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Protein phase separation is thought to be a primary driving
force for the formation of membrane-less organelles, which
control a wide range of biological functions from stress
response to ribosome biogenesis. Among phase-separating (PS)
proteins, many have intrinsically disordered regions (IDRs)
that are needed for phase separation to occur. Accurate iden-
tification of IDRs that drive phase separation is important for
testing the underlying mechanisms of phase separation, iden-
tifying biological processes that rely on phase separation, and
designing sequences that modulate phase separation. To
identify IDRs that drive phase separation, we first curated
datasets of folded, ID, and PS ID sequences. We then used
these sequence sets to examine how broadly existing amino
acid property scales can be used to distinguish between the
three classes of protein regions. We found that there are robust
property differences between the classes and, consequently,
that numerous combinations of amino acid property scales can
be used to make robust predictions of protein phase separation.
This result indicates that multiple, redundant mechanisms
contribute to the formation of phase-separated droplets from
IDRs. The top-performing scales were used to further optimize
our previously developed predictor of PS IDRs, ParSe. We then
modified ParSe to account for interactions between amino
acids and obtained reasonable predictive power for mutations
that have been designed to test the role of amino acid in-
teractions in driving protein phase separation. Collectively, our
findings provide further insight into the classification of IDRs
and the elements involved in protein phase separation.

Many intracellular reactions occur within membrane-free
compartments that form spontaneously from the cellular
milieu (1). Examples of such compartments include P-bodies,
Cajal bodies, the nucleolus, paraspeckles, and germ granules
(2–4). The formation of membrane-less organelles is facilitated
primarily, though not exclusively (5, 6), by proteins that are
intrinsically disordered (ID) or contain large ID regions (IDRs),
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collectively termed intrinsically disordered proteins (IDPs)
(4, 7). Because these protein-rich droplets typically exist in
dynamic, liquid-like states rather than as fixed complexes
(1, 2), this transition is referred to as liquid-liquid phase sep-
aration or, more generally, protein phase separation. By
forming specific compartments and micro-environments,
protein phase separation exerts control over the spatial orga-
nization and biochemical reactivity within cells (8, 9). Indeed,
protein phase separation has been found to modulate chemical
and biochemical reactions (10–12) and its dysregulation has
been associated with several human diseases (13–15).

Due to the critical role of protein phase separation in cell
function and disease, significant efforts have been made to
determine the physical mechanisms responsible for phase
separation behavior. Mutation and sequence analysis have
implicated cation-π, π-π, π/sp2, and hydrophobic interactions,
inferred in part by the prevalence of both hydrophobic amino
acids and particular combinations of amino acids (e.g., arginine
and tyrosine) within phase-separating (PS) IDRs (16–22).
Groups of amino acids driving cohesive interactions are often
characterized as “stickers” and are frequently interspaced with
small polar residues acting as “spacers” (22–25). In addition,
charge composition and patterning appear to contribute to the
regulation of phase separation by IDRs (20, 26–29). Success-
fully predicting the relationship between primary sequence
and phase separation behavior is key to understanding the
underlying molecular mechanisms and identifying the cellular
processes that rely on protein phase separation. Effective
predictive algorithms might also reveal how mutations affect
phase separation–associated disease states.

Several methods have been developed to predict which
protein sequences drive phase separation (30, 31). Algorithms
including PSPredictor and PSPer are based on the composition
of databases of proteins that are known to phase separate
(28, 32). Other predictors aim to classify proteins based on
specific subgroups with similar behavior, such as PLAAC for
prions (33), catGRANULE for ID and RNA binding ability (34),
and CRAPome that scores protein–protein interactions (35).
While these other predictors were not originally engineered to
predict phase separation per se, they have been used as proxies
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Intrinsic properties of phase-separating IDRs
for potential phase separation behavior (31, 36, 37). Uniquely,
PScore was developed based on a specific mechanism thought
to drive phase separation: the propensity of cation-π and π-π
interactions to drive cohesive protein interactions (16, 38).
Simulation models of IDRs have also been used to identify
which protein domains drive phase separation as well as how
mutations will affect phase separation behavior of those pro-
teins (39–43). The diversity of successful approaches for pre-
dicting protein phase separation indicates that multiple
complementary mechanisms are responsible for this
phenomenon.

We previously developed a predictive model of protein
phase separation, ParSe (“Partition Sequence”), that identifies
PS IDRs starting from predictions of hydrodynamic size, which
is indicative of the relative strength of intramolecular as
compared to solvent interactions (44). The core assumption of
ParSe is that intramolecular cohesion that compacts mono-
meric proteins is correlated with intermolecular cohesion that
drives phase separation (45–48). ParSe uses a sequence-based
model of the polymer scaling exponent, vmodel (49, 50), which
was originally developed from polymer theories to extract in-
formation on the balance of self and solvent interactions in
long homopolymers (51, 52). When vmodel is combined with a
second sequence-based parameter, the intrinsic propensity for
a sequence to form β-turns (53), the algorithm can distinguish
between sequences belonging to one of three classes of protein
regions: folded, ID, and PS ID (44). We proposed a physical
mechanism whereby transient β-turn structures reduce the
desolvation penalty of forming a protein-rich phase and in-
crease exposure of atoms involved in π/sp2 valence electron
interactions. In this mechanism, β-turns could promote
energetically favorable cohesion points and act as stickers in a
stickers and spacer model of protein phase separation. This
role as stickers potentially explains the observed higher pro-
pensity for turns in IDRs that drive phase separation in vivo
(44, 53).

However, the prior study did not test whether the combi-
nation of vmodel and β-turn propensity was uniquely able to
distinguish folded, ID, and PS ID sequences, as would be
required if this putative mechanism is necessary for phase
separation. In the current study, we first curated the sequence
training sets to expand the folded and ID categories. Our
curated list of proteins that are ID but not thought to drive
phase separation acts as a key negative control, enabling us to
distinguish which features of IDRs in particular drive protein
phase separation (31). Using the expanded sequence sets, we
exhaustively tested all amino acid property scales found in the
Amino Acid Index Database (54) for their ability to separate
folded, ID, and PS ID sequences. We show that the three
sequence sets are distinct in their means when quantified by
the majority of amino acid scales, revealing that there are
robust property differences between biologically relevant ID
and PS ID sequences, not unlike the differences between fol-
ded and ID sequences. Thus, although phase separation is a
physical process resulting from a balance between the solvent
and the macromolecule, it appears that biological phase sep-
aration occurs in solvent conditions similar enough that this
2 J. Biol. Chem. (2023) 299(1) 102801
class of sequences can be identified irrespective of the details
of the cellular states that drive phase separation.

We applied principal component analysis (PCA) to identify
the extent of variability between our sequence sets and the
optimal combinations of property scales that maximize the
distinction between ID and PS ID sequences. The resulting
predictor, ParSe version 2 (v2), uses sequence hydrophobicity
to distinguish folded from ID and, subsequently, vmodel and a
conformational parameter to distinguish ID from PS ID. In
general, PS ID sequences exhibit enriched β-turn and depleted
α-helix propensities. ParSe v2 more accurately predicts these
regions from the amino acid sequence than the original
version. We then compared our predicted propensity for
protein phase separation with experimental results on mutant
sequences designed to test the role of π- and charge-based
interactions in phase separation behavior. We found that
only by including effects representing interactions between
amino acids could we accurately predict phase separation
behavior of these mutants. Given the high fidelity of ParSe
even in the absence of these interaction terms, it appears there
are multiple diverse mechanisms that can drive protein phase
separation and that PS ID sequences can be robustly identified
through simple combinations of amino acid property scales.
Results

Construction of protein sequence datasets

A limitation of the previous work, including our own (44),
has been the relatively small set of sequences used to train
predictors. We first sought to alleviate this problem by iden-
tifying additional sequences in our two negative control cate-
gories, folded proteins and IDRs, which are not thought to
phase separate. The importance of well-defined negative
control sets has been highlighted recently by Pansca et al (31)
and Cai et al (55). For example, some negative control sets like
the human proteome are known to contain many false nega-
tives, which can lead to misassignments by the predictor.

