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Abstract

Staphylococcus epidermidis is the leading causative agent for hospital-acquired infections, especially device-related infec-
tions, due to its ability to form biofilms. The accumulation-associated protein (Aap) of S. epidermidis is primarily respon-
sible for biofilm formation and consists of two domains, A and B. It was found that the A domain is responsible for the
attachment to the abiotic/biotic surface, whereas the B domain is responsible for the accumulation of bacteria during
biofilm formation. One of the parts of the A domain is the Aap lectin, which is a carbohydrate-binding domain having
222 amino acids in its structure. Here we report the near complete backbone chemical shift assignments for the lectin
domain, as well as its predicted secondary structure. This data will provide a platform for future NMR studies to explore

the role of lectin in biofilm formation.
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Biological context

Staphylococcus epidermidis is an opportunistic pathogen
and a leading cause of bacterial colonization and infection
via biofilm on medical devices and implants (Yarawsky et
al. 2020). S. epidermidis biofilms are difficult to eradicate
owing to their resistance to physical, antibiotic, and host
immune response factors. S. epidermidis biofilm is sur-
rounded by a matrix composed of a polysaccharide intercel-
lular adhesin (PIA), proteinaceous factors like Accumulation
associated protein (Aap), Biofilm-associated protein (Bap),
extracellular matrix-binding protein (Embp), and extracel-
lular DNA (Mack et al. 1996; Williams et al. 2002; Rice et
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al. 2007; Rohde et al. 2007; Christner et al. 2010). The Aap
protein plays an important role during the initial surface
attachment and accumulation stage of biofilm development.

Aap is a cell wall anchored, multidomain protein consist-
ing of an N-terminal A domain followed by a B domain, a
P/G rich stalk, and a C-terminal LPXTG cell wall anchor
motif (Fig. 1). Several studies suggest that Aap is a rod-like
fibril extending from the cell, having a size of approximately
220 kDa; however, the size of Aap depends on the number
of B-repeats present in the B-domain as well as proteolytic
posttranslational processing (Sun et al. 2005; Banner et al.
2007; Gruszka et al. 2012; Conrady et al. 2013). Aap shares
54% of its identity with the SasG protein present in Staphy-
lococcus aureus (Corrigan et al. 2007). Aap is involved in
bacterial colonization on skin and adhesion to epithelial cells
(Macintosh et al. 2009; Geoghegan et al. 2013). In most
strains, the A domain includes a series of 16 amino acid A
repeats followed by a 222 amino acid L-type lectin domain.
This domain can be proteolytically cleaved by the SepA
metalloprotease enzyme to expose the B domain (Rohde
et al. 2005; Paharik et al. 2017). The B domain consists of
5-17 B repeats, and each of these units is composed of a 78
amino acid Zn** binding G5 domain and a 50 amino acid E
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domain (also known as a spacer domain). The final repeat in
the B domain consists of a single G5 domain, which plays a
role in the stabilization of the protein (Conrady et al. 2008),
whereas the spacer domain prevents the misfolding of pro-
tein (Gruszka et al. 2012). Several crystallographic studies
on a 1.5-B repeat construct have revealed that B repeats are
rich in beta sheet and are monomeric in the absence of Zn?*.
However, in the presence of Zn**, these domains dimerize in
an antiparallel fashion with no change in secondary structure
(Conrady et al. 2008, 2013; Chaton and Herr 2017; Shelton
et al. 2017). Following the B domain, Aap consists of a pro-
line/glycine-rich region that is resistant to compaction and
forms a highly extended stalk. At the C-terminus, the Aap
is then anchored to the cell wall by the LPXTG recognition
motif (Schneewind et al. 1993; Bowden et al. 2005).

Several studies suggest that the A domain is responsible
for the adhesion to abiotic surfaces and its proteolytic cleav-
age leads to the dimerization of B-repeats on the nearby
bacteria, leading to intercellular adhesion and biofilm for-
mation (Rohde et al. 2005; Conlon et al. 2014; Schaeffer
et al. 2015; Paharik et al. 2017). Macintosh et al. identi-
fied Aap as a fibrillar adhesin and confirmed the role of the
terminal A domain in corneocyte attachment (Macintosh et
al. 2009). Later, Roy et al. concluded that the lectin subdo-
main of the A domain is responsible for corneocyte binding.
These results are not surprising because lectins are the car-
bohydrate-binding proteins and the stratum corneum barrier
is rich in glycans, proteoglycans, and glycoproteins (Rahm-
del and Gotz 2021; Roy et al. 2021). Here, we report the 'H,
5N and '3C NMR backbone chemical shift assignments for
the lectin domain of Aap. These assignments will be useful
for future studies in discovering drug targets that bind to the
lectin domain.

Methods and experiments
Protein expression and purification

A plasmid encoding the lectin domain was transformed into
E. coli BL21 (DE3) for protein expression and purification.
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Fig. 1 Schematic representation of Accumulation associated protein (Aap).

