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Each year, bovine respiratory disease (BRD) results in significant economic loss in the cattle sector,
and novel metabolic profiling for early diagnosis represents a promising tool for developing effective
measures for disease management. Here, H-nuclear magnetic resonance (*H-NMR) spectra were used
to characterize metabolites from blood plasma collected from male dairy calves (n=10) intentionally
infected with two of the main BRD causal agents, bovine respiratory syncytial virus (BRSV) and
Mannheimia haemolytica (MH), to generate a well-defined metabolomic profile under controlled
conditions. In response to infection, 46 metabolites (BRSV =32, MH =33) changed in concentration
compared to the uninfected state. Fuel substrates and products exhibited a particularly strong effect,
reflecting imbalances that occur during the immune response. Furthermore, *H-NMR spectra from
samples from the uninfected and infected stages were discriminated with an accuracy, sensitivity,
and specificity = 95% using chemometrics to model the changes associated with disease, suggesting
that metabolic profiles can be used for further development, understanding, and validation of novel
diagnostic tools.

One of the most severe and costly health problems worldwide is bovine respiratory disease (BRD), a disease
complex caused by numerous microbial pathogens'~. Prevalent causal agents for BRD include viral (bovine
herpes-virus type 1, bovine respiratory syncytial virus, bovine viral diarrhea virus, parainfluenza-3 virus, and
bovine coronavirus), and bacterial (Mannheimia haemolytica, Pasteurella multocida, Haemophilus somnus, Myco-
plasma bovis) pathogens*®’. Bovine respiratory syncytial virus (BRSV) is a primary cause of respiratory disease in
young calves (< 1 year). This viral infection can be asymptomatic and can involve the upper and lower respiratory
tracts®®. BRSV typically initiates infection in response to physiological and environmental stressors, suppressing
the host’s defense mechanisms and predisposing the replication, inhalation, and colonization of the lungs by
M. haemolytica, a microorganism found in the normal flora of the upper respiratory system in ruminants”!%11,

The standard in-field method for BRD detection is the visual-clinical diagnosis (VCD) based on scoring sys-
tems that record the clinical signs of illness in cattle such as high temperature, respiratory discomfort, nasal and
ocular secretions, and other factors considered to represent respiratory disease>"V”. In dairy cattle, this methodol-
ogy was reported to have a diagnostic sensitivity between 77-100%, and a screening sensitivity between 46-77%,
meaning that around 23-54% of infections or suspected infected animals are not detected'>'*'8, In addition, the
average specificity of this methodology has been reported between 46-92%, indicating that 8-54% of healthy
cattle are unnecessarily treated'**!®, Thus, alternative methods to VCD are needed to detect BRD before its
manifestation, which will enable farmers to respond with the proper prophylactic measures'®. One such exam-
ple of is the use of Near Infrared Spectroscopy (NIRS), which is a novel approach that may facilitate diagnosis
of BRD at earlier time points and in mild or asymptomatic cases by detecting changes in a suite of biomarkers
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resulting from metabolic changes in response to disease state'>°-21. A comprehensive phenotypic assessment
for biomarkers of BRD using a specific “omics” platform would need to be obtained from blood plasma or other
biofluids. To this end, metabolomics profiling of disease state using nuclear magnetic resonance (NMR) is a
method for understanding the biochemical processes that occur throughout infection and their relationship
with clinical signs detected by traditional diagnostic approaches (e.g., VCD, ELISA).

NMR-based metabolomics provides a window into metabolic mechanisms by combining high-throughput
analytical chemistry with multivariate data analysis (MVA) to identify and quantify changes in metabolic prod-
ucts of a biological system'**%. Proton NMR (‘H-NMR) spectra arise from active nuclei absorbing electromag-
netic energy at the frequencies specific to the 'H nucleus, resulting in resonance within a two-level quantum
system?. This resonance frequency, along with the signal intensity, is specific to the local covalent-bonding
structure and chemical environment and is reflected in the manifold of information-rich signals (chemical
shifts) in NMR spectra*?*. Plasma is the most frequently used biofluid for NMR studies'*?*?, and consists of
the protein-rich fraction of blood in which white blood cells, red blood cells, platelets, and coagulation factors
are suspended before blood fractionation with an anticoagulant?. This biofluid is commonly used to diagnose
viral or bacterial infections by detecting antigens or pathogen-specific antibodies using ELISA (Enzyme-Linked
Immuno-Sorbent Assay)?. Recently, plasma was shown to be a suitable medium for detecting M. haemolytica
infection using NIRS®.

In cattle, NMR has been used to conduct metabolic profiling in the diagnosis of both reproductive and
nutritional disorders?’~*2. In one case, seven plasma metabolites (alanine, arginine, choline, isoleucine, leucine,
phosphatidyl choline, and valine) were shown to significantly decrease in dairy cows during estrous compared
to cows in anestrous. These changes were related to glucose, triglyceride, and amino acid metabolic pathways
associated with postpartum anestrus?. Similarly, changes in the concentration of metabolites in plasma were
observed in Holstein cows during postpartum and lactation periods, revealing that glucose is rerouted to synthe-
size lactose and fats in milk, causing the lactating cow to produce ketone bodies as an alternative energy source
to maintain homeostasis®*-*!. Metabolic profiles related to fatty liver disease in lactating cows were correlated
with increases in p-hydroxybutyric acid, acetone, citrulline, glycine, isobutyrate, trimethylamine-N-oxide, and
valine, and decreases in y-aminobutyric acid glycerol, alanine, asparagine, creatinine, and glucose, suggesting this
metabolic disorder alters the concentration of metabolites related to energy imbalance pathways*. In contrast,
NMR analysis revealed calves with bronchopneumonia detected by VCD exhibited increases in 2-methyl glutar-
ate, phenylalanine, and phosphatidylcholine, but showed decreases in acetate, allantoin, cholesterol, dimethyl
sulfone, ethanol, propionate, and free cholesterol in the plasma, suggesting alteration of a different set of meta-
bolic pathways®. Recently, feedlot cattle that were deemed to have BRD through VCD inspection were shown
to have significant alterations in the concentration of a-glucose chains, hydroxybutyrate, and phenylalanine by
NMR analysis of plasma®. The results from both of these studies****, combined with recent work in which NIRS
profiling of plasma from calves with induced M. haemolytica infection's, indicate that characteristic shifts in the
metabolome of plasma may be indicative of BRD infection and perhaps pathogenic specificity.

Here, we conduct challenge studies, in which dairy calves were intentionally infected with two of the main
BRD causal agents, BRSV and M. haemolytica (MH), in order to generate a well-defined metabolomic profile
under controlled conditions, including mild or asymptomatic cases. 'H-NMR analysis of the collected plasma
was used to (1) identify metabolites associated with infection by the two different pathogens, (2) assess concen-
tration changes of those metabolites between the healthy and infected stages and in response to each pathogen,
(3) generate a model for discriminating 'H-NMR spectra, and the metabolites involved in the differentiation of
healthy and infected calves for each causal agent, and (4) provide new biochemical information to the current
plasma NMR-BRD metabolome. Previously, samples were acquired based on VCD under field conditions®***.
The results from our study provide insight into whether there are quantifiable differences in the metabolic profile
in response to different causal agents that might be targeted for the understanding, development, and validation
of future BRD diagnostic strategies.

Materials and methods

Animals and controlled challenges. Ten healthy non-immunized Holstein steers (Table 1) were acquired
in the first week of life from the Mississippi Agricultural and Forestry Experiment Station (MAFES) Bearden
Dairy Research Center adjacent to the Mississippi State University campus and raised in isolation until two
weeks before the start of the experiments when they were housed in isolation from all other cattle. The calves
in each group were housed together in isolation from other cattle in an outdoor group pen with a covering to
provide shelter from sun and rain. Calves in both groups were fed the same diet (calf grower ration and coastal
Bermudagrass hay).

