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NMR‑based metabolomics 
of plasma from dairy calves 
infected with two primary causal 
agents of bovine respiratory 
disease (BRD)
Mariana Santos‑Rivera 1, Nicholas C. Fitzkee 2*, Rebecca A. Hill 2, Richard E. Baird 1, 
Ellianna Blair 1, Merrilee Thoresen 3, Amelia R. Woolums 3, Florencia Meyer 1 & 
Carrie K. Vance 1*

Each year, bovine respiratory disease (BRD) results in significant economic loss in the cattle sector, 
and novel metabolic profiling for early diagnosis represents a promising tool for developing effective 
measures for disease management. Here, 1H-nuclear magnetic resonance (1H-NMR) spectra were used 
to characterize metabolites from blood plasma collected from male dairy calves (n = 10) intentionally 
infected with two of the main BRD causal agents, bovine respiratory syncytial virus (BRSV) and 
Mannheimia haemolytica (MH), to generate a well-defined metabolomic profile under controlled 
conditions. In response to infection, 46 metabolites (BRSV = 32, MH = 33) changed in concentration 
compared to the uninfected state. Fuel substrates and products exhibited a particularly strong effect, 
reflecting imbalances that occur during the immune response. Furthermore, 1H-NMR spectra from 
samples from the uninfected and infected stages were discriminated with an accuracy, sensitivity, 
and specificity ≥ 95% using chemometrics to model the changes associated with disease, suggesting 
that metabolic profiles can be used for further development, understanding, and validation of novel 
diagnostic tools.

One of the most severe and costly health problems worldwide is bovine respiratory disease (BRD), a disease 
complex caused by numerous microbial pathogens1–5. Prevalent causal agents for BRD include viral (bovine 
herpes-virus type 1, bovine respiratory syncytial virus, bovine viral diarrhea virus, parainfluenza-3 virus, and 
bovine coronavirus), and bacterial (Mannheimia haemolytica, Pasteurella multocida, Haemophilus somnus, Myco-
plasma bovis) pathogens4,6,7. Bovine respiratory syncytial virus (BRSV) is a primary cause of respiratory disease in 
young calves (≤ 1 year). This viral infection can be asymptomatic and can involve the upper and lower respiratory 
tracts8,9. BRSV typically initiates infection in response to physiological and environmental stressors, suppressing 
the host’s defense mechanisms and predisposing the replication, inhalation, and colonization of the lungs by 
M. haemolytica, a microorganism found in the normal flora of the upper respiratory system in ruminants7,10,11.

The standard in-field method for BRD detection is the visual-clinical diagnosis (VCD) based on scoring sys-
tems that record the clinical signs of illness in cattle such as high temperature, respiratory discomfort, nasal and 
ocular secretions, and other factors considered to represent respiratory disease12–17. In dairy cattle, this methodol-
ogy was reported to have a diagnostic sensitivity between 77–100%, and a screening sensitivity between 46–77%, 
meaning that around 23–54% of infections or suspected infected animals are not detected13,14,18. In addition, the 
average specificity of this methodology has been reported between 46–92%, indicating that 8–54% of healthy 
cattle are unnecessarily treated13,14,18. Thus, alternative methods to VCD are needed to detect BRD before its 
manifestation, which will enable farmers to respond with the proper prophylactic measures19. One such exam-
ple of is the use of Near Infrared Spectroscopy (NIRS), which is a novel approach that may facilitate diagnosis 
of BRD at earlier time points and in mild or asymptomatic cases by detecting changes in a suite of biomarkers 
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resulting from metabolic changes in response to disease state15,19–21. A comprehensive phenotypic assessment 
for biomarkers of BRD using a specific “omics” platform would need to be obtained from blood plasma or other 
biofluids. To this end, metabolomics profiling of disease state using nuclear magnetic resonance (NMR) is a 
method for understanding the biochemical processes that occur throughout infection and their relationship 
with clinical signs detected by traditional diagnostic approaches (e.g., VCD, ELISA).

NMR-based metabolomics provides a window into metabolic mechanisms by combining high-throughput 
analytical chemistry with multivariate data analysis (MVA) to identify and quantify changes in metabolic prod-
ucts of a biological system19,22. Proton NMR (1H-NMR) spectra arise from active nuclei absorbing electromag-
netic energy at the frequencies specific to the 1H nucleus, resulting in resonance within a two-level quantum 
system23. This resonance frequency, along with the signal intensity, is specific to the local covalent-bonding 
structure and chemical environment and is reflected in the manifold of information-rich signals (chemical 
shifts) in NMR spectra23,24. Plasma is the most frequently used biofluid for NMR studies19,20,25, and consists of 
the protein-rich fraction of blood in which white blood cells, red blood cells, platelets, and coagulation factors 
are suspended before blood fractionation with an anticoagulant26. This biofluid is commonly used to diagnose 
viral or bacterial infections by detecting antigens or pathogen-specific antibodies using ELISA (Enzyme-Linked 
Immuno-Sorbent Assay)26. Recently, plasma was shown to be a suitable medium for detecting M. haemolytica 
infection using NIRS15.

In cattle, NMR has been used to conduct metabolic profiling in the diagnosis of both reproductive and 
nutritional disorders27–32. In one case, seven plasma metabolites (alanine, arginine, choline, isoleucine, leucine, 
phosphatidyl choline, and valine) were shown to significantly decrease in dairy cows during estrous compared 
to cows in anestrous. These changes were related to glucose, triglyceride, and amino acid metabolic pathways 
associated with postpartum anestrus27. Similarly, changes in the concentration of metabolites in plasma were 
observed in Holstein cows during postpartum and lactation periods, revealing that glucose is rerouted to synthe-
size lactose and fats in milk, causing the lactating cow to produce ketone bodies as an alternative energy source 
to maintain homeostasis28–31. Metabolic profiles related to fatty liver disease in lactating cows were correlated 
with increases in β-hydroxybutyric acid, acetone, citrulline, glycine, isobutyrate, trimethylamine-N-oxide, and 
valine, and decreases in γ-aminobutyric acid glycerol, alanine, asparagine, creatinine, and glucose, suggesting this 
metabolic disorder alters the concentration of metabolites related to energy imbalance pathways32. In contrast, 
NMR analysis revealed calves with bronchopneumonia detected by VCD exhibited increases in 2-methyl glutar-
ate, phenylalanine, and phosphatidylcholine, but showed decreases in acetate, allantoin, cholesterol, dimethyl 
sulfone, ethanol, propionate, and free cholesterol in the plasma, suggesting alteration of a different set of meta-
bolic pathways33. Recently, feedlot cattle that were deemed to have BRD through VCD inspection were shown 
to have significant alterations in the concentration of α-glucose chains, hydroxybutyrate, and phenylalanine by 
NMR analysis of plasma34. The results from both of these studies33,34, combined with recent work in which NIRS 
profiling of plasma from calves with induced M. haemolytica infection15, indicate that characteristic shifts in the 
metabolome of plasma may be indicative of BRD infection and perhaps pathogenic specificity.

Here, we conduct challenge studies, in which dairy calves were intentionally infected with two of the main 
BRD causal agents, BRSV and M. haemolytica (MH), in order to generate a well-defined metabolomic profile 
under controlled conditions, including mild or asymptomatic cases. 1H-NMR analysis of the collected plasma 
was used to (1) identify metabolites associated with infection by the two different pathogens, (2) assess concen-
tration changes of those metabolites between the healthy and infected stages and in response to each pathogen, 
(3) generate a model for discriminating 1H-NMR spectra, and the metabolites involved in the differentiation of 
healthy and infected calves for each causal agent, and (4) provide new biochemical information to the current 
plasma NMR-BRD metabolome. Previously, samples were acquired based on VCD under field conditions33,34. 
The results from our study provide insight into whether there are quantifiable differences in the metabolic profile 
in response to different causal agents that might be targeted for the understanding, development, and validation 
of future BRD diagnostic strategies.

Materials and methods
Animals and controlled challenges.  Ten healthy non-immunized Holstein steers (Table 1) were acquired 
in the first week of life from the Mississippi Agricultural and Forestry Experiment Station (MAFES) Bearden 
Dairy Research Center adjacent to the Mississippi State University campus and raised in isolation until two 
weeks before the start of the experiments when they were housed in isolation from all other cattle. The calves 
in each group were housed together in isolation from other cattle in an outdoor group pen with a covering to 
provide shelter from sun and rain. Calves in both groups were fed the same diet (calf grower ration and coastal 
Bermudagrass hay).