We first expanded the set of folded proteins. Previously, we
selected only folded regions found within known PS proteins.
However, this selection may not be justified because it is not
known whether folded regions within PS proteins are biased
differently in vmodel and β-turn propensity compared to folded
proteins in general. Subsequently, we expanded the previous
folded set (comprised of 82 sequences) to include sequences
from 122 human proteins with nonhomologous folded struc-
tures (56), 32 proteins with small (N = 36) to large (N = 415)
folded structures (57), 54 folded extremophile proteins (58), 53
folded metamorphic proteins (59), and 90 folded membrane
proteins (Table S1). Combined, these folded protein regions
represent 421 unique sequences after removing duplicate en-
tries. The folded sets were, overall, similar in both mean vmodel

(Fig. 1A and Table 1) and mean β-turn propensity (Table 2) to
the previous folded set obtained from known PS proteins
(Tables S2, and S3), indicating that folded regions within PS
proteins are indeed similar to folded regions more generally.

Similarly, we expanded the set of IDR sequences not
enriched for phase separation potential, called the “ID” set,



Figure 1. Sequence-calculated vmodel and β-turn propensity separate protein regions by class. A, comparing vmodel and β-turn propensity in each
sequence set. Filled circles show the mean and SD in vmodel and β-turn propensity in the PS ID (blue), ID (red), and folded (black) sets. Open and dashed circles
show the mean and SD in individual subsets: previous ID and BMRB & DisProt (red); previous folded, human, small-to-large, extremophile, membrane, and
metamorphic (black). B, comparing vmodel and β-turn propensity in homopolymers (N = 100), where amino acid type is identified by its one-letter code. A
centralized origin was mapped into this plot at the β-turn propensity and vmodel values of 1.101 and 0.558, respectively, which are the means in the ID set.
From this origin, every amino acid type can be represented by a distance magnitude and angular displacement, as shown for proline. A color wheel is used
to convey angular displacement. C, magnitude/color plots are compared to the ParSe (original version) predictions for Sup35 (UniProt ID P05453), FUS
(UniProt ID P35637), and Ddx4 (UniProt ID Q9NQI0), and to regions reported (i.e., identified) by experiment. Each figure shows the magnitude (y-axis) and
color (angular displacement) by residue number (x-axis), as determined by amino acid type and its magnitude/color from panel B. ParSe predictions use
blue (PS), red (ID), and black (folded). Striped represents ≥50% identity to a known folded protein. BMRB, Biological Magnetic Resonance Bank; PS, phase-
separating; ID, intrinsically disordered.

Intrinsic properties of phase-separating IDRs
by adding ID sequences found in the Biological Magnetic
Resonance Bank (BMRB) (60) and DisProt (61, 62) data-
bases. NMR experiments are typically performed at relatively
Table 1
Summary of mean vmodel in the protein sequence sets.

Set Number vmodel
a t test b U-test b

PS ID 224 0.542 ± 0.020 − −
ID 121 0.558 ± 0.022 2.5e−10 1.6e−11

Folded 421 0.537 ± 0.008 1.2e−3 1.5e−3

a Mean ± SD.
b One-tail p-value, where p-value <0.05 indicates a statistically significant difference in
the means of the compared sets. Comparisons are to the PS ID sequence set.
high concentrations (≥100 μM), and so BMRB entries that
do not explicitly address protein phase separation likely have
a low propensity to phase separate. In addition, proteins
known to drive phase separation are now annotated in
DisProt; therefore, DisProt entries lacking such annotation
are at least nominally depleted in phase separation drivers.
Moreover, we only selected IDRs from DisProt that were
both predicted to be disordered by MetaPredict (63) and
were not highly homologous to proteins with folded struc-
tures in the Protein Data Bank (PDB) (64) using seqatoms
(65). The combined ID set contains 121 unique protein
domains (Table S4).
J. Biol. Chem. (2023) 299(1) 102801 3



Table 2
Summary of mean β-turn propensity in the protein sequence sets

Set Number β-Turn propensity a t test b U-test b

PS ID 224 1.152 ± 0.087 − −
ID 121 1.101 ± 0.075 4.6e−8 4.9e−9

Folded 421 0.971 ± 0.040 2.0e−33 1.1e−89

a Mean ± SD.
b One-tail p-value, where p-value <0.05 indicates a statistically significant difference in
the means of the compared sets. Comparisons are to the PS ID sequence set.

Intrinsic properties of phase-separating IDRs
While these expanded datasets show slight differences in
mean predicted vmodel or β-turn propensity from the datasets
used in our previous work (Tables 1, 2, S2, and S3), the
expanded sets reinforce our and others’ previous findings that
there exist significant differences in vmodel (44, 45) or β-turn
propensity (53) between the classes of protein regions, in our
case, between folded, ID, and PS ID (Fig. 1A). These results, as
such, confirm that the two sequence-calculated metrics, vmodel

and β-turn propensity, can be used in combination, as done
previously, to predict PS regions within proteins (44).

As our model is the simple summation of contributions
from each amino acid, it is useful to consider homopolymers to
identify how the amino acid types contribute to each of the
three classes of protein regions (Fig. 1B). However, because
natural PS IDRs are a mixture of amino acids, it is how these
amino acids combine that gives a protein its PS properties. For
example, homopolymers of Tyr have comparatively low vmodel

and reside in the “folded” sector of a β-turn propensity versus
vmodel plot. Tyr also has a higher intrinsic propensity for turn
structures than Phe and thus, in a heteropolymer that is suf-
ficiently hydrophilic as to be ID, the presence of Tyr would be
more conducive to phase separation than the presence of Phe.
More generally, the homopolymer values of vmodel and β-turn
propensity, when presented in a β-turn propensity versus
vmodel plot, are consistent with previous characterizations of
“order promoting” as compared to “disorder promoting”
amino acids (Fig. 1B). In particular, we find that homopoly-
mers of Trp, Cys, Phe, Ile, Tyr, Val, Leu, Ala, His, Met, and Thr
fall within the “folded” region of the β-turn versus vmodel plot,
and so are predicted to act as “order promoting” amino acids,
while by similar analysis, Arg, Gln, Pro, Glu, Lys, and Asp are
“disorder promoting”, and Asn, Ser, and Gly are “phase sepa-
ration promoting”. This result is similar to conclusions from
analyses of protein structures (66, 67), where Trp, Cys, Phe, Ile,
Tyr, Val, Leu, and Asn are enriched in folded proteins (“order
promoting”), while Ala, Arg, Gln Pro, Glu, Lys, Gly, and Ser
are enriched in IDPs (“disorder promoting”), and His, Met,
Thr, and Asp are “ambiguous”.