These dairy calves were subjected to two controlled challenge studies, each with a different infectious agent.
The first group of dairy calves, age 5.6 months old (n=5), was challenged with M. haemolytica (serotype Al,
isolate D153) via bronchoalveolar lavage catheterization during the summer of 2019. The second group of dairy
calves, age 2.9 months old (n=5), was challenged with 5 mL of BRSV (GA-1, P5) delivered by a nebulizer (DeV-
ilbiss Pulmo-Neb) through a custom-made face mask during the fall of the same year. The detailed procedures
of pathogen preparation are described in the supplementary information (Supplementary Methods S1 online).
The experiments were approved and carried out following the Mississippi State University-Institutional Animal
Care and Use Committee guidelines and regulations (IACUC-19-037) and reported in compliance with the
ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines 2.0. Because we wished to prevent life
threatening conditions of calves due to experimental challenge, following the challenge, any calf exhibiting severe
depression, or marked respiratory effort was treated with dexamethasone (0.1 mg/kg intravenously). One calf
in the BRSV group exhibited signs of suspected secondary bacterial pneumonia (diagnosed by two veterinary
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Challenge Calf ID | Age (months) | Weight (kg) | Baseline samples | Infected samples | Total
1 32 135 4/7 4/4 8/11
2 3.2 135 4/7 4/4 8/11
BRSV 3 3.0 130 4/7 4/4 8/11
4 2.9 125 4/7 4/4 8/11
5 24 125 4/7 4/5 8/12
6 6 204 3/4 3/3 6/7
7 6 196 3/4 3/14 6/18
M. haemolytica 8 6 145 3/4 3/3 6/7
9 5 124 3/4 3/3 6/7
10 5 142 3/4 3/3 6/7
Total samples 35/55 35/47 70/102

Table 1. Dairy calves and the total number of Baseline or Infected blood samples collected after pathogenic
challenge. A subset of samples was selected for NMR metabolomic profiling because an even number of
samples per category (Baseline or Infected) was needed to ensure variance and weight homogeneity of each
data set for the multivariate analyses.

clinicians) and was also treated with florfenicol (40 mg/kg). Calves with severe depression or marked respiratory
effort in the M. haemolytica group were treated once daily for five days with ceftiofur (2.2 mg/kg subcutaneously).

A suite of clinical data was collected for 27 days during the bacterial challenge and for 34 days during the
viral challenge in order to follow progression of asymptomatic, mild and severe degrees of disease following
experimental challenge'>'72!. An example of the data collection sheet is provided in the Supplementary mate-
rial (Supplementary Figure S1) and includes visual and clinical data such as the rectal temperature, heart and
respiratory rate, presence or absence of depressed attitude, appetite for food, spontaneous or induced cough,
nasal discharge, ocular discharge, submandibular lymphadenopathy, difficult breathing (dyspnea), and abnormal
lung sounds (crackles, wheezes, or large airway sounds)*. Severe lung disease (difficult breathing, abnormal lung
sounds) was differentiated from upper respiratory tract disease (nasal or ocular discharge). Objective measures
(such as rectal temperature and respiratory rate) were taken by student workers, while subjective measures (such
as difficult breathing and abnormal lung sounds) were scored by one of two licensed veterinarians who assessed
these signs in all calves in the study. At the beginning of the study, the two veterinarians examined several calves
together to agree on the criteria by which difficult breathing and abnormal lung sounds were identified.

In general, blood samples and visual and clinical data were collected for four days prior to challenge, for 11
continuous days after the challenge, and then every other day from day 12 onward post-challenge. The viral
and bacterial challenge studies yielded a total of 97 and 105 blood samples, respectively. In the M. hemolytica
challenge, samples were classified as Baseline (pre-infection), Asymptomatic (clinically normal or mild upper
respiratory response after infection), Infected (clinically abnormal after the infection), Treated (infected and
treated with ceftiofur (450 mg subcutaneously administered for five days)), or Recovered (clinically normal
after the infection and ceftiofur treatment). Biochemical changes in the plasma are expected due to the use of
antibiotics provided when aggravated signs of the disease were observed (established by the veterinarian and
the approved IACUC protocol) or during the recovery processes. To avoid the interference of these changes in
the interpretation of the NMR metabolomic profiles for healthy and sick calves infected with M. hemolytica,
only data from the samples designated as Baseline (n=20) and Infected (n=26) were used in the univariate and
multivariate analyses (Table 1, Supplementary Table S1 online). Before the BRSV challenge, the animals were
tested for the absence of maternally derived anti-BRSV antibodies by a serum neutralizing assay. In the BRSV
challenge samples were classified as Baseline (pre-infection), Asymptomatic (clinically normal or mild upper
respiratory response) Infected (clinically abnormal with severe lung disease indicators), or Recovered (returned
to clinically normal state). One animal died on day 7 and for lifesaving response the remaining individuals were
administered one dose of dexamethasone (0.1 mg/kg; IACUC 19-037). Data from the BRSV blood samples des-
ignated as Baseline (n=35) and Infected (n=21) were used in the univariate and multivariate analyses (Table 1,
Supplementary Table S1 online).

Blood acquisition. Blood samples (n=202) were drawn via jugular venipuncture and immediately placed
on ice in two collection tubes containing the anticoagulant EDTA (ethylenediaminetetraacetic acid). The first
tube was centrifuged at 4000 rpm for 20 min to separate plasma, and duplicates of 1 mL were stored at—80 °C
until NMR analysis. The second tube was used for complete blood counts (CBC), where red blood cells (RBC),
hematocrit (HTC), hemoglobin (HGB), white blood cells (WBC), and platelet (PTL) contents were acquired
using a veterinary hematology analyzer (Advia 2120i hematology analyzer, Siemens Healthcare Diagnostics Inc.,
Tarrytown, NY, USA). In addition, microscopic differential counts of WBC were performed by one co-author
(EB) under the supervision of one of the board-certified veterinary clinical pathologists in the College of Vet-
erinary Medicine (CVM) Diagnostic Laboratory to assess the variability of neutrophils, eosinophils, basophils,
monocytes, and lymphocytes.
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Preparation of plasma for 'H-NMR analysis. Before collecting NMR spectra, proteins and larger mac-
romolecules were removed from the samples using filters with a 3K molecular weight cutoff (Microsep, Pall Cor-
poration, Ann Arbor, MI). Following filtration, 330 uL of each filtered plasma sample was mixed with 330 uL of
sterile referencing solution®, (200 mM sodium phosphate buffer, 1 mM 3-trimethylsilylpropionate 2, 2, 3, 3-d4
(TMSP-d4, Cambridge Isotope Labs DLM-48-5) and 0.1% (w/v) sodium azide (NaNj;) in 50% deuterium oxide
(D,0, Cambridge Isotope Labs DLM-4 99)). Six hundred pL of the mixture was transferred to a clean NMR tube
(Wilmad LabGlass, 535-PP-7) and kept at 4 °C for less than 24 h before NMR data acquisition.