These dairy calves were subjected to two controlled challenge studies, each with a different infectious agent. 
The first group of dairy calves, age 5.6 months old (n = 5), was challenged with M. haemolytica (serotype A1, 
isolate D153) via bronchoalveolar lavage catheterization during the summer of 2019. The second group of dairy 
calves, age 2.9 months old (n = 5), was challenged with 5 mL of BRSV (GA-1, P5) delivered by a nebulizer (DeV-
ilbiss Pulmo-Neb) through a custom-made face mask during the fall of the same year. The detailed procedures 
of pathogen preparation are described in the supplementary information (Supplementary Methods S1 online). 
The experiments were approved and carried out following the Mississippi State University-Institutional Animal 
Care and Use Committee guidelines and regulations (IACUC-19-037) and reported in compliance with the 
ARRIVE (Animal Research: Reporting In Vivo Experiments) guidelines 2.0. Because we wished to prevent life 
threatening conditions of calves due to experimental challenge, following the challenge, any calf exhibiting severe 
depression, or marked respiratory effort was treated with dexamethasone (0.1 mg/kg intravenously). One calf 
in the BRSV group exhibited signs of suspected secondary bacterial pneumonia (diagnosed by two veterinary 
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clinicians) and was also treated with florfenicol (40 mg/kg). Calves with severe depression or marked respiratory 
effort in the M. haemolytica group were treated once daily for five days with ceftiofur (2.2 mg/kg subcutaneously).

A suite of clinical data was collected for 27 days during the bacterial challenge and for 34 days during the 
viral challenge in order to follow progression of asymptomatic, mild and severe degrees of disease following 
experimental challenge15–17,21. An example of the data collection sheet is provided in the Supplementary mate-
rial (Supplementary Figure S1) and includes visual and clinical data such as the rectal temperature, heart and 
respiratory rate, presence or absence of depressed attitude, appetite for food, spontaneous or induced cough, 
nasal discharge, ocular discharge, submandibular lymphadenopathy, difficult breathing (dyspnea), and abnormal 
lung sounds (crackles, wheezes, or large airway sounds)35. Severe lung disease (difficult breathing, abnormal lung 
sounds) was differentiated from upper respiratory tract disease (nasal or ocular discharge). Objective measures 
(such as rectal temperature and respiratory rate) were taken by student workers, while subjective measures (such 
as difficult breathing and abnormal lung sounds) were scored by one of two licensed veterinarians who assessed 
these signs in all calves in the study. At the beginning of the study, the two veterinarians examined several calves 
together to agree on the criteria by which difficult breathing and abnormal lung sounds were identified.

In general, blood samples and visual and clinical data were collected for four days prior to challenge, for 11 
continuous days after the challenge, and then every other day from day 12 onward post-challenge. The viral 
and bacterial challenge studies yielded a total of 97 and 105 blood samples, respectively. In the M. hemolytica 
challenge, samples were classified as Baseline (pre-infection), Asymptomatic (clinically normal or mild upper 
respiratory response after infection), Infected (clinically abnormal after the infection), Treated (infected and 
treated with ceftiofur (450 mg subcutaneously administered for five days)), or Recovered (clinically normal 
after the infection and ceftiofur treatment). Biochemical changes in the plasma are expected due to the use of 
antibiotics provided when aggravated signs of the disease were observed (established by the veterinarian and 
the approved IACUC protocol) or during the recovery processes. To avoid the interference of these changes in 
the interpretation of the NMR metabolomic profiles for healthy and sick calves infected with M. hemolytica, 
only data from the samples designated as Baseline (n = 20) and Infected (n = 26) were used in the univariate and 
multivariate analyses (Table 1, Supplementary Table S1 online). Before the BRSV challenge, the animals were 
tested for the absence of maternally derived anti-BRSV antibodies by a serum neutralizing assay. In the BRSV 
challenge samples were classified as Baseline (pre-infection), Asymptomatic (clinically normal or mild upper 
respiratory response) Infected (clinically abnormal with severe lung disease indicators), or Recovered (returned 
to clinically normal state). One animal died on day 7 and for lifesaving response the remaining individuals were 
administered one dose of dexamethasone (0.1 mg/kg; IACUC 19-037). Data from the BRSV blood samples des-
ignated as Baseline (n = 35) and Infected (n = 21) were used in the univariate and multivariate analyses (Table 1, 
Supplementary Table S1 online).

Blood acquisition.  Blood samples (n = 202) were drawn via jugular venipuncture and immediately placed 
on ice in two collection tubes containing the anticoagulant EDTA (ethylenediaminetetraacetic acid). The first 
tube was centrifuged at 4000 rpm for 20 min to separate plasma, and duplicates of 1 mL were stored at − 80 °C 
until NMR analysis. The second tube was used for complete blood counts (CBC), where red blood cells (RBC), 
hematocrit (HTC), hemoglobin (HGB), white blood cells (WBC), and platelet (PTL) contents were acquired 
using a veterinary hematology analyzer (Advia 2120i hematology analyzer, Siemens Healthcare Diagnostics Inc., 
Tarrytown, NY, USA). In addition, microscopic differential counts of WBC were performed by one co-author 
(EB) under the supervision of one of the board-certified veterinary clinical pathologists in the College of Vet-
erinary Medicine (CVM) Diagnostic Laboratory to assess the variability of neutrophils, eosinophils, basophils, 
monocytes, and lymphocytes.

Table 1.   Dairy calves and the total number of Baseline or Infected blood samples collected after pathogenic 
challenge. A subset of samples was selected for NMR metabolomic profiling because an even number of 
samples per category (Baseline or Infected) was needed to ensure variance and weight homogeneity of each 
data set for the multivariate analyses.

Challenge Calf ID Age (months) Weight (kg) Baseline samples Infected samples Total

BRSV

1 3.2 135 4/7 4/4 8/11

2 3.2 135 4/7 4/4 8/11

3 3.0 130 4/7 4/4 8/11

4 2.9 125 4/7 4/4 8/11

5 2.4 125 4/7 4/5 8/12

M. haemolytica

6 6 204 3/4 3/3 6/7

7 6 196 3/4 3/14 6/18

8 6 145 3/4 3/3 6/7

9 5 124 3/4 3/3 6/7

10 5 142 3/4 3/3 6/7

Total samples 35/55 35/47 70/102
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Preparation of plasma for 1H‑NMR analysis.  Before collecting NMR spectra, proteins and larger mac-
romolecules were removed from the samples using filters with a 3K molecular weight cutoff (Microsep, Pall Cor-
poration, Ann Arbor, MI). Following filtration, 330 µL of each filtered plasma sample was mixed with 330 µL of 
sterile referencing solution36, (200 mM sodium phosphate buffer, 1 mM 3-trimethylsilylpropionate 2, 2, 3, 3-d4 
(TMSP-d4, Cambridge Isotope Labs DLM-48-5) and 0.1% (w/v) sodium azide (NaN3) in 50% deuterium oxide 
(D2O, Cambridge Isotope Labs DLM-4 99)). Six hundred μL of the mixture was transferred to a clean NMR tube 
(Wilmad LabGlass, 535-PP-7) and kept at 4 °C for less than 24 h before NMR data acquisition.