In contrast to previous literature that has focused on the
cohesive interactions that drive phase separation, our analysis
reveals contributions from both hydrophobic and hydrophilic
interactions. In the stickers and spacer model (22, 23), Gly and
Ser act as spacers, and so are not thought to drive cohesive
interactions that are important for phase separation. However,
in our analysis, we find that Asn, Ser, Gly are “phase separation
promoting” because they are predicted by our algorithm to
promote phase separation relative to both folded and ID. We
are not focused on the cohesive interactions themselves, but
4 J. Biol. Chem. (2023) 299(1) 102801
rather what sequence features are present in proteins that do
phase separate. Consistent with previous literature, we
hypothesize that both stickers and spacers are required; lack-
ing spacers, a protein would be folded or aggregated, and
lacking stickers, a protein is not sufficiently cohesive for phase
separation (18, 22–25).

The clear segregation of some amino acids into the PS ID
sector of the β-turn propensity versus vmodel plot motivated us
to consider whether an approach as simple as color coding of
the amino acids would enable identification of PS regions in
proteins known to phase separate. Indeed, the phase
separation–driving regions of many proteins are visually
apparent by our simple visualization tool based on the location
of homopolymers in the β-turn propensity versus vmodel plot
(Fig. 1B). The magnitude is related to the propensity and the
color indicates the quadrant of the plot; therefore, a shaded bar
chart predicts the propensity for a sequence to promote order,
disorder, or phase separation. The rapid identification of PS
regions in proteins (Fig. 1C) such as Ddx4, FUS, and Sup35
(3, 17, 22, 68) led us to conclude that PS regions in proteins are
distinctly different than other ID regions. We therefore sought
to determine whether these classes of proteins were distin-
guishable by other amino acid property scales.
Most amino acid property scales find significant differences
between folded, ID, and PS protein regions

We sought to determine if additional sequence-based
intrinsic properties were significantly different between pro-
tein regions that are folded, ID, or ID with high potential for
driving phase separation. To explore this idea, 566 scales of
amino acid properties were obtained from the Amino Acid
Index Database (54), which is a curated set of numerical
indices representing various physicochemical and biochemical
properties of the amino acids. This approach is similar to work
done to improve coarse-grained models by testing multiple
hydrophobicity scales (42). We added to these scales a newly
developed hydrophobicity scale designed to predict sequences
that drive protein phase separation (19) as well as vmodel. For
each scale and for each sequence, we summed the amino acid
scale for amino acids in the sequence and divided by the
length, N. Welch’s unequal variances t test (69), given as a one-
tail p-value, was used to find scales that show a statistically
significant difference in the means of the sequence sets. Using
the nonparametric Mann-Whitney U-test (70) gave overall
similar results (Fig. S1).

Figure 2, A–C show that the different sequence sets have
statistically significant different mean values for most scales
when compared. For example, 81% of scales give p-values<0.05
(indicating means that are different statistically), when
comparing ID and PS ID sequences (Fig. 2A). Moreover, 13%
and 22% of scales yield p-values smaller (thus showing a more
significant statistical difference) than the p-values obtained
from vmodel and β-turn propensity, respectively, used in ParSe
(44). Each scale type (e.g., α-helix propensity, β-turn propensity,
hydrophobicity, etc.) had some scales with very low p-values
and some with p-values ≥0.05, suggesting that, overall, most,



Figure 2. Robust differences in intrinsic sequence-calculated properties are found when comparing means by protein region class. A–C, p-values
calculated by Welch’s unequal variances t test, shown as -log(p-value), compares set means in 567 amino acid scales and vmodel. Conformation-based scales,
highlighted by blue boxplots, are grouped by type according to α-helix (Helix), sheet or strand (Sheet), β-turn, tight turn, or reverse turn (Turn), coil or loop
(Coil), and aperiodic (Aper) propensities. Physicochemical-based scales, highlighted by green boxplots, are grouped by type according to flexibility (Flex),
size (Size), composition (Comp), negative charge, positive charge, or net charge (Charge), and hydrophobicity (Φ). Hydrophobicity scales were separated
into two types: structure-based (Φ_struct), where the scale is derived from a structural metric-like burial or contact frequency in surveys of high-resolution
protein structures, and solution-based (Φ_sol), where the scale is obtained from solution studies like measuring the transfer-free energy of the amino acids
from water to an organic solvent. Scales (e.g., refractivity, crystal melting point) that did not easily map into a conformation- or physicochemical-based
group were combined separately (Other). Boxplots show the dataset median (50th percentile) with the central bar, and the vertical width spans the
25th to 75th percentiles. Open triangles highlight the smallest p-value when comparing means in the PS ID and ID sets (from an α-helix propensity scale), the
smallest p-value when comparing means in either the PS ID or ID sets with the folded set (from a structure-based hydrophobicity scale), and the β-turn
propensity scale used in ParSe. D, bidimensional plot from PCA showing the modes of variance in the combined ID set (PS ID and ID) arising from
conformation- (blue arrows) and physicochemical-based (green arrows) scales relative to the two principal components of variance, given as Dimension 1
and Dimension 2. E, scree plot showing the percent of the total variance in the combined set of ID sequences that is captured by each principal component
(i.e., dimension). F, sequence calculated vmodel, α-helix propensity, and hydrophobicity for the sequences in the PS ID (blue), ID (red), and folded (black) sets;
spheres show the set mean ± σ. ID, intrinsically disordered; PS, phase-separating; PCA, principal component analysis.

Intrinsic properties of phase-separating IDRs
but not all, conformational- and physicochemical-based scales
could substitute for vmodel or β-turn propensity in ParSe and
likely exhibit some ability for identifying PS IDRs from
sequence. This analysis reveals that the physical differences
between PS and conventional IDRs are robust across many
different scales of amino acid properties (Fig. 2A). We conclude
that PS regions likely contain a variety of complementary,
redundant sequence features that drive phase separation.

The differences between folded and ID (both ID and PS ID)
datasets are also robust to different scales of amino acid
properties (Fig. 2, B and C). Ninety-five and ninety-three
percent of scales produced p-values <0.05 when means were
compared between the folded and PS ID, and folded and ID
sets, respectively. Almost all amino acid property scales yield
statistically significant different means when comparing ID
and folded sequences; the best performing scales were based
on hydrophobicity. Those hydrophobicity scales with the
lowest p-values when comparing means in the folded and ID
sets had among the highest p-values when comparing means in
the ID and PS ID sets (and vice versa), consistent with our
previous findings that a single metric was insufficient to
separate the three datasets.
PCA identifies two principal modes of variation between
proteins

We next sought to determine the degree to which amino
acid scales could be combined without significant redundancy
when comparing protein sequences. To do so, we used PCA,
which characterizes the variability in a dataset (71), in this case,
variability arising from different scales being applied to our
sequences. Our primary focus is on distinguishing PS IDRs
from conventional IDRs because many disordered predictors
already exist to separate folded from disordered domains
(63, 72, 73). We first selected the scale in each scale type (listed
in Fig. 2A) with the smallest p-value when comparing the ID
and PS ID sets, that is, representative scales from each type
that are best able to separate ID and PS ID sequences. We
additionally included vmodel, which we found previously to give
complementary information to β-turn propensity. Each scale
J. Biol. Chem. (2023) 299(1) 102801 5



Intrinsic properties of phase-separating IDRs
was then used to calculate sequence properties via a sliding
25-residue window applied to protein domains in a combined
set including both the ID and PS ID datasets or the human
proteome. We used a sliding window to avoid averaging
properties between regions of proteins with different charac-
teristics (44).

The results of the PCA indicate that most of the variability
measured by high-performing scales within these datasets can
be captured by 2 to 3 parameters (Figs. 2, D, E and S2). For
both the combined ID dataset including ID and PS ID
sequences and the human proteome, approximately 70% of the
variability is captured by the first two principal components.
Moreover, 58% of the variability in the combined ID set is
captured by a single component. The variance arising from
conformational propensity scales tend to cluster, as do those
with physicochemical metrics like charge, hydrophobicity, and
other compositional details. These results are robust to both
the number of top-performing scales chosen and to the choice
of reference set; we saw similar clustering when we extended
this analysis to include the top three performing scales in each
type and to the entire human proteome (Fig. S2).

