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BOUNDS FOR EXIT TIMES OF BROWNIAN MOTION AND THE FIRST DIRICHLET

EIGENVALUE FOR THE LAPLACIAN

RODRIGO BAÑUELOS†, PHANUEL MARIANO?, AND JING WANG‡

Abstract. For domains in Rd, d � 2, we prove universal upper and lower bounds on the product of
the bottom of the spectrum for the Laplacian to the power p > 0 and the supremum over all starting
points of the p-moments of the exit time of Brownian motion. It is shown that the lower bound is sharp
for integer values of p and that for p � 1, the upper bound is asymptotically sharp as d ! 1. For all
p > 0, we prove the existence of an extremal domain among the class of domains that are convex and
symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube
is extremal.
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1. Introduction and statements of main results

There is a large class of results often referred to as generalized isoperimetric inequalities that
have wide interest in both the mathematics and physics community, see Polyá and Szego [57] and
Bandle [4]. At the heart of these inequalities is the classical isoperimetric inequality which states
that among all regions of fixed volume, surface area is minimized by balls. In spectral theory
among the classical results is the celebrated Rayleigh-Faber-Krahn inequality which states that
among all domains D ⇢ Rd having the same volume as a ball D⇤,

(1.1) �1(D) � �1(D
⇤),

where �1(D) denotes the first Dirichlet eigenvalue for the Laplacian in D. Further, equality holds
if and only if D is a ball. Without loss of generality we take D

⇤ to be centered at the origin.

2020 Mathematics Subject Classification. Primary 60J60, 35P15; Secondary 60J45, 58J65, 35J25,49Q10.
Key words and phrases. exit times, moments, torsion function, Dirichlet Laplacian, principal eigenvalue, extremals.
† Research was supported in part by NSF Grant DMS-1854709.
? Research was supported in part by an AMS-Simons Travel Grant 2019-2023.
‡ Research was supported in part by NSF Grant DMS-1855523.

©XXXX American Mathematical Society

1



On the other hand, it has also been known for many years that one can state many of these in-
equalities in terms of the exit time of Brownian motion from the domain D. This probabilistic con-
nection provides new insights and raises new interesting questions on their validity for processes
other than Brownian motion, such as Lévy processes. To illustrate, let Bt be a d�dimensional
Brownian motion starting at the point x 2 D and let ⌧D = inf {t > 0 | Bt /2 D} be its first exit time
from D. Using the symmetrization techniques for multiple integrals in [23,44,45] it follows that

(1.2) sup
x2D

Px (⌧D > t)  P0 (⌧D⇤ > t) ,

for all t > 0. In particular, for any p > 0,

(1.3) sup
x2D

Ex [⌧
p

D
]  E0 [⌧

p

D⇤ ] .

Equality holds in these inequalities if and only ifD is a ball. Inequality (1.1) follows from inequality
(1.2) by taking into account the classical result that for any D ⇢ Rd,

lim
t!1

1

t
logPx (⌧D > t) = ��1(D)

2
.

In a similar way, the classical isoperimetric inequality can be obtained from isoperimetric in-
equalities for exit times of Brownian motion using small time behavior. These are now classical
results with many extensions and applications that can be found in [2,6,25,60] and many other
references given in these papers.

From the connections among (1.1), (1.2) and (1.3) we can already observe a competing relation
between �1(D) and sup

x2D
Ex [⌧D]. Indeed fine connections between the two quantities have

been investigated for many years by many authors. Consider the domain functional G (D) =
�1 (D) sup

x2D
Ex [⌧D] . It was proven in [9] that for all simply connected domains D in R2,

(1.4) 2  G(D)  7⇣ (3) j20
8

⇡ 6.08.

In higher dimensional spaces, it is easy to show the lower bound G (D) � 2 for all domainsD ⇢ Rd

(see [9] and Section 4 below). In [17,35] the authors independently show that 2 is in fact a sharp
lower bound for all bounded domains. Many results have been devoted to obtaining the upper
bound estimates for G(D) (see [18], [34] and [61]). In particular the recent paper [61] improves
the upper bound for all general domains to

(1.5)
d

4
+

p
d

2

s

5

✓
1 +

1

4
log 2

◆
+ 2.

With the leading term d

4 , this bound is asymptotically sharp as d ! 1. However the question
of proving a sharp upper bound is wide open even when restricted to special classes of domains
such as planar simply connected or convex domains.

The main object of study of this paper is the shape functional

(1.6) Gp,d (D) = �
p

1 (D) sup
x2D

Ex [⌧
p

D
] .

Here �1 (D) is the first Dirichlet eigenvalue for the Laplacian in D. When the Laplacian has no
discrete spectrum in D, then we take �1 (D) to be the bottom of the spectrum for the Laplacian

which is given by �1 (D) = inf�
R
D|r�|

2
dxR

D �2dx
where � 2 H

1
0 (D) ,� 6= 0. The p-moments of the exit time

Ex [⌧
p

D
] can also be stated in terms of the torsion function. For 0 < p < 1, the p�torsion moment
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function up : D ! R̄+ is defined by

(1.7) up(x) =
1

2p� (p+ 1)
Ex [⌧

p

D
] .

Not to be confused with the p�torsion function related to the p-Laplacian [24,32,34]. When k 2 N,
and sup

x2D
uk(x) < 1, these functions are solutions to

(1.8)

(
��u1 = 1 u1 2 H

1
0 (D)

��uk = uk�1 uk 2 H
1
0 (D) , k = 2, 3, . . .

When p = 1, u1(x) =
1
2Ex[⌧D] is the classical torsion function which has been extensively studied

in the literature with applications to many areas of mathematics and mathematical physics. See
for instance the classical works [4,41,57].

For general p, the literature in the study of exit time moments and their applications to dif-
ferent fields is extremely large by now. In the works [19–21, 48] Boudabra-Markowsky studied
exit time moments, proved results on the location of their maximum and gave conditions for their
finiteness. The k-torsion moment functions uk have also been applied to the study of heat flow
by McDonald-Meyers-Meyerson in [50–52]. In [28], de la Peña-McDonald provide an algorithm
that produces uniform approximations of arbitrary continuous functions by exit time moments.
We also point to the work of [38], where Hurtado-Markvorsen-Palmer use the L

1 norms of uk to
give an alternative characterization for �1(D) on Riemannian manifolds. In the closely related
papers [27,33], the authors give upper bounds on �1(D) using the L

1 norms of exit time moments
on manifolds. Moreover, obtaining precise spectral bounds for the exit time in large dimensions
has been of interest in other settings. For example in [54], Panzo obtains a spectral bound for the
torsion function of symmetric stable processes that has the correct order of growth. For other
applications to the study of exit time moments, torsional rigidity, stability, the study of minimal
sub-manifolds, and optimal trapping of Brownian motion and gradient estimates, we refer the
reader to [37,40,43,46,49].