1H‑NMR spectra collection.  For each pathogen challenge, an equal number of plasma samples (n = 70) 
from the Baseline and Infected stages were chosen for NMR analysis to ensure homogeneity of the variance and 
weight of each data set for the statistical analyses (Table 1); the detailed information from these samples can 
be found in the supplementary material (Supplementary Table S1 online). A Bruker Avance III HD 500 MHz 
spectrometer outfitted with a 5 mm BBFO probe (Bruker, Massachusetts, USA) was used for NMR spectroscopy. 
Samples were run in automation mode with a SampleJet, with all samples refrigerated at 4 °C until just prior to 
loading. A perfect-echo WATERGATE sequence (PE-WATERGATE, parameter set ZGESGPPE) was applied 
to collect the data37. Data were collected at 298 K for 128 scans with a 1 s inter-scan delay and a 3 s per-scan 
acquisition time. The total acquisition time for each sample, including 3D-shimming, was about 15 min. Top-
spin 4.0.8 (Bruker, Massachusetts, USA) was used for spectral processing following the acquisition. All spectra 
were zero-filled to 128k points, and a 1 Hz line broadening was used. Automatic phasing and baseline correc-
tion were performed, 1H-NMR spectra were segmented into successive non-overlapping regions of 0.0001-ppm 
chemical shifts between 0.0 and 10.5 ppm, and the water region was truncated between 4.30 and 5.10 ppm. 
The processed spectra were then imported into the Chenomx NMR Suite 8.6 (Chenomx, Edmonton, Canada) 
to identify individual metabolites and their concentration using a reference library containing 338 metabo-
lites for 500 MHz spectrometers. Because the Chenomx library was acquired using a NOESY-based 1D pulse 
sequence, the reported metabolite concentrations (mM) are likely to differ slightly from the actual concentra-
tions. However, relative differences between samples will be preserved, and absolute concentration differences 
for the majority of compounds are expected38.

Statistics.  The mean and standard deviation (SD) for temperatures, pulse rates, and respiratory rates (TPR), 
and CBC values collected from the Infected stage of the BRSV challenge (n = 21), the M. haemolytica challenge 
(n = 26), as well as the combined Baseline data points from both challenges (n = 55) were calculated using uni-
variate statistics. The mean concentration (mM) and SD were also calculated similar to other studies19,25,39. The 
metabolites related to the referencing solution, diet ingredients, or those only detected in less than two samples 
in each group (Baseline or Infected) were excluded from the analyses. An ANOVA and pairwise mean compari-
son (Baseline vs. BRSV, Baseline vs. MH, BRSV vs. MH) using Tukey–Kramer HSD (honestly significant differ-
ence) test with alpha = 0.05 were used to assess for significance in parameter response for TPR, CBC, and metab-
olite concentration. The results for these post-hoc tests were reported with connecting letters, where different 
letters indicate significant differences between the Baseline, BRSV, and MH categories (JMP® 14.0 SAS Institute 
Inc., NC. USA). In addition, a database representing a general state of infection labeled as V + B (viral + bacterial) 
was composed of data collected from all Infected samples, regardless of pathogenic agent, and was evaluated by 
pairwise mean comparison (Baseline vs. Infected) using Student’s t-test with alpha = 0.05.

Multivariate analysis (MVA).  The CBC, visual and clinical data, and the metabolite concentrations were 
subject to Principal Component Analysis (PCA) using a full cross-validation (leave one sample out) and algo-
rithm-singular value decomposition (SVD). We obtained correlation loadings plots to determine the magnitude 
and direction of a particular constituent’s contribution (Influence) to the models created for the Baseline and 
Infected stages (Unscrambler® v. 11, Aspen Technology Inc., Massachusetts, USA). The processed 1H-NMR spec-
tra contained spectral peaks ranging from 0.5 to 9.0 ppm that were chosen for the chemometrics-based MVA; 
peaks from free EDTA at 3.2 ppm and Ca2+-EDTA at 3.6 ppm were removed prior to analysis40,41. Three balanced 
datasets of spectra were created: the first labeled as Infected (V + B; n = 70) was created to represent a general 
infection state by combining information from both studies; the second corresponded to the BRSV challenge 
(n = 40), and the third to the M. haemolytica challenge (n = 30). SIMCA software-omics skin v.15.0 (Umetrics 
AB, Ume, Sweden) was used to apply pattern recognition methods. 1H-NMR spectra were subjected to PCA, in 
which the scale data conversion with mean-center scaling reflects the total metabolic differences between the 
two groups (Baseline vs. Infected) as well as the degree of variability within each group42.

The 1H-NMR spectra of plasma were analyzed using orthogonal partial least-squares discriminant analysis 
(OPLS-DA) to classify samples from the Baseline and Infected stages simultaneously. The OPLS-DA models were 
built with t[1]P and t[2]O, which stand for the first principal component and the second orthogonal component, 
respectively42. The OPLS-DA models were used to maximize the covariance between the measured data (X vari-
able, peak intensities in 1H-NMR spectra) and the response variable (Y variable, predictive classifications). The 
quality of each model was assessed using R2X, R2, R2Y, and Q2, where R2X denotes the degree of optimization 
of the analytical model, R2 symbolizes the coefficient of determination, R2Y denotes the percentage of variance 
explained by the model, and Q2 describes the model’s cumulative prediction42,43. In the OPLS-DA models, seg-
mented cross-validation (7 segments) with a random split was used to estimate the optimal component number 
of each model to avoid over-fitting. In addition, the percentage of accuracy, sensitivity, and specificity were 
calculated using the number of correct and incorrect predictions from the confusion matrix to test the ability of 
each model to identify true positive (Infected) and true negative (Baseline) samples correctly44–46. Permutation 
analysis was used to validate and to assess the reliability of the OPLS-DA models by randomly designating the 
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class labels (Baseline or Infected) to different samples; then the discriminant model was carried out again an 
‘n’ number of times (permutations = 200) with the incorrect class labels expecting poor classification values in 
comparison to the original calibration47. In permutation analysis a model is considered reliable if R2 > 0.4 and 
the intercept Q2 < 042,43,47.

Results
Clinical and hematological results.  Overall, all the calves showed similar patterns of health and disease 
during the controlled studies (Fig.  1). The typical activation of the innate immunity or nonspecific defense 
mechanisms following the bacterial challenge were observed after 24 h of infection48 with an increase in rectal 
temperature (Fever) and WBC (Fig. 1a,b). Day 3 samples were collected before treating animals with ceftiofur 
as described above. The treatment could be associated with the recovery of the calves and the change in the 
temperature and WBC patterns (Fig. 1a,b). Mild signs of infection, including loss of appetite and nasal discharge 
from Day 1 until Day 19 were observed in calf 7; on D19, its signs intensified, presenting fever, depression, and 
increased purulent nasal discharge, and ceftiofur was administered as described above. By contrast, calves chal-
lenged with BRSV exhibited increased temperature and WBC on Day 7 post-infection (end of the asymptomatic 
phase), characteristic of the incubation period of this virus8. In the BRSV challenge on Day 7, calf 2 presented 
fever (≥ 40 °C), depression, difficulty breathing, and abnormal lung sounds. Blood samples were collected before 
providing dexamethasone (0.1 mg/kg) and the antibiotic florfenicol (40 mg/kg). Unfortunately, this calf died on 
Day 8. Given this calf ’s death, dexamethasone was provided to the remaining calves on day 8 when they exhib-
ited marked respiratory effort, as described above.

The results of the univariate and MVA tests for the TPR and CBC values for both challenges are shown in 
Table 2. In terms of the univariate analysis during the BRSV challenge, eight parameters were statistically different 
(p < 0.05) during Infection compared to the Baseline, where RBC, HCT, WBC, and the percentage of neutrophils 
were detected to increase while the percentage of lymphocytes, eosinophils, and basophils decreased. Through-
out the M. haemolytica infection, four of the evaluated variables were statistically different (p < 0.05) from the 
Baseline values, with temperature, RR, and PLT increasing and HCT decreasing.

The PCA correlation loading plots for TPR and CBC data (Fig. 2) show the relationships between the potential 
explanatory variables or evaluated parameters (X-matrix) within each of the databases (Baseline, Infected with 
virus or bacteria (V + B), BRSV, and MH) for the development of models49. The inner ellipse represents 50%, 
while the outer ellipse represents 100% of the explained variance for the individual variables. Thus, the area 
between the two ellipses explains 50–100% of the variance, implying that the centralized parameters (inside the 
inner circle) have an unimportant effect on the differentiation of each X-matrix. In contrast, those inside the 
outer circle (shaded) present a strong influence or significant impact on the differentiation of each model49,50. 
In addition, when the variables are placed in the positive or negative direction of the first principal component 

Figure 1.   Dairy calves’ responses to viral (n = 5) and bacterial (n = 5) infection. Calves were challenged with the 
infectious agent on D0. (a) Daily rectal temperature (TEMP, °C) displayed as Mean ± SD. (b) WBC (thousands 
per cubic millimeter, K/µl) presented as Mean ± SD. A characteristic increase after signs of disease (indicated 
by arrows) in each challenge can be seen due to the activation of defense mechanisms against BRSV and M. 
haemolytica (MH) virulence factors. Markers in blue are the Baseline days; the red markers point to the day of 
the pathogenic challenge.
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(PC-1), this influence can be described as positively or negatively correlated within each X- matrix, meaning the 
variables in those directions increase or decrease together to generate each model’s characteristic patterns49,50.