IH-NMR spectra collection. For each pathogen challenge, an equal number of plasma samples (n=70)
from the Baseline and Infected stages were chosen for NMR analysis to ensure homogeneity of the variance and
weight of each data set for the statistical analyses (Table 1); the detailed information from these samples can
be found in the supplementary material (Supplementary Table S1 online). A Bruker Avance III HD 500 MHz
spectrometer outfitted with a 5 mm BBFO probe (Bruker, Massachusetts, USA) was used for NMR spectroscopy.
Samples were run in automation mode with a Sample]Jet, with all samples refrigerated at 4 °C until just prior to
loading. A perfect-echo WATERGATE sequence (PE-WATERGATE, parameter set ZGESGPPE) was applied
to collect the data®”. Data were collected at 298 K for 128 scans with a 1 s inter-scan delay and a 3 s per-scan
acquisition time. The total acquisition time for each sample, including 3D-shimming, was about 15 min. Top-
spin 4.0.8 (Bruker, Massachusetts, USA) was used for spectral processing following the acquisition. All spectra
were zero-filled to 128k points, and a 1 Hz line broadening was used. Automatic phasing and baseline correc-
tion were performed, 'H-NMR spectra were segmented into successive non-overlapping regions of 0.0001-ppm
chemical shifts between 0.0 and 10.5 ppm, and the water region was truncated between 4.30 and 5.10 ppm.
The processed spectra were then imported into the Chenomx NMR Suite 8.6 (Chenomx, Edmonton, Canada)
to identify individual metabolites and their concentration using a reference library containing 338 metabo-
lites for 500 MHz spectrometers. Because the Chenomx library was acquired using a NOESY-based 1D pulse
sequence, the reported metabolite concentrations (mM) are likely to differ slightly from the actual concentra-
tions. However, relative differences between samples will be preserved, and absolute concentration differences
for the majority of compounds are expected®®.

Statistics. The mean and standard deviation (SD) for temperatures, pulse rates, and respiratory rates (TPR),
and CBC values collected from the Infected stage of the BRSV challenge (n=21), the M. haemolytica challenge
(n=26), as well as the combined Baseline data points from both challenges (n=>55) were calculated using uni-
variate statistics. The mean concentration (mM) and SD were also calculated similar to other studies'*>>°, The
metabolites related to the referencing solution, diet ingredients, or those only detected in less than two samples
in each group (Baseline or Infected) were excluded from the analyses. An ANOVA and pairwise mean compari-
son (Baseline vs. BRSV, Baseline vs. MH, BRSV vs. MH) using Tukey-Kramer HSD (honestly significant differ-
ence) test with alpha =0.05 were used to assess for significance in parameter response for TPR, CBC, and metab-
olite concentration. The results for these post-hoc tests were reported with connecting letters, where different
letters indicate significant differences between the Baseline, BRSV, and MH categories (JMP" 14.0 SAS Institute
Inc., NC. USA). In addition, a database representing a general state of infection labeled as V + B (viral + bacterial)
was composed of data collected from all Infected samples, regardless of pathogenic agent, and was evaluated by
pairwise mean comparison (Baseline vs. Infected) using Student’s t-test with alpha=0.05.

Multivariate analysis (MVA). The CBC, visual and clinical data, and the metabolite concentrations were
subject to Principal Component Analysis (PCA) using a full cross-validation (leave one sample out) and algo-
rithm-singular value decomposition (SVD). We obtained correlation loadings plots to determine the magnitude
and direction of a particular constituents contribution (Influence) to the models created for the Baseline and
Infected stages (Unscrambler” v. 11, Aspen Technology Inc., Massachusetts, USA). The processed "H-NMR spec-
tra contained spectral peaks ranging from 0.5 to 9.0 ppm that were chosen for the chemometrics-based MVA;
peaks from free EDTA at 3.2 ppm and Ca?*-EDTA at 3.6 ppm were removed prior to analysis*>*!. Three balanced
datasets of spectra were created: the first labeled as Infected (V +B; n=70) was created to represent a general
infection state by combining information from both studies; the second corresponded to the BRSV challenge
(n=40), and the third to the M. haemolytica challenge (n=30). SIMCA software-omics skin v.15.0 (Umetrics
AB, Ume, Sweden) was used to apply pattern recognition methods. '"H-NMR spectra were subjected to PCA, in
which the scale data conversion with mean-center scaling reflects the total metabolic differences between the
two groups (Baseline vs. Infected) as well as the degree of variability within each group*.

The 'H-NMR spectra of plasma were analyzed using orthogonal partial least-squares discriminant analysis
(OPLS-DA) to classify samples from the Baseline and Infected stages simultaneously. The OPLS-DA models were
built with t[1]P and t[2]O, which stand for the first principal component and the second orthogonal component,
respectively*. The OPLS-DA models were used to maximize the covariance between the measured data (X vari-
able, peak intensities in "H-NMR spectra) and the response variable (Y variable, predictive classifications). The
quality of each model was assessed using R?X, R?, R?Y, and Q? where R*X denotes the degree of optimization
of the analytical model, R? symbolizes the coefficient of determination, R?Y denotes the percentage of variance
explained by the model, and Q? describes the model’s cumulative prediction*>*. In the OPLS-DA models, seg-
mented cross-validation (7 segments) with a random split was used to estimate the optimal component number
of each model to avoid over-fitting. In addition, the percentage of accuracy, sensitivity, and specificity were
calculated using the number of correct and incorrect predictions from the confusion matrix to test the ability of
each model to identify true positive (Infected) and true negative (Baseline) samples correctly*~*¢. Permutation
analysis was used to validate and to assess the reliability of the OPLS-DA models by randomly designating the
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class labels (Baseline or Infected) to different samples; then the discriminant model was carried out again an
‘0’ number of times (permutations =200) with the incorrect class labels expecting poor classification values in
comparison to the original calibration?. In permutation analysis a model is considered reliable if R*>0.4 and
the intercept Q? < 0424347,

Results

Clinical and hematological results. Overall, all the calves showed similar patterns of health and disease
during the controlled studies (Fig. 1). The typical activation of the innate immunity or nonspecific defense
mechanisms following the bacterial challenge were observed after 24 h of infection*® with an increase in rectal
temperature (Fever) and WBC (Fig. 1a,b). Day 3 samples were collected before treating animals with ceftiofur
as described above. The treatment could be associated with the recovery of the calves and the change in the
temperature and WBC patterns (Fig. 1a,b). Mild signs of infection, including loss of appetite and nasal discharge
from Day 1 until Day 19 were observed in calf 7; on D19, its signs intensified, presenting fever, depression, and
increased purulent nasal discharge, and ceftiofur was administered as described above. By contrast, calves chal-
lenged with BRSV exhibited increased temperature and WBC on Day 7 post-infection (end of the asymptomatic
phase), characteristic of the incubation period of this virus®. In the BRSV challenge on Day 7, calf 2 presented
fever (=40 °C), depression, difficulty breathing, and abnormal lung sounds. Blood samples were collected before
providing dexamethasone (0.1 mg/kg) and the antibiotic florfenicol (40 mg/kg). Unfortunately, this calf died on
Day 8. Given this calf’s death, dexamethasone was provided to the remaining calves on day 8 when they exhib-
ited marked respiratory effort, as described above.

The results of the univariate and MVA tests for the TPR and CBC values for both challenges are shown in
Table 2. In terms of the univariate analysis during the BRSV challenge, eight parameters were statistically different
(p<0.05) during Infection compared to the Baseline, where RBC, HCT, WBC, and the percentage of neutrophils
were detected to increase while the percentage of lymphocytes, eosinophils, and basophils decreased. Through-
out the M. haemolytica infection, four of the evaluated variables were statistically different (p <0.05) from the
Baseline values, with temperature, RR, and PLT increasing and HCT decreasing.