Our main goals in this paper are to investigate sharp bounds for Gp,d(D), D 2 X where X
contains all domains in Rd such that �1(D) > 0; and prove the existence of their extremals in the
class of convex domains which are symmetric with respect to each coordinate axis.

For the rest of this paper we will work with the function Ex [⌧
p

D
] and leave the trivial translation

of the bounds for up(x) to the interested reader. For a given class of domains D, define

(1.9) Mp,d(D) = sup
D2D

Gp,d(D),

and

(1.10) mp,d(D) = inf
D2D

Gp,d(D).

Our first main result provides a sharp asymptotic upper bound for Mp,d(X ) and a sharp lower
for mp,d(X ).

Theorem 1.1 (Sharp Lower and Asymptotic Upper Bounds in X ). For p � 1,

(1.11) lim
d!1

Mp,d(X )

dp
=

1

4p
.

Moreover, if p > 0 then

(1.12) 2p� (p+ 1)  mp,d(X ).

Furthermore, (1.12) is sharp when p takes values in N.
3



The upper bound asymptotic (1.11) is accomplished by working on precise universal upper
bounds for Gp,d (see Section 2, more precisely, Theorems 2.1 and 3.1). The lower bound (1.12)
has been independently obtained by Biswas-Lőrinczi in [15], but only for the restricted class of
general convex domains. We prove the lower bound holds for any domain as long as the bottom
of spectrum is positive. Moreover, our result proves sharpness for any integer p.

Our second main result concerns the existence of extremals for classes of domains. Given the
isoperimetric inequalities (1.1) and (1.3) (as well as other inequalities where balls are extremals
in X ), one could speculate about the maximality of a ball B for these extremal problems. However
it was pointed out in [9, pg. 599] that

(1.13) �1 (B) sup
x2B

Ex [⌧B ] < �1 (T) sup
x2T

Ex [⌧T] ,

where T is is the equilateral triangle. The existence of maximizers in the class of convex domains
is proved in [35]. In the same paper the authors conjecture that when d = 2, the equilateral
triangle T is an extremal for M1,2(X ).

In this paper we are interested in the extremals, particularly their existence, for the shape
functional Gp,d among the class of bounded convex domains that are doubly symmetric (sym-
metric with respect to the both coordinate axes). There have been many interesting problems
concerning the geometry of the Laplacian in such domains and substantial progress has been
made. We refer the readers to some of this large literature [3,8,11,13,14,30,39,55].

Definition 1.1. Let C be the class of bounded convex domains in Rd, d � 2. Let SC be the subclass
of domains in C that are symmetric with respect to each coordinate axis.

We obtain the following result.

Theorem 1.2 (Existence of extremals in C or SC). For any p > 0, d � 2, the upper bounds Mp,d(C)
and Mp,d(SC) admit extremals.

Remark 1.3. The case for p = 1 and the class C is proved in [35]. Our proof of Theorem 1.2
depends on a key estimate (Lemma 5.2) which estimates the p�moment of the difference (⌧D�⌧U ),
where U ⇢ D ⇢ Rd and D is a bounded Lipschitz domain. This in turn will allow us to show in
Proposition 5.1 that Gp,d is continuous with respect to the Hausdorff distance. This is quite
different from the proof in the special case in [35,36] which uses purely PDE techniques.

The paper is organized as follows. Upper bounds are contained in Sections 2,3 in Theorems
2.1 and 3.1. The proof of Theorem 1.1 is split into Sections 3 and 4. The proof of the asymptotic
upper bound (1.11) is given in Section 3. The proof of the lower bound (1.12) is given in Section
4. In Section 5 we discuss the problems of finding extremal domains for Gp,d restricted to various
subclasses of domains. The proof of Theorem 1.2 is given in Sections 5.3 and 5.4. This section
also contains a conjecture on the extremal domain for the class SC, Conjecture 5.2.

2. Upper Bounds for Mp,d(X )

In this section we obtain some preliminary upper bound estimates that will allow us to prove
the sharp asymptotic upper bound for Mp,d(X ), which will be done in Section 3.

Let KD (x, y, t) be the Dirichlet heat kernel for �D in the domain D. The transition density pD

for Brownian motion killed upon leaving D is given by

pD (x, y, t) = KD (x, y, t/2) ,
4



as 1
2�D is the generator of Brownian motion. We can then write

E [⌧p
D
] = p

Z
1

0
t
p�1Px (⌧D > t) dt = p

Z
1

0

Z

D

t
p�1

pD (x, y, t) dydt

= 2pp

Z
1

0

Z

D

s
p�1

KD (x, y, s) dyds.

We also recall the classical upper incomplete gamma function

� (s, x) =

Z
1

x

u
s�1

e
�u

du.

Theorem 2.1. For any p > 0, we have

(2.1) Mp,d(X )  2p�(p+ 1)C1(d, p),

where

C1 (d, p) :=

inf
a>0,0<✏<1

(
a
p

2p� (p+ 1)
+

1

� (p)

e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1p
✏

◆d/2 � (p, (1� ✏) a/2)

(1� ✏)p

)
.(2.2)

Proof. For any D 2 X , since E [⌧p
D
] =

R
1

0 t
p�1P(⌧D > t)dt. We consider splitting the integral at the

bottom of the spectrum �1 of the Dirichlet Laplacian. Precisely, for any x 2 D and a > 0 we have

Ex [⌧
p

D
] = p

Z
a/�1

0
t
p�1Px (⌧D > t) dt+ p

Z
1

a/�1

t
p�1Px (⌧D > t) dt

 a
p

�
p

1

+ p

Z
1

a/�1

t
p�1Px (⌧D > t) dt(2.3)

Let I =
R
1

a/�1
t
p�1Px (⌧D > t) dt. The theorem is proved upon obtaining the estimate for I that we

give in the next lemma. ⇤

Lemma 2.2. For any x 2 D, a > 0, we have

(2.4) I  2p
e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1p
✏

◆d/2 � (p, (1� ✏) a/2)

(1� ✏)p �p

1

.

The proof of the above lemma relies on some improvement of Vogt’s result in [61]. We split the
major steps into the lemma and proposition below.

Lemma 2.3. Let D ⇢ Rd be measurable, ↵ > 0, and let L be a bounded operator on L
2(D)

satisfying

(2.5)
��e�↵⇢wLe

↵⇢w
��
2!1

 1

for all w 2 D, where ⇢w (x) = |x� w| , w 2 Rd. Then

(2.6) kLk
1!1


p
2⇡d/4

(2↵)d/2

s
� (d)

� (d/2)

Proof. The proof is essentially the same as in [61, Proposition 2.5]. Note that kLfk1 = sup
w2D

ke�↵⇢wLfk1.
Then we have

ke�↵⇢wLfk1  ke�↵⇢wfk2  ke�↵⇢wk2kfk1.
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Let �d�1 denote the surface measure of the unit sphere, then the conclusion follows from the
estimate below.

