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Analyses of the full shape of the Baryon Oscillation Spectroscopic Survey (BOSS) DR12 power
spectrum using the one-loop prediction from the effective field theory of large-scale structures (EFTBOSS)
have led to new constraints on extensions to theΛ cold dark matter model, such as early dark energy (EDE),
which has been suggested as a resolution to the “Hubble tension.” In this paper, we reassess the
constraining power of the EFTBOSS on EDE in light of a correction to the normalization of BOSS window
functions. Overall we find that constraints from EFTBOSS on EDE are weakened and represent a small
change compared to constraints from Planck and the conventional baryon acoustic oscillation=fσ8
measurements. The combination of Planck data with EFTBOSS provides a bound on the maximal
fractional contribution of EDE fEDE < 0.083 at 95% C.L. (compared to <0.054 with the incorrect
normalization and<0.088without full-shape data) and the Hubble tension is reduced to 2.1σ. However, the
more extreme model favored by an analysis with just data from the Atacama Cosmology Telescope is
disfavored by the EFTBOSS data. We also show that the updated Pantheonþ type Ia supernova (SN1a)
analysis can slightly increase the constraints on EDE. Yet, the inclusion of the SN1a magnitude calibration
by SH0ES strongly increases the preference for EDE to above 5σ, yielding fEDE ∼ 0.12þ0.03

−0.02 around the

redshift zc ¼ 4365þ3000
−1100 . Our results demonstrate that EFTBOSS data (alone or combined with Planck data)

do not exclude the EDE resolution of the Hubble tension.

DOI: 10.1103/PhysRevD.107.063505

I. INTRODUCTION

In recent years, several tensions between probes of the
early and late Universe analyzed under the Λ cold dark
matter model (ΛCDM) have emerged. The Hubble tension
refers to the inconsistency between local measurements of
the current expansion rate of the Universe, i.e., the Hubble
constant H0, and the value inferred from early Universe
data using theΛCDMmodel. This tension is predominantly
driven by the Planck Collaboration’s observation of the
cosmic microwave background (CMB), which predicts a
value in ΛCDM ofH0 ¼ 67.27� 0.60 km=s=Mpc [1], and
the value measured by the SH0ES Collaboration using the
Cepheid-calibrated cosmic distance ladder, whose latest

measurement yields H0 ¼ 73� 1 km=s=Mpc [2,3]. Taken
at face value, these observations alone result in a ∼5σ
tension.1 Experimental efforts are underway to establish
whether this discrepancy can be caused by yet unknown
systematic effects (appearing in either the early or late
Universe measurements [4,5], or both). It appears that
various attempts to alter the modeling of dust extinction are
not successful in altering the Hubble constant [6–8], nor
is there support for different populations of type Ia super-
nova (SNIa) at low z and high z causing significant
impact [9–12]. In fact, the SH0ES team recently provided
a comprehensive measurement of theH0 parameter to 1.3%
precision, addressing these potential systematic errors, and
concluded that there is “no indication that the discrepancy
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1A new calibration including cluster Cepheids and Gaia EDR3
parallaxes further increase the tension to 5.3σ [3].
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arises from measurement uncertainties or [over 70] analysis
variations considered to date” [2]. On the side of the CMB,
it has been noted that Planck data carry a number of
anomalies of low statistical significance that may play a
role in this tension [1,13–16]. Nevertheless, the appearance
of this discrepancy across an array of probes2 (although not
always with strong statistical significance) suggests that a
single systematic effect may not be sufficient to resolve it.
For recent reviews on the topic, we refer the reader to
Refs. [31,32].
Additionally, within ΛCDM, the parameter S8 ≡

σ8ðΩm=0.3Þ0.5, where σ8 is the root mean square of matter
fluctuations on an 8h−1 Mpc scale and Ωm the (fractional)
matter density today, inferred from CMB is about 2−3σ
larger than that deduced from weak lensing surveys such as
the CFHTLenS [33], KiDS-1000 [34], DESY3 [35], as well
as from Planck Sunyaev-Zeldovich cluster abundances
[1,36] and SPT [37]. Additionally, the measurements of
S8 on large scales with galaxy clustering from Baryon
Oscillation Spectroscopic Survey (BOSS) full-shape data
that have been reported also indicate a value that is on a low
side, although not at an important significant level due to
large error bars (∼2σ) [38,39].3 It is yet to be understood
whether the S8 tension is due to systematic effects [42],
nonlinear modeling, including the effect of baryons at very
small scales [41], or physics beyond ΛCDM.
Along with experimental developments to confirm the