Within these two categories (conformational propensity and
physicochemical metrics), high-performing scales function
very similarly. As such, the predictive capabilities of amino
acid scale combinations within each category are limited. In
particular, turn and coil scales applied to protein sequences
yield strongly correlated modes of variation that also are
mostly anticorrelated with the variance produced from α-helix
propensity scales (Figs. 2D and S2). In our previous work, we
proposed that β-turns could serve as a site for cohesive
interactions between protein chains, driving phase separation
(44). Our current results, while consistent with this hypothesis,
show that this hypothesis cannot easily be distinguished from
other structural hypotheses, for example, that coils drive or
helix inhibits protein phase separation, because the variation
between these scales when applied to our datasets are all highly
correlated. In contrast, the variances arising from hydropho-
bicity, charge, or vmodel in our datasets have patterns that, in
general, are different from the variances arising from turn, coil,
and α-helix conformational propensities.

To illustrate the separation obtained when using comple-
mentary top-performing scales, we selected three scales to best
separate our three datasets: (1) the top-performing hydropho-
bicity scale for separating folded from either ID set (from
Vendruscolo and coworkers (74)), (2) the top-performing
conformational scale in separating ID from PS ID sets, in this
case, one predicting α-helical propensity (from Tanaka and
Scheraga (75)), and (3) vmodel because it was most orthogonal to
the latter helix scale in the PCA of our combined ID datasets. As
can be seen in Figure 2F, significant separation is observed
between our different datasets using these three intrinsic
sequence properties. In general, the folded domains occupy a
region with Φ >0.08, and the greatest separation between the
two disordered sets is observed in the α-helix/vmodel plane.

When this approach is used to assess homopolymers of the
common amino acids by their placement into a plot of hy-
drophobicity, α-helix propensity, and vmodel, the homopolymer
6 J. Biol. Chem. (2023) 299(1) 102801
results predict that Trp, Cys, Phe, Ile, Tyr, Val, Leu, His, and
Met are “order promoting” amino acids, while Ala, Arg, Gln,
Pro, Glu, Lys, and Asp are “disorder promoting”, and Asn, Ser,
Thr, and Gly are “phase separation promoting” (Fig. S3),
similar to what we found previously (Fig. 1B). In addition, we
can again use this visualization to predict the effect on phase
separation of “order promoting” (i.e., hydrophobic) residues
when in contexts that are sufficiently hydrophilic as to be ID
(Fig. S3C). In that context, we find that Tyr promotes phase
separation more so than the other hydrophobic amino acids,
consistent with previous literature on the importance of Tyr
(22, 41).
Predicting folded, ID, and PS protein regions from sequence

Next, we used the separation obtained from this method to
identify protein sequences belonging to folded, ID, or PS ID
categories, analogous to what we did for ParSe. Our aim was to
see if using these top-performing scales would provide better
predictions of PS ID domains. We modified the algorithm
making a second-generation version, ParSe version 2 (v2). In
this version, as with the original (44), we apply a 25-residue
window and then slide this window across a whole sequence
in 1-residue steps (Fig. 3A) to label individual amino acids as
either P (for PS ID), D (for ID), or F (for folded) and then to
regions that are at least 90% of any one of these labels (see
Experimental procedures, Fig. 3C). Both ParSe v1 and v2
accurately delineate regions of Sup35 that have been experi-
mentally determined (68) to behave as ID, PS ID, or folded
regions (Fig. 3C), and good accuracy is similarly found for
other well-studied proteins (3, 17, 22, 76–80) utilizing diverse
reported mechanisms driving protein phase separation
(Fig. S4).

One advantage of our algorithm is that it is very fast and so
can easily be applied to large datasets, for example, the human
proteome. We measured the prevalence of protein regions
predicted by ParSe v2 to have PS potential in the human
proteome (Fig. 4) by two methods. First, as previously, we
measured the longest predicted region with high PS potential
(contiguous regions that are at least 90% labeled P). The results
from ParSe v2 are mostly identical to results obtained previ-
ously using ParSe (44), whereby only �5% of proteins in the
human proteome have a predicted P-labeled region that is at
least 50 residues in length. Disordered regions taken from
DisProt (minus the PS-annotated IDPs) (61, 62) and folded
regions taken from SCOPe (Structural Classification of Pro-
teins extended, version 2.07) (81, 82) gave results mirroring the
human proteome result in the sense that these sequences are
mostly devoid of long regions predicted to have high PS po-
tential. In contrast, the 43 proteins assembled by Vernon et al
(16) that have been verified in vitro to exhibit homotypic phase
separation behavior tend to contain long stretches labeled P by
ParSe v2, with �90% of this set having predicted PS regions
≥50 residues in length. Only �63% of the 98 parent proteins
from which the PS ID set was derived have predicted PS
regions ≥50 residues, wherein not all in this set have been
shown to phase separate as purified components.



Figure 3. Predicting protein regions from sequence using the ParSe v2 algorithm. A, a sliding window algorithm is used to identify from sequence
regions within a protein that match the PS ID, ID, and folded classes. Hydrophobicity (Φ), α-helix propensity (α), and vmodel are calculated for each
contiguous stretch of 25-residues, or “window”, in the primary sequence. B, each window is assigned a label, F, P, or D, depending on the values of Φ, α, and
vmodel. In the left figure, open circles are Φ and vmodel calculated for each 25-residue window in the Sup35 sequence (UniProt ID P05453); filled circles are the
mean ± σ in Φ and vmodel in the ID (red), PS ID (blue), and folded (black) sequence sets. Windows with Φ ≥ the folded set mean - 2σ (dashed line) are labeled F.
For windows with Φ < the folded set mean - 2σ, the label is determined by α and vmodel; P for low α with low vmodel, or D for high α with high vmodel, as
shown in the right figure. Filled circles show the mean ± σ in α and vmodel in the ID (red) and PS ID (blue) sets. C, contiguous regions (N ≥20) in the Sup35
primary sequence that were 90% of only one label P, D, or F are colored blue, red, or black, respectively, to represent predicted PS, ID, or folded regions.
Predictions from the original ParSe and ParSe v2 are compared to the reported regions identified by experiment. D, classifier distance of each window
assigned to the central residue of the window and then colored according to its label P (blue), D (red), or F (black). ID, intrinsically disordered; PS, phase-
separating.