��e�↵⇢w
��2
2
=

Z
e
�2↵|w�y|

�D(y)dy 
Z

e
�2↵|y|

dy

= �d�1

Z
1

0
e
�2↵r

r
d�1

dr =
2⇡d/2

� (d/2)

� (d)

(2↵)d
.

⇤

Proposition 2.1. For all ✏ 2 (0, 1], we have

���e�t(��D)
���
1!1

 e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1p
✏

◆d/2

e
�(1�✏)�1t,

for t � 0. In particular, for all x 2 D and t � 0,

(2.7) Px(⌧D > t)  e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1p
✏

◆d/2

e
�(1�✏)

�1t
2 .

Proof. The proof is similar to Theorem 2.1 in [61]. Here we only sketch the key steps. Consider
the operator H = ��D � �1, it is a self-adjoint operator in L

2 (D) with the bottom of spectrum
�1(H) = 0. Clearly the heat kernel of e�tH has the Gaussian upper bound

|Kt(x, y)|  e
�1t · 1

(4⇡t)d/4
exp

 
� |x� y|2

4t

!

for all t > 0 and a.e. x, y 2 D. It then holds that (see proof of Theorem 2.1, page 43 in [61]) for
any ✏ 2 (0, 1]

��e�↵⇢we
�tH

e
↵⇢w
��
2!1

 (8⇡✏t)�d/4
✓
1 +

1

�

◆d/4

e
�1✏te

(1+�)↵2
✏t+↵

2(1�✏)t
.(2.8)

Applying Lemma 2.3 to L = e
�tH and using (2.8) we have that

��e�tH
��
1!1


p
2⇡d/4

(2↵)d/2

s
� (d)

� (d/2)
· (8⇡✏t)�d/4

✓
1 +

1

�

◆d/4

e
�1✏te

(1+�✏)↵2
t
,

taking ↵
2 = d/4

(1+�✏)t we obtain

��e�tH
��
1!1


p
2⇡d/4

s
� (d)

� (d/2)
(8⇡✏t)�d/4

✓
(1 + �✏) t

d

✓
1 +

1

�

◆◆d/4

e
�1✏t+d/4

.

Optimizing the right hand side of the above inequality by taking � = ✏
�1/2 we have

��e�tH
��
1!1

 e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)
·
✓
1 +

1p
✏

◆d/2

e
�1✏t.

This then completes the proof. ⇤
6



Proof of Lemma 2.2. By (2.7) we have

I =

Z
1

a/�1

t
p�1Px (⌧D > t) dt

 e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1p
✏

◆d/2 Z 1

a/�1

t
p�1

e
�(1�✏)

�1t
2 dt(2.9)

= 2p
e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1p
✏

◆d/2 � (p, (1� ✏) a/2)

(1� ✏)p �p

1

.

⇤

Remark 2.4. For the interested reader, we remark the following numerical estimate as a conse-
quence of Theorem 2.1. In particular, when p = 1 one can obtain the following bound

M1,2(X )  2C1(2, 1)  2f1,2 (1.65659, 0.173247)  2 · (2.03785) = 4.0757.

where

fp,d (a, ✏) :=
a
p

2p� (p+ 1)
+

1

� (p)

e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1p
✏

◆d/2 � (p, (1� ✏) a/2)

(1� ✏)p
.

Moreover, we have the following corollary.

Corollary 2.2. We have

(2.10) M1,d(X )  d

2

1

yd

�
1 +

p
yd

� =: 2C3(d, 1).

Here, y = yd 2 (0, 1) is the unique solution to

(2.11) � d+ d
p
y + (4 + 4Ad) y + (2d) y log ((1 + 1/

p
y) /2) = 0, y 2 (0, 1) ,

where

Ad = log

"
2d/2ed/4

p
2

(8d)d/4

s
� (d)

� (d/2)

#
,

and

lim
d!1

yd = 1.

Proof. From (2.2) we have

C1(d, 1) := inf
x>0,0<y<1

f(x, y)

where f : R+ ⇥ [0, 1] ! R+ is defined by

f(x, y) =
x

2
+

e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1
p
y

◆d/2 1

(1� y)
e
�(1�y)x/2

.

Note that

fx (x, y) =
1

2
� 1

2

e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1
p
y

◆d/2

e
�(1�y)x/2

,

we then obtain the minimizer of f(·, y) at

xy :=
2

(1� y)
log

"
e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1
p
y

◆d/2
#
.

7



We are then led to minimize the one variable function

g(y) := f (xy, y) =
1

1� y
log

"
e
d/4

p
2

(8d)d/4

s
� (d)

� (d/2)

✓
1 +

1
p
y

◆d/2
#
+

1

(1� y)

=

d

2 log
⇣

1+1/
p
y

2

⌘
+ 1 +Ad

1� y

where

Ad = log

"
2d/2ed/4

p
2

(8d)d/4

s
� (d)

� (d/2)

#
.

Since

g
0(y) =

�d
�
1�p

y
�
+
⇣
(2d) log

⇣
1+1/

p
y

2

⌘
+ 4 + 4Ad

⌘
y

4 (1� y)2 y
,(2.12)

if we assume that yd is a solution to g
0(y) = 0, then

(2.13) (1 +Ad) =
d

4yd
(1�p

yd)�
d

2
log

✓
1 + 1/

p
yd

2

◆
.

Plugging (2.13) back in (2.12) we have that

g (yd) =
d

4

1

yd

�
1 +

p
yd

� ,

hence we obtain (2.10). Next we show that (2.11) has a unique solution. Let Fd : (0, 1) ! R be

Fd(y) = �d

4
+

d
p
y

4
+ y (1 +Ad) +

d

2
y log

✓
1 + 1/

p
y

2

◆
.

We easily find that limy!0 Fd(y) = �d

4 < 0, Fd(1) = 1 + Ad > 0 and F
0

d
(y) > 0. Therefore the

conclusion follows. ⇤

Remark 2.5. From the above corollary we can deduce that limd!1 yd = 1. First it can be easily
shown that yd exists (for instance see (3.3) in [61]). From (2.13) we have

(4 + 4Ad) yd
d

= 1�p
yd � 2yd log

✓
1 + 1/

p
yd

2

◆
.

Taking d ! 1 on both sides we then obtain y1 = 1. This limit coincides with the conclusion in
[61], but the corollary is sharper comparing to [61] by providing an almost explicit expression for
yd.

3. Sharp asymptotics for Mp,d(X ): proof (1.11) of Theorem 1.1

This section concerns the asymptotic estimates for Mp,d(X ) in high dimensions. First, we give
an upper bound estimate of Mp,d(X ) by analyzing the variational problem in Theorem 2.1, which
provides the correct leading order in d for all p � 1.

Theorem 3.1. For p > 0,

Mp,d(X )  2p
✓
d

8
+ c

p
d+ 1� 1

1� yd

◆p

C2 (d, p)

where

C2(d, p) := 1 + p

Z
1

1
u
p�1

e
(1�u)[(1�yd)( d

8+c

p

d+1)�1]
du,

8



and

(3.1) c =
1

4

s

5

✓
1 +

1

4
log 2

◆
, and yd =

1
⇣
1 + 16c

5
p

d

⌘2 .