The PCA correlation loading plots for TPR and CBC data (Fig. 2) show the relationships between the potential
explanatory variables or evaluated parameters (X-matrix) within each of the databases (Baseline, Infected with
virus or bacteria (V + B), BRSV, and MH) for the development of models*. The inner ellipse represents 50%,
while the outer ellipse represents 100% of the explained variance for the individual variables. Thus, the area
between the two ellipses explains 50-100% of the variance, implying that the centralized parameters (inside the
inner circle) have an unimportant effect on the differentiation of each X-matrix. In contrast, those inside the
outer circle (shaded) present a strong influence or significant impact on the differentiation of each model***.
In addition, when the variables are placed in the positive or negative direction of the first principal component

b)

42 - 35 -
--MH —oMH
30 -
=BRsV  / ~=-BRSV
25 - /
S—zo
O 15
m
= 10
5
37 CTODOANTOCTANNTONDTOWOND— M 0 TP ANRIWER OO o0
N AR000A00000000ERRER8] Lp000ARRRR000BRRARRAA
Day of sample collection Day of sample collection

Figure 1. Dairy calves’ responses to viral (n=>5) and bacterial (n=5) infection. Calves were challenged with the
infectious agent on DO. (a) Daily rectal temperature (TEMP, °C) displayed as Mean +SD. (b) WBC (thousands
per cubic millimeter, K/ul) presented as Mean +SD. A characteristic increase after signs of disease (indicated

by arrows) in each challenge can be seen due to the activation of defense mechanisms against BRSV and M.
haemolytica (MH) virulence factors. Markers in blue are the Baseline days; the red markers point to the day of
the pathogenic challenge.
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. Infected with | Infected with
. Baseline
Analysis (n = 55) BRSV MH p Value
(n=21) (n=26)
Visual-clinical diagnosis (VCD)
Temperature (°C) 38.7+04B 39.0+0.7B 40.2+0.9 A 0.0001
Respiratory rate per minute 255+108C [52.6+22.8 B [82.1+19.6 A 0.000
Heart rate per minute 91.5+10.7 925+ 11.5 989+ 15.4 0.135
Complete blood counts (CBC)
Red blood cell count (M/pl) 8.6+0.9B 99+2.6A 7.6+ 0.8 B 0.0002
Hemoglobin (g/dl) 10.6 + 0.6 112+24 10.1 £ 1.0 0.120
Hematocrit (%) 303+44B 328+22A 27.7+24C 0.0003
Platelets (K/ul) 650+ 194B  |758+ 198 A,B |822+230 A 0.017
White blood cell count (K/ul)  [8.2+2.1 B 128+ 55 A 10.1+4.1 A, B |0.000
Neutrophils (%) 339+ 85B 478+192 A [403+179 A,B [0.004
Lymphocytes (%) 41.1+11.2 A [30.8+18.0B [34.0+17.0 A,B [0.038
Eosinophils (%) 09+1.2A 02+0.5B 0.6+1.1A,B 0.042
Basophils (%) 17+13A  |0.7+0.8B 1.1+ 1.8AB |0.013
Monocytes (%) 224+94 20.7+7.8 239+12.3 0.607

Table 2. Clinical and hematological values (Mean + SD) for dairy calves challenged with BRSV and M.
haemolytica (MH). Values with different letters were significantly different as determined by ANOVA (p <0.05)
between categories, with a significant increase (dark purple) or decrease (dark yellow) compared to the
Baseline. Values positively correlated in the PCA during infection (light purple) compared with the Baseline.
Italic = parameter changed in the ANOVA and the PCA, M/ul=Millions per microliter, g/dl=grams per
deciliter, K/ul=thousands per cubic millimeter.

(PC-1), this influence can be described as positively or negatively correlated within each X- matrix, meaning the
variables in those directions increase or decrease together to generate each model’s characteristic patterns*>*.

The distribution of TPR and CBC variables for the Baseline model can be seen in Fig. 2a; this pattern was com-
pared by visual observation with those obtained in the Infected stage of each challenge separated and together.
When evaluating the general infection database (Fig. 2b), similar patterns in the distribution of the evaluated
parameters were observed in comparison to the Baseline, with the only difference observed in the position of
HGB, which was negatively correlated during the infection and had no influence in the Baseline model. For the
BRSV Infection model (Fig. 2c), TEMP, HGB, and HCT were positively correlated in comparison to the Baseline.
The model for the evaluated variables during the M. haemolytica infection (Fig. 2d) differed from the Baseline
in which temperature, HGB, HCT, and additionally RBC and PLT were positively correlated.

Metabolites detected by 'H-NMR. The representative 500 MHz 'H-NMR spectra of plasma collected
with EDTA from dairy calves before and after challenge are shown in Fig. 3. A total of 179 metabolites were
identified using the batch profiler option in the Chenomx library. From these, a total of 72 metabolites were
selected for the statistical analyses following the criteria explained in the methodology. After the selection, the
presence of these metabolites was reliably identified in the samples manually using Chenomx. These compounds
reproducibly appeared as well-resolved signals in the "H-NMR spectra, and overlapped signals were confirmed
using at least two peak groups before fitting in the Chenomx profiler. After the manual confirmation of these
metabolites, a mean of 43 + 8 of the selected metabolites were identified in each sample. The full identification
and chemical classification of the 72 selected metabolites can be found in the supplementary material (Supple-
mentary Table S2 online).

The findings from the univariate and multivariate analyses are shown in Tables 3 and 4 and include only the
metabolites that presented a change during the Infection in comparison to the Baseline stage. The results for the
general (V +B) infection database, which included data points from both viral and bacterial challenges, can be
seen in Table 3. Regardless of the causative agent, 11 metabolites were found to change significantly (p <0.05)
compared to Baseline levels, where increases in 2-hydroxybutyrate and 3-hydroxyisobutyrate, and decreases in
succinylacetone, isobutyrate, 2-hydroxyvalerate, acetone, O-acetylcholine, isoleucine, dimethyl sulfone, allan-
toin, and ethanol, were observed. Examining the response to specific pathogenic agents (Table 4) revealed the
concentrations of a subset of six metabolites (BRSV =2, MH =4) changed significantly (p <0.05) compared to
the Baseline. Infection with BRSV resulted in a significant (p <0.05) increase in guanidoacetate and a decrease
in ethanol. On the other hand, infection with M. haemolytica showed significant (p <0.05) increases in concen-
trations of 2-hydroxybutyrate, acetone, and 3-hydroxyisobutyrate, and a decrease in isobutyrate in comparison
to the Baseline.

The PCA correlation loading plots revealed distinct metabolites influencing the patterns for each model
(Fig. 4). The distribution of metabolites differentiating the Baseline model (Fig. 4a) was compared by visual
observation with the patterns from the three Infection models (Infected (V +B), BRSV, MH). In the model for
the general V + B infection database (Fig. 4b), two metabolites (2-aminoadipate and saccharopine) were positively
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Figure 2. Principal component analysis (PCA) correlation loadings plots for TPR and CBC data. The variables
inside the outer circle (colored area) have the most influence on database variability and are positively or
negatively correlated within each model, while the parameters within the inner circle have low or no influence.
(a) Baseline (n=55); two PCs explained 48% of the variance. (b) General infection (V + B) database (n=47)
combined data from both studies, two PCs explained 43% of the variation of the database. (c) Infected with
BRSV (n=21), two PCs explained 53% of the variation of the database. (d) Infected with M. haemolytica (MH)
(n=26), two PCs explained 50% of the variation of the database.

