we provide more details on our experiments here,

 Stopping criteria for penalty method and FairBatch: For stopping criteria, we stopped the learning process when the
change in the objective function is less than 106 between two consecutive epochs. The reason that we used 10~6 was
that we did not observe any significant change by choosing a smaller value.

* Learning rate for penalty method and FairBatch: We chose 0.005 for the learning rate for training a linear model. For
the experiment with a non-linear model, we set the learning rate to be 0.001.

 Stopping criteria for Algorithm 2 and Algorithm 3: As we stated in the main paper, we set € = 0.0l in ELminimizer
and Algorithm 3. Choosing smaller € did not change the performance significantly.

* Linear Relaxation: Note that equation (8) after linear relaxation is a convex optimization problem. We directly solve
this optimization problem using CVXPY.

The experiment has been done on a system with the following configurations: 24 GB of RAM, 2 cores of P100-16GB GPU,
and 2 cores of Intel Xeon CPU@2.3 GHz processor. We used GPUs for training FairBatch.

A.4. Notes on the Reduction Approach (Agarwal et al., 2018; 2019)

Let Q(f) be a distribution over F. In order to find optimal Q(f) using the reduction approach, we have to solve the
following optimization problem,

min 3" QUIB(Y. (X))}

fer

st Y QUIE{Y, F(X)A=0} =D QUHE{Y, f(X))}
fer ferx
D QUHE{Y, f(X))A =1} = > QUAE{LY, (X))}
ferF feF

Similar to (Agarwal et al., 2018; 2019), we can re-write the above optimization problem in the following form,

min > QUIE{Y, f(X)}

fer

st Y QUARL(Y, F(X))|A=0} = > QUABL(Y, f(X))} <0
fer feF
=D QUNBLY, F(X))A =0} + Y QUIE{I(Y, f(X))} <0
fer ter
D QUOEY, fFX))A=1} = Y QUIE{(Y. f(X))} <0
fer fer
=Y QUHE{UY, f(X)A=1}+ Y QUNE{UY, f(X))} <0
fer Ter
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Then, the reduction approach forms the Lagrangian function as follows,

LQ.u) = Y QUE{Y, f(X))}
feF

— - | Y0 QUOELY. f(X))A =0} = Y~ QUIE{Y, £(X))}
fer fer

— pae [ = D0 QUIELY, FXO))IA =0} + Y QUAB{IY, f(X))}
feF feF

— e | D0 QUOELY. f(X))A =1} = Y~ QUIE{L(Y, f(X))}
fer feF

— e | =) QUOEQY. FX))A =13+ ) QUOE{Y. f(X)} ],

feF
1> 0,p2 >0,u3 > 0,14 > 0.

feF

Since f is parametrized with w, we can find distribution Q(w) over R% . Therefore, we rewrite the problem in the following

form, ZQ(w ”
— m <%: Q(w)L
— <—ijc2<w Lo(w +%:Q(w)L(w)>

- (%j Qw) Ly (w) — %:Q(w)L(w)>
1 (— g Qw) Ly (w) + zwj Q(w)L(w)>

The reduction approach updates @ (w) and (p1, p2, 113, f44) alternatively. Looking carefully at Algorithm 1 in (Agarwal et al.,
2018), after updating (p1, p2, 143, f14), we need to have access to an oracle that is able to solve the following optimization
problem in each iteration,

min(1 + pq
w

L(Q(w), pa, pro, pi3, pra) =

- ZQ(w)L(w)>

w

— piz + p3 — pa) L(w) + (=p1 + p2) Lo(w) + (—ps + pa) La(w)

The above optimization problem is not convex for all yu1, i, i3, pt4. Therefore, in order to use the reduction approach, we
need to have access to an oracle that is able to solve the above non-convex optimization problem which is not available.
Note that the original problem (1) is a non-convex optimization problem and using the reduction approach just leads to
another non-convex optimization problem.

A.5. Equalized Loss & Bounded Group Loss

In this section, we study the relation between EL and BGL fairness notions. It is straightforward to see that any predictor
satisfying v-BGL also satisfies the v-EL. However, it is unclear to what extend an optimal fair predictor under ~y-EL satisfies
the BGL fairness notion. Next, we theoretically study the relation between BGL and EL fairness notions.

Let w* be denoted as the solution to (1) and f,,~ the corresponding optimal y-EL fair predictor. Theorem A.1 below shows
that under certain conditions, it is impossible for both groups to experience a loss larger than 2+ under the optimal -EL fair
predictor.