Hubble and S8 tension, a lot of effort has been given to

explain these discrepancies with some new physical mecha-
nism, often in the form of extensions to the ΛCDM model
that may be connected to the (still unknown) nature of dark
matter or dark energy. It has been argued that the most
promising category of solutions to resolve the H0 tension
involves physics in the prerecombination era leading to a
decrease of the sound horizon at recombination [43–48],
such asmodels involving dark radiation and/or new neutrino
properties [49–59], early dark energy (EDE) [60–65],
modified gravity [66–85], or exotic recombination [86–90]
(for reviews, see Refs. [31,48]).
Interestingly, these models tend to leave signatures

in the matter power spectrum on large scales that can be
probed by large-scale structure surveys such as SDSS/
BOSS [91]. In fact, developments of the one-loop pre-
diction of the galaxy power spectrum in redshift space
from the effective field theory of large-scale structures
(EFTofLSS)4 [92–97] have made possible the determina-
tion of the ΛCDM parameters from the full-shape analysis
of SDSS/BOSS data [91] at precision higher than that from
conventional BAO and redshift space distortions (which
measure the product fσ8, where f is the growth function)
analyses, and even comparable to that of CMB experi-
ments. This provides an important consistency test for
the ΛCDM model, while allowing one to derive competi-
tive constraints on models beyond ΛCDM (see, e.g.,
Refs. [38,39,98–107]). A thorough study of the consistency
of EFTBOSS analyses within the ΛCDM model is pre-
sented in a companion paper [108].
In this paper, we reassess the constraints on EDE from

the full shape of the most recent measurements of the power
spectrum (or correlation function) of BOSS in light of a
correction to the normalization of BOSS window functions
(presented in Appendix A). EDE has been shown to reduce
the Hubble tension to the ∼1.5σ level, with an energy
density representing at most a fraction fEDEðzcÞ ∼ 12% at
the critical redshift zc ∼ 3500 after which the fields start to
dilute away [48,60–62]. There exists a variety of other EDE
models that can similarly reduce the tension to the 1.5–2.5σ
level [63,65,109–111]. Recently, several groups have
reported “hints” of EDE within ACT data at the ∼3σ level,
alone or in combination with WMAP (or, equivalently,
Planck temperature data restricted to l < 650) and
Planck polarization data [112,113], as well as with SPT-3G
data [114,115].
However, it has also been pointed out that EDE leaves an

impact in the matter power spectrum that can be constrained
thanks to the EFTofLSS applied to BOSS data or through
measurements of the parameter S8. Typically, in the EDE
cosmology that resolves the Hubble tension, the amplitude
of fluctuations σ8 is slightly larger due to increase in ωcdm

2For a very short summary of alternativemethods, let usmention
that, on the one hand, there exists a variety of different techniques
for calibratingΛCDM at high redshifts and subsequently inferring
thevalue ofH0, which donot involve Planck data. For instance, one
can use alternative CMB datasets such as Wilkinson Microwave
Anisotropy Probe (WMAP), ACT, or SPT, or even remove
observations of the CMB altogether and combine measurements
of big bang nucleosynthesis (BBN) with data from baryon acoustic
oscillation (BAO) [17,18], resulting in H0 values in good agree-
ment with Planck. On the other hand, alternative methods for
measuring the local expansion rate have been proposed in the
literature, in an attempt at removing any bias introduced from
Cepheid and/or SNIa observations. The Chicago-Carnegie Hubble
program (CCHP), which calibrates SNIa using the tip of the
red giant branch (TRGB), obtained a value of H0 ¼
69.8� 0.6ðstatÞ � 1.6ðsysÞ km=s=Mpc [19,20], in between the
Planck CMB prediction and the SH0ES calibration measurement,
and a reanalysis of the CCHP data by Anand et al. yields H0 ¼
71.5� 1.9 km=s=Mpc [21]. The SH0ES team, using the parallax
measurement ofω–Centauri fromGaiaDR3 to calibrate theTRGB,
obtained H0 ¼ 72.1� 2.0 km=s=Mpc [22,23]. Additional meth-
ods intended to calibrate SNIa at large distances include surface
brightness fluctuations of galaxies [24], Miras [25], or the Baryonic
Tully Fisher relation [26]. There also exists a variety of observations
that do not rely on observations of SNIa—these include, e.g., time
delay of strongly lensed quasars [27,28], maser distances [29], or
gravitational waves as “standard sirens” [30].

3Note that, however, these S8 measurements might be affected
by prior volume effects, as shown and quantified in [40]. Once
those are accounted for, BOSS full-shape results and Planck are
brought to good agreement (see also [41]).