correlated, and 12 metabolites (glucose, lactate, malonate, acetone, 3-hydroxy-3-methylglutarate, 3-hydroxy-
butyrate, trimethylamine N-oxide, dimethyl sulfone, agmatine, alanine, N,N-dimethylglycine, and histamine)
were negatively correlated when compared with the Baseline model. In the PCA model for each pathogen, 36
metabolites (BRSV =25, MH =23) changed in comparison to the Baseline model (Table 4). Of these 48 metabo-
lites, glucose, N-methylhydantoin, 3-hydroxy-3-methylglutarate, malonate, leucine, and 2-aminoadipate changed
in response to both pathogens (Table 4). In the PCA describing BRSV infection (Fig. 4¢), 21 metabolites (glucose,
N-methylhydantoin, 3-hydroxy-3-methylglutarate, malonate, leucine, creatine, creatine phosphate, creatinine,
lactate, 3-hydroxybutyrate, acetate, trimethylamine N-oxide, guanidoacetate, agmatine, alanine, dimethyl sulfone,
formate, glycine, ,N,N-dimethylglycine, betaine, and histamine) were positively correlated. Only three metabo-
lites (2-Aminoadipate, carnitine and cysteine) were negatively correlated in the BRSV infection in comparison
to the Baseline. By contrast, in the M. haemolytica infection (Fig. 4d), ten metabolites were positively correlated
(N-methylhydantoin, malonate, leucine, 2-aminoadipate, 4-aminobutyrate, galactitol, propionate, 5-aminole-
vulinate, isoleucine, and saccharopine), and eight metabolites were negatively correlated (glucose, 3-hydroxy-
3-methylglutarate, arabinitol, 2-oxoglutarate, 2-hydroxyisobutyrate, N-acetylglycine, valine, and isovalerate).

IH-NMR Chemometrics-based multivariate analysis. The PCA scores plots showing the trends of the
'H-NMR spectral signals can be seen in Fig. 5. In the scores plot, each point corresponds to either a Baseline or
Infected sample, and overlap between the two groups indicates similarities in the metabolite composition of the
plasma. Outliers are samples outside the confidence ellipse based on Hotelling’s T? (significance level 0.05). The
database for the general V + B infection was analyzed with 10 principal components (Fig. 5a), giving modeling
parameters R*X =0.83 and Q?=0.56; in this case, three outliers were identified, which corresponded to samples
33 (D9, calf 5), 34 (D11, calf 5), and 39 (D-2, calf 7). In the database of BRSV samples (Fig. 5b), seven principal
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Figure 3. '"H-NMR spectra (0.8-9.0 ppm) showing the peak intensities of metabolites present in plasma after
the controlled infections with the main causal agents of BRD. (a) BRSV sample 66 (DO, calf 4), (b) BRSV sample
29 (D9, calf 4), (c) M. haemolytica (MH) sample 38 (DO, calf 6), (d) MH sample 2 (D2, calf 6). To improve the
visualization of the peaks, the size of the region between 5.1-8.5 ppm was increased 40X.

components gave a degree of optimization R*X=0.80 and a cumulative prediction Q*=0.38, with two outliers:
samples 22 (D4, calf 2) and 34 (D11, calf 5). In the database composed of M. haemolytica samples (Fig. 5¢), six
principal components produced modeling parameters R?X=0.79 and a Q*=0.48. The outlier corresponded to
Baseline sample 39 (D-2, calf 7).

The OPLS-DA scores plots (Fig. 6) for the general (V + B) infection (Fig. 6a), BRSV (Fig. 6¢), and M. haemo-
Iytica (Fig. 6e) databases demonstrated a clear distinction in the chemistry of plasma from non-infected and
infected cattle. This suggests that even though the chemical composition of the plasma is similar before and after
infection, as shown in the PCA scores plots (Fig. 5), there is enough information to successfully detect and dis-
criminate infection from baseline with an accuracy, sensitivity, and specificity higher than 95% (Table 5). More
importantly, all the models showed a specificity of 100%, meaning no false-positive samples (Baseline samples)
were classified as infected. Table 5 shows the quality parameters for the calibrations and validations of each model
using only two principal components (PCs). The values of R*X (>0.4), R? (>0.9), R?Y (>0.9), and Q* (>0.4)
obtained in the calibration indicated that the models are robust, reliable, and have a low risk of overfitting*>*'. In
addition, R? values were greater than Q? in the permutation plots, such that a more positive slope in the regres-
sion line corresponds to a higher degree of fit to the data and the reliability of each model*>**”. The distance
to model plots and permutation plots for the discriminant models can be found in the Supplementary material
files (Supplementary Figure S1 online).

The color map derived from the coeflicient loading plot indicates significant changes in spectral signals, which
contribute to the trends in the first principal component (t[1]P) of the OPLS-DA scores plot (Fig. 6) that distin-
guish Baseline from Infected samples. These spectral signals can be compared to known metabolite peaks, allow-
ing them to be assigned in the loading plot. In Fig. 6, the peaks with positive values in the 'H-NMR coefficient
loading plot contribute to the trends in the scores describing Infected samples (t[1]P > 0), whereas metabolites
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Chemical
H- i ID | Baseline Infected Value Biochemical pathways
H-NMR metabolite p classification p Yy
Glucose 35 [5.141 £7.097 [4.458 +4.706 0.637 Hexose Primary source of energy for living organisms
Lactate 45 0521 £0316 [0.706 +0.632 [0.128 Alpha hydroxy acids 161, co5¢ metabolism
and derivatives
Succinylacetone 63 [0.021 £0.024 (0.011 +0.008* ]0.022 xe‘i:u:‘-;g?:vl‘r‘iz~ Glucose metabolism. Glycine and tyrosine metabolism
2-Hydroxybutyrate 3 [0.003 +0.005 ]0.007 £0.010* (0.036 :izh:e}:i{::?v?;acms Fatty acid biosynthesis. TCA cycle
Isobutyrate 42 (0.009 +0.008 ]0.004 +0.006* [0.008 Carboxylic acid Branched fatty acid
2-Hydroxyvalerate 5 10.022 £0.039 ]0.005 +0.012* [0.019 Hydroxy fatty acid  |Fatty acid biosynthesis
Malonate 47 |1.755 £0.576 [2.037 £1.049 [0.167 Diearboxylic acids p, iy 4 cid biosynthesis
and derivatives
Acetone 16 10.005 +0.003 ]0.009 +0.008* |0.008 Ketone Ketone Bodies Metabolism
3-Hydroxy-3-methylglutarate | 7 [0.012 =0.018 [0.020 =0.052 |0.381 Dicarboxylic acids fi. 1o o hodies and leucine metabolism
and derivatives
3-Hydroxybutyrate 8 10.094 £0.090 ]0.148 £0.230 |0.203 Beta hyc}rmsy 2 gt arlios metiaifsm, Fatty acid biosynthesis
and derivatives
Trimethylamine N-oxide 67 [0.128 +£0.050 [0.130 +0.097 0.899 Trialkyl amine oxide |Cholesterol metabolism
O-Acetylcholine 56 {0.005 +0.005 [0.002 +0.003* [0.014 Acyl choline Phospholipid biosynthesis
3—Hydroxyisobutyrate 9 10.002 +£0.007 10.008 £ 0.012* ]0.015 Beta hy(.irmfy 26l Metabolism of the glucogenic amino acid valine
and derivatives
2-Aminoadipate 1 0012 £0.020 |0.011 £0.019 [0.822 Alpha aminoacid Yo (ketogenic amino acid) and saccharopine
Saccharopine 60 10.016 £0.020 [0.013 + 0.020 0.577 (d}clrit\flamt:c:Cid and Degradation pathway for the ketogenic amino acid lysine
. Isoleucine and Ketogenic and glucogenic amino acid. Production and
Isoleucine 43 10.061 +0.051 0.039 +0.042* 10.049 derivatives formation of hemoglobin and red blood cells
Dimethyl sulfone 30 [0.122 £0.066 [0.004 +0.004* (0.022 Sulfone Metabolism of the glucogenic amino acid methionine
Agmatine 17 10.015 £0.032 [0.038 +0.143 0.367 Guanidine Metabolism of the glucogenic amino acid arginine
. Alanine and Glucose metabolism. Protein synthesis. Lymphocyte
Alanine 18 10.181 £0.070 0.206 +0.177 0.435 derivatives reproduction, and immunity
N,N-Dimethylglycine 51 |0.014 £0.020 [0.026 +0.066 |0.283 Alpha-amino acids | 1o serine, methionine, and betaine metabolism
> and derivatives
Histamine 40 10.011 £0.013 [0.014 +£0.024 0.535 2-arylethylamine Inflammation and immunity
Allantoin 19 [0.097 +£0.177 ]0.027 £0.052* |0.028 Imidazole Oxidative stress
Ethanol 32 10.071 £0.102 [0.023 +0.039* 0.012 Diiinesy el Cellulose, hemicellulose, and lignin degradation in the
3 : ) 3 3 rumen