The proof of Theorem 3.1 will require the following elementary estimate.

Lemma 3.1. With c and yd as in (3.1) we have

(3.2) log

"
2

1
4�

d
2

✓
1 +

1
p
yd

◆d/2
#
+ 1  (1� yd)

✓
d

8
+ c

p
d+ 1

◆
.

Proof. First note

LHS =
1

4
log 2 +

d

2
log

✓
1 + 1/

p
yd

2

◆
+ 1.

Denote by � := 8
5c and set x = �

p

d
. We can easily check that 0 < x < 1. Clearly 1 + 2x = 1

p
yd
, and

hence

LHS =
5

4
�
2 +

d

2
log

✓
1 + (1 + 2x)

2

◆
=

5

4
x
2
d+

d

2
log (1 + x) .

On the other hand

RHS =

 
1� 1

(1 + 2x)2

!
d

8

✓
1 +

8cp
d
+

8

d

◆
=

x+ x
2

(1 + 2x)2
d

2

✓
1 + 5x+

8

�2
x
2

◆
.

Thus it suffices to show that for all x 2 (0, 1),

5

2
x
2 + log (1 + x)  x+ x

2

(1 + 2x)2

✓
1 + 5x+

8

�2
x
2

◆
.

This can be shown by elementary calculus. See details in [61, page 46]. ⇤

Proof of Theorem 3.1. Let

f (x, y) := x
p + 2p pCd

✓
1 +

1
p
y

◆d/2 1

(1� y)p
� (p, (1� y)x/2) ,

where Cd = e
d/4

p
2

(8d)d/4

q
�(d)

�(d/2) . Then

2p�(p+ 1)C1(d, p) = inf
x>0,0<y<1

f(x, y).

First by letting

fx(x, y) = px
p�1

 
1� Cde

�(1�y)x/2

✓
1 +

1
p
y

◆d/2
!

= 0

we obtain the critical point

(3.3) xy =
2

(1� y)
log

"
Cd

✓
1 +

1
p
y

◆d/2
#
.

Hence

f (xy, y) =
2p

(1� y)p

 
log

"
Cd

✓
1 +

1
p
y

◆d/2
#!p

+ p2pCd

✓
1 +

1
p
y

◆d/2 1

(1� y)p
�

 
p, log

"
Cd

✓
1 +

1
p
y

◆d/2
#!

.

9



It is known that (for instance see [1, 6.1.18])

� (d)

� (d/2)
=

� (2(d/2))

� (d/2)
 2d�1/2

✓
d

2e

◆d/2

,

hence we have

(3.4) Cd  2�d/2+1/4
.

Combining (3.2) and (3.4) we get

log

"
Cd

✓
1 +

1
p
yd

◆d/2
#

 log

"
2

1
4�

d
2

✓
1 +

1
p
yd

◆d/2
#

 (1� yd)

✓
d

8
+ c

p
d+ 1

◆
� 1.(3.5)

Using (3.5) in f (xy, y) we then obtain

f (xyd , yd)  2p
✓✓

d

8
+ c

p
d+ 1

◆
� 1

1� yd

◆p

+
p2p

(1� yd)
p II,(3.6)

where

II = Cd

✓
1 +

1
p
yd

◆d/2

�

 
p, log

"
Cd

✓
1 +

1
p
yd

◆d/2
#!

.

Making the substitution x = u log


Cd

⇣
1 + 1

p
yd

⌘d/2�
and plugging in (3.5) we have

II = Cd

✓
1 +

1
p
yd

◆d/2
 
log

"
Cd

✓
1 +

1
p
yd

◆d/2
#!p

(3.7)

⇥

2

4
Z

1

1
u
p�1

 
Cd

✓
1 +

1
p
yd

◆d/2
!�u

du

3

5

 Cd

✓
1 +

1
p
yd

◆d/2

(1� yd)
p

✓✓
d

8
+ c

p
d+ 1

◆
� 1

(1� yd)

◆p

(3.8)

⇥

2

4
Z

1

1
u
p�1

 
Cd

✓
1 +

1
p
yd

◆d/2
!�u

du

3

5 .

Moreover, clearly from (3.5) we have

(3.9)

 
Cd

✓
1 +

1
p
yd

◆d/2
!�u

 e
�u[(1�yd)( d

8+c

p

d+1)�1]
.

Hence

(3.10) II  (1� yd)
p

✓✓
d

8
+ c

p
d+ 1

◆
� 1

1� yd

◆p Z 1

1
u
p�1

e
(1�u)[(1�yd)( d

8+c

p

d+1)�1]
du.

Using (3.10) in (3.6) we arrive at

f (xyd , yd)  2p
✓
d

8
+ c

p
d+ 1� 1

1� yd

◆p 
1 + p

Z
1

1
u
p�1

e
(1�u)[(1�yd)( d

8+c

p

d+1)�1]
du

�
.

⇤

In the lemma below we show that our result is indeed sharp, by comparing to a unit ball.
10



Lemma 3.2. Let B (0, 1) ⇢ Rd be the unit ball centered at zero, then
✓
d

4

◆p

 �
p

1 (B (0, 1)) sup
x2B(0,1)

Ex

h
⌧
p

B(0,1)

i
,

for p � 1.

Proof. It is well known that �1 (B(0, 1)) � d
2

4 (for instance, see [42]). By a simple calculation we

have that Ex

⇥
⌧B(0,1)

⇤
= 1�|x|

2

d
. Hence

sup
x2B(0,1)

Ex

⇥
⌧B(0,1)

⇤
= E0

⇥
⌧B(0,1)

⇤
=

1

d
.

By Jensen’s inequality we have

�
p

1 (B (0, 1)) · E0

h
⌧
p

B(0,1)

i
� �

p

1 (B (0, 1)) ·
�
E0

⇥
⌧B(0,1)

⇤�p
=

d
p

4p
.

⇤

Proof of (1.11) of Theorem 1.1. From Theorem 3.1 we have

Mp,d(X )  2p
✓
d

8
+ c

p
d+ 1� 1

1� yd

◆p

C2 (d, p) ,

where

C2(d, p) := 1 + p

Z
1

1
u
p�1

e
(1�u)[(1�yd)( d

8+c

p

d+1)�1]
du,

and

yd =
1

⇣
1 + 16c

5
p

d

⌘2 , c =
1

4

s

5

✓
1 +

1

4
log 2

◆
.

