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Abstract. For domains in R%, d > 2, we prove universal upper and lower bounds on the product of
the bottom of the spectrum for the Laplacian to the power p > 0 and the supremum over all starting
points of the p-moments of the exit time of Brownian motion. It is shown that the lower bound is sharp
for integer values of p and that for p > 1, the upper bound is asymptotically sharp as d — oo. For all
p > 0, we prove the existence of an extremal domain among the class of domains that are convex and
symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube
is extremal.
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1. Introduction and statements of main results

There is a large class of results often referred to as generalized isoperimetric inequalities that
have wide interest in both the mathematics and physics community, see Polya and Szego [57] and
Bandle [4]. At the heart of these inequalities is the classical isoperimetric inequality which states
that among all regions of fixed volume, surface area is minimized by balls. In spectral theory
among the classical results is the celebrated Rayleigh-Faber-Krahn inequality which states that
among all domains D C R? having the same volume as a ball D*,

(1.1) A(D) > A (DY),

where \; (D) denotes the first Dirichlet eigenvalue for the Laplacian in D. Further, equality holds
if and only if D is a ball. Without loss of generality we take D* to be centered at the origin.
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On the other hand, it has also been known for many years that one can state many of these in-
equalities in terms of the exit time of Brownian motion from the domain D. This probabilistic con-
nection provides new insights and raises new interesting questions on their validity for processes
other than Brownian motion, such as Lévy processes. To illustrate, let B, be a d—dimensional
Brownian motion starting at the point « € D and let 7p = inf {¢t > 0| B; ¢ D} be its first exit time
from D. Using the symmetrization techniques for multiple integrals in [23,44,45] it follows that

(1.2) sup P, (7p > t) <Py (1p« > t),
xeD

for all ¢ > 0. In particular, for any p > 0,

(1.3) sup E; [p] < Eo [7D-].

zeD
Equality holds in these inequalities if and only if D is a ball. Inequality (1.1) follows from inequality
(1.2) by taking into account the classical result that for any D C R4,

(D)

5
In a similar way, the classical isoperimetric inequality can be obtained from isoperimetric in-
equalities for exit times of Brownian motion using small time behavior. These are now classical
results with many extensions and applications that can be found in [2, 6,25, 60] and many other
references given in these papers.

From the connections among (1.1), (1.2) and (1.3) we can already observe a competing relation
between \(D) and sup,cp E, [7p]. Indeed fine connections between the two quantities have
been investigated for many years by many authors. Consider the domain functional G (D) =
A1 (D) sup,ep E; [7p] . It was proven in [9] that for all simply connected domains D in R?,

)
(1.4) 2<G(D) < % ~ 6.08.
In higher dimensional spaces, it is easy to show the lower bound G (D) > 2 for all domains D C R4
(see [9] and Section 4 below). In [17,35] the authors independently show that 2 is in fact a sharp
lower bound for all bounded domains. Many results have been devoted to obtaining the upper
bound estimates for G(D) (see [18], [34] and [61]). In particular the recent paper [61] improves
the upper bound for all general domains to

Vd
2

1
tlggo n logP, (tp >t) =

d 1
(1.5) Z—i— 5<1+4log2)+2.

With the leading term %, this bound is asymptotically sharp as d — oo. However the question
of proving a sharp upper bound is wide open even when restricted to special classes of domains
such as planar simply connected or convex domains.

The main object of study of this paper is the shape functional
(1.6) Gp,a (D) = N/ (D) sup E,, [tD].
zeD

Here Ay (D) is the first Dirichlet eigenvalue for the Laplacian in D. When the Laplacian has no
discrete spectrum in D, then we take A; (D) to be the bottom of the spectrum for the Laplacian

2
which is given by A; (D) = inf % where ¢ € H} (D), ¢ # 0. The p-moments of the exit time
D

E, [75] can also be stated in terms of the torsion function. For 0 < p < oo, the p—torsion moment
2



function u, : D — Ry is defined by
1
=———FE,[1]].
Tt e o]

Not to be confused with the p—torsion function related to the p-Laplacian [24,32,34]. When k € N,
and sup, . p ux(z) < oo, these functions are solutions to

(1.7) up(z)

(1.8)

—Au; =1 uy € H} (D)
—Aup =up—1 u, € H} (D), k=2,3,...

When p = 1, ui(z) = LE,[rp] is the classical torsion function which has been extensively studied
in the literature with applications to many areas of mathematics and mathematical physics. See
for instance the classical works [4,41,57].

For general p, the literature in the study of exit time moments and their applications to dif-
ferent fields is extremely large by now. In the works [19-21, 48] Boudabra-Markowsky studied
exit time moments, proved results on the location of their maximum and gave conditions for their
finiteness. The k-torsion moment functions u; have also been applied to the study of heat flow
by McDonald-Meyers-Meyerson in [50-52]. In [28], de la Pefia-McDonald provide an algorithm
that produces uniform approximations of arbitrary continuous functions by exit time moments.
We also point to the work of [38], where Hurtado-Markvorsen-Palmer use the L' norms of uy to
give an alternative characterization for A;(D) on Riemannian manifolds. In the closely related
papers [27,33], the authors give upper bounds on \; (D) using the L! norms of exit time moments
on manifolds. Moreover, obtaining precise spectral bounds for the exit time in large dimensions
has been of interest in other settings. For example in [54], Panzo obtains a spectral bound for the
torsion function of symmetric stable processes that has the correct order of growth. For other
applications to the study of exit time moments, torsional rigidity, stability, the study of minimal
sub-manifolds, and optimal trapping of Brownian motion and gradient estimates, we refer the
reader to [37,40,43,46,49].