Table 3. Baseline vs. Infected (V +B) changes in metabolite concentration. Values are presented as mean + SD.
Data were analyzed using Students ¢-test with an a <0.05 delineating significant treatment effects (*),

increase (dark purple), decrease (dark yellow). Values positively (light purple) or negatively correlated (light
yellow) in the PCA during infection compared with the Baseline. Biochemical pathways: Grey = other; light
blue = glycolysis/gluconeogenesis pathways, magenta = triglycerides pathways, light green = protein pathways.
Italic=parameter changed in both the ANOVA and the PCA.

with negative peaks contribute to the trends in the scores describing Baseline samples (t[1]P <0). Overall, similar
trends in the coeflicient loadings plots were observed for the general (V + B) infection database and the specific
infection with M. haemolytica, and associated with the metabolites acetoacetate (ID = 15) and creatine. However,
in the BRSV infection, these two metabolites were distinguishing contributions to Baseline classification (Table 5).
In contrast, scores associated with BRSV infection have contributions from 3-hydroxybutyrate, alanine, glucose,
isoleucine, leucine, N-methylhydantoin, and valine. Yet, these same metabolites contribute to the scores for the
Baseline samples from the M. haemolytica and the general Infection (Table 5).

Discussion

Induced experimental infections provide a more accurate data set because samples used in this analysis derive
from animals that are actually infected; thus, metabolite information is correlated with clinical physiological
signs and hematological parameters recorded before and after the controlled infections. In this study, '"H-NMR
was used to determine the metabolomics of BRD by detecting biomarkers in plasma after dairy calves were
challenged with two of the main causal agents of this disease under controlled conditions. The existing plasma
NMR-BRD metabolome, which was acquired from dairy (1-2 month-old)*® and beef (1-2 years-old)* cattle in
non-controlled field conditions, used VCD as the reference method to determine the infection. However, the
lack of identification of specific causal agents restricted the discovery of specialized biomarkers that might be
targeted for the development, understanding, and validation of novel BRD diagnostic strategies such as NIRS-
based detection in the early stages of the disease. As a result, the current study adds to, and expands on, the
existing bovine metabolome by identifying distinctive biomarkers in dairy cattle infected with BRSV and M.
haemolytica independently.
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and derivatives
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Creatine 25 10.257 +0.291 0.194 +0.113 0.146 +0.055 0.228 I;'gh;:(j;;j;‘:‘ds Production of ATP for musele contraction
Creatine phosphate 26 [0.032 +0.069 0.047 +0.123 0.029 +0.050 0.784 Alphaamin 2¢i4S b roduction of ATP for muscle contraction
Creatinine 27 |0.047 +0.046 0.036 +0.027 0.045 +0.015 0.530 Alphaaming 243 |production of ATP for muscle contraction
Lactate 45 [0.521 £0.316 0.711 +0.723 0.699 +0.511 0316 Alpha hydroxy acids 1, ¢ oce metabolism
and derivatives
3-Hydroxybutyrate 8 10.094 +0.090 0.1710 £0.290  [0.116 +0.111 0.295 et YArowy 4i5 | Ketone bodies metabolism. Fatty acid biosynthesis
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Trimethylamine N-oxide 67 10.128 +0.050 0.150 +0.124 0.104 +0.031 0.214 Trialkyl amine oxide ~[Cholesterol metabolism
Carnitine 23 10.015 0.016 0.017 +0.022 0.018 +0.025 0.860 (Cmmitine Oxidation of branched-chain fatty acids
Guanidoacetate 39 [0.097 < 0.066 B 0.199 +0.243 A 0.101 +0.072 A.B |0.032 Alpha-amino acids Glucogenic amino acids (glycine, serine, arginine and
. . . - . - > . and derivatives proline) metabolism. Creatine phosphate pathway
Agmatine 17 10.015 +0.032 0.062 +0.187 0.005 +0.013 0.179 Guanidine Metabolism of the glucogenic amino acid arginine
. Alanine and Glucose metabolism. Protein synthesis. Lymphocyte
Alanine 18 [0.181 %0.070 0.237 +0.229 0.165 +0.041 0215 [ e s
Dimethyl sulfone 30 0.122 +0.066 0.200 +0.223 0.185 +0.031 0.070 Sulfone Metabolism of the glucogenic amino acid methionine
Formate 33 10.155 +0.130 0.171 £0.175 0.140 +0.016 0.785 Carboxylic acid Glycine, serine, and ribulose pathways
Glycine 38 0.345 +0.637 0.199 +0.154 0.201 +0.138 0.433 Alpha-aminoacid  |Glucogenic amino acid. Protein synthesis
N.N-Dimethylglycine 51 [0.014 +0.02 0.037 +0.086 0.012 +0.007 0.182 ,in'lh‘?::;;:ffms Glycine, serine, methionine, and betaine metabolism
Cysteine 28 10.009 +0.023 0.025 +0.042 0.017 +0.026 0.148 Fiser Glucogenic amino acid. Protein synthesis
Betaine 21 [0.196 = 0.649 0.111 £0.0119  |0.090 +0.046 0.695 Alphaamin 2¢i4S | Choline metabolism. Inflammation and immunity
Histamine 40 |0.011 +0.013 0.015 =+ 0.030 0.013 +0.015 0.777 Bomibtyinmie  ||mikmmeton o Sty
Ethanol 32 [0.071 £0.102A  [0.007 £0.026 B [0.043 +0.044 A,B [0.017 Primary alcohol [Eb P el ity e i Ak i i e
4-Aminobutyrate 10 [0.013 +0.014 0.014 +0.015 0.016 +0.013 0.855 (R S (6 et ReA el
and derivatives
Galactitol 34 10.031 +0.031 0.025 +0.026 0.023 +0.019 0.559 Sugar alcohol Galactose metabolism
Arabinitol 20 {0.029 +0.041 0.003 +0.014 0.025 +0.07 0.113 Sugar alcohol Pentose phosphate pathway (PPP)
2-Hydroxybutyrate 3 [0.003 £0.005B  [0.004 +0.008B  [0.010 =0.010A [0.006 A DYdTONY 2195 Faty acid biosynthesis. TCA eyele. ROS production
Acetone 16 [0.005 +0.003 B [0.008 +0.009 A,B [0.011 +0.005A [0.008 Ketone Ketone Bodies Metabolism
Propionate 58 10.011 +£0.011 0.012 £0.013 0.007 +0.01 0.355 Carboxylic acid Fatty acid biosynthesis. Vitamin K metabolism
Isobutyrate 42 10.009 +0.008 A 0.006 +0.007 A,B [0.002 +0.005 B 0.009 Carboxylic acid Branched fatty acid
Gamma-keto acids  |TCA cycle. Metabolism of the glucogenic amino acids
2-Oxoglutarate 6 |0.007 +0.022 0.006 +0.012 0.011 +0.018 0.703 sl Gl alanine, aspartate, and glutamate. Ammonia recycling
3-Hydroxyisobutyrate 9 10.002 +£0.007B  [0.007 +0.013 A,B [0.010 =0.012A {0.039 Ej;a ydrowy 4¢idS | vteiabolism of the glucogenic amino acid valine
-Methylhistidine 72 10,025 +0.018 A.B [0.019 +0.017 B 0.036 = 0.02 A 0.027 Histidine and Synthesis and degradation of the glucogenic amino
y g - Sl b - g g : derivatives acid histidine
5-Aminolevulinate 12 {0.020 +0.062 0.013 +0.015 0.016 +0.012 0.847 Dela amino aclds a0 |p orphyrin, glycine, and serine metabolism
. . Isoleucine and Ketogenic and glucogenic amino acid. Production and
Isoleucine 43 [0.061 +0.051 0.045 +0.042 0.031 &0.042 0.096 derivatives formation of hemoglobin and red blood cells
. R Glutamic acid and Degradation pathway for the ketogenic amino acid
Saccharopine 60 {0.016 +0.020 0.013 +0.020 0.014 +0.021 0.837 ot e
. Alpha hydroxy acids [Catabolism of threonine and methionine. Glutathione
2-Hydroxyisobutyrate 4 10.002 +0.001 0.001 +0.001 0.002 +0.001 0.176 LoDy ey ey g e
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acid