4See also the introduction footnote in, e.g., [40] for relevant
related works on the effective field theory of large-scale structures
(EFTofLSS).
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and ns, which are necessary to counteract some of the effects
of the EDE on the CMB power spectra [61,116,117]. As a
result, the S8 tension tends to increase by ∼0.5σ in the EDE
cosmology, and large-scale structure (LSS) measurements
may put pressure on the EDE model [116]. Additionally, it
has been argued that the full-shape analysis of the galaxy
power spectrum of BOSS disfavors the EDE model as an
efficient resolution of the H0 tension [118,119]. Indeed, in
order to adjust the BAO data seen either in 3D or 2D at
different comoving distances in a galaxy clustering survey
(typically at z ∼ 0.1–1), it requires in the EDE cosmology an
increase in ωcdm

5 [61,89], which can affect the fit to the full
shape [116,118,119]. Thus, galaxy clustering data can
provide a way to break the degeneracy introduced by
EDE, in particular, due to the constraints it provides on
ωcdm and σ8.
Although these effects are certainly relevant in

constraining EDE, the original interpretation of the addi-
tional constraining power suggested in Refs. [118,119] was
disputed in Refs. [120,121]. There, it was argued that the
apparent constraining power from the BOSS full-shape
analysis may be artificially amplified by (i) the impact
of the prior volume artificially favoring ΛCDM in the
Bayesian context (later verified with a profile likelihood
approach6 [123,124]); (ii) a potential ∼20% mismatch in
the overall amplitude (typically parametrized by the pri-
mordial power spectrum amplitude As) between BOSS and
Planck, rather than additional constraints on ωcdm. In
parallel, it had already been pointed out in Ref. [125] that
the effective field theory of LSS applied to BOSS data does
not rule out the new EDE model.
In Appendix A, we explore the impact of the correction

to the normalization of the BOSS data window function
withinΛCDM and show that it leads to a 1σ shift upward in
the value of As, now in better agreement with Planck.7

Given that previous analyses, e.g., Refs. [118,119], have
used the measurements inconsistently normalized between
the power spectrum and the window function (as already
acknowledged in Ref. [126] for their previous analyses),
the constraints from EDE are expected to change with these
corrected BOSS measurements. While Refs. [118,119]
concluded that the BOSS data, combined with Planck
data, disfavored the EDE model as a potential candidate to
solve the H0 tension, we find here that the conclusions
reached strongly depend on the normalization of the
window functions used in the BOSS measurements.

Our paper is structured as follows: In Sec. II, we review
the EDE model and data considered in this work. In
particular, we detail the possible choice of BOSS mea-
surements and EFT likelihoods. In Sec. III, we assess the
constraining power of corrected BOSS data alone on
the EDE resolution to the Hubble tension and discuss
differences between the constraints derived from the
various BOSS data and effective field theory likelihoods.
In Sec. IV, we derive constraints on EDE from the
EFTBOSS data combined with either Planck data (with
and without SH0ES) or ACT data. We also show the impact
of the new Pantheonþ SN1a catalog [127] on the con-
straints on EDE. We eventually present our conclusions in
Sec. V. Appendix A presents details on how to consistently
normalize the window function with the power spectrum
measurements. Appendix B provides additional compari-
son between EFTofLSS likelihoods within the EDE model.
Finally, Appendix C lists additional relevant information
about χ2 statistics.

II. EARLY DARK ENERGY MODEL AND DATA

A. Brief review of the model

The EDE model corresponds to an extension of the
ΛCDM model, where the existence of an additional
subdominant oscillating scalar field ϕ is considered. The
EDE field dynamics is described by the Klein-Gordon
equation of motion (at the homogenous level),

 ϕþ 3H _ϕþ Vn;ϕðϕÞ ¼ 0; ð1Þ

where VnðϕÞ is a modified axion-like potential defined as

VnðϕÞ ¼ m2f2½1 − cosðϕ=fÞ�n: ð2Þ

f and m correspond to the decay constant and the effective
mass of the scalar field, respectively, while the parameter n
controls the rate of dilution after the field becomes
dynamical. In the following, we will use the redefined
field quantity Θ ¼ ϕ=f for convenience, such that
−π ≤ Θ ≤ þπ.
At early times, when H ≫ m, the scalar field ϕ is frozen

at its initial value since the Hubble friction prevails,
which implies that the EDE behaves like a form of dark
energy and that its contribution to the total energy density
increases relative to the other components. When the
Hubble parameter drops below a critical value (H ∼m),
the field starts evolving toward the minimum of the
potential and becomes dynamical. The EDE contribution
to the total budget of the Universe is maximum around
a critical redshift zc, after which the energy density starts
to dilute with an approximate equation of state wϕ ¼
Pϕ=ρϕ [128,129],

5A similar increase is required to keep the CMB peaks height
fixed [61], in particular, through the Integrated Sachs–Wolfe
(ISW) effect [117].