The distribution of TPR and CBC variables for the Baseline model can be seen in Fig. 2a; this pattern was com-
pared by visual observation with those obtained in the Infected stage of each challenge separated and together. 
When evaluating the general infection database (Fig. 2b), similar patterns in the distribution of the evaluated 
parameters were observed in comparison to the Baseline, with the only difference observed in the position of 
HGB, which was negatively correlated during the infection and had no influence in the Baseline model. For the 
BRSV Infection model (Fig. 2c), TEMP, HGB, and HCT were positively correlated in comparison to the Baseline. 
The model for the evaluated variables during the M. haemolytica infection (Fig. 2d) differed from the Baseline 
in which temperature, HGB, HCT, and additionally RBC and PLT were positively correlated.

Metabolites detected by 1H‑NMR.  The representative 500 MHz 1H-NMR spectra of plasma collected 
with EDTA from dairy calves before and after challenge are shown in Fig. 3. A total of 179 metabolites were 
identified using the batch profiler option in the Chenomx library. From these, a total of 72 metabolites were 
selected for the statistical analyses following the criteria explained in the methodology. After the selection, the 
presence of these metabolites was reliably identified in the samples manually using Chenomx. These compounds 
reproducibly appeared as well-resolved signals in the 1H-NMR spectra, and overlapped signals were confirmed 
using at least two peak groups before fitting in the Chenomx profiler. After the manual confirmation of these 
metabolites, a mean of 43 ± 8 of the selected metabolites were identified in each sample. The full identification 
and chemical classification of the 72 selected metabolites can be found in the supplementary material (Supple-
mentary Table S2 online).

The findings from the univariate and multivariate analyses are shown in Tables 3 and 4 and include only the 
metabolites that presented a change during the Infection in comparison to the Baseline stage. The results for the 
general (V + B) infection database, which included data points from both viral and bacterial challenges, can be 
seen in Table 3. Regardless of the causative agent, 11 metabolites were found to change significantly (p < 0.05) 
compared to Baseline levels, where increases in 2-hydroxybutyrate and 3-hydroxyisobutyrate, and decreases in 
succinylacetone, isobutyrate, 2-hydroxyvalerate, acetone, O-acetylcholine, isoleucine, dimethyl sulfone, allan-
toin, and ethanol, were observed. Examining the response to specific pathogenic agents (Table 4) revealed the 
concentrations of a subset of six metabolites (BRSV = 2, MH = 4) changed significantly (p < 0.05) compared to 
the Baseline. Infection with BRSV resulted in a significant (p < 0.05) increase in guanidoacetate and a decrease 
in ethanol. On the other hand, infection with M. haemolytica showed significant (p < 0.05) increases in concen-
trations of 2-hydroxybutyrate, acetone, and 3-hydroxyisobutyrate, and a decrease in isobutyrate in comparison 
to the Baseline. 

The PCA correlation loading plots revealed distinct metabolites influencing the patterns for each model 
(Fig. 4). The distribution of metabolites differentiating the Baseline model (Fig. 4a) was compared by visual 
observation with the patterns from the three Infection models (Infected (V + B), BRSV, MH). In the model for 
the general V + B infection database (Fig. 4b), two metabolites (2-aminoadipate and saccharopine) were positively 

Table 2.   Clinical and hematological values (Mean ± SD) for dairy calves challenged with BRSV and M. 
haemolytica (MH). Values with different letters were significantly different as determined by ANOVA (p < 0.05) 
between categories, with a significant increase (dark purple) or decrease (dark yellow) compared to the 
Baseline. Values positively correlated in the PCA during infection (light purple) compared with the Baseline. 
Italic = parameter changed in the ANOVA and the PCA, M/µl = Millions per microliter, g/dl = grams per 
deciliter, K/µl = thousands per cubic millimeter.

Analysis Baseline      
(n = 55)

Infected with 
BRSV       

(n = 21)

Infected with 
MH          

(n = 26)
p Value

Temperature (°C) 38.7 ± 0.4 B 39.0 ± 0.7 B 40.2 ± 0.9 A 0.0001
Respiratory rate per minute 25.5 ± 10.8 C 52.6 ± 22.8 B 82.1 ± 19.6 A 0.000
Heart rate per minute 91.5 ± 10.7 92.5 ± 11.5 98.9 ± 15.4 0.135

Red blood cell count (M/µl) 8.6 ± 0.9 B 9.9 ± 2.6 A 7.6 ± 0.8 B 0.0002
Hemoglobin (g/dl) 10.6 ± 0.6 11.2 ± 2.4 10.1 ± 1.0 0.120
Hematocrit (%) 30.3 ± 4.4 B 32.8 ± 2.2 A 27.7 ± 2.4 C 0.0003
Platelets (K/µl) 650 ± 194 B 758 ± 198 A,B 822 ± 230 A 0.017
White blood cell count (K/µl) 8.2 ± 2.1 B 12.8 ± 5.5 A 10.1 ± 4.1 A,B 0.000
Neutrophils (%) 33.9 ± 8.5 B 47.8 ± 19.2 A 40.3 ± 179 A,B 0.004
Lymphocytes (%) 41.1 ± 11.2 A 30.8 ± 18.0 B 34.0 ± 17.0 A,B 0.038
Eosinophils (%) 0.9 ± 1.2 A 0.2 ± 0.5 B 0.6 ± 1.1 A,B 0.042
Basophils (%) 1.7 ± 1.3 A 0.7 ± 0.8 B 1.1 ± 1.8 A,B 0.013
Monocytes (%) 22.4 ± 9.4 20.7 ± 7.8 23.9 ± 12.3 0.607

Visual-clinical diagnosis (VCD) 

Complete blood counts (CBC) 
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correlated, and 12 metabolites (glucose, lactate, malonate, acetone, 3-hydroxy-3-methylglutarate, 3-hydroxy-
butyrate, trimethylamine N-oxide, dimethyl sulfone, agmatine, alanine, N,N-dimethylglycine, and histamine) 
were negatively correlated when compared with the Baseline model. In the PCA model for each pathogen, 36 
metabolites (BRSV = 25, MH = 23) changed in comparison to the Baseline model (Table 4). Of these 48 metabo-
lites, glucose, N-methylhydantoin, 3-hydroxy-3-methylglutarate, malonate, leucine, and 2-aminoadipate changed 
in response to both pathogens (Table 4). In the PCA describing BRSV infection (Fig. 4c), 21 metabolites (glucose, 
N-methylhydantoin, 3-hydroxy-3-methylglutarate, malonate, leucine, creatine, creatine phosphate, creatinine, 
lactate, 3-hydroxybutyrate, acetate, trimethylamine N-oxide, guanidoacetate, agmatine, alanine, dimethyl sulfone, 
formate, glycine, ,N,N-dimethylglycine, betaine, and histamine) were positively correlated. Only three metabo-
lites (2-Aminoadipate, carnitine and cysteine) were negatively correlated in the BRSV infection in comparison 
to the Baseline. By contrast, in the M. haemolytica infection (Fig. 4d), ten metabolites were positively correlated 
(N-methylhydantoin, malonate, leucine, 2-aminoadipate, 4-aminobutyrate, galactitol, propionate, 5-aminole-
vulinate, isoleucine, and saccharopine), and eight metabolites were negatively correlated (glucose, 3-hydroxy-
3-methylglutarate, arabinitol, 2-oxoglutarate, 2-hydroxyisobutyrate, N-acetylglycine, valine, and isovalerate).