Our main goals in this paper are to investigate sharp bounds for G, (D), D € X where X
contains all domains in R? such that A;(D) > 0; and prove the existence of their extremals in the
class of convex domains which are symmetric with respect to each coordinate axis.

For the rest of this paper we will work with the function E, [77,] and leave the trivial translation
of the bounds for u,(x) to the interested reader. For a given class of domains D, define

(1.9) M, 4(D) = sup Gpa(D),
DeD

and

(1.10) my a(D) = [i)lelg Gp.a(D).

Our first main result provides a sharp asymptotic upper bound for M, 4(X') and a sharp lower
for my, a(X).

Theorem 1.1 (Sharp Lower and Asymptotic Upper Bounds in X). Forp > 1,

_ Mya(x) 1

(1.11) B T
Moreover, if p > 0 then

(1.12) 2°T (p+ 1) < mp,a(X).

Furthermore, (1.12) is sharp when p takes values in N.
3



The upper bound asymptotic (1.11) is accomplished by working on precise universal upper
bounds for G}, 4 (see Section 2, more precisely, Theorems 2.1 and 3.1). The lower bound (1.12)
has been independently obtained by Biswas-Lo6rinczi in [15], but only for the restricted class of
general convex domains. We prove the lower bound holds for any domain as long as the bottom
of spectrum is positive. Moreover, our result proves sharpness for any integer p.

Our second main result concerns the existence of extremals for classes of domains. Given the
isoperimetric inequalities (1.1) and (1.3) (as well as other inequalities where balls are extremals
in X'), one could speculate about the maximality of a ball B for these extremal problems. However
it was pointed out in [9, pg. 599] that

(1.13) M (B)sup E, [78] < A1 (T) supE, [7rp],

reB zeT
where T is is the equilateral triangle. The existence of maximizers in the class of convex domains
is proved in [35]. In the same paper the authors conjecture that when d = 2, the equilateral
triangle T is an extremal for M; o(X).

In this paper we are interested in the extremals, particularly their existence, for the shape
functional G}, 4 among the class of bounded convex domains that are doubly symmetric (sym-
metric with respect to the both coordinate axes). There have been many interesting problems
concerning the geometry of the Laplacian in such domains and substantial progress has been
made. We refer the readers to some of this large literature [3,8,11, 13,14, 30, 39, 55].

Definition 1.1. Let C be the class of bounded convex domains in R%, d > 2. Let SC be the subclass
of domains in C that are symmetric with respect to each coordinate axis.

We obtain the following result.

Theorem 1.2 (Existence of extremals in C or SC). For anyp > 0, d > 2, the upper bounds Mpyd(C)
and M, 4(SC) admit extremals.

Remark 1.3. The case for p = 1 and the class C is proved in [35]. Our proof of Theorem 1.2
depends on a key estimate (Lemma 5.2) which estimates the p—moment of the difference (7p—7v),
where U ¢ D C R? and D is a bounded Lipschitz domain. This in turn will allow us to show in
Proposition 5.1 that G, 4 is continuous with respect to the Hausdorff distance. This is quite
different from the proof in the special case in [35, 36] which uses purely PDE techniques.

The paper is organized as follows. Upper bounds are contained in Sections 2,3 in Theorems
2.1 and 3.1. The proof of Theorem 1.1 is split into Sections 3 and 4. The proof of the asymptotic
upper bound (1.11) is given in Section 3. The proof of the lower bound (1.12) is given in Section
4. In Section 5 we discuss the problems of finding extremal domains for G, 4 restricted to various
subclasses of domains. The proof of Theorem 1.2 is given in Sections 5.3 and 5.4. This section
also contains a conjecture on the extremal domain for the class SC, Conjecture 5.2.

2. Upper Bounds for M, 4(X)

In this section we obtain some preliminary upper bound estimates that will allow us to prove
the sharp asymptotic upper bound for M, 4(X), which will be done in Section 3.

Let Kp (z,y,t) be the Dirichlet heat kernel for Ap in the domain D. The transition density pp
for Brownian motion killed upon leaving D is given by

PD (xvyvt) = KD (l’,y,t/?) )
4



as %A p is the generator of Brownian motion. We can then write

E[ng]zp/ PP, (1p > t) dt = / /tp 'pp (z,y,t) dydt

=2Pp / / PUK b (x,y, ) dyds.
0

We also recall the classical upper incomplete gamma function

F(s,x):/ u* e du.

Theorem 2.1. For any p > 0, we have

(2.1) Mpa(X) <2°T(p+ 1)Ci(d, p),
where
(jl(d,p):::
_ aP 1 e¥4/2 | T(d) AN T (p,(1-a/2)
(2.2) a>0hE e {2pr G+ 1) T 507\ T(d/2) (H \/g) (1—or }

Proof. Forany D € X, since E [r]] = fo tP~1P(rp > t)dt. We consider splitting the integral at the
bottom of the spectrum \; of the Dirichlet Laplacian. Precisely, for any x € D and a > 0 we have

e}

a/i
E;[rp] = p/o PP, (tp > t)dt er//A PP, (rp > t) dt
a/ A1l

a” <
(2.3) < /\p +p/ PP, (tp > t)dt
a/M

Let I = f;/o)\l tP=P, (tp > t) dt. The theorem is proved upon obtaining the estimate for I that we
give in the next lemma. O

Lemma 2.2. Foranyx € D, a > 0, we have

Le4/2 [ T (d) AN T (p,(1-¢a/2)
@b L= T Ty (+7)

NG

The proof of the above lemma relies on some improvement of Vogt’s result in [61]. We split the
major steps into the lemma and proposition below.