First we claim that limd!1 C2(d, p) = 1. Note that

(1� yd)

✓
d

8
+ c

p
d+ 1

◆
� 1 � 1 +

4c

5

p
d ! 1

as d ! 1. Hence when u � 1 we have

lim
d!1

u
p�1

e
(1�u)[(1�yd)( d

8+c

p

d+1)�1] = 0,

Moreover, since
Z

1

1
u
p�1

e
(1�u)[(1�yd)( d

8+c

p

d+1)�1]
du 

Z
1

1
u
p�1

e
(1�u)

du  e�(p),

by the dominated convergence theorem we obtain that

(3.11) lim
d!1

Z
1

1
u
p�1

e
(1�u)[(1�yd)( d

8+c

p

d+1)�1]
du = 0.

It now follows readily that

lim sup
d!1

Mp,d(X )

dp
 1

4p
.

Together with Lemma 3.2 we then obtain that

1

4p
 lim inf

d!1

Mp,d(X )

dp
,

and concludes the proof of the asymptotic bound (1.11) of Theorem 1.1.
⇤
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4. Lower bound for mp,d(X ): proof of (1.12) of Theorem 1.1

We remark that the lower bound in (1.12) for p = 1 has been known for many years, as men-
tioned in [9].

Proof of (1.12) of Theorem 1.1. We first prove the inequality. Let us assume for the moment that
the domain D is bounded (or even just that it has finite volume). In this case we have a discrete
spectrum with a complete set of eigenfunctions on L

2(D) and the eigenfunction '1 corresponding
to �1(D) is in L

1(D). For this, we refer the reader to [29]. Since

(4.1) e
��1t/2'1(x) =

Z

D

pD(x, y, t)'1(y)dy

integrating in time we find that

'1(x)
2pp

�
p

1(D)
� (p) = '1(x)

Z
1

0
pt

p�1
e
��1t/2dt(4.2)

= p

Z
1

0

Z

D

t
p�1

pD(x, y, t)'1(y)dydt

 sup
y2D

'1(y) ·
✓
p

Z
1

0

Z

D

t
p�1

pD(x, y, t)dydt

◆

= sup
y2D

'1(y)Ex [⌧
p

D
] .(4.3)

Since p�(p) = �(p+ 1), this gives the desired lower bound by taking a supremum over all x 2 D.
To remove the boundedness assumption on D, let r > 0 and consider the open set D \ B (0, r)

which is nonempty for large enough r. Since D \ B(0, r) ⇢ D, we have Ex

h
⌧
p

D\B(0,r)

i
 Ex [⌧

p

D
]

and it follows that

sup
x2D\B(0,r)

Ex [⌧
p

D
] � sup

x2D\B(0,r)
Ex

h
⌧
p

D\B(0,r)

i
� 2p� (p+ 1) ·

✓
�1 (D \B (0, r))

◆�p

.

Taking r ! 1 completes the proof of the lower bound.
It remains to prove the sharpness of (1.12) for integers p. For any d � 2, it is shown in

[17, Theorem 1] and [35, Theorem 3.3] that there exists a sequence of bounded domainsD✏n ⇢ Rd

satisfying

(4.4) 2  �1(D✏n) sup
x2D✏n

Ex[⌧D✏n
] < 2 + ✏n,

where ✏n ! 0, as n ! 1. To finish, we need the following inequality whose proof we provide here
for completeness. (See for example [7, Corollary 1] and [22, Lemma 18.1])

Lemma 4.1. Let D ⇢ Rd be a domain satisfying sup
x2D

Ex [⌧D] < 1. Then for any k 2 N,

Ex

⇥
⌧
k

D

⇤
 k!

✓
sup
x2D

Ex [⌧D]

◆k

, x 2 D.

Proof. By the Markov property and Fubini’s theorem we have for any a � 0,
Z

1

a

Px (⌧D > t) dt =

Z
1

0
Px (⌧D > t+ a) dt

=

Z
1

0
Ex

⇥
1(⌧D>a)PXa (⌧D > t)

⇤
dt = Ex

⇥
1(⌧D>a)EXa [⌧D]

⇤


✓
sup
x2D

Ex [⌧D]

◆
Px (⌧D > a) .(4.5)

12



Multiplying both sides by ka
k�1 and integrating on a gives that

Z
1

0
ka

k�1

Z
1

a

Px (⌧D > t) dtda =

Z
1

0
t
kPx (⌧D > t) dt =

1

k + 1
Ex

⇥
⌧
k+1
D

⇤
,

and ✓
sup
x2D

Ex [⌧D]

◆Z
1

0
ka

k�1Px (⌧D > a) da =

✓
sup
x2D

Ex [⌧D]

◆
Ex

⇥
⌧
k

D

⇤
.

The desired inequality then follows by induction. ⇤
Returning to the sharpness of inequality (1.12), fix k 2 N. Let D✏n be the domains satisfying

(4.4). We claim that

�1 (D✏n)
k · sup

x2D✏n

Ex

h
⌧
k

D✏n

i
 2kk! + 2k · k!✏n + o(✏n)

where ✏n ! 0 as n ! 1.
Indeed, from Lemma 4.1 and the estimate (4.4).

�1 (D✏n)
k · sup

x2D✏n

Ex

h
⌧
k

D✏n

i
 �1 (D✏n)

k
k!

 
sup

x2D✏n

Ex

⇥
⌧D✏n

⇤
!k

= k!

 
�1 (D✏n) · sup

x2D✏n

Ex

⇥
⌧D✏n

⇤
!k

 k! (2 + ✏n)
k

= 2kk! + 2k · k!✏n + o(✏n).

This proves the sharpness of the inequality (1.12) and completes the proof of the Theorem. ⇤
It is reasonable to conjecture that under the same assumptions as in Lemma 4.1, the inequality

(4.6) Ex [⌧
p

D
]  � (p+ 1)

✓
sup
x2D

Ex [⌧D]

◆p

holds for any p � 1. This leads us to the following conjecture.

Conjecture 4.1. The lower bounds (1.12) is sharp for any p � 1.

5. Extremal Domains for Mp,d(C)

The main goal of this section is to prove that the shape functional

Gp,d (D) = �
p

1 (D) sup
x2D

Ex [⌧
p

D
]

admits a maximizer in the class of bounded convex domains in Rd or in the class of convex domains
which are symmetric with respect to each coordinate axis.

5.1. Motivation and preliminary discussions. While balls appear to be extremals for several
isoperimetric type inequalities (including the classical ones (1.1) and (1.3)), surprisingly they are
not extremals for Mp,d(X ). For instance it is observed in [9, pg. 599] that

(5.1) �1 (B) sup
x2B

Ex [⌧B ] < �1 (T) sup
x2T

Ex [⌧T] ,

where T is is the equilateral triangle (see also [35, Corollary 3.7]). Moreover it was conjectured
in [35] that no extremal domain exists over the class of all domains.

Therefore it is reasonable, when looking for extremals, to restrict the class of domains. When
restricted to the class of convex domains, Payne showed in [56] that

(5.2) m1,d(C) =
⇡
2

4
.
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From this it follows trivially that the minimizer domain over convex domains is given by the
infinite slab Sd = Rd�1 ⇥ (�1, 1). The existence of extremal for M1,d(C) is proved in [35]. The
authors further conjectured that when d = 2, the equilateral triangle T is an extremal. That is,

(5.3) M1,2(C) = �1 (T) sup
x2T

Ex [⌧T] .