1H‑NMR Chemometrics‑based multivariate analysis.  The PCA scores plots showing the trends of the 
1H-NMR spectral signals can be seen in Fig. 5. In the scores plot, each point corresponds to either a Baseline or 
Infected sample, and overlap between the two groups indicates similarities in the metabolite composition of the 
plasma. Outliers are samples outside the confidence ellipse based on Hotelling’s T2 (significance level 0.05). The 
database for the general V + B infection was analyzed with 10 principal components (Fig. 5a), giving modeling 
parameters R2X = 0.83 and Q2 = 0.56; in this case, three outliers were identified, which corresponded to samples 
33 (D9, calf 5), 34 (D11, calf 5), and 39 (D-2, calf 7). In the database of BRSV samples (Fig. 5b), seven principal 

Figure 2.   Principal component analysis (PCA) correlation loadings plots for TPR and CBC data. The variables 
inside the outer circle (colored area) have the most influence on database variability and are positively or 
negatively correlated within each model, while the parameters within the inner circle have low or no influence. 
(a) Baseline (n = 55); two PCs explained 48% of the variance. (b) General infection (V + B) database (n = 47) 
combined data from both studies, two PCs explained 43% of the variation of the database. (c) Infected with 
BRSV (n = 21), two PCs explained 53% of the variation of the database. (d) Infected with M. haemolytica (MH) 
(n = 26), two PCs explained 50% of the variation of the database.
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components gave a degree of optimization R2X = 0.80 and a cumulative prediction Q2 = 0.38, with two outliers: 
samples 22 (D4, calf 2) and 34 (D11, calf 5). In the database composed of M. haemolytica samples (Fig. 5c), six 
principal components produced modeling parameters R2X = 0.79 and a Q2 = 0.48. The outlier corresponded to 
Baseline sample 39 (D-2, calf 7).

The OPLS-DA scores plots (Fig. 6) for the general (V + B) infection (Fig. 6a), BRSV (Fig. 6c), and M. haemo-
lytica (Fig. 6e) databases demonstrated a clear distinction in the chemistry of plasma from non-infected and 
infected cattle. This suggests that even though the chemical composition of the plasma is similar before and after 
infection, as shown in the PCA scores plots (Fig. 5), there is enough information to successfully detect and dis-
criminate infection from baseline with an accuracy, sensitivity, and specificity higher than 95% (Table 5). More 
importantly, all the models showed a specificity of 100%, meaning no false-positive samples (Baseline samples) 
were classified as infected. Table 5 shows the quality parameters for the calibrations and validations of each model 
using only two principal components (PCs). The values of R2X (> 0.4), R2 (> 0.9), R2Y (> 0.9), and Q2 (> 0.4) 
obtained in the calibration indicated that the models are robust, reliable, and have a low risk of overfitting42,51. In 
addition, R2 values were greater than Q2 in the permutation plots, such that a more positive slope in the regres-
sion line corresponds to a higher degree of fit to the data and the reliability of each model42,43,47. The distance 
to model plots and permutation plots for the discriminant models can be found in the Supplementary material 
files (Supplementary Figure S1 online).

The color map derived from the coefficient loading plot indicates significant changes in spectral signals, which 
contribute to the trends in the first principal component (t[1]P) of the OPLS-DA scores plot (Fig. 6) that distin-
guish Baseline from Infected samples. These spectral signals can be compared to known metabolite peaks, allow-
ing them to be assigned in the loading plot. In Fig. 6, the peaks with positive values in the 1H-NMR coefficient 
loading plot contribute to the trends in the scores describing Infected samples (t[1]P > 0), whereas metabolites 

Figure 3.   1H-NMR spectra (0.8–9.0 ppm) showing the peak intensities of metabolites present in plasma after 
the controlled infections with the main causal agents of BRD. (a) BRSV sample 66 (D0, calf 4), (b) BRSV sample 
29 (D9, calf 4), (c) M. haemolytica (MH) sample 38 (D0, calf 6), (d) MH sample 2 (D2, calf 6). To improve the 
visualization of the peaks, the size of the region between 5.1–8.5 ppm was increased 40X.
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with negative peaks contribute to the trends in the scores describing Baseline samples (t[1]P < 0). Overall, similar 
trends in the coefficient loadings plots were observed for the general (V + B) infection database and the specific 
infection with M. haemolytica, and associated with the metabolites acetoacetate (ID = 15) and creatine. However, 
in the BRSV infection, these two metabolites were distinguishing contributions to Baseline classification (Table 5). 
In contrast, scores associated with BRSV infection have contributions from 3-hydroxybutyrate, alanine, glucose, 
isoleucine, leucine, N-methylhydantoin, and valine. Yet, these same metabolites contribute to the scores for the 
Baseline samples from the M. haemolytica and the general Infection (Table 5).

Discussion
Induced experimental infections provide a more accurate data set because samples used in this analysis derive 
from animals that are actually infected; thus, metabolite information is correlated with clinical physiological 
signs and hematological parameters recorded before and after the controlled infections. In this study, 1H-NMR 
was used to determine the metabolomics of BRD by detecting biomarkers in plasma after dairy calves were 
challenged with two of the main causal agents of this disease under controlled conditions. The existing plasma 
NMR-BRD metabolome, which was acquired from dairy (1–2 month-old)33 and beef (1–2 years-old)34 cattle in 
non-controlled field conditions, used VCD as the reference method to determine the infection. However, the 
lack of identification of specific causal agents restricted the discovery of specialized biomarkers that might be 
targeted for the development, understanding, and validation of novel BRD diagnostic strategies such as NIRS-
based detection in the early stages of the disease. As a result, the current study adds to, and expands on, the 
existing bovine metabolome by identifying distinctive biomarkers in dairy cattle infected with BRSV and M. 
haemolytica independently.

Table 3.   Baseline vs. Infected (V + B) changes in metabolite concentration. Values are presented as mean ± SD. 
Data were analyzed using Student’s t-test with an α < 0.05 delineating significant treatment effects (*), 
increase (dark purple), decrease (dark yellow). Values positively (light purple) or negatively correlated (light 
yellow) in the PCA during infection compared with the Baseline. Biochemical pathways: Grey = other; light 
blue = glycolysis/gluconeogenesis pathways, magenta = triglycerides pathways, light green = protein pathways. 
Italic = parameter changed in both the ANOVA and the PCA.

1H-NMR metabolite ID Baseline Infected p Value Chemical
classification Biochemical pathways

Glucose 35 5.141  ± 7.097 4.458  ± 4.706 0.637 Hexos e P rim ary s ou rce of en erg y for livin g  org an is m s

Lactate 45 0.521  ± 0.316 0.706  ± 0.632 0.128 Alp h a h yd roxy acid s  
an d  d erivatives Glu cos e m etab olis m

Succinylacetone 63 0.021  ± 0.024 0.011  ± 0.008* 0.022 Me dium- c ha in ke to 
a c ids  a nd de riva tive s Glu cos e m etab olis m . Glycin e an d  tyros in e m etab olis m  

2-Hydroxybutyrate 3 0.003  ± 0.005 0.007  ± 0.010* 0.036 Alp h a h yd roxy acid s  
an d  d erivatives Fatty acid  b ios yn th es is . TCA cycle

Isobutyrate 42 0.009  ± 0.008 0.004  ± 0.006* 0.008 Carb oxylic  acid Bran ch ed  fatty acid

2-Hydroxyvalerate 5 0.022  ± 0.039 0.005  ± 0.012* 0.019 Hyd roxy fatty acid Fatty acid  b ios yn th es is

Malonate 47 1.755  ± 0.576 2.037  ± 1.049 0.167 Dicarb oxylic  acid s  
an d  d erivatives Fatty acid  b ios yn th es is  

Acetone 16 0.005  ± 0.003 0.009  ± 0.008* 0.008 Keton e Keton e Bod ies  Metab olis m

3-Hydroxy-3-methylglutarate 7 0.012  ± 0.018 0.020  ± 0.052 0.381 Dicarb oxylic  acid s  
an d  d erivatives Keton e b od ies  an d  leu cin e m etab olis m

3-Hydroxybutyrate 8 0.094  ± 0.090 0.148  ± 0.230 0.203 Beta h yd roxy acid s  
an d  d erivatives Keton e b od ies  m etab olis m . Fatty acid  b ios yn th es is

Trimethylamine N-oxide 67 0.128  ± 0.050 0.130  ± 0.097 0.899 Trialkyl am in e oxid e Ch oles terol m etab olis m

