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al. 2007; Rohde et al. 2007; Christner et al. 2010). The Aap 
protein plays an important role during the initial surface 
attachment and accumulation stage of biofilm development.

Aap is a cell wall anchored, multidomain protein consist-
ing of an N-terminal A domain followed by a B domain, a 
P/G rich stalk, and a C-terminal LPXTG cell wall anchor 
motif (Fig. 1). Several studies suggest that Aap is a rod-like 
fibril extending from the cell, having a size of approximately 
220 kDa; however, the size of Aap depends on the number 
of B-repeats present in the B-domain as well as proteolytic 
posttranslational processing (Sun et al. 2005; Banner et al. 
2007; Gruszka et al. 2012; Conrady et al. 2013). Aap shares 
54% of its identity with the SasG protein present in Staphy-
lococcus aureus (Corrigan et al. 2007). Aap is involved in 
bacterial colonization on skin and adhesion to epithelial cells 
(Macintosh et al. 2009; Geoghegan et al. 2013). In most 
strains, the A domain includes a series of 16 amino acid A 
repeats followed by a 222 amino acid L-type lectin domain. 
This domain can be proteolytically cleaved by the SepA 
metalloprotease enzyme to expose the B domain (Rohde 
et al. 2005; Paharik et al. 2017). The B domain consists of 
5–17 B repeats, and each of these units is composed of a 78 
amino acid Zn2+ binding G5 domain and a 50 amino acid E 

Biological context

Staphylococcus epidermidis is an opportunistic pathogen 
and a leading cause of bacterial colonization and infection 
via biofilm on medical devices and implants (Yarawsky et 
al. 2020). S. epidermidis biofilms are difficult to eradicate 
owing to their resistance to physical, antibiotic, and host 
immune response factors. S. epidermidis biofilm is sur-
rounded by a matrix composed of a polysaccharide intercel-
lular adhesin (PIA), proteinaceous factors like Accumulation 
associated protein (Aap), Biofilm-associated protein (Bap), 
extracellular matrix-binding protein (Embp), and extracel-
lular DNA (Mack et al. 1996; Williams et al. 2002; Rice et 
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Abstract
Staphylococcus epidermidis is the leading causative agent for hospital-acquired infections, especially device-related infec-
tions, due to its ability to form biofilms. The accumulation-associated protein (Aap) of S. epidermidis is primarily respon-
sible for biofilm formation and consists of two domains, A and B. It was found that the A domain is responsible for the 
attachment to the abiotic/biotic surface, whereas the B domain is responsible for the accumulation of bacteria during 
biofilm formation. One of the parts of the A domain is the Aap lectin, which is a carbohydrate-binding domain having 
222 amino acids in its structure. Here we report the near complete backbone chemical shift assignments for the lectin 
domain, as well as its predicted secondary structure. This data will provide a platform for future NMR studies to explore 
the role of lectin in biofilm formation.
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domain (also known as a spacer domain). The final repeat in 
the B domain consists of a single G5 domain, which plays a 
role in the stabilization of the protein (Conrady et al. 2008), 
whereas the spacer domain prevents the misfolding of pro-
tein (Gruszka et al. 2012). Several crystallographic studies 
on a 1.5-B repeat construct have revealed that B repeats are 
rich in beta sheet and are monomeric in the absence of Zn2+. 
However, in the presence of Zn2+, these domains dimerize in 
an antiparallel fashion with no change in secondary structure 
(Conrady et al. 2008, 2013; Chaton and Herr 2017; Shelton 
et al. 2017). Following the B domain, Aap consists of a pro-
line/glycine-rich region that is resistant to compaction and 
forms a highly extended stalk. At the C-terminus, the Aap 
is then anchored to the cell wall by the LPXTG recognition 
motif (Schneewind et al. 1993; Bowden et al. 2005).

Several studies suggest that the A domain is responsible 
for the adhesion to abiotic surfaces and its proteolytic cleav-
age leads to the dimerization of B-repeats on the nearby 
bacteria, leading to intercellular adhesion and biofilm for-
mation (Rohde et al. 2005; Conlon et al. 2014; Schaeffer 
et al. 2015; Paharik et al. 2017). Macintosh et al. identi-
fied Aap as a fibrillar adhesin and confirmed the role of the 
terminal A domain in corneocyte attachment (Macintosh et 
al. 2009). Later, Roy et al. concluded that the lectin subdo-
main of the A domain is responsible for corneocyte binding. 
These results are not surprising because lectins are the car-
bohydrate-binding proteins and the stratum corneum barrier 
is rich in glycans, proteoglycans, and glycoproteins (Rahm-
del and Götz 2021; Roy et al. 2021). Here, we report the 1H, 
15N and 13C NMR backbone chemical shift assignments for 
the lectin domain of Aap. These assignments will be useful 
for future studies in discovering drug targets that bind to the 
lectin domain.

Methods and experiments

Protein expression and purification

A plasmid encoding the lectin domain was transformed into 
E. coli BL21 (DE3) for protein expression and purification. 