Intrinsic properties of phase-separating IDRs
Second, we developed a numerical score to give a quanti-
tative measure of the confidence of our assignment of P, F, and
D labels and to give a single metric to define the PS potential of
every protein. Our justification for using a single numerical
score is, in part, the dominance of a single principal compo-
nent in the PCA of the combined ID set (Fig. 2E), although we
Figure 4. ParSe-predicted PS regions are rarely found in the human prote
regions in proteins that were ≥90% labeled P, which are referred to as phase-s
with PS regions at least as long as the length indicated by the x-axis. The hum
lines; DisProt (minus PS-annotated entries) by red lines; SCOPe (version 2.07) by
the full sequences of the proteins in the PS ID set by light blue lines. B, the sum
panel A. Shown by the y-axis is the percent of proteins in a set with a summed P
were colored using the same coloring scheme as in panel A. C, reproduction of
proteome result. Here, lines show the % of a set (using the same coloring schem
P classifier distance. ID, intrinsically disordered; PS, phase-separating.
generalized this approach to F-labeled positions as well. In the
combined ID datasets, most of the variability was in a single
direction nearly orthogonal to the line separating P and D
sectors in our plot. As such, we used the linear distance of a 25
amino-acid window into its classifier sector (i.e., F, D, or P
sector), relative to the cutoff boundary and normalized by the
ome. A, ParSe (stippled lines) and ParSe v2 (solid lines) were used to identify
eparating, PS, regions. Shown by the y-axis is the percent of proteins in a set
an proteome (UniProt reference proteome UP000005640) is given by black
gray lines; a set of in vitro sufficient homotypic PS proteins by blue lines; and
med P classifier distance was calculated by ParSe v2 for the protein sets in
classifier distance at least as much as the value indicated by the x-axis. Lines
the results in panel B wherein each set was directly compared to the human
e) plotted against the human proteome % of set for values of the summed
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distance to the boundary of the training set mean (Fig. 3B).
Values greater than 1 in this classifier distance indicate a
window located at a distance further from the sector boundary
than the distance of the training set mean, whereas values less
than 1 indicate a window closer to the cutoff boundary than
the training set mean and, as such, possibly with some un-
certainty for its classifier label. Classifier distances calculated
from the Sup35 sequence are shown in Figure 3D, wherein
window values have been assigned to the central residue of the
window, as we did with the window label.

We used the summed classifier distance for every window
labeled P to obtain an overall score for each protein. This
method is more robust to situations where multiple smaller
regions drive phase separation (Fig. S4), as compared to, for
example, Sup35, where a single domain drives phase separa-
tion. Windows labeled either F or D do not contribute to this
sum. The assumption we are making is that single regions that
promote phase separation are sufficient to drive phase sepa-
ration of larger proteins. This is consistent with the observa-
tion that many PS proteins still undergo phase separation
when they contain other protein regions or GFP tags (2, 83).
As before, we found that only a small fraction of the human
proteome consists of proteins with IDRs driving phase sepa-
ration (44). Indeed, using a cutoff for the summed classifier
distance of 100 retains 100% and 76% of the proteins in the
Vernon et al in vitro sufficient set and the parent proteins of
our PS ID set, respectively. In contrast, only 10% of human
proteins are predicted to drive phase separation through their
IDRs by this cutoff (Fig. 4B). Because we are focused solely on
IDRs which drive phase separation, excluding multivalent in-
teractions that involve ordered domains, nucleic acids, or other
drivers of protein phase separation, the total number of drivers
is somewhat larger than this.

We used this whole protein metric (the summed classifier
distance of P-labeled windows) to create a recall plot, used to
assess prediction performance, for multiple datasets (Figs. 4C
and S5). The success in recall plots is typically quantified using
the area under the curve (AUC), when comparing a test
dataset to a comparison dataset (55, 84, 85). Here, in all cases,
we used the human proteome as the comparison dataset. The
SCOPe database and DisProt (excluding PS-annotated entries)
both have AUC values < 0.5 (Fig. 4C), indicating that the
human proteome does contain more proteins predicted to
drive phase separation than these negative control groups. As a
result, this approach likely gives a lower bound on the success
of a predictor. As expected, our calculated AUC using ParSe v2
is highest on the in vitro sufficient phase separation drivers
from Vernon et al (AUC = 0.99, Fig. 4C), which constitute a
significant fraction of our positive control dataset (i.e., the
parent proteins of the PS ID set). This is likely both because
this is the dataset we used for training and because it is also the
most highly curated dataset. To further test its efficacy, we
measured AUC values for ParSe v2 on datasets of phase sep-
aration drivers curated by other groups (16, 55, 84–86) and
found it to perform quite well, with AUC values >0.8 (Fig. S5).

Figures 4A and S6 show ParSe v2 is an improvement (i.e.,
slightly higher recall), albeit marginally, compared to the
8 J. Biol. Chem. (2023) 299(1) 102801
original ParSe. The strong performance of ParSe v1 is, in part,
because even in the original version, we used scales that gave
strong separation between datasets. Utilizing scales with
weaker predictive value leads to a less efficient predictor, as
expected (Fig. S7). A comparison between ParSe v2 and ParSe
v1 predictions reveals that the same patterning of P, D, and F
regions appears for both predictors (Fig. S8).

We then sought to compare ParSe to other published pre-
dictors. Although their data are not as highly curated as others,
recent published work by Chen et al included predictions from
multiple predictors on a publicly available dataset, facilitating
comparison to other predictors of protein phase separation
(84). Of note, the negative control set in Chen et al contains,
by our prediction, a higher fraction of IDRs driving phase
separation than the human proteome (Fig. S9D), although
whether this is a problem with the database or with our pre-
diction method is unclear. On their datasets, ParSe performs
similarly as measured by AUC scores, to PScore (16), Cat-
Granule (34), and PLAAC (33) in identifying proteins that
drive phase separation (Fig. S9, A–C). The quality of the test
one can make of these predictors depends significantly on the
quality of the datasets, and so a true test of these predictors
will require significantly more experimental data from both
positive and negative controls (31, 55).
Predicting the effects from mutation on phase separation
behavior

Despite its simplicity, ParSe can predict the IDR(s) driving
phase separation for a wide range of known PS proteins,
including FUS, Ddx4, LAF1, and A1. Several of these proteins
have been the targets of mutagenesis studies implicating spe-
cific interactions between amino acids (i.e., cation-π or cation-
anion) in the formation of phase-separated droplets. Cation-π
interactions are thought to occur between different amino
acids in the chain, and the balance of residues, for example,
Arg and Tyr, is thought to be important for phase separation
(16, 22, 38). Similarly, net charge per residue, as opposed to
simply the number of negative or positive charges (41), as well
as the specific charge pattern (27), are also thought to be the
key determinants of phase separation.

Because ParSe is based only on the amino acid composition,
and so does not include these higher-order effects involving
combinations of amino acid types, we hypothesize that ParSe
will have little predictive value for mutations that specifically
alter the ratio of these pairwise interactions. More generally,
we sought to determine if ParSe v2 could model the effects on
phase separation behavior arising from mutations in the pro-
tein sequence. We hypothesize that sequence changes target-
ing P-labeled positions would have the greatest ability to
modulate phase separation behavior. To assess this idea, we
used the classifier distance whereby a phase separation
“potential” was modeled as the summed classifier distance of
P-labeled windows in the protein, as we did above in the recall
plots. We compared the summed classifier distance with
quantitative measures of phase separation behavior from four
mutational studies involving three IDRs that individually
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exhibit phase separation behavior in vitro as purified compo-
nents (3, 18, 27, 41), with sets of published mutations modu-
lating either charge patterning or π-based interactions (Figs. 5
and S10).