Lemma 2.3. Let D C RY be measurable, a > 0, and let L be a bounded operator on L*(D)
satisfying

(2.5) [em@PwLer |, <1

for allw € D, where p,, (z) = | — w|,w € R%. Then

V2% | T (d)
Elooroo = (2a)? \| T (d/2)

(2.6)

Proof. The proof is essentially the same as in [61, Proposition 2.5]. Note that || L f||- = sup,,cp ||[e”*"* Lf||c-
Then we have
e Lflloo < lle™ % fll2 < [le” " [|2]| f]loo-
5



Let 04_1 denote the surface measure of the unit sphere, then the conclusion follows from the
estimate below.

lemer |5 = /6_2"‘"w_y‘><p(y)dy§ /e‘Qa‘y'dy

o : 212 T (d)
= 04— e 20 pd=lgqy = .
- / T (d/2) (20)°

Proposition 2.1. For all € € (0, 1], we have

/2
He—t(—AD)H < od/4 V2 I'(d) ( 1) e—(1=Ont

e = gy T\t R

for t > 0. In particular, forallxz € D and t > 0,

(2.7) P, (rp > t) < e/*

d/2
V2 I'(d) <1 + 1) (-0
(8a4)"*\ I'(d/2) Ve

Proof. The proof is similar to Theorem 2.1 in [61]. Here we only sketch the key steps. Consider

the operator H = —Ap — )y, it is a self-adjoint operator in L? (D) with the bottom of spectrum
A1 (H) = 0. Clearly the heat kernel of e~*/ has the Gaussian upper bound

1 = y/?
K < et _
| t(x7y)| € (47Tt)d/4 exp < 4t

forallt > 0 and a.e. z,y € D. It then holds that (see proof of Theorem 2.1, page 43 in [61]) for
any ¢ € (0,1]

/4
(2.8) He_apwe_tHeapw H2~>oo < (87T6t)_d/4 (1 + ;) eMetg(1B)a’etta’(1-e)t,

Applying Lemma 2.3 to L = e~ */ and using (2.8) we have that

d/a
et < Vord/t [ T(d) (8met)~ ¥ (14 1 et o(14B)a’t
P00 T (90) 2\ T'(d/2) 8 ’

taking o? = 7(11/545) - we obtain
~ T (d) —asa (L4 Be)t 1\
tH d/4 /4 Aret+d/4
le | .. < V2rY T (d/2) (8et) ( g 1+ 3 e /.

Optimizing the right hand side of the above inequality by taking 5 = ¢~ /2 we have

/2
HeftHH < /4 V2 I'(d) .<1+ 1 ) ehiet

e =0 (g T(d/2) Ve

This then completes the proof. O



Proof of Lemma 2.2. By (2.7) we have

oo
I:/ PP, (1p > t)dt
a/)\l

/2 poo Aqt
(29) S 6d/4 \/z - I (d) <1 4 ]‘> / tpflef(lfe)Tldt
(8a)¥*\ T'(d/2) Ve />

Le1/2 | T (d) AN T (p,(1-¢a/2)
2 s\ T/ (” ) T—a'

Ve
O

Remark 2.4. For the interested reader, we remark the following numerical estimate as a conse-
quence of Theorem 2.1. In particular, when p = 1 one can obtain the following bound

M 5(X) < 2C1(2,1) < 2f1.5 (1.65659,0.173247) < 2 - (2.03785) = 4.0757.

where
P . 43 | T (d) (1 . 1)””2 L(p,(1-¢)a/2)
’ 2C(p+1)  T(p)gay*\ T (d/2) Ve (1-¢)f

Moreover, we have the following corollary.

Corollary 2.2. We have
d 1
(2.10) My q(X) < im =:2C5(d, 1).
Here, y = yq € (0,1) is the unique solution to
(2.11) —d+dyy+ (4+440)y+ (2d)ylog (1 +1/\/y) /2) =0, y € (0,1),
where
Aq = log [Qd/%dfﬁ i ] )
&)Yt | T(d/2)

and
li =1.
o0 71

Proof. From (2.2) we have

Ci(d,1) == x>0}g§y<1 f(z,y)

where f: Ry x [0,1] — R, is defined by

e AVE [T@ (N 1
f(x,y)_2+(8d)d/4 I'(d/2) <1+\/g> '

Note that

fz (:c,y) =

1o1eVa @) (0 1N
2 2@q)¥*\ T'(d/2) VY

we then obtain the minimizer of f(-,y) at

2 e¥/4/2 | T (d) 1 d/2
v (1y)log[(8d)d/4 T (d/2) (H\/z?) '

7




We are then led to minimize the one variable function

1 e4\/2 | T (d) < 1\%? 1
9(y) = f(zy,y) = 0 1+) +
) (7:0) -y 8 8a)*\ T'(d/2) VY (1-y)
glog(%) +1+ Ay
= Ty
where
2d/2 d/4 2 T
Ad = IOg € d/2/> (d) .
(8d) I'(d/2)
Since
(1= )+ (dlog (BHT) +at44,) y
(2.12) 9'(y) = 3 ;
4(1-y)y
if we assume that y, is a solution to ¢'(y) = 0, then
d d 1+1
(2.13) (14 Ag) = = (1= Via) — 5 log (W>
Yd 2 2
Plugging (2.13) back in (2.12) we have that
g(yq) = a1
Y 4y 1+ )

hence we obtain (2.10). Next we show that (2.11) has a unique solution. Let F,; : (0,1) — R be

d dy d 1+1/y

We easily find that lim,_,o Fy(y) = —% < 0, Fy(1) = 1 + A4 > 0 and F)(y) > 0. Therefore the
conclusion follows. O

Remark 2.5. From the above corollary we can deduce that limy_., y4 = 1. First it can be easily
shown that y, exists (for instance see (3.3) in [61]). From (2.13) we have

4+ 4A 1+1/\/y
: dd)yd—lx/y?%dlog( 2/ﬁ>

Taking d — oo on both sides we then obtain y,, = 1. This limit coincides with the conclusion in
[61], but the corollary is sharper comparing to [61] by providing an almost explicit expression for
Yd.