5.2. Motivation, symmetric convex domains. Another class of domains that is worth investi-
gation is the class of doubly symmetric planar domains SC.

Regarding the question of extremals, it is not hard to see the ball fails again in the class SC. In
fact, with brief computations below we can show that

(5.4) �1(B) sup
x2B

Ex [⌧B ] < �1(Q2) sup
x2Q2

Ex [⌧Q2 ] .

First note that in both cases

sup
x2B

Ex [⌧B ] = E(0,0) [⌧B ]

and

sup
x2Q2

Ex [⌧Q2 ] = E(0,0) [⌧Q2 ] .

Furthermore,

(5.5) �1(B)E(0,0) [⌧B ] =
j
2
0

2
⇡ 2.8916,

where j0 is the first positive root of the first Bessel function.
On the other hand, �1 (Q2) =

⇡
2

2 and by independence,

P(0,0)(⌧Q2 > t) = P0(⌧I > t)P0(⌧I > t),

where I = (�1, 1). The eigenfunction expansion for the heat kernel for the interval I (see [26,47])
leads to the formula

(5.6) E(0,0) [⌧Q2 ] =

"
1� 32

⇡3

1X

n=0

(�1)n

(2n+ 1)3
sech

✓
n+

1

2

◆
⇡

�#
.

Thus

�1(Q2)E0 [⌧Q2 ] =
⇡
2

2

"
1� 32

⇡3

1X

n=0

(�1)n

(2n+ 1)3
sech

✓
n+

1

2

◆
⇡

�#
(5.7)

⇡ 2.90843

which verifies (5.4).
Given conjecture (5.3), it is reasonable to conjecture that the extremal for M1,2(SC), if exists,

is given by the square Q2 := {(x, y), |x| < 1, |y| < 1}. In the next two sections we will focus on
proving the existence of the extremals for both classes C and SC.

5.3. Preliminary results. For any given domain D ⇢ Rd, define Mp (D) = sup
x2D

Ex [⌧
p

D
] so that

our function from (1.6) becomes

Gp,d (D) = �
p

1 (D) sup
x2D

Ex [⌧
p

D
] = �

p

1 (D)Mp (D) .

Recall that for any two compact sets K1,K2 ⇢ Rd we define the Hausdorff distance dH by

dH (K1,K2) = max

⇢
sup
x2K1

d (x,K2) , sup
y2K2

d (K1, y)

�
,
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where d(·, ·) denotes the Euclidean distance in Rd. Therefore for any bounded open sets A,B ⇢ Rd

we have that

(5.8) dH (A,B) = max

(
sup

x2B\A

inf
y2@B

d (x, y) , sup
x2A\B

inf
y2@A

d (x, y)

)
.

This definition is given by [36, Corollary 2.2.13]. In the sequel we use the fact that inclusion is
stable under convergence with respect to dH. That is, take sets Un ⇢ Dn ⇢ Rd for all n. If Un ! U

with respect to dH and Dn ! D with respect to dH, then U ⇢ D.

Lemma 5.1. If a sequence {Dn}1n=1 in SC converges to a set D 2 C with respect to the Hausdorff
metric, then D 2 SC.

Proof. Note that D is open. Take any x = (x1, x2, . . . , xd) 2 D, then x 2 Dn for n large enough.
Since Dn is symmetric then (�x1, . . . , xd) , (x1,�x2, . . . , xd) , . . . , (x1, x2, . . . ,�xd) 2 Dn for n large
enough. Since inclusion is stable under limits of the Hausdorff distance then

(�x1, . . . , xd) , (x1,�x2, . . . , xd) , . . . , (x1, x2, . . . ,�xd) 2 D

as well. This shows D is symmetric with respect to all axes. Convexity is well know. ⇤

We will need the following key estimates on the p�moments of exit times in order to prove that
Mp is continuous in the class SC and C.

Lemma 5.2. Suppose U ⇢ D ⇢ Rd, where D is a bounded Lipschitz domain and U is a domain.

(i) If p � 1, then

(5.9) sup
x2D

Ex [(⌧D � ⌧U )
p]  Cp,D sup

x2D\U

(d (x, @D))� .

(ii) If 0 < p < 1, then

(5.10) sup
x2D

Ex [(⌧D � ⌧U )
p]  C�,D sup

x2D\U

(d (x, @D))�p .

Here � > 0 depends on the Lipschitz character of the domain.

Proof. Take x 2 U . By the strong Markov property we have for any p > 0,

Ex [(⌧D � ⌧U )
p] = Ex

h
EB⌧U

[⌧p
D
]
i

 sup
x2@U

Ex [⌧
p

D
] .(5.11)

Under the assumption that D is a bounded Lipschitz domain, it follows that D is intrinsic
ultracontractive (IU). That is, for any ⌘ > 0, there is a t0 = t0(⌘, D) > 0 such that for all t > t0 and
all x, y 2 D

(5.12) (1� ⌘) e��1(D)t
'1(x)'1(y)  KD(x, y, t)  (1 + ⌘) e��1(D)t

'1(x)'1(y)

where '1 is the ground state eigenfunction for D. In fact, (IU) holds for a wider class of domains
(beyond Lipschitz) and wider class of diffusion. It has been extensively studied in the literature
with many different applications. We refer the reader to [29] and [5] for some of the first results
on this topic that include the Lipschitz domains case. Writing

HD(x, y) =

Z
1

0
KD(x, y, t)dt

for the Green’s function forD, it follows trivially that for all IU domainsD,HD(x, y) � CD'1(x)'1(y),
uniformly on x, y 2 D. Integrating over D we see that

(5.13) Ex [⌧D] � CD'1(x).
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Take ⌘ = 1/2. Let us first assume p > 1. Applying (5.12) we have for all x 2 D,

Ex [⌧
p

D
] = p

Z
1

0
t
p�1Px (⌧D > t) dt

= p

Z
t0

0
t
p�1Px (⌧D > t) dt+ p

Z
1

t0

t
p�1

Z

D

KD(x, y, t/2)dydt

 p t
p�1
0 Ex [⌧D] +

3

2
'1(x) p

Z
1

t0

t
p�1

Z

D

e
��1(D)t/2

'1(y)dydt

 C1Ex [⌧D] + C2'1(x).

where C1, C2 are constants that depend on p and D. Taking into account (5.13) we then obtain
that

Ex [⌧
p

D
]  Cp,DEx [⌧D]

for some constant Cp,D that only depend on p and D. Thus

sup
x2U

Ex [(⌧D � ⌧U )
p]  Cp,D sup

x2@U

Ex [⌧D]

 Cp,D sup
x2D\U

Ex [⌧D](5.14)

On the other hand, for x 2 D\U , we have Px(⌧U > 0) = 0, then

sup
x2D\U

Ex [(⌧D � ⌧U )
p] = sup

x2D\U

Ex [⌧
p

D
]

 Cp,D sup
x2D\U

Ex [⌧D] .(5.15)

Recall the fact that for a bounded Lipshitz domains, Ex [⌧D]  CD (d (x, @D))� where � > 0 de-
pends on the Lipszhitz character of the domain. For the proof of the case d = 2, which extends to
any d � 2, see [31, Proposition 2.3] or the remark in [10, pg 199]. This proves the case p � 1 in
(i).