Table 4. Metabolite concentration changes for plasma from dairy calves challenged with BRSV and M.
haemolytica. Values are presented as mean + SD. Categories not connected by the same letter between

Baseline, BRSV, and MH were significantly different (p <0.05); increase (dark purple), decrease (dark yellow).
Values positively (light purple) or negatively correlated (light yellow) in the PCA during infection compared
with the Baseline. Biochemical pathways: Grey = other; light blue = glycolysis/gluconeogenesis pathways,
magenta = triglycerides pathways, light green = protein pathways. Italic = parameter changed in the ANOVA and

the PCA.

In general, viral and bacterial agents activate innate immunity, which is comprised of nonspecific defense
mechanisms that are triggered shortly after the appearance of the antigen?. This occurs as a result of the pro-
duction of a motif of molecules expressed by the pathogen known as pathogen-associated molecular patterns
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Figure 4. Principal component analysis (PCA) correlation loadings plots for the concentration of the selected
'"H-NMR metabolites (n=72) in plasma from dairy calves. The variables inside the outer circle (colored area)
have the greatest influence on database variability and are positively or negatively correlated during the Baseline
or Infected stages; the points inside the inner circle are thought to have low or no influence. (a) Baseline (n=35);
two PCs explained 45% of the variance. (b) Infected (V +B) data points from both challenge studies (n=35), two
PCs explained 39% of the variation of the database. (c) Infected calves with BRSV (n=20), two PCs explained
43% of the variation of the database. (d) Infected calves with M. haemolytica (n=15), two PCs explained 36% of
the database variation. Each plasma sample, on average, contained 43 £ 8 of the selected metabolites.

(PAMPs)>**. In the case of BRSV, the PAMPs are known components consisting of glycoprotein G, fusion protein
E and single-stranded RNA®. For M. haemolytica, PAMPs include flagellin, lipopolysaccharide (LPS) complex,
and leukotoxin (LKT)?. These elicitors are identified by pattern recognition receptors (PRRs) for rapid detec-
tion of the threat from a potential pathogen®. Surface-bound and intracellular PRRs, such as Toll-like receptors
(TLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors, and RNA helicases, are expressed
by bovine respiratory tract cells®. The engagement of PAMPs by PRRs results in the production of damage-
associated molecular patterns (DAMPs), initiating ATP-dependent signaling cascades. Activated transcription
factors induce the production of inflammatory cytokines and chemokines for release into the body, which
attracts neutrophils, macrophages, and lymphocytes to the respiratory tract, resulting in respiratory disease”*".

Ruminants have a specialized digestive system to degrade grass and get the necessary nutrients to maintain
homeostasis, and most of the glucose comes from the gluconeogenesis of oxaloacetate obtained from the propion-
ate produced by the microorganism species Megasphaera, Veillonella, and Selenomonas in the rumen®®’. Because
this is a slow process, supplying the energy demands during the cell signaling cascades and immune response
caused by PAMPs recognition requires metabolism reprogramming by immune cells, where alternative energy
sources such as triglycerides and proteins are used for ATP production®®°. Glucose is an upstream regulator of
26 genes associated with BRD in dairy cattle, and if glucose homeostasis is disrupted, hypoglycemia or hyper-
glycemia occurs®'. The negative correlation of glucose in the PCA model observed in the present M. haemolytica
challenge and in the combined V + B database is in line with the decreases of this metabolite reported in BRD
studies in dairy and beef cattle as a result of natural or artificially induced infections, LPS injections, stress-related
to transport, and receiving calves***%2. It has been suggested that, in addition to the metabolic changes caused
by the immunological response, the decrease in glucose levels is also due to the hypoglycemic effect of BRD and
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Figure 5. Principal component analysis (PCA) scores plots for 'H-NMR spectra from Baseline and Infected
plasma samples. (a) PCA scores plot (n="70) from the combined V + B infection database (PC-2: R2X=0.34,
Q%=0.26). (b) PCA scores plot (n=40) from the BRSV challenge (PC-2: R?X =0.34, Q*=0.10). (c) PCA scores
plot (n=30) from the M. haemolytica (MH) challenge (PC-2: R?X =0.45, Q*=0.25). Labels above the scores
indicate the sample ID (Table S1).

the decline in diet due to the discomfort caused by the respiratory signs®. In contrast, a positive correlation in
glucose was observed in response to BRSV infection. However, it is likely that the differential change in glucose
arose as a response to the life-saving administration of the glucocorticoid drug dexamethasone to calves in the
BRSV challenge, and is a limitation of the study.

To meet the energy demands due to the recruitment of inflammatory cells and the phagocytotic processes for
microbial death, immune cells such as neutrophils, monocytes, macrophages, and lymphocytes undergo aerobic
glycolysis®*®. In this scenario, pyruvate does not enter the mitochondrion but is instead metabolized to lactate in
the cytoplasm, with glycolysis rapidly providing minor amounts of ATP***. A positive correlation of lactate was
observed in the PCA for the BRSV challenge. Similarly, in combination challenges with BHV-1 and M. heamo-
Iytica carried out in beef cattle, animals that died had higher lactate concentrations than those that survived®. Tt
has been reported that the decrease in oxygen levels during BRD due to stress, blockage of the respiratory tract
with mucous secretions, and lung inflammation also increased lactate concentration, the likelihood of disease
progression, and eventual mortality in dairy cattle®*. Aerobic metabolism in neutrophils is associated with an
increase in reactive oxygen species (ROS), an important source of bactericidal activity®. A significant increase
in 2-hydroxybutyrate, which is a metabolite associated with ROS production and lipid oxidation (8-oxidation),
was detectedin the present study in the M. haemolytica challenge and had also previously been detected in rumen
fluid, serum, milk, and in greater amounts in the urine of six lactating and six non-lactating Holstein dairy cows,
as well as in the mammary gland of the lactating cows®”.