3. Sharp asymptotics for M, 4(X'): proof (1.11) of Theorem 1.1

This section concerns the asymptotic estimates for M, 4(X) in high dimensions. First, we give
an upper bound estimate of M, 4(X) by analyzing the variational problem in Theorem 2.1, which
provides the correct leading order in d for all p > 1.

Theorem 3.1. For p > 0,
1

M, 4(X) < 2P (Z +evd+1- -

d),,c2 (d,p)

where

o0
Ca(d, p) = 1+p/ L0 -v(S+evarn) -1 g,
1
8



and

1 1 1
3.1) c=—[5(1+>log2), and yj=— .
4 4 <1+ 166)

5vV/d

The proof of Theorem 3.1 will require the following elementary estimate.

Lemma 3.1. With c and y4 as in (3.1) we have

. 1 d/2
(3.2) log [21—% (1 + )
& [ VYd

+1<(1—ya) <‘;+c\/3+1>.

Proof. First note
1 d 1+1
LHS = log2 +  log (W’Td) +1.

Denote by v := ¢ and set z = - We can easily check that 0 < z < 1. Clearly 1 + 2z = \/de and
hence
5 d 1+(1+22)\ 5 d
LHS = —72 + =1 — ) =Sk + =1 1 .
il —I-Qog( 5 22 +20g( + )
On the other hand
1 d 8 8 r+2% d ( 8 2)
RHS=|1-—— | < 1++) == 145z +—a?).
( (1+2x)2>8< Vd  d)  (1+421)°2 7’
Thus it suffices to show that for all « € (0,1),
5, x + a? ( 8 2)
-z +log(l+2)< ——= (1+bz+ —=z° ).
2 s(l+2) (1+22)° 72
This can be shown by elementary calculus. See details in [61, page 46]. O

Proof of Theorem 3.1. Let

/2
1 1
f(z,y)=a"+2"pCq <1+) —l (p, (1 —y)z/2),
e %) aopt e
ed/4 rd
where Cy; = ﬁ #/)2) Then
P — .
PL+ V0D = ot T
First by letting
1 \%2
folz,y) = pa? ™t [ 1 = Cye~1v)e/2 (1 + > —0
=(7,9) N
we obtain the critical point
2 1\%2
3.3 — oe | (14 2 .
(3.3) Ty = og d<+\/§>
Hence

9» 1\ “?1\"
f(xlny):(ly)p<10g Od<1+\/§> ])

ey (1e ;y)d” e ( log [cd (1+ ;@yﬂ) |

9



It is known that (for instance see [1, 6.1.18])

L) _TRE/2) _ e 1/2(d>d/2
I'(d/2) T(d/2) 2¢ ’

hence we have
(3.4) Cy < 274/241/4,
Combining (3.2) and (3.4) we get

1\ 4/2 o /2
log [Cyq <1 + @) ] < log [242 (l—i- > ]
(3.5) < (1-ya) (g +evd + 1)
Using (3.5) in f (x,,y) we then obtain
(3.6) f(xyd,yd)§2p<<‘8i+cx/&+1)— 1_1yd>p+(1p2ypd)pn,
where

1\ 42
I =Cy (1—1—) T' | p,log
VYd

a1+ 2)")

d/2
Making the substitution = = ulog {Cd (1 + \/%) } and plugging in (3.5) we have

1 d/2 1 d/2T\ P
3.7 IT=Cy |1+ — 1 Call+—
e (147 <°g (14 ) D
00 1 d/2\ ~Y
ey ) d
X /1 U <d<+\/% ) U

(3.8) < Cy <1+\/117d)d/2 (lyd)p<<g+0\/&+ 1) (1_1yd)>p

00 1 d/2\ Y
X w O (1 + > du
/1 ( T Vi

Moreover, clearly from (3.5) we have

1\ 2\ " ,
(3.9) C <1+) < e—u[0—va) ($+evir1)-1],
(d Vi
Hence
d ! pw—llf 1—ya)(d+cvd+1)—1
(3.10) 11 < (1-ya)® §+c\/E+1 - ypLe(-w [y (Etevarn)—1] g
—Yd 1

Using (3.10) in (3.6) we arrive at

d 1 P fe%s)
f(@yqsya) <29 (8 Fevdtl-g yd> {1 +p/ upP~ted=w[(—va)(§+evat)=1] g, |
- 1

In the lemma below we show that our result is indeed sharp, by comparing to a unit ball.
10



Lemma 3.2. Let B (0,1) C R be the unit ball centered at zero, then

d p
<4> <N (B(0,1)) sup E, [Tg(o 1)} ,
z€B(0,1) ’
forp > 1.
Proof. It is well known that A; (B(0,1)) > % (for instance, see [42]). By a simple calculation we
have that E, [7p(0,1)] = #. Hence
1
sup [E, [73(0,1)] =E [TB(OJ)} = 4
xz€B(0,1)