O-Acetylcholine 56 0.005  ± 0.005 0.002  ± 0.003* 0.014 Acyl ch olin e P h os p h olip id  b ios yn th es is

3-Hydroxyisobutyrate 9 0.002  ± 0.007 0.008  ± 0.012* 0.015 Beta h yd roxy acid s  
an d  d erivatives Metab olis m  of th e g lu cog en ic  am in o acid  valin e

2-Aminoadipate 1 0.012  ± 0.020 0.011  ± 0.019 0.822 Alp h a am in o acid Lys in e (ketog en ic  am in o acid ) an d  s acch arop in e 
m etab olis m

Saccharopine 60 0.016  ± 0.020 0.013  ± 0.020 0.577 Glu tam ic acid  an d  
d erivatives Deg rad ation  p ath way for th e ketog en ic  am in o acid  lys in e

Isoleucine 43 0.061  ± 0.051 0.039  ± 0.042* 0.049 Is oleu cin e an d  
d erivatives

Ketog en ic  an d  g lu cog en ic  am in o acid . P rod u ction  an d  
form ation  of h em og lob in  an d  red  b lood  cells

Dimethyl sulfone 30 0.122  ± 0.066 0.004  ± 0.004* 0.022 S u lfon e Metab olis m  of th e g lu cog en ic  am in o acid  m eth ion in e 

Agmatine 17 0.015  ± 0.032 0.038  ± 0.143 0.367 Gu an id in e Metab olis m  of th e g lu cog en ic  am in o acid  arg in in e

Alanine 18 0.181  ± 0.070 0.206  ± 0.177 0.435 Alan in e an d  
d erivatives

Glu cos e m etab olis m . P rotein  s yn th es is . Lym p h ocyte  
rep rod u ction , an d  im m u n ity

N,N-Dimethylglycine 51 0.014  ± 0.020 0.026  ± 0.066 0.283 Alp h a-am in o acid s  
an d  d erivatives Glycin e, s erin e, m eth ion in e, an d  b etain e m etab olis m

Histamine 40 0.011  ± 0.013 0.014  ± 0.024 0.535 2-aryleth ylam in e In flam m ation  an d  im m u n ity

Allantoin 19 0.097  ± 0.177 0.027  ± 0.052* 0.028 Im id azole Oxid ative s tres s

Ethanol 32 0.071  ± 0.102 0.023  ± 0.039* 0.012 P rim ary alcoh ol Cellu los e, h em icellu los e, an d  lig n in  d eg rad ation  in  th e 
ru m en
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In general, viral and bacterial agents activate innate immunity, which is comprised of nonspecific defense 
mechanisms that are triggered shortly after the appearance of the antigen52. This occurs as a result of the pro-
duction of a motif of molecules expressed by the pathogen known as pathogen-associated molecular patterns 

Table 4.   Metabolite concentration changes for plasma from dairy calves challenged with BRSV and M. 
haemolytica. Values are presented as mean ± SD. Categories not connected by the same letter between 
Baseline, BRSV, and MH were significantly different (p < 0.05); increase (dark purple), decrease (dark yellow). 
Values positively (light purple) or negatively correlated (light yellow) in the PCA during infection compared 
with the Baseline. Biochemical pathways: Grey = other; light blue = glycolysis/gluconeogenesis pathways, 
magenta = triglycerides pathways, light green = protein pathways. Italic = parameter changed in the ANOVA and 
the PCA.

1H-NMR metabolite ID Baseline
Infected with 

BRSV
Infected with 

MH
p Value Chemical

classification Biochemical pathways

Glucose 35 5.141  ± 7.097 5.154  ± 6.176 3.529  ± 0.628 0.675 Hexos e P rim ary s ou rce of en erg y for livin g  org an is m s

N-Methylhydantoin 55 0.050  ± 0.068 0.034  ± 0.06 0.047  ± 0.051 0.685 Im id azolin e Creatin in e d eg rad ation

3-Hydroxy-3-methylglutarate 7 0.012  ± 0.018 0.024  ± 0.067 0.015  ± 0.02 0.530 Dicarb oxylic  acid s  
an d  d erivatives Keton e b od ies  an d  leu cin e m etab olis m

Malonate 47 1.755  ± 0.576 2.125  ± 1.377 1.921  ± 0.272 0.302 Dicarb oxylic  acid s  
an d  d erivatives Fatty acid  b ios yn th es is  

Leucine 46 0.124  ± 0.216 0.133  ± 0.164 0.084  ± 0.042 0.693 Leu cin e an d  
d erivatives Ketog en ic  am in o acid . P rotein  s yn th es is

2-Aminoadipate 1 0.012  ± 0.020 0.009  ± 0.016 0.014  ± 0.021 0.683 Alp h a am in o acid Lys in e (ketog en ic  am in o acid ) an d  s acch arop in e 
m etab olis m

Creatine 25 0.257  ± 0.291 0.194  ± 0.113 0.146  ± 0.055 0.228 Alp h a-am in o acid s  
an d  d erivatives P rod u ction  of ATP  for m u s cle  con traction

Creatine phosphate 26 0.032  ± 0.069 0.047  ± 0.123 0.029  ± 0.050 0.784 Alp h a-am in o acid s  
an d  d erivatives P rod u ction  of ATP  for m u s cle  con traction

Creatinine 27 0.047  ± 0.046 0.036  ± 0.027 0.045  ± 0.015 0.530 Alp h a-am in o acid s  
an d  d erivatives P rod u ction  of ATP  for m u s cle  con traction

Lactate 45 0.521  ± 0.316 0.711  ± 0.723 0.699  ± 0.511 0.316 Alp h a h yd roxy acid s  
an d  d erivatives Glu cos e m etab olis m

3-Hydroxybutyrate 8 0.094  ± 0.090 0.1710  ± 0.290 0.116  ± 0.111 0.295 Beta h yd roxy acid s  
an d  d erivatives Keton e b od ies  m etab olis m . Fatty acid  b ios yn th es is

Acetate 14 0.839  ± 0.987 0.723  ± 1.071 0.540  ± 0.345 0.573 Carb oxylic  acid Gycog en  an d  ch oles terol s yn th es is . Fatty acid s  
d eg rad ation

Trimethylamine N-oxide 67 0.128  ± 0.050 0.150  ± 0.124 0.104  ± 0.031 0.214 Trialkyl am in e oxid e Ch oles terol m etab olis m

Carnitine 23 0.015  ± 0.016 0.017  ± 0.022 0.018  ± 0.025 0.860 Carn itin e Oxid ation  of b ran ch ed -ch ain  fatty acid s  

Guanidoacetate 39 0.097  ± 0.066 B 0.199  ± 0.243 A 0.101  ± 0.072 A,B 0.032 Alp h a-am in o acid s  
an d  d erivatives

Glu cog en ic  am in o acid s  (g lycin e, s erin e, arg in in e an d  
p rolin e) m etab olis m . Creatin e p h os p h ate  p ath way

Agmatine 17 0.015  ± 0.032 0.062  ± 0.187 0.005  ± 0.013 0.179 Gu an id in e Metab olis m  of th e g lu cog en ic  am in o acid  arg in in e

Alanine 18 0.181  ± 0.070 0.237  ± 0.229 0.165  ± 0.041 0.215 Alan in e an d  
d erivatives

Glu cos e m etab olis m . P rotein  s yn th es is . Lym p h ocyte  
rep rod u ction , an d  im m u n ity

Dimethyl sulfone 30 0.122  ± 0.066 0.200  ± 0.223 0.185  ± 0.031 0.070 S u lfon e Metab olis m  of th e g lu cog en ic  am in o acid  m eth ion in e 

Formate 33 0.155  ± 0.130 0.171  ± 0.175 0.140  ± 0.016 0.785 Carb oxylic  acid Glycin e, s erin e, an d  rib u los e p ath ways

Glycine 38 0.345  ± 0.637 0.199  ± 0.154 0.201  ± 0.138 0.433 Alp h a-am in o acid Glu cog en ic  am in o acid . P rotein  s yn th es is

N,N-Dimethylglycine 51 0.014  ± 0.02 0.037  ± 0.086 0.012  ± 0.007 0.182 Alp h a-am in o acid s  
an d  d erivatives Glycin e, s erin e, m eth ion in e, an d  b etain e m etab olis m