6For further discussion about the mitigation of projection and
prior volume effect, see Ref. [122].

7Note that, in our companion paper [108], we argue that the
remaining difference on the amplitude might be explained by
projection effects from the prior volume associated with the
marginalization of the EFT parameters.
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wϕ ¼
�−1 if z > zc;

n−1
nþ1

if z < zc:
ð3Þ

In the following, we will fix n ¼ 3 as it was found that the
data are relatively insensitive to this parameter provided
2≲ n≲ 5 [62]. Instead of the theory parameters f and m,
we make use of fEDEðzcÞ and zc determined through a
shooting method [62]. We also include the initial field value
Θi as a free parameter, whose main role once fEDEðzcÞ and
zc are fixed is to set the dynamics of perturbations right
around zc, through the EDE sound speed c2s .
The EDE field will provide a small contribution to the

expansion rate HðzÞ around zc (we will focus on ∼103–104
in the context of the Hubble tension), which causes a
modification of the sound horizon at the recombination

rsðzrecÞ ¼
Z þ∞

zrec

csðz0Þ
Hðz0Þ dz

0; ð4Þ

where cs corresponds to the sound speed of the photon-
baryon fluid acoustic waves. The sound horizon is obser-
vationally determined through the angular acoustic scale at
recombination θs, defined as

θs ¼
rsðzrecÞ
DAðzrecÞ

; ð5Þ

where DAðzrecÞ ¼
R zrec
0 dz0=Hðz0Þ ∝ 1=H0 is the comoving

angular diameter distance. Given that θs is determined from
Planck CMB power spectra with a very high accuracy, the
change in the sound horizon must be compensated by a
readjustment of the angular diameter distance in order to
keep the angular acoustic scale constant. This readjustment
is automatically done by increasingH0 (and additional shift
in ωcdm and ns to compensate effect of EDE on the growth
of perturbations), which can, by design, bring the CMB
measurements and the late-time estimate of the Hubble
constant from the SH0ES Collaboration into agreement. In
this paper, we address the question of whether the current
full shape of galaxy clustering data analyzed using the
EFTofLSS, can accommodate EDE. Indeed, on the one
hand, the sound horizon seen at baryon-drag epoch rsðzdragÞ
is measured through another angular acoustic scale in
galaxy surveys,

θg ¼
rsðzdragÞ
DVðzeffÞ

; ð6Þ

where zeff is the effective redshift of the survey, and
DVðzÞ ¼ ðD2

AðzÞ c·z
HðzÞÞ1=3 is a volume average of the comov-

ing distances in the directions parallel and perpendicular to
the line of sight, with c the speed of light. The angle θg
typically summarizes the information from the BAO, and
measuring it with high precision has the potential to break

the degeneracy between rsðzdragÞ and H0 introduced by the
EDE. In practice, BAOs from BOSS were shown to be well
fit in combination with Planck and SH0ES when allowing
for EDE [61], at the cost of a larger ωcdm [130], which can
simultaneously allow for the CMB peak height to be kept
fixed [61] through the ISW effect [117]. However, the full-
shape of the galaxy power spectrum also contains addi-
tional information. For example, the amplitude of the
small-scale galaxy power spectrum at k > keq, where keq
is the wavenumber entering the horizon at matter/radiation
equality, contains information about ωm, h, and the spectral
tilt ns [98,100]. As the values of ωcdm and ns are uplifted to
compensate the growth of perturbations in the presence of
EDE, the full shape of the galaxy power spectrum (with ωb
fixed by CMB or a BBN prior) is also modified in that
respect. In the following, we quantify if these modifications
from the EDE as a resolution of the H0 tension are
consistent with current cosmological data, including the
full-shape galaxy power spectrum from BOSS modeled
with the EFT.

B. Data and method

We analyze the EDE model in light of recent cosmo-
logical observations through a series of Markov chain
Monte Carlo (MCMC) analyses using the Metropolis-
Hastings algorithm from MONTE PYTHON v3

8 code
[131,132] interfaced with our modified9 version of
CLASS

10 [133]. In this paper, we carry out various analyses
from a combination of the following datasets:

(i) PlanckTTTEEE: The low-l CMB TT, EE, and the
high-l TT, TE, EE data from Planck 2018 [1].