By Jensen’s inequality we have
dar
A1 (B(0,1)) - Eg [T};(O,l)] > N (B(0,1) - (Eo [ro.)])" = o

Proof of (1.11) of Theorem 1.1. From Theorem 3.1 we have

d 1 p
Mpa(X) <28 (= +ceVd+1— —— ) Ca(d,p),
8 1—yq
where
Cod,p) =1 +p/ L0 -va(§evarn)-1] g,
1
and
1 1 1
Ya = ——— 3, ¢= 7 5<1+10g2).
(1 + 16c) 4 4
5vd

First we claim that limg_,o, C2(d, p) = 1. Note that
d 4
(1 —yaq) (8—&—6\/&—&—1) —121+€c\/g—>oo

as d — oo. Hence when u > 1 we have

lim uP e
d— oo

w0 (§+evarn)-1] _

Moreover, since
/ wp~te(=w[(—ya) (§+evd+1)=1] g, < / WP=1e0=) dy, < eI'(p),
1 1
by the dominated convergence theorem we obtain that

o0
(3.11) lim wP—te(=w[A-va)(§+evd+1)=1] g, — .

d—oo Jq

It now follows readily that

M, 4(X 1
lim sup w < —.
d—o0 dr 4r
Together with Lemma 3.2 we then obtain that
1 . My a(X)
< lminf ===
and concludes the proof of the asymptotic bound (1.11) of Theorem 1.1.

11



4. Lower bound for m, 4(X): proof of (1.12) of Theorem 1.1

We remark that the lower bound in (1.12) for p = 1 has been known for many years, as men-
tioned in [9].

Proof of (1.12) of Theorem 1.1. We first prove the inequality. Let us assume for the moment that
the domain D is bounded (or even just that it has finite volume). In this case we have a discrete
spectrum with a complete set of eigenfunctions on L?(D) and the eigenfunction ¢; corresponding
to A1(D) is in L°°(D). For this, we refer the reader to [29]. Since

(4.1) e M 20, (2) = /DpD(x, Y, t)e1(y)dy

integrating in time we find that

2p / —1,—A1t/2
I'(p)=p1(x Pl M2y

=p/ /tp_lpD(x,y,t)wl(wdydt
0 D

< supgiy) - (p [ tp-lpD<x,y7t>dydt>
yeD 0 D
')
D

(4.2) e1(x)

(4.3) = sup p1(y) E, [7
yeD

Since pI'(p) = I'(p + 1), this gives the desired lower bound by taking a supremum over all z € D.
To remove the boundedness assumption on D, let » > 0 and consider the open set D N B (0,r)

which is nonempty for large enough r. Since D N B(0,r) C D, we have E, [TgnB(O r)} < E, [7}]
and it follows that
-p
sup  E,[mB]> sup E, [TgmB(O T)] >2T(p+1)- <)\1 (DnB (0,r))> .
r€DNB(0,r) x€DNB(0,r) ’

Taking r — oo completes the proof of the lower bound.

It remains to prove the sharpness of (1.12) for integers p. For any d > 2, it is shown in
[17, Theorem 1] and [35, Theorem 3.3] that there exists a sequence of bounded domains D, C R?
satisfying

(4.4) 2 < \i(De,) sup Ey[rp, ] <2+ ep,
€D,

where ¢, — 0, as n — co. To finish, we need the following inequality whose proof we provide here
for completeness. (See for example [7, Corollary 1] and [22, Lemma 18.1])

Lemma 4.1. Let D C R? be a domain satisfying sup,.p E. [Tp] < co. Then for any k € N,

k
E, [Tg] < k! <sggEx [TD]> , ze€D.

Proof. By the Markov property and Fubini’s theorem we have for any a > 0,
oo (oo}
/ P (tp >t)dt=/ P, (tp > t+a)dt
a 0
= / E, [1(.,.D>Q)an (TD > t)] dt = E, [1(TD>0«)EXQ [TD]]
0

(4.5) < (sup E, [TD]> P, (tp > a).
xeD
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Multiplying both sides by ka*~! and integrating on a gives that

o0 oo oo 1
/ /m’H/ P, (tp > t) dtda = / t*P, (tp > t)dt = ——E, [rp™],
and -
(sup E, [TD]> / ka* P, (tp > a)da = (sup E, [TD]> E, [T}f’)] )
xeD 0 zeD
The desired inequality then follows by induction. O

Returning to the sharpness of inequality (1.12), fix £ € N. Let D, be the domains satisfying
(4.4). We claim that
A (Dgn)k - sup E, [T}i } < 2FK) + 2k - Kle, 4 o(ep)
€D, "
where ¢,, —+ 0 as n — oo.
Indeed, from Lemma 4.1 and the estimate (4.4).

k
A (Den)k' sup E, [Tl’ge } <\ (Den)kk! ( sup E, [mp, ])
z€D,,, " xz€D.,, "

k
=k! ()\1 (D.,)- sup E, [TDEJ> <k'(2+ en)k
xzeD

en

=2kl + 2k - Kle,, + o(ey).

This proves the sharpness of the inequality (1.12) and completes the proof of the Theorem. O

It is reasonable to conjecture that under the same assumptions as in Lemma 4.1, the inequality

p
(4.6) Ey [mh] <T(p+1) (Sup E. [TD])
xeD

holds for any p > 1. This leads us to the following conjecture.

Conjecture 4.1. The lower bounds (1.12) is sharp for any p > 1.