Cysteine 28 0.009  ± 0.023 0.025  ± 0.042 0.017  ± 0.026 0.148 Cys tein e an d  
d erivatives Glu cog en ic  am in o acid . P rotein  s yn th es is

Betaine 21 0.196  ± 0.649 0.111  ± 0.0119 0.090  ± 0.046 0.695 Alp h a-am in o acid s  
an d  d erivatives Ch olin e m etab olis m . In flam m ation  an d  im m u n ity

Histamine 40 0.011  ± 0.013 0.015  ± 0.030 0.013  ± 0.015 0.777 2-aryleth ylam in e In flam m ation  an d  im m u n ity

Ethanol 32 0.071  ± 0.102 A 0.007  ± 0.026 B 0.043  ± 0.044 A,B 0.017 P rim ary alcoh ol Cellu los e, h em icellu los e, an d  lig n in  d eg rad ation  in  th e 
ru m en

4-Aminobutyrate 10 0.013  ± 0.014 0.014  ± 0.015 0.016  ± 0.013 0.855 Gam m a am in o acid s  
an d  d erivatives GABA s h u n t. TCA cycle

Galactitol 34 0.031  ± 0.031 0.025  ± 0.026 0.023  ± 0.019 0.559 S u g ar a lcoh ol Galactos e m etab olis m  

Arabinitol 20 0.029  ± 0.041 0.003  ± 0.014 0.025  ± 0.07 0.113 S u g ar a lcoh ol P en tos e p h os p h ate  p ath way (P P P )

2-Hydroxybutyrate 3 0.003  ± 0.005 B 0.004  ± 0.008 B 0.010  ± 0.010 A 0.006 Alp h a h yd roxy acid s  
an d  d erivatives Fatty acid  b ios yn th es is . TCA cycle . ROS  p rod u ction

Acetone 16 0.005  ± 0.003 B 0.008  ± 0.009 A,B 0.011  ± 0.005 A 0.008 Keton e Keton e Bod ies  Metab olis m

Propionate 58 0.011  ± 0.011 0.012  ± 0.013 0.007  ± 0.01 0.355 Carb oxylic  acid Fatty acid  b ios yn th es is . Vitam in  K m etab olis m

Isobutyrate 42 0.009  ± 0.008 A 0.006  ± 0.007 A,B 0.002  ± 0.005 B 0.009 Carb oxylic  acid Bran ch ed  fatty acid

2-Oxoglutarate 6 0.007  ± 0.022 0.006  ± 0.012 0.011  ± 0.018 0.703 Gam m a-keto acid s  
an d  d erivatives

TCA cycle . Metab olis m  of th e g lu cog en ic  am in o acid s  
a lan in e, as p arta te , an d  g lu tam ate. Am m on ia recyclin g

3-Hydroxyisobutyrate 9 0.002  ± 0.007 B 0.007  ± 0.013 A,B 0.010  ± 0.012 A 0.039 Beta h yd roxy acid s  
an d  d erivatives Metab olis m  of th e g lu cog en ic  am in o acid  valin e

π-Methylhistidine 72 0.025  ± 0.018 A,B 0.019  ± 0.017 B 0.036  ± 0.02 A 0.027 His tid in e an d  
d erivatives

S yn th es is  an d  d eg rad ation  of th e g lu cog en ic am in o 
acid  h is tid in e

5-Aminolevulinate 12 0.020  ± 0.062 0.013  ± 0.015 0.016  ± 0.012 0.847 Delta  am in o acid s  an d  
d erivatives P orp h yrin , g lycin e, an d  s erin e m etab olis m

Isoleucine 43 0.061  ± 0.051 0.045  ± 0.042 0.031  ± 0.042 0.096 Is oleu cin e an d  
d erivatives

Ketog en ic  an d  g lu cog en ic  am in o acid . P rod u ction  an d  
form ation  of h em og lob in  an d  red  b lood  cells

Saccharopine 60 0.016  ± 0.020 0.013  ± 0.020 0.014  ± 0.021 0.837 Glu tam ic acid  an d  
d erivatives

Deg rad ation  p ath way for th e ketog en ic  am in o acid  
lys in e

2-Hydroxyisobutyrate 4 0.002  ± 0.001 0.001  ± 0.001 0.002  ± 0.001 0.176 Alp h a h yd roxy acid s  
an d  d erivatives

Catab olis m  of th reon in e an d  m eth ion in e. Glu tath ion e 
an ab olis m  (cys tein e form ation  p ath way) 

N-Acetylglycine 53 0.002  ± 0.003 0.002  ± 0.006 0.003  ± 0.004 0.597 N-acyl-alp h a am in o 
acid Metab olis m  of th e g lu cog en ic  am in o acid  g lycin e

Valine 70 0.041  ± 0.059 0.063  ± 0.066 0.036  ± 0.049 0.346 Valin e an d  d erivatives Glu cog en ic  am in o acid . Valin e, leu cin e, an d  is oleu cin e 
d eg rad ation . P rop an oate  m etab olis m . 

Isovalerate 44 0.006  ± 0.03 0.001  ± 0.002 0.002  ± 0.004 0.641 Meth yl-b ran ch ed  fatty 
acid s

An aerob ic  d eg rad ation  of p rotein s /am in o acid s



11

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2671  | https://doi.org/10.1038/s41598-023-29234-3

www.nature.com/scientificreports/

(PAMPs)53,54. In the case of BRSV, the PAMPs are known components consisting of glycoprotein G, fusion protein 
F, and single-stranded RNA8. For M. haemolytica, PAMPs include flagellin, lipopolysaccharide (LPS) complex, 
and leukotoxin (LKT)55. These elicitors are identified by pattern recognition receptors (PRRs) for rapid detec-
tion of the threat from a potential pathogen53. Surface-bound and intracellular PRRs, such as Toll-like receptors 
(TLRs), nucleotide-binding and oligomerization domain (NOD)-like receptors, and RNA helicases, are expressed 
by bovine respiratory tract cells54. The engagement of PAMPs by PRRs results in the production of damage-
associated molecular patterns (DAMPs), initiating ATP-dependent signaling cascades. Activated transcription 
factors induce the production of inflammatory cytokines and chemokines for release into the body, which 
attracts neutrophils, macrophages, and lymphocytes to the respiratory tract, resulting in respiratory disease7,8,53.

Ruminants have a specialized digestive system to degrade grass and get the necessary nutrients to maintain 
homeostasis, and most of the glucose comes from the gluconeogenesis of oxaloacetate obtained from the propion-
ate produced by the microorganism species Megasphaera, Veillonella, and Selenomonas in the rumen56,57. Because 
this is a slow process, supplying the energy demands during the cell signaling cascades and immune response 
caused by PAMPs recognition requires metabolism reprogramming by immune cells, where alternative energy 
sources such as triglycerides and proteins are used for ATP production58–60. Glucose is an upstream regulator of 
26 genes associated with BRD in dairy cattle, and if glucose homeostasis is disrupted, hypoglycemia or hyper-
glycemia occurs61. The negative correlation of glucose in the PCA model observed in the present M. haemolytica 
challenge and in the combined V + B database is in line with the decreases of this metabolite reported in BRD 
studies in dairy and beef cattle as a result of natural or artificially induced infections, LPS injections, stress-related 
to transport, and receiving calves34,61,62. It has been suggested that, in addition to the metabolic changes caused 
by the immunological response, the decrease in glucose levels is also due to the hypoglycemic effect of BRD and 

Figure 4.   Principal component analysis (PCA) correlation loadings plots for the concentration of the selected 
1H-NMR metabolites (n = 72) in plasma from dairy calves. The variables inside the outer circle (colored area) 
have the greatest influence on database variability and are positively or negatively correlated during the Baseline 
or Infected stages; the points inside the inner circle are thought to have low or no influence. (a) Baseline (n = 35); 
two PCs explained 45% of the variance. (b) Infected (V + B) data points from both challenge studies (n = 35), two 
PCs explained 39% of the variation of the database. (c) Infected calves with BRSV (n = 20), two PCs explained 
43% of the variation of the database. (d) Infected calves with M. haemolytica (n = 15), two PCs explained 36% of 
the database variation. Each plasma sample, on average, contained 43 ± 8 of the selected metabolites.
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the decline in diet due to the discomfort caused by the respiratory signs34. In contrast, a positive correlation in 
glucose was observed in response to BRSV infection. However, it is likely that the differential change in glucose 
arose as a response to the life-saving administration of the glucocorticoid drug dexamethasone to calves in the 
BRSV challenge, and is a limitation of the study.