Theorem A.1. Suppose there exists a predictor that satisfies v-BGL fairness notion. That is, the following optimization
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problem has at least one feasible point.
min L(w) s.t. Lo(w) <7, Ya €{0,1}. (12)

Then, the followings hold,
min{Lo(w™), L1 (w*)}

max{Lo(w"), L1 (w*)}

Vs
27.

IAIA

Theorem A.1 shows that v-EL implies 2v-BGL if v-BGL is a feasible constraint. Therefore, if  is not too small (e.g.,
v = 0), then EL and BGL are not contradicting each other.

We emphasize that we are not claiming that whether EL fairness is better than BGL. Instead, these relations indicate the
impacts the two fairness constraints could have on the model performance; the results may further provide the guidance for
policy-makers.
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A.6. Proofs

In order to prove Theorem 3.3, we first introduce two lemmas.

< Lw) <\

end

Proof. Let qo(ﬁ) = LO((l _ﬁ)ng +B'UJG1) and q1 (6) = Ll((l _ﬁ)wGo +ﬂwG1)’ and Q(ﬁ) = QO(/B) _Q1(ﬁ)7 B € [07 1]
Note that VL, (wg, ) = 0 because w¢, is the minimizer of L, (w).

Lemma A.2. Under assumption 3.2, there exists W € R% such that Lo(w) = L, (w) = L(w) and A

start

First, we show that Lo ((1 — S)wg, + Swe, ) is an increasing function in 5, and L, ((1 — S)wg, + Swe, ) is a decreasing
function in 3. Note that ¢}(0) = (wg, — wg,)? VwLo(we,) = 0, and go(/3) is convex because Lo(w) is convex. This
implies that ¢’ () is an increasing function, and ¢, (8) > 0,V € [0, 1]. Similarly, we can show that ¢} (8) < 0,V € [0, 1].

Note that under Assumption (3.2), ¢(0) < 0 and ¢(1) > 0. Therefore, by the intermediate value theorem, the exists
B € (0,1) such that ¢g(8) = 0. Definew = (1 — f)wg, + fwe,. We have,

q(B) = 0 = Lo(w)=Li(w) = L(w)

wg, 1s minimizer of Ly =

L@) = Lo(®@) > A

0(8) = 0,¥8€[0,1] = q(1) > q(B) =
Noa 2 Lo(@) = L(w)

Lemma A.3. Lo(w}) = A"

miq» Where wy is the solution to (4).

Proof. We proceed by contradiction. Assume that Lo(w}) < /\52)2 4 (.e., w; is an interior point of the feasible set of (4)).
Notice that wg, cannot be in the feasible set of (4) because Lo(wg, ) = /\io)d > )\gfl)id. As aresult, Vy Ly (w]) # 0. This

s
is a contradiction because w; is an interior point of the feasible set of a convex optimization and cannot be optimal if

VuwL1(w}) is not equal to zero.

Proof [Theorem 3.3]

LetI; = [Ag?mt, /\Sgd] be a sequence of intervals. It is easy to see that I; O I D --- and )\gd — )\g?(m — 0asi — oo.

Therefore, by the Nested Interval Theorem, N72,I; consists of exactly one real number \*, and both )\g?(m and )\g d
. (4) (i) .

converge to \*. Because )\E;)Z 4= %, )\gfl)i 4 also converges to \*.

Now, we show that L(w*) € I, for all i (w* is the solution to (1) when v = 0. As aresult, Lo(w*) = L1 (w*) = L(w*)).
Note that L(w*) = Lo(w*) > /\g(;)m because w¢, is the minimizer of Ly. Moreover, )\SL)d > L(w*) otherwise L(w) <
L(w*) (w is defined in Lemma A.2) and w* is not optimal solution under 0-EL. Therefore, L(w*) € Ij.

Now we proceed by induction. Suppose L(w*) € I;. We show that L(w*) € I, as well. We consider two cases.

o L(w*) < A9 n this case w* is a feasible point for (4),and Ly (w?) = AD < Ly (w*) = L(w*) < A0 Therefore,
mid p % mid
L('w*) S Ii+1
o L(w*) > )\fi)i 4~ In this case, we proceed by contradiction to show that A > )\ffb),i 4+ Assume that A < )\gi)i 4+ Define

r(B) = ro(B) —r1(B), where 7, () = Lo ((1 — f)wg, + Sw]). Note that A0 = r1(1) By Lemma A.3, ro(1) = /\Efl)id.