5. Extremal Domains for M, 4(C)

The main goal of this section is to prove that the shape functional

Gpa (D) = X (D) sup E, [7]
[AS

admits a maximizer in the class of bounded convex domains in R? or in the class of convex domains
which are symmetric with respect to each coordinate axis.

5.1. Motivation and preliminary discussions. While balls appear to be extremals for several
isoperimetric type inequalities (including the classical ones (1.1) and (1.3)), surprisingly they are
not extremals for Mpyd(X). For instance it is observed in [9, pg. 599] that
(5.1) A1 (B)sup E, [75] < A1 (T) supE,, [rr],
zEB z€eT

where T is is the equilateral triangle (see also [35, Corollary 3.7]). Moreover it was conjectured
in [35] that no extremal domain exists over the class of all domains.

Therefore it is reasonable, when looking for extremals, to restrict the class of domains. When
restricted to the class of convex domains, Payne showed in [56] that

2

(5.2) m1a(C) = .
13



From this it follows trivially that the minimizer domain over convex domains is given by the
infinite slab S; = R?"! x (—1,1). The existence of extremal for M; 4(C) is proved in [35]. The
authors further conjectured that when d = 2, the equilateral triangle T is an extremal. That is,

(5.3) My 5(C) =X (T) sugEr [7r] .
xe

5.2. Motivation, symmetric convex domains. Another class of domains that is worth investi-
gation is the class of doubly symmetric planar domains SC.

Regarding the question of extremals, it is not hard to see the ball fails again in the class SC. In
fact, with brief computations below we can show that

(5.4) A (B) sup E; [78] < A1(Q2) sup E; [1q,] -
z€EB T€EQ>2

First note that in both cases

sup E, [7B] = IE(0,0) (78]

z€B
and
sup E; [1q,] = E0,0) [7q.] -
TEQ2
Furthermore,
-2
(5.5) M (B)E ) [r5] = %0 ~ 2.8916,

where jg is the first positive root of the first Bessel function.
2
On the other hand, A; (Q2) = % and by independence,

P(Oyo) (TQZ > t) = PO(TI > t)IP()(T[ > t),

where I = (—1,1). The eigenfunction expansion for the heat kernel for the interval I (see [26,47])
leads to the formula

32 e (=1)" 1
(56) ]E(O,O) [TQZ] = [1 — ; 2 Wsech [(n + 2) 7T:|] .
Thus
2 32 (-1)" 1
(5.7) M(@2)Eo [ro,] = = [1 T msech Kn + 2) W”
~ 2.90843

which verifies (5.4).

Given conjecture (5.3), it is reasonable to conjecture that the extremal for M; »(SC), if exists,
is given by the square Qs := {(z,y),|z| < 1,]y| < 1}. In the next two sections we will focus on
proving the existence of the extremals for both classes C and SC.

5.3. Preliminary results. For any given domain D C R, define M,, (D) = sup,¢p E, [Th] so that
our function from (1.6) becomes

Gpa (D) =X (D) sup B, [7p] = A (D) My, (D).

Recall that for any two compact sets K1, Ko C R¢ we define the Hausdorff distance dy; by
dy (K4, Ks) = max{ sup d(z, Ks), sup d(Kl,y)} ,

e K, yeKo
14



where d(-, -) denotes the Euclidean distance in R¢. Therefore for any bounded open sets A4, B C R?¢
we have that

5.8 dy (A, B) = ma S inf d(x,y), s inf d(x, .
(5.8) 1 (A, B) mx{m%@yg}w (z,9) zeljlr\)B?/lG%A (z y)}

This definition is given by [36, Corollary 2.2.13]. In the sequel we use the fact that inclusion is
stable under convergence with respect to dy,. That is, take sets U,, ¢ D,, C R¢ forall n. If U,, — U
with respect to dyy and D,, — D with respect to dy, then U C D.

Lemma 5.1. Ifa sequence {D,,}5°, in SC converges to a set D € C with respect to the Hausdorff
metric, then D € SC.

Proof. Note that D is open. Take any z = (z1,x2,...,24) € D, then x € D,, for n large enough.
Since D,, is symmetric then (—xz1,...,24), (z1, —%2,...,24),..., (21, 22,...,—x4) € D,, for n large
enough. Since inclusion is stable under limits of the Hausdorff distance then

(—z1,...,24), (1, —T2,...,@d) ..., (®1, T2, ..., —24) €D
as well. This shows D is symmetric with respect to all axes. Convexity is well know. O

We will need the following key estimates on the p—moments of exit times in order to prove that
M, is continuous in the class SC and C.

Lemma 5.2. Suppose U C D C R%, where D is a bounded Lipschitz domain and U is a domain.
(i) Ifp > 1, then

(5.9) sup E, [(7p — 70)") < Cpp sup (d(z,dD))".
z€D xz€D\U
(ii) If0 < p < 1, then
(5.10) sup B, [(p — 70)F) < Cp.p sup (d(z,0D))"".
zeD z€D\U

Here 3 > 0 depends on the Lipschitz character of the domain.