If 0 < p  1, then Jensen’s inequality gives that Ex [⌧
p

D
]  (Ex [⌧D])p and (ii) follows from (5.11)

and and (5.15). ⇤

Proposition 5.1 (Continuity of Mp). For any p > 0, the functional Mp (D) is continuous in the
class C or SC with respect to the Hausdorff metric.

Proof. Fix p > 0. We first prove Mp is continuous in the class SC. Showing Mp is continuous in
the class C is done similarly. Let {Dn} 2 SC such that Dn ! D 2 SC as n ! 1 with respect to the
Hausdorff metric. We show Mp (Dn) ! Mp (D) as n ! 1.

There exists a sequence {tn} ⇢ R+ such that tn ! 1 and tnDn ⇢ D for every n. By monotonicity
of exit times we have for all x 2 D almost surely that

(5.16) ⌧tnDn  ⌧D.

If 0 < p < 1, using the elementary inequality a
p � b

p  (a� b)p whenever 0 < b  a, we have
that Ex [⌧

p

D
]  Ex

⇥
⌧
p

tnDn

⇤
+ Ex [(⌧D � ⌧tnDn)

p] for all x 2 D. By Lemma 5.2 (ii) and (5.8) we have
that

Mp (D)  Mp (tnDn) + Ex [(⌧D � ⌧tnDn)
p]

 Mp (tnD) + C�,D sup
x2D\tnD

(d (x, @D))�p

 Mp (tnD) + C�,D (dH (D, tnD))�p(5.17)

where the constant C�,D depends only on D.
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For p � 1, using the elementary inequality x
p�y

p  px
p�1 (x� y) whenever 0 < y  x, we have

that

Ex

⇥
⌧
p

D
� ⌧

p

tnDn

⇤
 pEx

h
⌧
p�1
D

(⌧D � ⌧tnDn)
i

 p (Ex [⌧
p

D
])
(p�1)/p

(Ex [(⌧D � ⌧tnDn)
p])

1/p
.(5.18)

Again by Lemma 5.2 (i), we have,

sup
x2D

Ex [(⌧D � ⌧tnDn)
p]  Cp,D sup

x2D\tnDn

d (x, @D)�

 Cp,D dH (D, tnDn)
�

so that

(5.19) sup
x2D

Ex

⇥
⌧
p

D
� ⌧

p

tnDn

⇤
 C

1/p
p,D

pMp (D)(p�1)/p
dH (D, tnDn)

�/p
.

Thus using (5.19) we have

(5.20) Mp (D)  Mp (tnDn) + C
1/p
p,D

pMp (D)(p�1)/p
dH (D, tnDn)

�/p
.

Together with (5.17) we then conclude that there exist constants Cp,D, C�,D > 0 such that

Mp (D)  Mp (tnDn) + C�,D (dH (D, tnDn))
p 1(p<1)(5.21)

+ C
1/p
p,D

pMp (D)(p�1)/p
dH (D, tnDn)

�/p 1(p�1)

Combining (5.16), (5.21) and the fact that Mp (tnDn) = t
2p
n
Mp (Dn) gives the desired result. ⇤

5.4. Proof of Theorem 1.2 and a conjecture on the extremal. We may finally prove our main
result of this section.

Proof of Theorem 1.2. Fix p > 0. We consider the class of symmetric bounded convex domains
SC. The proof is the same for C. Let Mp,d (SC) = sup

D2SC
Gp,d (D) and pick {Dn} ⇢ SC such that

lim
n!1

Gp,d (Dn) = Mp,d (SC) .

By scaling we may assume the domains Dn are all contained in a fixed compact set K. By the
Blaschke selection Theorem, there is a subsequence {Dnk} ⇢ SC such that Dnk ! D 2 SC with
respect to dH. By Lemma 5.1, we know that D 2 SC. We can rename this subsequence Dn. By
Equations (3.2) and (3.3) of [35, page 12] we know thatD has a non-empty interior. By Proposition
5.1, Mp is continuous with respect to the Hausdorff metric in the class SC and �1 (D) is also well
known to be continuous with respect to dH (see [36]). Thus

Gp,d (D) = lim
n!1

Gp,d (Dn) = Mp,d (SC) ,

as needed. ⇤

With the existence of extremals guaranteed for all dimension and all 0 < p < 1, we have the
following.

Conjecture 5.2 (Conjecture for Mp,d (SC)). With the supremum taken over all domains in SC, we
have

Mp,d (SC) = �
p

1(Qd)E0[⌧
p

Qd
],

where

Qd = {(x1, x2, . . . , xd) 2 Rd : |xi| < 1},
denotes the unit cube in Rd.
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5.5. Remarks on conjectures; rectangles, triangles, and ellipses.

Remark 5.3 (Rectangles). Conjecture 5.2 in general seems to be nontrivial. In fact, even the
simplest case of rectangles does not seem obvious. More precisely, let a = (a1, a2, . . . , ad), where
ak > 0 for all k. Set Ra = {x = (x1, x2, . . . , xd) : |xk| < ak, k = 1, . . . , d}. (We call Ra a rectangle.)
Denote the origin in Rd by 0. In this case we would want to show that for all a 2 Rd,

(5.22) �
p

1(Ra)E0

⇥
⌧
p

Ra

⇤
 �

p

1(Qd)E0

h
⌧
p

Qd

i

with equality only when Ra = Qd. Since the eigenvalues of both Ra and Qd are explicit and
the components of the Brownian motion are independent, the inequality (5.22) can be stated in
several different forms. Here is one. Let Iak = (�ak, ak) and recall that I = (�1, 1). Then (5.22)
is equivalent to

(5.23)

 
dX

k=1

1

a
2
k

!p Z
1

0
p t

p�1
dY

k=1

P0(⌧Iak
> t)dt  d

p

Z
1

0
p t

p�1 (P0(⌧I > t))d dt.

Using the fact that P0

⇣
⌧Iak

> t

⌘
= P0

⇣
⌧I >

t

a
2
k

⌘
we may even assume that

a1 = 1 < a2 < · · · < ad.