As the different studies used different metrics to quantita-
tively assess phase separation, we first began by simply asking
whether the summed classifier distance could accurately
reproduce the rank ordering of variants. In Figure 5A, we or-
dered, from left-to-right, in decreasing phase separation “po-
tential” as reported within each individual study the mutant
and WT sequences. Shown is the summed classifier distance of
P-labeled windows. In the LAF-1 RGG study (27), mutants
forming phase-separated droplets at elevated temperatures
indicated increased phase separation potential, whereas
changes in the saturation concentration, csat, at a given tem-
perature was used in studies with A1-LCD (18, 41). However,
the mutant rank order in csat can change with the temperature,
caused by differences in the standard molar enthalpy associ-
ated with phase separation, Δh�, which reflects the tempera-
ture dependence to csat. To manage this issue, mutant data
were separated into two sets. One set corresponding to those
mutants with experimental csat at 4 �C (Table S6) and a second
corresponding to those mutants with experimental Δh�, Δs�,
and Δg� (Table S5). Figure 5A shows rank order in Δh� for the
A1-LCD mutants. Fig. S10 ranks the A1-LCD mutants ac-
cording to csat at 4 �C. The summed classifier distance (i.e.,
ParSe v2 predicted PS potential) of each mutant trended
somewhat with the experimental rank order, correctly
Figure 5. Predicting mutation effects on phase separation behavior. A, th
phase-separating (PS) potential from sequence. Mutants were grouped by exp
and SCD identical to the WT values, and green otherwise (non-WT NCPR and SC
rank, from high-to-low, for comparison to the predicted PS potential. A1-LCD m
and SCD matching the WT values were used to fix a in Equation 3 by optimizin
right figure shows the optimal correlation. C, similarly, all A1-LCD and Ddx4 mu
optimizing the correlation of ParSe-calculated PS potential (including Uπ and U
PS potentials (including Uπ and Uq optimized to Δh�) for the mutant and WT seq
PS potential relative to the WT before and after including Uπ and Uq in the calcu
fix a, b, and c in Uπ and Uq.
predicting an increase or decrease relative to the WT in �60%
of the mutants as presented in Figure 5 (i.e., with A1-LCD
mutants ranked by Δh�) and �65% in Fig. S10 (i.e., with A1-
LCD mutants ranked by csat). Thus, ParSe is only moderately
able to predict the effects of mutations designed to disrupt
pairwise interactions between amino acids such as those
arising from aromatic, cation-π, and charge-based interactions.
This performance is similar to the performance of PScore,
PLAAC, and catGranule (Fig. S11).

To test the importance of pairwise interactions, we explicitly
included different types of interactions in our model to try to
account for these contributions and possibly improve the trend
of calculated potential versus observed phase separation
behavior. We expanded our calculation of PS potential to
include both the summed P classifier distance and terms,
quantifying the effects of interactions between amino acids,
termed Uπ for π-π and cation-π interactions and Uq for
charge-based effects. The contribution of these terms toward
predicting the effects of mutations can give information on the
relative importance of the individual terms. We used csat, Δh�,
Δs�, and Δg� separately to train this calculation, via 31
A1-LCD variants with csat and 27 A1-LCD and Ddx4 variants
with Δh, Δs�, and Δg� (Figs. 5 and S10). As csat is highly sen-
sitive to the temperature (41), we expected the thermodynamic
properties to be the more reliable metrics of phase separation.
Indeed, we were best able to predict the effects of sequence
changes on the measured Δh� (Fig. 5E). The predicted PS
potential combining summed classifier distance with Uπ and
e summed classifier distance of P-labeled windows was used to calculate a
erimental study and colored gray for WT, yellow for mutants with both NCPR
D). Placement left-to-right within a study follows the reported PS potential in
utants used Δh� and not csat to establish rank. B, A1-LCD mutants with NCPR
g the correlation of ParSe-calculated PS potential (including Uπ) to Δh� ; the
tants with experimental Δh� were then used to fix b and c in Equation 4 by
q) to Δh� ; the right figure shows the optimal correlation. D, ParSe-calculated
uences. E, percent of mutants correctly predicting an increase or decrease in
lations. Results are binned according to experimental value that was used to
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Uq correctly predicts the directional change relative to WT in
�90% of the mutants when Uπ and Uq were trained against
Δh�, and the correlation between experimentally measured
Δh� and ParSe-calculated PS potential was reasonably high
(R = 0.76; Fig. 5C). Thus, explicit consideration of interactions
between amino acid types is important for determining PS
potential in these mutational studies. It remains to be seen
whether ParSe is able to accurately predict PS potential of
mutants designed to test other aspects of phase separation,
such as its dependence on the presence of partner molecules
or on a specific set of solution conditions (e.g., pH, ionic
strength, temperature).

Finally, we sought to determine what effect including these
corrections to ParSe had on the identification of proteins
driving phase separation. Overall, including Uπ and Uq into
ParSe increases the number of proteins identified that drive
phase separation in both the PS sets and the human proteome
(Fig. S12). As a result, the AUC when comparing either our PS
ID set or the Vernon highly curated set to the human prote-
ome is slightly reduced. However, whether this is a result of
correctly classifying more human proteins as driving phase
separation or whether we have simply increased the false
negative rate remains to be seen.
Discussion

In this work, we focused on identifying IDRs that drive
phase separation, with a particular focus on separating PS IDRs
from conventional IDRs that do not drive phase separation.
Using carefully curated datasets of ID, PS ID, and folded do-
mains (Figs. 1 and 2), we developed a sequence-based pre-
dictor of phase separation (ParSe; Fig. 3) which is fast enough
to scan the entire human proteome in minutes on a single
computer and as or more accurate than other published pre-
dictors in identifying both proteins and regions within proteins
that drive phase separation (Figs. 3, S4, S5, S9 and S11). We
recognized that a wide variety of amino acid scales show sig-
nificant differences between the ID and PS ID datasets, indi-
cating that PS IDRs are a robustly different class of protein
region than non-PS IDRs (Fig. 2). We conclude that a
redundant combination of molecular mechanisms driving
cohesive interactions between amino acids is likely at play.
This helps to explain why our general predictor of IDR
hydrodynamic size (vmodel) is a strong indicator of PS potential,
as we found previously (44). Moreover, by including in-
teractions between amino acids thought to drive phase sepa-
ration, we were able to match existing data on mutant
sequences (Fig. 5). This extension highlights the importance of
pair-wise interactions in modulating phase separation.

While our approach has proved very successful, it, like other
approaches to this problem, has significant limitations,
including limitations in predicting responses to changes in
solvent, limitations of the datasets, and limitations of the
constraints of the approach chosen. The formation of phase-
separated droplets by polymer chains is a result, very gener-
ally, of interactions between chains that are stronger than the
interactions of the chain with the solvent. As a result, protein
10 J. Biol. Chem. (2023) 299(1) 102801
phase separation is strongly dependent on the solution envi-
ronment. Within cells, there are many proteins which
assemble into membrane-less organelles only within specific
cellular conditions, for example, upon lowering of pH (68).
Our results imply that these cellular conditions are such that
there are similar sequence features of PS proteins in different
biological responses even though the precise solvent condi-
tions may be different. To accurately predict which solution
conditions drive phase separation of any individual protein
domain would require a detailed understanding of which
mechanisms proteins use to drive phase separation, how those
mechanisms are modulated by solutions conditions, and how
cells modulate solution conditions in different cellular states.
As a first step in this process, our aim is to simply improve
identification of which IDRs and which potential mechanisms
are used by IDRs to drive phase separation in a variety of
cellular and solution conditions. Thus, although our predictor
has high success in identifying proteins that have been seen
experimentally to drive phase separation, we do not yet
distinguish between responses to different cellular conditions,
or, for example, upper- versus lower-critical temperature. The
temperature dependence of hydrophobicity scales as used by
Dignon et al (87) could be a potential future approach to do
this. Moreover, IDRs that drive phase separation in very
disparate cellular conditions may have unique sequence fea-
tures and not be identified by ParSe.