Proof. Take x € U. By the strong Markov property we have for any p > 0,

E, ((rp — 70)") = Eq [Ep,, [7B]]
(5.11) < sup E, [rP].
xeoU
Under the assumption that D is a bounded Lipschitz domain, it follows that D is intrinsic
ultracontractive (IU). That is, for any n > 0, there is a tg = to(n, D) > 0 such that for all ¢ > ¢, and
allz,y € D

(5.12) (1—n) e P (2)p1(y) < Kpla,y,t) < (1+n)e Pl ()01 (y)

where ¢, is the ground state eigenfunction for D. In fact, (IU) holds for a wider class of domains
(beyond Lipschitz) and wider class of diffusion. It has been extensively studied in the literature
with many different applications. We refer the reader to [29] and [5] for some of the first results
on this topic that include the Lipschitz domains case. Writing

HD(xay) :/ KD(m7yat)dt
0
for the Green's function for D, it follows trivially that for all IU domains D, Hp(z,y) > Cpei(x)e1(y),

uniformly on z,y € D. Integrating over D we see that

(513) Ex [TD} 2 CDgol(x).
15



Take 1 = 1/2. Let us first assume p > 1. Applying (5.12) we have forall z € D,

E, [t})] = p/ tP=IP, (p > t) dt
0
t() oo
:p/ PP, (1p > t) dt+p/ t”_l/ Kp(x,y,t/2)dydt
0 to D
3 [ee]
<t Balrol+ Gy [ 07 [ Oy
to D
< CiEq [1p] + Cop1 ().
where C7, (5 are constants that depend on p and D. Taking into account (5.13) we then obtain
that
Es [mp] < Cp.pEq [71]

for some constant C), p that only depend on p and D. Thus

supE, [(tp —10)?] < Cpp sup E; [1p]
zeU zeQU

(5.14) < Cpp sup E;[rp]
zeD\U

On the other hand, for x € D\U, we have P,(7y > 0) = 0, then

sup E,[(tp — 10)’] = sup E,[rh]
£€D\U £€D\U
(5.15) <Cpp sup E;[rp].
xe€D\U

Recall the fact that for a bounded Lipshitz domains, E, [rp] < Cp (d (x,aD))B where 8 > 0 de-
pends on the Lipszhitz character of the domain. For the proof of the case d = 2, which extends to
any d > 2, see [31, Proposition 2.3] or the remark in [10, pg 199]. This proves the case p > 1 in
().

If 0 < p <1, then Jensen’s inequality gives that E, [75] < (E, [7p])” and (ii) follows from (5.11)
and and (5.15). O

Proposition 5.1 (Continuity of M,). For any p > 0, the functional M, (D) is continuous in the
class C or SC with respect to the Hausdorff metric.

Proof. Fix p > 0. We first prove M, is continuous in the class SC. Showing M, is continuous in
the class C is done similarly. Let {D,,} € SC such that D,, — D € SC as n — oo with respect to the
Hausdorff metric. We show M, (D,,) - M, (D) as n — oc.

There exists a sequence {t,} C R such that¢, — 1and ¢,D,, C D for every n. By monotonicity
of exit times we have for all € D almost surely that

(5.16) Tt,D, < TD.

If 0 < p < 1, using the elementary inequality a? — b* < (a — b)” whenever 0 < b < a, we have
that E, [7)] < E. [7} p | + E. [(7p — 7, p,)"] for all z € D. By Lemma 5.2 (ii) and (5.8) we have
that

M, (D) < My, (t,.Dn) + Eg [(Tp — Tt,D, )]

<M, (t,D)+Csp sup (d(x,0D))"”
xED\tnD

(5.17) < My, (t,D) + Cp.p (dz (D, t, D))"

where the constant Uz, p depends only on D.
16



For p > 1, using the elementary inequality 2 — y? < pzP~! (z — y) whenever 0 < y < z, we have
that

E. [h — . p,] <pE: [ (0~ 7,0,
(5.18) < p (B, [PB) VP (B, [(rp — 70,,0,)")) P
Again by Lemma 5.2 (i), we have,

supE, [(7p — 74,,p,)"] < Cpp sup d(x, (’9D)ﬁ
xeD x€D\t, Dy,

< Cp,D d"r’-[ (D, tnDn)ﬁ
so that

(5.19) sup E, [15, — 7, | < CL/Bp M, (D)P~ /P dyy (D, 1, D)7
xzeD

Thus using (5.19) we have

(5.20) M, (D) < My, (t, D) + C/b p My, (D)7 dyy (D, 1, D)7
Together with (5.17) we then conclude that there exist constants C}, p,Cs p > 0 such that
(5.21) ./\/lp (D) < Mp (tnDn) + Cg}D (dH (D, tnDn))p 1(p<1)

+ C;,/g p./\/lp (D)(pil)/p dq.[ (D, tnDn)ﬂ/p 1([,21)
Combining (5.16), (5.21) and the fact that M, (¢, D,,) = tff’Mp (D) gives the desired result. O

5.4. Proof of Theorem 1.2 and a conjecture on the extremal. We may finally prove our main
result of this section.

Proof of Theorem 1.2. Fix p > 0. We consider the class of symmetric bounded convex domains
SC. The proof is the same for C. Let M), 4 (SC) = suppcse Gp.a (D) and pick {D, } C SC such that
lim Gp’d (Dn) = Mp,d (SC) .

n—oo
By scaling we may assume the domains D,, are all contained in a fixed compact set K. By the
Blaschke selection Theorem, there is a subsequence {D,,,} C SC such that D,,, -+ D € SC with
respect to dy. By Lemma 5.1, we know that D € SC. We can rename this subsequence D,,. By
Equations (3.2) and (3.3) of [35, page 12] we know that D has a non-empty interior. By Proposition
5.1, M, is continuous with respect to the Hausdorff metric in the class SC and A, (D) is also well
known to be continuous with respect to dy (see [36]). Thus

Gpa(D) = lim Gpa(Dn) = Mp,a(SC),
as needed. O

With the existence of extremals guaranteed for all dimension and all 0 < p < co, we have the
following.