To meet the energy demands due to the recruitment of inflammatory cells and the phagocytotic processes for 
microbial death, immune cells such as neutrophils, monocytes, macrophages, and lymphocytes undergo aerobic 
glycolysis59,60. In this scenario, pyruvate does not enter the mitochondrion but is instead metabolized to lactate in 
the cytoplasm, with glycolysis rapidly providing minor amounts of ATP58,59. A positive correlation of lactate was 
observed in the PCA for the BRSV challenge. Similarly, in combination challenges with BHV-1 and M. heamo-
lytica carried out in beef cattle, animals that died had higher lactate concentrations than those that survived63. It 
has been reported that the decrease in oxygen levels during BRD due to stress, blockage of the respiratory tract 
with mucous secretions, and lung inflammation also increased lactate concentration, the likelihood of disease 
progression, and eventual mortality in dairy cattle64. Aerobic metabolism in neutrophils is associated with an 
increase in reactive oxygen species (ROS), an important source of bactericidal activity59. A significant increase 
in 2-hydroxybutyrate, which is a metabolite associated with ROS production and lipid oxidation (ß-oxidation), 
was detectedin the present study in the M. haemolytica challenge and had also previously been detected in rumen 
fluid, serum, milk, and in greater amounts in the urine of six lactating and six non-lactating Holstein dairy cows, 
as well as in the mammary gland of the lactating cows65.

To offset the consequences of metabolic diseases involving energy imbalance, ruminants and, more specifi-
cally, bovine species are known to use the alternative triglyceride route27–30,32. Triglycerides are made up of glyc-
erol and fatty acids. Fatty acids undergo ß-oxidation in the liver, producing acetyl-CoA, which enters the tricarbo-
xylic acid (TCA) cycle. As a result, the reducing agents NADH and FADH2 are produced, which feed the electron 
transport chain and drive large amounts of ATP production to address energy imbalance59,66. Large amounts of 
acetyl-CoA exceeding the capacity of the TCA cycle result in the generation of ketone bodies58,66. During BRD 
in dairy cattle, glucose and oxygen uptake are reduced, resulting in increased ketone body formation67,68. Under 
such conditions, the metabolites 3-hydroxybutyrate, acetoacetate, and acetone accumulate downstream of acetyl-
CoA generation67,69. A positive PCA correlation in 3-hydroxybutyrate as detected here in the BRSV challenge 
is consistent with previously reported increases in this metabolite as being important for differentiating healthy 
from sick cattle with BRD34 and having a negative effect on neutrophil function and recruitment, consequently 
allowing pneumonia to progress70. The plasma collected during the M. haemolytica challenge presented signifi-
cant increases or an association with the Infected stage in the discriminant analysis in the ketone bodies acetone 
and acetoacetate, respectively. Moreover, the dicarboxylic acids malonate and 3-hydroxy-3-methylglutarate were 
detected in samples from both challenge studies. Taken together, these results support the idea that higher energy 
supplies derived from fatty acid pathways could be required to counteract the energy imbalance caused by the 
immune response to the secondary bacterial infection rather than the initial viral infection, even if glucocorti-
coids are administered.

The alternative protein pathway is the final resource used to overcome increased metabolic demands71. 
Changes in the concentrations of glucogenic amino acids, ketogenic amino acids, and their metabolites were 
detected during both challenge, similar to previous studies in cattle with ketosis caused by negative energy 
balance72. Here, a negative PCA correlation of the alpha-amino acid 2-aminoadipate was detected in response 
to the BRSV challenge; contrastingly, in the M. haemolytica challenge, a positive correlation was found. This 
metabolite is an intermediate in the metabolism of the ketogenic amino acid lysine25. During the BRSV challenge, 
positive correlations in the PCA for the concentration of the alpha-amino acids creatine, creatine phosphate, 
and creatinine, and the imidazoline N-methylhydantoin suggested that BRSV could be causing viral myositis, 
affecting muscle health by increasing the metabolites involved in the regeneration of ATP in skeletal muscle to 

Figure 5.   Principal component analysis (PCA) scores plots for 1H-NMR spectra from Baseline and Infected 
plasma samples. (a) PCA scores plot (n = 70) from the combined V + B infection database (PC-2: R2X = 0.34, 
Q2 = 0.26). (b) PCA scores plot (n = 40) from the BRSV challenge (PC-2: R2X = 0.34, Q2 = 0.10). (c) PCA scores 
plot (n = 30) from the M. haemolytica (MH) challenge (PC-2: R2X = 0.45, Q2 = 0.25). Labels above the scores 
indicate the sample ID (Table S1).
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energize muscle contraction73. In the controlled infection with M. haemolytica, the glucogenic amino acid valine 
was negatively correlated in the PCA, while isoleucine which can be glucogenic or ketogenic, presented a positive 
correlation. In contrast, previous research demonstrated that injecting LPS from M. haemolytica into feed cattle 
reduced the levels of isoleucine in plasma while increasing alanine74,75.

In this work, chemometric-based MVA successfully distinguished the 1H-NMR spectra from bovine plasma 
collected during the Baseline and Infected stages of both challenge studies with an accuracy, sensitivity, and speci-
ficity ≥ 95%. Importantly, the successful group differentiation suggests that, while there were some differences in 

Figure 6.   OPLS-DA scores plots resulting from 1H-NMR spectra of plasma as well as the corresponding 
coefficient loading plots. The color map depicts the significance of spectral signals between the two categories 
(Baseline and Infected). (a) OPLS-DA scores plot from the combined V + B infection database (n = 70). (b) 
Coefficient loadings plot for general infection. (c) OPLS-DA scores plot from the BRSV challenge (n = 40). (d) 
Coefficient loadings plot from the BRSV challenge. (e) OPLS-DA scores plot from the M. haemolytica (MH) 
challenge (n = 30). (f) Coefficient loadings plot from the M. haemolytica challenge. Labels above the scores 
indicate the sample’s ID, and above the peaks show the metabolite’s ID. To improve the visualization of the peaks 
in the coefficient loadings plots, the size of the region between 6.0–9.0 ppm was increased 10X.
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the age, weight, collection season, and physiological response to infection by some of the dairy calves between 
the two challenge studies, these did not interfere with the chemical content of plasma required for the classifica-
tion of the samples using this analytical technique; thus, the metabolomic profile presented here is reliable and 
can be added to the current BRD metabolome as new information to understand the biochemical pathways 
involved in this disease. In addition, these findings indicate biochemical differences between healthy and sick 
animals with two of the main causal agents of BRD, where metabolites related to homeostasis in the baseline 
and energy imbalance during the infections were found to influence the discrimination plots. Previous research 
using NIRS and NMR also successfully discriminated plasma from dairy and beef cattle with BRD, with sensi-
tivities and specificities close to 90% when using clinical diagnosis as the reference method15,33,34. The findings 
in the current study are also consistent with previous research that used discriminant analysis on NMR spectra 
of plasma from dairy cattle to identify the metabolomics of animals with ketosis, ovarian quiescence, and fatty 
liver disorder27,29–32 showing the potential of this technique for the detection of metabolic disorders related with 
nutrition, reproduction, and disease.

Conclusion
By using 1H-NMR spectroscopy in blood plasma, this study demonstrated that important metabolic shifts are 
occurring in the host in response to infection with BRSV or M. haemolytica. Following the application of univari-
ate and multivariate statistical methods, the concentration of 46 metabolites (BRSV = 32, MH = 33) changed in 
comparison to the Baseline stage. These metabolites appeared to be critical fuel substrates and products of the 
energy imbalance occurring during the infections due to signaling cascades and immune response activation. 
In addition, our findings support the potential of NMR to create metabolic profiles of BRD that contribute to 
the understanding of the diversity and concentrations of essential metabolites in plasma that can be applied for 
the further development of novel diagnostic tools.
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