A primary limitation of our work, as well as others, is that
even our well-curated datasets have misidentified regions. For
example, because the IDR in a protein that is responsible for
phase separation has not always been identified, we simply
used all IDRs from known PS proteins. As a result, our PS ID
set likely includes some IDRs which are not involved in phase
separation. Similarly, our ID set was curated from proteins that
have not yet been identified to phase separate, including those
with experiments done at high protein concentration. How-
ever, the lack of observation of phase separation at any one
experimental condition does not preclude its formation.
Indeed, a long history of solution screening for crystallography
would indicate that protein behavior can vary dramatically
based on solution conditions (88). However, it appears that our
PS ID and ID datasets are sufficiently enriched or depleted for
PS IDRs for us to identify key properties of IDRs that drive
phase separation. For example, the performance of our pre-
dictor is improved as the rigor with which the dataset was
curated improves. ParSe gives the highest AUC on the dataset
from Vernon et al containing only those proteins shown to
drive homotypic phase separation in vitro, compared to data-
sets containing PS drivers more generally and weaker still on
datasets including both PS drivers and proteins recruited to
existing droplets (Fig. S5) (16, 84, 85).

Our approach is based primarily on sequence composition
and not on sequence patterning or combinations of amino
acids. It is surprising how effective this strategy is and how
many different scales can be used to distinguish PS IDRs
successfully. Nevertheless, our approach, while fast and effec-
tive, is unable to identify pairwise protein interactions that may
contribute to phase separation. In our analysis of mutants, we
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introduced a simple potential whereby amino acid pairs are
counted, and this clearly improves the ability to predict the
effects of mutation on phase separation (Fig. 5). Pairwise
interaction patterns are probably better identified by machine
learning algorithms or simulation (27, 28, 42, 43, 55, 85).
However, the efficacy of our approach appears to indicate that
the primary determinant of whether any one sequence will
phase separate depends on the overall amino composition,
whereas rearrangements, mutations, or posttranslational
modifications of that base sequence will modulate that pro-
pensity for phase separation. Thus, it appears that the identi-
fication of sequences that have the potential to phase separate
is an easier problem than identifying how mutation of a few
residues will impact that phase separation potential. This
result is not specific to our predictor, as none of the predictors
tested here showed significantly better correlation with
changes in phase separation potential upon mutation
(Fig. S11). We additionally note that different experimental
measurements of phase separation potential give different
ordering of mutants (Figs. 5 and S10), further compounding
the issue.

Finally, our approach differs from several others in that we
are focused solely on the problem of separating PS IDRs from
IDRs that do not phase separate (55, 84). We are thus not able
to identify proteins that utilize multivalent interactions be-
tween folded domains and other folded, ID, or nucleic acid–
binding domains as a primary mechanism for driving phase
separation (24, 25, 89, 90). Moreover, we are primarily focused
on IDRs that drive phase separation, as opposed to those that
are recruited to existing phase-separated droplets, a case which
has been recently considered by Chen et al (84). Our moti-
vation for this narrow focus is that a broader focus might
obscure mechanisms used only by PS IDRs and that
interactions between folded domains are, in general, better
understood than those between disordered domains.

The strong performance of ParSe on existing datasets, the
robust nature of differences between PS IDRs and conven-
tional IDRs, and the high correlation between ParSe and other
predictors on databases of PS proteins all give confidence that
ParSe is able to identify PS IDRs with significant accuracy.
Because of its speed, ParSe can easily be applied to datasets of
arbitrarily large size. As an example, we measured the summed
classifier distance for the human proteome and found that only
a small fraction of the human proteome is likely to drive phase
separation (Fig. 4B). Moreover, we identified the 500 proteins
with the highest summed classifier distance in the human
proteome as well as their longest predicted PS IDR (Table S7).
Many proteins involved in transcriptional regulation, RNA
metabolism, and other functions known to be associated with
membrane-less organelles are identified in this process
(Fig. S13). However, many proteins are also identified that are
not yet associated with a biological process driven by phase
separation (e.g., 240 of the 500 cannot be mapped to a gene
ontology term (91, 92)). This suggests that, while the fraction
of human proteins driving phase separation may be small, not
all of the biological processes relying on phase separation have
yet been identified.
Experimental procedures

Protein databases

A set of 224 IDRs from proteins that exhibit phase sepa-
ration behavior, used for the PS ID set, was obtained from our
prior work (44). For the ID set, we started with 23 IDR se-
quences used previously (44) and then added all DisProt
consensus ID sequences not having the disorder function
ontology identifier for phase separation, IDPO:00041 (62).
Protein sequences in the BMRB (60) with “disordered” or
“IDP” as a keyword or in the entry title were also added to the
ID set. BMRB obtained sequences were restricted to those
with ≥70% of residue positions classified as disordered by
Wishart’s random coil index, using an S2 cutoff of 0.6 (93).
DisProt and BMRB sequences were culled by Metapredict
(63), keeping only those predicted to be ID, and seqatoms
(65), excluding those that were highly homologous to folded
regions of proteins in the PDB. The folded set started with the
82 folded sequences used previously (44) and then added a set
of human proteins with nonhomologous structures (56),
proteins with small to large structures (57), extremophile
proteins (58), metamorphic proteins (59), and membrane
proteins that were found by searching the PDB (64) for the
phrase “membrane protein.” Using the PISCES Server (94),
the human, extremophile, metamorphic, and membrane
proteins had a maximum of 50% sequence identity within
each folded subset and only X-ray structures with a resolution
better than 2.5 Å.

Calculation of β-turn propensity and vmodel

The propensity to form β-turn structures was calculated byP
scalei/N, where scalei is the value for amino acid type i in

the normalized frequencies for β-turn from Levitt (95). The
summation is over the protein sequence containing N
number of amino acids. vmodel was introduced previously (44)
as a phenomenological substitute to the polymer scaling
exponent (51, 52) and used to normalize protein hydrody-
namic size to the chain length,

vmodel ¼ logðRh =RoÞ = logðNÞ (1)

where Ro is a constant set to 2.16 Å, and the hydrodynamic
radius, Rh, is calculated from sequence using an equation
found to be accurate for monomeric IDPs (49, 50, 96–98).
The equation to calculate Rh for a disordered sequence is,

Rh ¼ 2:16�A, N ð0:503−0:11, lnð fPPII ÞÞ þ 0:26 ,jQnet j− 0:29,N0:5

(2)

where fPPII is the fractional number of residues in the PPII
conformation, and Qnet is the net charge. fPPII is estimated
from

P
PPPII,i/N, where PPPII,i is the experimental PPII

propensity determined for amino acid type i in unfolded
peptides (99) and the summation is over the protein
sequence. Qnet is determined from the number of lysine and
arginine residues minus the number of glutamic acid and
aspartic acid.
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Principal component analysis

The statistical program R (100) was used to perform PCA on
the sequence sets, and the packages ggfortify, ggplot2, fac-
toextra, MetBrewer, and tidyverse were used to render the
results. In the PCA, the variables were shifted to be zero
centered and scaled to unit variance.
ParSe v2 algorithm

For an input primary sequence, whereby the amino acids are
restricted to the 20 common types, ParSe v2 first reads the
sequence to determine its length, N. Next, the algorithm uses a
sliding window scheme (Fig. 3A) to calculate vmodel, α-helix
propensity, and Φ for every 25-residue segment of the primary
sequence. This window scheme can be applied to proteins with
N >25. Rh is calculated by Equation 2, which in turn is used to
determine vmodel by Equation 1, by the same method used in
the original ParSe described previously (44). α-helix propensity
is calculated as the sequence sum divided by N using the scale
by Tanaka and Scheraga (75). Φ is calculated as the sequence
sum divided by N using the hydrophobicity scale by Ven-
drusculo et al. (74). A window is labeled F if Φ >0.08 (Fig. 3B).
IfΦ <0.08, a window is labeled P or D depending on the values
of vmodel and α-helix propensity. Windows with high α-helix
propensity and high vmodel are labeled D, while those with low
α-helix propensity and low vmodel are labeled P. The P/D
boundary was determined by the line that bisects the over-
lapping distributions of vmodel and α-helix propensity in the PS
ID and ID sets, given by vmodel = -0.244,α-helix propensity +
0.789. The window label is assigned to the central residue in
that window. N- and C-terminal residues not belonging to a
central window position are assigned the label of the central
residue in the first and last window, respectively, of the whole
sequence. Protein regions predicted by ParSe v2 to be PS, ID,
or folded are determined by finding contiguous residue posi-
tions of length ≥20 that are ≥90% of only one label P, D, or F,
respectively. When overlap occurs between adjacent predicted
regions, owing to the up to 10% label mixing allowed, this
overlap is split evenly between the two adjacent regions.
UP ¼ a,
�
3,
�
#Y×#R