To offset the consequences of metabolic diseases involving energy imbalance, ruminants and, more specifi-
cally, bovine species are known to use the alternative triglyceride route?’-**2, Triglycerides are made up of glyc-
erol and fatty acids. Fatty acids undergo f3-oxidation in the liver, producing acetyl-CoA, which enters the tricarbo-
xylic acid (TCA) cycle. As a result, the reducing agents NADH and FADH, are produced, which feed the electron
transport chain and drive large amounts of ATP production to address energy imbalance®®. Large amounts of
acetyl-CoA exceeding the capacity of the TCA cycle result in the generation of ketone bodies®®®. During BRD
in dairy cattle, glucose and oxygen uptake are reduced, resulting in increased ketone body formation®”%%. Under
such conditions, the metabolites 3-hydroxybutyrate, acetoacetate, and acetone accumulate downstream of acetyl-
CoA generation®®. A positive PCA correlation in 3-hydroxybutyrate as detected here in the BRSV challenge
is consistent with previously reported increases in this metabolite as being important for differentiating healthy
from sick cattle with BRD* and having a negative effect on neutrophil function and recruitment, consequently
allowing pneumonia to progress’®. The plasma collected during the M. haemolytica challenge presented signifi-
cant increases or an association with the Infected stage in the discriminant analysis in the ketone bodies acetone
and acetoacetate, respectively. Moreover, the dicarboxylic acids malonate and 3-hydroxy-3-methylglutarate were
detected in samples from both challenge studies. Taken together, these results support the idea that higher energy
supplies derived from fatty acid pathways could be required to counteract the energy imbalance caused by the
immune response to the secondary bacterial infection rather than the initial viral infection, even if glucocorti-
coids are administered.

The alternative protein pathway is the final resource used to overcome increased metabolic demands”!.
Changes in the concentrations of glucogenic amino acids, ketogenic amino acids, and their metabolites were
detected during both challenge, similar to previous studies in cattle with ketosis caused by negative energy
balance’. Here, a negative PCA correlation of the alpha-amino acid 2-aminoadipate was detected in response
to the BRSV challenge; contrastingly, in the M. haemolytica challenge, a positive correlation was found. This
metabolite is an intermediate in the metabolism of the ketogenic amino acid lysine®. During the BRSV challenge,
positive correlations in the PCA for the concentration of the alpha-amino acids creatine, creatine phosphate,
and creatinine, and the imidazoline N-methylhydantoin suggested that BRSV could be causing viral myositis,
affecting muscle health by increasing the metabolites involved in the regeneration of ATP in skeletal muscle to
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Figure 6. OPLS-DA scores plots resulting from "H-NMR spectra of plasma as well as the corresponding
coefficient loading plots. The color map depicts the significance of spectral signals between the two categories
(Baseline and Infected). (a) OPLS-DA scores plot from the combined V +B infection database (n="70). (b)
Coefficient loadings plot for general infection. (c) OPLS-DA scores plot from the BRSV challenge (n=40). (d)
Coeflicient loadings plot from the BRSV challenge. (e) OPLS-DA scores plot from the M. haemolytica (MH)
challenge (n=30). (f) Coefficient loadings plot from the M. haemolytica challenge. Labels above the scores
indicate the sample’s ID, and above the peaks show the metabolite’s ID. To improve the visualization of the peaks
in the coefficient loadings plots, the size of the region between 6.0-9.0 ppm was increased 10X.

energize muscle contraction”. In the controlled infection with M. haemolytica, the glucogenic amino acid valine
was negatively correlated in the PCA, while isoleucine which can be glucogenic or ketogenic, presented a positive
correlation. In contrast, previous research demonstrated that injecting LPS from M. haemolytica into feed cattle

reduced the levels of isoleucine in plasma while increasing alanine

74,75

In this work, chemometric-based MVA successfully distinguished the '"H-NMR spectra from bovine plasma
collected during the Baseline and Infected stages of both challenge studies with an accuracy, sensitivity, and speci-
ficity 2 95%. Importantly, the successful group differentiation suggests that, while there were some differences in
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OPLS-DA MODELS Baseline versus infected (V +B) Baseline versus BRSV Baseline versus MH
n 70 40 30
Cal R?X 0.67 0.39 0.45
Cal R? 0.94 0.96 0.94
Cal R?Y 1.00 1.00 1.00
Cal Q? 0.65 0.81 0.75
Accuracy (%) 98.6 97.5 100
Sensitivity (%) 97.1 95 100
Specificity (%) 100 100 100
Val R? 0.73 0.72 0.69
Val Q? -0.97 -1.1 -0.73

Metabolites contributing to the trends in
the scores describing Baseline samples (t[1]
P<0)

3-Hydroxybutyrate, acetate, acetone,
alanine, allantoin, glucose, glutamine, hista-
mine, isoleucine, leucine, malonate, methyl-
amine, sarcosine, tyrosine, urea, valine

Acetate, acetoacetate, acetone, allantoin,
creatine, creatinine, glutamine, guanidoac-
etate, histamine, malonate, methylamine,
tyrosine, urea

3-Hydroxybutyrate, acetate, acetone, ala-
nine, allantoin, betaine, glucose, glutamine,
histamine, isoleucine, leucine, malonate,
methylamine, N-methylhydantoin, sarco-
sine, tyrosine, urea, valine

Metabolites contributing to the trends in
the scores describing Infected samples (t[1]
P>0)

Acetoacetate, creatine, dimethyl sulfone,
formate, guanidoacetate, lactate, pyruvate,
succinate, -methylhistidine

3-Hydroxybutyrate, alanine, dimethyl sul-
fone, formate, glucose, isoleucine, lactate,
leucine, N-methylhydantoin, pyruvate, sar-
cosine, succinate, valine, t-methylhistidine

Acetoacetate, creatine, creatine phosphate,
creatinine, dimethyl sulfone, formate,
guanidoacetate, lactate, pyruvate, succinate,
n-methylhistidine

Table 5. OPLS-DA model quality parameters for the classification of 'H-NMR spectra from plasma collected
before and after the controlled infections. Cal = calibration, Val =validation, R*X = degree of optimization,
R?=coeflicient of determination, R*Y = percentage of variation explained by the model, and Q*= cumulative
prediction, t[1]P =first principal component.

the age, weight, collection season, and physiological response to infection by some of the dairy calves between
the two challenge studies, these did not interfere with the chemical content of plasma required for the classifica-
tion of the samples using this analytical technique; thus, the metabolomic profile presented here is reliable and
can be added to the current BRD metabolome as new information to understand the biochemical pathways
involved in this disease. In addition, these findings indicate biochemical differences between healthy and sick
animals with two of the main causal agents of BRD, where metabolites related to homeostasis in the baseline
and energy imbalance during the infections were found to influence the discrimination plots. Previous research
using NIRS and NMR also successfully discriminated plasma from dairy and beef cattle with BRD, with sensi-
tivities and specificities close to 90% when using clinical diagnosis as the reference method!>****. The findings
in the current study are also consistent with previous research that used discriminant analysis on NMR spectra
of plasma from dairy cattle to identify the metabolomics of animals with ketosis, ovarian quiescence, and fatty

liver disorder

27,29-32

nutrition, reproduction, and disease.

Conclusion
By using "H-NMR spectroscopy in blood plasma, this study demonstrated that important metabolic shifts are
occurring in the host in response to infection with BRSV or M. haemolytica. Following the application of univari-
ate and multivariate statistical methods, the concentration of 46 metabolites (BRSV =32, MH = 33) changed in
comparison to the Baseline stage. These metabolites appeared to be critical fuel substrates and products of the
energy imbalance occurring during the infections due to signaling cascades and immune response activation.
In addition, our findings support the potential of NMR to create metabolic profiles of BRD that contribute to
the understanding of the diversity and concentrations of essential metabolites in plasma that can be applied for
the further development of novel diagnostic tools.
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