The plasmid encodes for a 6X-His tag, a maltose binding
protein (MBP), and a tobacco etch virus (TEV) proteolytic
cleavage site, followed by the Aap lectin domain, under the
control of a IPTG-inducible promoter. These transformed
cells were grown overnight in 25 mL M9 minimal media
at 37 °C in an incubator with shaking at 200 RPM. This
starter culture was then used to inoculate 1 L of M9 min-
imal media and incubated at 37 °C until the optical den-
sity at 600 nm (OD600) reached 0.8. M9 media contained
1 g L' 5N ammonium chloride and 2.5 g L™' D-glucose.
Once the cells reached this state, they were placed in an ice
bath to bring the temperature down to 10 °C. At this tem-
perature, the cells were induced using 0.3 mM Isopropyl
B-D-1-thiogalactopyranoside (IPTG) and 22 mL of 100%
ethanol. Cells were grown for another 1620 h at 20 °C.
When the growth was finished, the cells were centrifuged
at 8,000 g for 20 min, and the pellet was collected. This
pellet was resuspended in 20 mL cold lysis buffer (20 mM
HEPES buffer pH 7.4, 300 mM NacCl) and kept on ice with
shaking after the addition of 0.5 mg/mL lysozyme. This
mixture was then sonicated on ice in a Fisherbrand Model
505 sonicator at power level 6 for 6 min total processing
time (30 s pulse, 30 s rest). After sonication, the sample was
centrifuged at 100,000 g for 30 min, and the supernatant
was collected. Lectin was purified using a 5 mL Ni-NTA
HisTrap FF column (Cytiva Life Sciences, New Brunswick
NJ) equilibrated with lysis buffer. The protein was eluted
using a 60 mL linear gradient of elution buffer (lysis buffer
with 300 mM imidazole). TEV protease and 2 mM tris(2-
carboxyethyl)phosphine (TCEP) were added to the protein
and dialyzed overnight in lysis buffer to cleave the MBP-
Lectin and to remove excess imidazole. The sample was
centrifuged at 8,000 g for 15 min, and the supernatant was
re-applied to the Ni-NTA column. The flow through was
collected, which contained the pure lectin domain.

NMR spectroscopy
NMR experiments were acquired at 298 K on a Bruker

Avance III 600 MHz NMR spectrometer equipped with a
4-channel quadruple resonance cryoprobe (CP-QCI). All



H, N, and 3C chemical shift backbone resonance NMR assignment of the accumulation-associated protein...

NMR experiments were recorded on samples containing
0.4-0.6 mM lectin in 20 mM HEPES pH 6.8, 50 mM NaCl,
5 mM sodium azide, and 10% D,0O. Backbone assignments
for the Aap-lectin domain were obtained from the analysis
of the following heteronuclear two-dimensional (2D) and
three-dimensional (3D): 2D 'N-'H HSQC, 3D HNCO, 3D
HN(CA)CO, 3D HNCA, 3D HN(CO)CA, 3D HNCACB,
and 3D HN(CO)CACB. All experiments were recorded
using standard TROSY-resolved Bruker pulse sequences
with TopSpin 3.6.4 (Salzmann et al. 1998), and the acquired
NMR data were processed using NMRPipe (Delaglio et
al. 1995). Analysis of the spectra and backbone resonance
assignment were performed manually using CARA 1.8.4.2
(Keller 2004). Secondary structure estimation based on the
chemical shifts and calculation of random coil index derived
order parameters (RCI-S?) were performed with TALOS+
(Shen et al. 2009).

Extent of assignment and data deposition

The 2D 'N-"H TROSY NMR spectrum of Aap-lectin shows
amide signals with good dispersion, indicating a properly
folded tertiary structure of the protein domain in solu-
tion. The dispersed signals of Aap-lectin in the 2D 'N-'H
TROSY NMR spectrum are shown in Fig. 2.

Analysis of the NMR spectra resulted in 225 (89%) out
of 254 non-proline backbone amide resonance assignments
and 88%, 86%, and 74% of all Ca, CB, and CO chemical
shifts of the Aap-lectin, respectively. Backbone amide res-
onances of N380, Q391, T396, T397, N405, Q424, S425,
N426, L452, R453, E454, Y470, N471, N472, D473, S497,
T521,N522, W556,Q579, Y580, G581, N582, G583, N584,
S585, G591, and H610 could not be identified. Nearly all
peaks in the 2D TROSY spectrum are assigned, and this
suggests that these residues may be broadened as a result of
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Fig.2 Assigned 2D '*N-'H TROSY NMR spectrum of the Aap-Lectin domain.
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Fig. 3 Results from TALOS+. The top panel indicates predicted random coil index derived order parameters (RCI-S?) and the bottom panel shows

the possible secondary structure adopted by each residue.

chemical exchange or hydrogen exchange with the solvent.
The chemical shift values for each of the assigned backbone
HN, N, Co, CP, and CO atoms have been deposited in the
Biological Magnetic Resonance Data Bank (https:/www.
bmrb.wisc.edu) under accession no. 51,293.

Secondary structure prediction of the Aap-lectin domain
was performed using the chemical shift assignments of
the atoms HY, N, CO, Ca and CpB, for each amino acid in
the sequence using the TALOS+ server (Shen et al. 2009).
TALOS+ prediction results (Fig. 3) indicate that secondary
structure elements are composed of mainly B-strands with
four a-helices. This is consistent with known folds of L-type
lectin domains (Velloso et al. 2002). RCI-S? results indicated
that the C-terminus is fairly flexible, with an RCI-S? value
of less than 0.6. The region near 392—396 also has a com-
paratively low RCI-S? value, and this region corresponds
to the 390 loop between strands four and five. Resonances
were not observed for several loops in this protein, includ-
ing residues 471-473 (in the Ca loop), residues 452—-454
(in the basal loop), and residues 580584 (in the binding
pocket). These regions are all thought to have importance in
substrate binding, and dynamic behavior of these residues
may allow Aap-lectin to interact with multiple substrates
(Yang et al. 2014). The broadening of these resonances
therefore likely reflects functionally important motions, and
work is ongoing to identify the functional importance of all
of these regions.
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