�ð#Y−#RÞ#Y≠#R

�

þ2,
�
#Y×#K

�ð#Y−#kÞ#Y≠#K

�þ2,
�
#F×#R

�ð#F−#RÞ#F≠#R

�

þ1,
�
#F×#K

�ð#F−#kÞ#F≠#K

�þ1,
�
#F×#Y

�ð#F−#Y Þ#F≠#Y

�
(3)
Classifier distance calculation
The classifier distance is the normalized distance of a ParSe v2

generated window into its classifier sector (i.e., F, D, or P sector)
and relative to the cutoff boundary (Fig. 3B). For F-labeled
windows, the classifier distance is Φ (of the window) minus the
cutoff value of 0.08 and thennormalized to distance of the folded
set meanΦ (0.1164) to the cutoff. Specifically, this is (Φ – 0.08)/
(0.1164–0.08). For PorD labeledwindows,firstwefind the point
on the P/D boundary (vmodel = -0.244,α-helix propensity +
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0.789) that makes a perpendicular bisector when paired with the
window values of vmodel and α-helix propensity. Then the dis-
tance between this point and the point defined by the window
values of vmodel and α-helix propensity is determined. Specif-
ically, this distance is sqrt((α – x),(α – x) + (vmodel – y),(vmodel –
y)), where α is the α-helix propensity, x is (α/0.244 + 0.789 –
vmodel)/(0.244 + 1/0.244), and y is (x – α)/0.244 + vmodel. This
distance is normalized by dividing by 0.019 (the distance from
the boundary to either of the set means).

PSCORE calculation

PSCORE, which is a phase separation propensity predictor
(16), was calculated by computer algorithm using the Python
script and associated database files available at https://doi.
org/10.7554/eLife.31486.022.

Granule propensity calculation

Granule propensity was calculated by using the catGranule
(34) webtool available at http://www.tartaglialab.com.

PLAAC LLR calculation

LLR score, which identifies prion-containing sequences
(101), was calculated by using the webtool available at http://
plaac.wi.mit.edu.

Metapredict calculation

Metapredict score (63), which predicts the presence of ID in
a sequence, was calculated by computer algorithm using the
Python script available at http://metapredict.net.

Calculation of Uπ

The relative contributions of aromatic and cation-π
interactions to protein phase separation in our calculations
followed the observed rank order by Wang et al: Tyr-Arg >
Tyr-Lys � Phe-Arg > Phe-Lys (22). To mimic this ranking, we
assumed 3:2:1 weighting and, also, that Phe–Tyr interactions
would contribute comparably to Phe–Lys interactions,
In Equation 3, #Y, #R, #F, and #K represent the number of
Tyr, Arg, Phe, and Lys residues, respectively, in a sequence,
calculated on a per-window basis, and a is a fitting parameter
(see below). Thus, Uπ increases with increasing Tyr, Arg, Phe,
and Lys content and more so when interaction partners are
present at similar levels. When the divisor is zero (e.g., when
#Y = #R), it is changed to 1 to avoid infinite potentials.

Window-specific Uπ was added to the classifier distance at
windows labeled P. Moreover, Uπ was applied to D-labeled

https://doi.org/10.7554/eLife.31486.022
https://doi.org/10.7554/eLife.31486.022
http://www.tartaglialab.com
http://plaac.wi.mit.edu
http://plaac.wi.mit.edu
http://metapredict.net
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windows, allowing for the possibility of labels changing from
D to P. This would occur when the value for Uπ was larger
than the classifier distance at a D-labeled window. Thus,
protein regions that otherwise have characteristics more like
the ID set, in vmodel and α-helix propensity, could be labeled
P if Uπ was large enough. When this occurs, the given clas-
sifier distance was determined by the difference between Uπ

and the original classifier distance of the window formerly
labeled D.

The parameter a in Equation 3 was determined by finding
the optimal correlation of ParSe-calculated PS potential to Δh�

(finding a = 0.14; Fig. 5B), Δs� (finding a = 0.08), Δg� (finding
a = 0.11), or csat (finding a = 0.28; Fig. S10B). In each case, the
mutants used to fit a were limited to the subset with identical
charge and charge patterns, determined by calculating the net
charge per residue, NCPR, and sequence charge decoration,
SCD, of each sequence. NCPR is the number of Lys and Arg
residues minus the number of Glu and Asp residues, divided
by N. SCD is calculated by N-1P

i
P

j,j>i(qiqj)|j-i|
1/2, where q is

the amino acid–specific charge (102).

Calculation of Uq

To model the contributions of charge-based interactions to
phase separation, we build upon the observations by Schuster
et al (27) and Bremer et al (41) that changes in SCD and
NCPR, respectively, can affect phase separation potential.
Accordingly, a simple charge-based potential was defined,

Uq ¼ b , SCDþ c,jNCPRj (4)

where b and c are fitting parameters, and Uq is calculated on a
per-window basis. Uq is added to the classifier distance at each
window labeled P and is applied to windows labeled D,
following the scheme described above for Uπ, again allowing
for the possibility of labels changing from D to P. As with a,
the parameters b and c were fixed by finding the optimal
correlation of calculated PS potential and Δh� (finding 8.4
and 5.6, respectively; Fig. 5C), Δs� (finding 4.6 and 7.0,
respectively), Δg� (finding 5.2 and 5.4, respectively), or csat
(finding -16.0 and 33, respectively; Fig. S10C).

Calculation of Δh�, Δs�, and Δg� from temperature
dependence to csat

For some Ddx4 and A1-LCD sequences, Δh� and Δs� (and
thus Δg�) were not available, but csat measured at different
temperatures has been reported (3, 18). For these proteins, the
standard molar chemical potential, μ�, was used to relate csat in
the dilute and dense phases, cdilute and cdense, respectively, to
the standard molar enthalpy and entropy associated with phase
separation (41),
Δμ∘ ¼Δg∘ ¼Δh∘ −T ,Δs∘

¼ μ∘dense − μ
∘
dilute

¼ μdense −R ,T , ln
�
cdense

�
cref

�

¼ R ,T , lnðcdilute=cdenseÞ;
where μdense − μdilute is zero at equilibrium, R is the universal
gas constant, and T is temperature. By plotting the natural
logarithm of csat at different temperatures, a linear fit versus
1/T yields Δh� and Δs�. For A1-LCD mutants, 0.03M was used
for cdense (41). For Ddx4 mutants, 0.01 M was used for cdense
(3). Δg� was calculated from Δh� − T,Δs� and the standard
temperature (273.15 K).
Gene ontology classification

Protein classification by gene ontology was determined by
the PANTHER classification system (91, 92) using the webtool
available at http:/www.pantherdb.org.
Data availability

The Parse v2 algorithm written in Fortran, Parse_v2.f, can
be downloaded at https://github.com/stevewhitten/ParSe_v2.
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