The plasmid encodes for a 6X-His tag, a maltose binding 
protein (MBP), and a tobacco etch virus (TEV) proteolytic 
cleavage site, followed by the Aap lectin domain, under the 
control of a IPTG-inducible promoter. These transformed 
cells were grown overnight in 25 mL M9 minimal media 
at 37  °C in an incubator with shaking at 200 RPM. This 
starter culture was then used to inoculate 1 L of M9 min-
imal media and incubated at 37  °C until the optical den-
sity at 600 nm (OD600) reached 0.8. M9 media contained 
1 g L− 1 15N ammonium chloride and 2.5 g L− 1 D-glucose. 
Once the cells reached this state, they were placed in an ice 
bath to bring the temperature down to 10 °C. At this tem-
perature, the cells were induced using 0.3  mM Isopropyl 
β-D-1-thiogalactopyranoside (IPTG) and 22  mL of 100% 
ethanol. Cells were grown for another 16–20  h at 20  °C. 
When the growth was finished, the cells were centrifuged 
at 8,000  g for 20  min, and the pellet was collected. This 
pellet was resuspended in 20 mL cold lysis buffer (20 mM 
HEPES buffer pH 7.4, 300 mM NaCl) and kept on ice with 
shaking after the addition of 0.5  mg/mL lysozyme. This 
mixture was then sonicated on ice in a Fisherbrand Model 
505 sonicator at power level 6 for 6 min total processing 
time (30 s pulse, 30 s rest). After sonication, the sample was 
centrifuged at 100,000  g for  30  min, and the supernatant 
was collected. Lectin was purified using a 5  mL Ni-NTA 
HisTrap FF column (Cytiva Life Sciences, New Brunswick 
NJ) equilibrated with lysis buffer. The protein was eluted 
using a 60 mL linear gradient of elution buffer (lysis buffer 
with 300 mM imidazole). TEV protease and 2 mM tris(2-
carboxyethyl)phosphine (TCEP) were added to the protein 
and dialyzed overnight in lysis buffer to cleave the MBP-
Lectin and to remove excess imidazole. The sample was 
centrifuged at 8,000 g for 15 min, and the supernatant was 
re-applied to the Ni-NTA column. The flow through was 
collected, which contained the pure lectin domain.

NMR spectroscopy

NMR experiments were acquired at 298  K on a Bruker 
Avance III 600 MHz NMR spectrometer equipped with a 
4-channel quadruple resonance cryoprobe (CP-QCI). All 

Fig. 1  Schematic representation of Accumulation associated protein (Aap).
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NMR experiments were recorded on samples containing 
0.4-0.6 mM lectin in 20 mM HEPES pH 6.8, 50 mM NaCl, 
5 mM sodium azide, and 10% D2O. Backbone assignments 
for the Aap-lectin domain were obtained from the analysis 
of the following heteronuclear two-dimensional (2D) and 
three-dimensional (3D): 2D 15N-1H HSQC, 3D HNCO, 3D 
HN(CA)CO, 3D HNCA, 3D HN(CO)CA, 3D HNCACB, 
and 3D HN(CO)CACB. All experiments were recorded 
using standard TROSY-resolved Bruker pulse sequences 
with TopSpin 3.6.4 (Salzmann et al. 1998), and the acquired 
NMR data were processed using NMRPipe (Delaglio et 
al. 1995). Analysis of the spectra and backbone resonance 
assignment were performed manually using CARA 1.8.4.2 
(Keller 2004). Secondary structure estimation based on the 
chemical shifts and calculation of random coil index derived 
order parameters (RCI-S2) were performed with TALOS+ 
(Shen et al. 2009).

Extent of assignment and data deposition

The 2D 15N-1H TROSY NMR spectrum of Aap-lectin shows 
amide signals with good dispersion, indicating a properly 
folded tertiary structure of the protein domain in solu-
tion. The dispersed signals of Aap-lectin in the 2D 15N-1H 
TROSY NMR spectrum are shown in Fig. 2.

Analysis of the NMR spectra resulted in 225 (89%) out 
of 254 non-proline backbone amide resonance assignments 
and 88%, 86%, and 74% of all Cα, Cβ, and CO chemical 
shifts of the Aap-lectin, respectively. Backbone amide res-
onances of N380, Q391, T396, T397, N405, Q424, S425, 
N426, L452, R453, E454, Y470, N471, N472, D473, S497, 
T521, N522, W556, Q579, Y580, G581, N582, G583, N584, 
S585, G591, and H610 could not be identified. Nearly all 
peaks in the 2D TROSY spectrum are assigned, and this 
suggests that these residues may be broadened as a result of 

Fig. 2  Assigned 2D 15N-1H TROSY NMR spectrum of the Aap-Lectin domain.
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number R01AI139479 and the National Science Foundation under 
grant number MCB 1818090. The content is solely the responsibility 
of the authors and does not necessarily represent the official views of 
the National Institutes of Health or the National Science Foundation.

Data Availabilty  The assignments have been deposited to the Bio-
logical Magnetic Resonance Data Bank (BMRB) under the accession 
number: 51,293.
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