Conjecture 5.2 (Conjecture for M, 4 (8C)). With the supremum taken over all domains in SC, we
have

M4 (SC) = M(Qa)Ealr .
where
Qa = {(z1,22,...,24) € R : |z| < 1},

denotes the unit cube in R<.
17



5.5. Remarks on conjectures; rectangles, triangles, and ellipses.

Remark 5.3 (Rectangles). Conjecture 5.2 in general seems to be nontrivial. In fact, even the
simplest case of rectangles does not seem obvious. More precisely, let a = (a1, as, . ..,aq), where
ar, > 0 for all k. Set R, = {x = (x1,22,...,24) : |2k| < ax,k =1,...,d}. (We call R, a rectangle.)
Denote the origin in R? by 0. In this case we would want to show that for all a € R?,

(5.22) M (Ra)Eo [77,] < A (Qa)Eo [TQJ

with equality only when R, = @)4. Since the eigenvalues of both R, and @, are explicit and
the components of the Brownian motion are independent, the inequality (5.22) can be stated in
several different forms. Here is one. Let I,, = (—ax,a;) and recall that I = (—1,1). Then (5.22)
is equivalent to

d p
1 o0
(5.23) Y = / ptP~? H]P’o T1,, > t)dt < dp/ pt?t (Py(ry > 1)) dt.
i1 %k 0 0
Using the fact that Py (T[ak > t) =Py (’7’[ > a%) we may even assume that
k
a=1<as <+ <ag.

Using the fact that we know the heat kernel for an interval in terms of the eigenfunctions
expansion (all which are explicitly given), the inequality has a rather appealing form. Let us look
at the case d = 2 and p = 1. Then (5.23) is equivalent to

-2 S are (0]

32 (—1)” 1
(524) S 2 [1 71_3 Z msech |:(n + 2) 7T:|‘| s

forall a > 1.
Unfortunately, despite its simplicity and all its possible formulations, we have not been able to
fully verify (5.22) for all rectangles even in the case d =2 and p = 1.

(1 + a2)

Remark 5.4 (Triangles). It may be of interest to mention as well that, to the best of our knowledge,
the special case of Conjecture (5.3) for triangles does not seem to have been proven:

(5.25) M (T) sup E,[rr] < Ay (T) sup E,, [rr],

zeT zeT
for all triangles T, where T is the equilateral triangle. Furthermore, equality holds only when
T = T. As pointed out in [35, Corollary 3.7], with explicit expressions for E, [rr] and A (T), we

have
2

8
A (T)supE, [rr] = S ~ 2.9243.
zeT 27

Combining this with (5.5) and (5.7), we see that
(5.26) M (B)sup E, [7B] < A1 (Q2) sup E, [1g,] < A1 (T)supE, [7r] .
z€B TEQ2 z€eT

For any convex domain D C R2 with finite inradius Rp (supremum of radii of all disc contained
in D), it holds that

(5.27) 7R2 < sup E,[rp] < supE,[rs] = R%,
z€D zeS
18



where S C R? is the infinite strip of inradius Rp. The left hand side inequality is trivial by
domain monotonicity of the exit time. For the second inequality, we refer the reader to [59]. For
a different proof, which extends to all moments, see [12]. In [16], it is proved that

47

(5.28) M(T)RZ < M\ (T)RE = -

with equality only when T is the equilateral triangle T. For a different proof of (5.28) which uses
dissymmetrization techniques, see [58]

Although the inequalities (5.25) and (5.28) are in fact quite different and one does not imply
the other, the validity of one lends credibility to the validity of the other. One can also see, for
example, that with (5.27) inequality (5.28) gives (5.25) with a factor of 2 on the right hand side.

Remark 5.5 (Ellipses). As a final remark we point out that for p = 1, both conjectures (5.3) and
5.2 hold for ellipses. In fact, the following stronger statement holds. Let

22 2
Eq.p = {(:c,y) cR?: EerfQ < 1}.

Then, with B the unit disc in R2,

7.‘.2 -2
(5.29) 7 < M (Eab)E0,0)[TE 0] < A (B)E,0) [78] = ]503
To prove this inequality, it suffices to show that
72 (a2 + b2 J2 (a2 4+ b2
5.30 — ) SN (Bap) <2 .
(5.30) 4(a2b2>_1( ’b)_2<a2b2)

Assuming for the moment the validity of (5.30), observe that since it is easy to check that
202 _ 222 _ 0242

a a“y
Ezy) [TEa,b] = (a2 + b2) J
by showing that the right hand side satisfies %Au = —1 with zero boundary conditions, we have
a’b?
E,0) [TE.,] = Z2

Thus the right hand side of (5.30) implies the right hand side of (5.29).
The left hand side of (5.30) is trivial by domain monotonicity. Since E,; C (—a,a) x (=b,b), it
follows immediately that

72 (a® + b2
A1 (Eap) 2 M1 ((—a,a) x (=b,b)) = 1 (a2b2> :

The right hand side inequality in (5.30) is due to Polyd and Szeg6 and can be found in [57, pg.
98]. Their proof is based on the technique known as conformal transplantation. To do so, one can
use a test function ¢(x,y) with ¢ |sg, ,= 0 which is an obvious modification of the eigenfunction
for the disc and plug it into the Rayleigh quotient. Such function is given by

22 2

o(z,y) = Jo (jo - + b2> ;

where Jj is the first Bessel function and jj is its first positive root. See [57] for details.
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