Therefore, (1) = /\;Zd -0 > . Moreover, under Assumption 3.2, r(0) < 0. Therefore, by the intermediate value
theorem, there exists 3, € (0, 1) such that r(/3,) = 0. Similar to the proof of Lemma A.2, we can show that ro(3) in

an increasing function for all 3 € [0,1]. As a result 7o(8,) < ro(1) = A Define wo = (1 - Bo)we, + Bow;. We

mid*
have,
ro(By) = Lo(@o) = L (@) = L(wo) < AL, (13)
Lw*) > A9 (14)

The last two equations imply that w™ is not a global optimal fair solution under 0-EL fairness constraint and it is not

the global optmal solution to (1). This is a contradiction. Therefore, if L(w*) > )\52 4 then AV > /\52 4+ As aresult,
L('w*) S Ii+1
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By two above cases and the nested interval theorem, we conclude that,
Lw*) € N2, 1, lim A = L(w™),
1—> 00

oL (4)
define),;; == 213110 Aia

Therefore, lim;_,, w; would be the solution to the following optimziation problem,

mid —

arg min Ly (w)s.t., Lo(w) < Ay L(w™)
w

By lemma A.3, the solution to above optimization problem (i.e., lim;_, ., w}) satisfies the following, Lo (lim;_, . w}) =
A%, = L(w*). Therefore, lim;_, ., w is the global optimal solution to optimization problem (1).

Proof [Theorem 3.4 ] Let’s assume that wo does not satisfy the y-EL.!! Let w* be the optimal weight vector under ~-EL.
It is clear that w* # wo.

Step 1. we show that one of the following holds,
Lo(w*) — Li(w*) =~ (15)
Lo(w") — Li(w*) = —y (16)
Proof by contradiction. Assume —y < Lo(w*) — L1 (w*) < . This implies that w* is an interior point of the feasible set

of optimization problem (1). Since w* # wo, then VL(w*) # 0. As a result, object function of (1) can be improved at w*
by moving toward —V L(w*). This a contradiction. Therefore, | Lo(w*) — L1 (w*)| = 7.

Step 2. Function w., = ELminimizer(wg,, Wa,, €, ) is the solution to the following optimization problem,
min Pr{A = 0}Lo(w) + Pr{A = 1} L, (w),
w

st., Lo(w) — Li(w) =y (17

To show the above claim, notice that the solution to optimization problem (17) is the same as the following,

min Pr{A = 0}Lo(w) + Pr{A = 131 (w),

s.t., Lo(w) — Ly (w) = 0, (18)
where L (w) = Ly (w) + 7. Since Lo(we,) — L1 (wg,) < 0and Lo(we,) — Li(wg,) > 0, by Theorem 3.3, we know
thatw, = ELminimizer(wg,,wa,,€,y) find the solution to (18) when € goes to zero.

Lastly, because |Lo(w*) — L1 (w*)| = -, we have,

w* = { Wy if L(w’Y) < L(w*’Y) (19)
w_, O.W.
Thus, Algorithm 2 finds the solution to (1).

Proof [Theorem 4.1]
1. Under Assumption 3.2, g(1) < 0. Moreover, g(0) > 0. Therefore, by the intermediate value theorem, there exists
Bo € [0, 1] such that g(8y) = 0.

2. Since wo is the minimizer of L(w), h’'(0) = 0. Moreover, since L(w) is strictly convex, h(3) is strictly convex and
R'(B) is strictly increasing function. As a result, h’'(3) > 0 for 8 > 0, and k() is strictly increasing.

3. Similar to the above argument, s(8) = La((1 — f)wo + fwg, ) is strictly decreasing function (notice that s’(1) = 0
and s(3) is strictly convex).

"If wo satisfies v-EL, it will be the optimal predictor under -EL fairness. Therefore, there is no need to solve any constrained
optimization problem. Note that wo is the solution to problem (7).
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Note that since h(8) = Pr{A = a}L;((1 — flwo + fwe,) + Pr{A =1 —a}L1_4((1 — B)wo + pwg,) is strictly
increasing and L; ((1 — f)wo + fwe, ) is strictly decreasing. Therefore, we conclude that Ly _;((1 — f)wo + fwe, )
is strictly increasing. As a result, g(/3) should be strictly decreasing.

Proof [Theorem 4.2] First, we show that if g, (0) < 0, then wo satisfies y-EL.

95(0) <0 = g(f) —v<0 = La(wo)— Li_a(wo) <7

Moreover, L;(wo) — L1—a(wo) > 0 because & = arg max, Lo (wo). Therefore, v-EL is satisfied.