Using the fact that we know the heat kernel for an interval in terms of the eigenfunctions
expansion (all which are explicitly given), the inequality has a rather appealing form. Let us look
at the case d = 2 and p = 1. Then (5.23) is equivalent to

�
1 + a

2
�
"
1� 32

⇡3

1X

n=0

(�1)n

(2n+ 1)3
sech

✓
n+

1

2

◆
⇡

a

�#
,

 2

"
1� 32

⇡3

1X

n=0

(�1)n

(2n+ 1)3
sech

✓
n+

1

2

◆
⇡

�#
,(5.24)

for all a > 1.
Unfortunately, despite its simplicity and all its possible formulations, we have not been able to

fully verify (5.22) for all rectangles even in the case d = 2 and p = 1.

Remark 5.4 (Triangles). It may be of interest to mention as well that, to the best of our knowledge,
the special case of Conjecture (5.3) for triangles does not seem to have been proven:

(5.25) �1(T ) sup
x2T

Ex[⌧T ]  �1 (T) sup
x2T

Ex [⌧T] ,

for all triangles T , where T is the equilateral triangle. Furthermore, equality holds only when
T = T. As pointed out in [35, Corollary 3.7], with explicit expressions for Ex [⌧T] and �1(T), we
have

�1 (T) sup
x2T

Ex [⌧T] =
8⇡2

27
⇡ 2.9243.

Combining this with (5.5) and (5.7), we see that

(5.26) �1 (B) sup
x2B

Ex [⌧B ] < �1 (Q2) sup
x2Q2

Ex [⌧Q2 ] < �1 (T) sup
x2T

Ex [⌧T] .

For any convex domain D ⇢ R2 with finite inradius RD (supremum of radii of all disc contained
in D), it holds that

(5.27)
1

2
R

2
D

 sup
x2D

Ex[⌧D]  sup
x2S

Ex[⌧S ] = R
2
D
,
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where S ⇢ Rd is the infinite strip of inradius RD. The left hand side inequality is trivial by
domain monotonicity of the exit time. For the second inequality, we refer the reader to [59]. For
a different proof, which extends to all moments, see [12]. In [16], it is proved that

(5.28) �1(T )R
2
T
 �1(T)R2

T =
4⇡2

9
,

with equality only when T is the equilateral triangle T. For a different proof of (5.28) which uses
dissymmetrization techniques, see [58]

Although the inequalities (5.25) and (5.28) are in fact quite different and one does not imply
the other, the validity of one lends credibility to the validity of the other. One can also see, for
example, that with (5.27) inequality (5.28) gives (5.25) with a factor of 2 on the right hand side.

Remark 5.5 (Ellipses). As a final remark we point out that for p = 1, both conjectures (5.3) and
5.2 hold for ellipses. In fact, the following stronger statement holds. Let

Ea,b :=

⇢
(x, y) 2 R2 :

x
2

a2
+

y
2

b2
< 1

�
.

Then, with B the unit disc in R2,

(5.29)
⇡
2

4
 �1(Ea,b)E(0,0)[⌧E(a,b)

]  �1(B)E(0,0) [⌧B ] =
j
2
0

2
,

To prove this inequality, it suffices to show that

(5.30)
⇡
2

4

✓
a
2 + b

2

a2b2

◆
 �1 (Ea,b) 

j
2
0

2

✓
a
2 + b

2

a2b2

◆
.

Assuming for the moment the validity of (5.30), observe that since it is easy to check that

E(x,y)

⇥
⌧Ea,b

⇤
=

a
2
b
2 � b

2
x
2 � a

2
y
2

(a2 + b2)
,

by showing that the right hand side satisfies 1
2�u = �1 with zero boundary conditions, we have

E(0,0)

⇥
⌧Ea,b

⇤
=

a
2
b
2

a2 + b2

Thus the right hand side of (5.30) implies the right hand side of (5.29).
The left hand side of (5.30) is trivial by domain monotonicity. Since Ea,b ⇢ (�a, a) ⇥ (�b, b), it

follows immediately that

�1 (Ea,b) � �1 ((�a, a)⇥ (�b, b)) =
⇡
2

4

✓
a
2 + b

2

a2b2

◆
.

The right hand side inequality in (5.30) is due to Polyá and Szegö and can be found in [57, pg.
98]. Their proof is based on the technique known as conformal transplantation. To do so, one can
use a test function '(x, y) with ' |@Ea,b= 0 which is an obvious modification of the eigenfunction
for the disc and plug it into the Rayleigh quotient. Such function is given by

'(x, y) = J0

 
j0

r
x2

a2
+

y2

b2

!
,

where J0 is the first Bessel function and j0 is its first positive root. See [57] for details.

Acknowledgement. We would like to thank Hugo Panzo for useful discussions on the topic of
this paper. We would also like to thank an anonymous referee for helpful comments that helped
improved the exposition of this paper.

19



References

[1] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical
tables, volume 55 of National Bureau of Standards Applied Mathematics Series. For sale by the Superintendent of
Documents, U.S. Government Printing Office, Washington, D.C., 1964.

[2] M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure Appl.
Math., 35(2):209–273, 1982.

[3] Andrews and J. Clutterbuck, Proof of the fundamental gap conjecture. J. Amer. Math. Soc., 24(3):899–916, 2011.
[4] C. Bandle, Isoperimetric inequalities and applications, volume 7 of Monographs and Studies in Mathematics. Pitman

(Advanced Publishing Program), Boston, Mass.-London, 1980.
[5] R. Bañuelos, Intrinsic Ultracontractivity and eigenfunction estimates fir Schrödinger operators. J. Func. Anal. 100:

181–206, 1991
[6] R. Bañuelos and P. J. Méndez-Hernández, Symmetrization of Lévy processes and applications, J. Funct. Anal. 258

(2010), no. 12, 4026–4051. MR2609537
[7] R. Bañuelos, On an estimate of Cranston and McConnell for elliptic diffusions in uniform domains. Probab. Theory

Related Fields, 76(3):311–323, 1987.
[8] R. Bañuelos and K. Burdzy, On the “hot spots” conjecture of J. Rauch. J. Funct. Anal., 164(1):1–33, 1999.
[9] R. Bañuelos and T. Carroll, Brownian motion and the fundamental frequency of a drum. Duke Math. J., 75(3):575–602,

1994.
[10] R. Bañuelos and B. Davis, Heat kernel, eigenfunctions, and conditioned Brownian motion in planar domains. J. Funct.

Anal., 84(1):188–200, 1989.
[11] R. Bañuelos and T. Kulczycki, Spectral gap for the Cauchy process on convex, symmetric domains. Comm. Partial

Differential Equations, 31(10-12):1841–1878, 2006.
[12] R. Bañuelos, R. Lata�a, and P. J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to

symmetric stable processes. Proc. Amer. Math. Soc., 129(10):2997–3008, 2001.
[13] R. Bañuelos and P. J. Méndez-Hernández, Sharp inequalities for heat kernels of Schrödinger operators and applica-

tions to spectral gaps J. Funct. Anal., 176(2):368–399, 2000.
[14] R. Bañuelos, M. Pang, andM. Pascu, Brownian motion with killing and reflection and the “hot-spots” problem. Probab.

Theory Related Fields, 130(1):56–68, 2004.
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