Now, let g,(0) > 0. Note that under Assumption 3.2, g,(1) = Ls(wg,) — Li—a(wg,) — v < 0. Therefore, by the
intermediate value theorem, there exists 3y such that g,y(ﬁo) = 0. Moreover, based on Theorem 4.2, g, is a strictly
decreasing function. Therefore, the binary search proposed in Algorithm 3 converges to the root of g,(3). As a result,
(1- ﬂr(nofg)wo + Bfnof(}wgé satisfies y-EL. Note that since g(/3) is strictly decreasing, and g(ﬂ;ofg) =+, and Bfnof; is the
smallest possible 5 under which (1 — S)wo + fwg, satisfies v-EL. Since h is increasing, the smallest possible 3 gives us a
better accuracy.

Proof [Theorem 4.3] If ¢, (0) < 0, then wo satisfies 7-EL, and w = wo. In this case, it is easy to see that L(wo) <
maxqe(o,1} La(wo) (because L(wo) is a weighted average of Lo(wo) and Ly (wo)).

Now assume that g.,(0) > 0. Note that if we prove this theorem for v = 0, then the theorem will hold for v > 0. This is
because the optimal predictor under 0-EL satisfies y-EL condition as well. In other words, 0-EL is a stronger constraint
than ~-EL.

Let v = 0. In this case, Algorithm 3 finds w = (1 — Sy)wo + Bowe,, where fy is defined in Theorem 4.1. We have,

(*) 9(Bo) =0 = La(w) — L1-a(w)
In the proof of theorem 4.1, we showed that L;((1 — f)wo + Swg, ) is decreasing in . Therefore, we have,
(xx) La(w) < La(wo)

Therefore, we have,

Lw) = Pr(A=0) La(w)+ (1 -Pr(A=1))  L1-a(w) (20)
(By (x)) = La(w) (21
(By (%)) < La(wo) (22)

Proof [Theorem 4.5]
By the triangle inequality, the following holds,

sup || Lo(w) — Ly (w)| — |Lo(w) — Ly(w)]| < (23)
fw€F
sup |Lo(w) — Lo(w)| + sup |Li(w) — Ly (w)]. 24)
fw€F fw€F

Therefore, with probability at least 1 — 20 we have,
sup_[[Lo(w) = Ln(w)| = [Lo(w) = La(w)[| <
€

B(6,n9,F) + B(6,n1,F) (25)
As a result, with probability 1 — 24 holds,
{wlfw € 7, |Lo(w) — Li(w)| <~} €
{wlfw € F,|Lo(w) — Li(w)| < 4} (26)
Now consider the following,

L(®) — L(w") = L(@) — L(@) + L(®) — L(w") + L(w") - L(w") 27)
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By (26), L(1) — L(w*) < 0 with probability 1 — 24. Thus, with probability at least 1 — 28, we have,

L(w) — L(w*) < L(®) — L(®) + L(w*) — L(w*). (28)

Therefore, under assumption 4.4, we can conclude with probability at least 1 — 65, L(@) — L(w*) < 2B(,n,F). In
addition, by (25), with probability at least 1 — 29, we have,

|Lo(@) — Ly ()] B(6,n0, F) + B(6,n1, F) + |Lo(w) — L (w)]
’A}/—i- B((S,no,]:) +B(5,n1,.7-")
v+ 23(6,710,.7:) +23(6,n1,]:)

INIA

Proof [Theorem A.1] Let w be a feasible point of optimization problem (12), then 0 is also a feasible point to (1).

We proceed by contradiction. We consider three cases,

o If min{Lo(w™*), L1(w*)} > 7 and max{Lo(w*), L1 (w*)} > 2~. In this case,
L(w") >~ > L(w).
This is a contradiction because it implies that w* is not an optimal solution to (1), and w is a better solution for (1).

o If min{Lo(w*),L1(w*)} > ~ and max{Lo(w*),Li(w*)} < 2y. This case is similar to above.
min{Lo(w*), L1 (w*)} > ~ implies that L(w*) > v > L(®). This is a contradiction because it implies that w*
is not an optimal solution to (1).

o If min{Lo(w*), L1 (w*)} <+ and max{Lo(w*), L1 (w*)} > 2 -~. We have:

max{Lo(w"), L1(w*)} — min{Lo(w"), L1 (w")} > 7,
which shows that w* is not a feasible point for (1). This is a contradiction.

Therefore, max{Lo(w*), L1 (w*)} < 2v and min{Lo(w*), L1 (w*)} < ~.
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