(ii) PlanckTT650TEEE: Same dataset as Planck
TTTEEE, but in this case the TT power spectrum
has a multipole range restricted to l < 650.

(iii) Lens: The CMB gravitational lensing potential
reconstructed from Planck 2018 temperature and
polarization data [134]. When used without high-l
TT, TE, EE data, we use the CMB-marginalized
version of the likelihood.11

(iv) ACT: The temperature and polarization angular
power spectrum of the CMB from the Atacama
Cosmology Telescope (ACT DR4) [135].

(v) BBN: The BBN measurement of ωb [136] that uses
the theoretical prediction of [137], the experimental
deuterium fraction of [138], and the experimental
helium fraction of [139].

(vi) BAO: The measurements of the BAO from the
CMASS and LOWZ galaxy samples of BOSS
DR12 at z ¼ 0.38, 0.51, and 0.61 [91], which we

8https://github.com/brinckmann/montepython_public.
9https://github.com/PoulinV/AxiCLASS.
10https://lesgourg.github.io/class_public/class.html.
11We thank Oliver Philcox for his help with correcting a bug in

the standard Plik implementation.
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refer to as BOSS BAO DR12, and the BAO
measurements from 6DF galaxy survey (6dFGS)
at z ¼ 0.106 and SDSS DR7 at z ¼ 0.15 [140,141],
which we refer to as BOSS BAO low z.

(vii) BOSS fσ8 DR12: We also sometimes include the
redshift space distortion at z ¼ 0.38, 0.51, and 0.61,
which we refer to as fσ8 [91], taking into account
the cross-correlation with BAO measurements.

(viii) EFTBOSS: The full-shape analysis of the
BOSS power spectrum from the EFTofLSS, namely,
PLZ=CM
FKP [38], cross-correlated with reconstructed

BAO, namely, αLZ=CMrec [142]. The measurements
are defined in Table I. The SDSS-III BOSS DR12
galaxy sample data and covariances are described in
Refs. [91,143]. The measurements, obtained in
Ref. [38], are from BOSS catalogs DR12 (v5)
combined CMASS-LOWZ12 [144] and are divided
in redshift bins LOWZ 0.2 < z < 0.43 ðzeff ¼ 0.32Þ
and CMASS 0.43 < z < 0.7 ðzeff ¼ 0.57Þ, with
north and south Galactic skies for each, respectively,
denoted NGC and SGC. For the EDE analyses, we
analyze the full shape of CMASS NGC, CMASS
SGC, and LOWZ NGC, cross-correlated with post-
reconstruction BAOs. The analysis includes the

monopole and quadrupole between ðkmin; kmaxÞ ¼
ð0.01; 0.20=0.23Þh Mpc−1 in Fourier space and
ðsmin; smaxÞ ¼ ð25=20; 200Þ Mpc=h in configuration
space [38,100,101] for LOWZ/CMASS. The theory
prediction and likelihood are made available through
PyBird. We also compare PyBird to CLASS-PT. More
details on the differences between these likelihoods
are given in Sec. II of Ref. [108]. When computing
constraints with CLASS-PT, we use the galaxy power
spectrum monopole, quadrupole, and hexadecapole,
for 0.01 ≤ k ≤ 0.2h Mpc−1 as well as the real-space
extension Q0, up to kmax ¼ 0.4h Mpc−1, and the
post-reconstructed BAO parameters. We use the
standard CLASS-PT priors on the bias parameters.

(ix) Pan18: The Pantheon SNIa catalog, spanning
redshifts 0.01 < z < 2.3 [145]. We will also study
in Sec. IV D the impact of the newer Pantheonþ
catalog, favoring a larger Ωm [127], on our con-
clusions.

(x) SH0ES: The SH0ES determination of H0 ¼
73.04� 1.04 km=s=Mpc from Cepheid-calibrated
SNIa, modeled as a Gaussian likelihood.13

We will refer to the combination of Planck TTTEEEþ
BAOþ Pan18 as BaseTTTEEE, and to BaseTT650TEEE

TABLE I. Comparison of pre- and post-reconstructed BOSS two-point function measurements: reference, estimator, code of the
measurements, redshift split [LOWZ, 0.2 < z < 0.43 ðzeff ¼ 0.32Þ; CMASS, 0.43 < z < 0.7 ðzeff ¼ 0.57Þ; z1, 0.2 < z < 0.5
ðzeff ¼ 0.38Þ; z3, 0.5 < z < 0.7 ðzeff ¼ 0.61Þ], and window function treatment. For the post-reconstructed measurements, while we
instead provide under “Method” the references presenting the algorithm used to extract the reconstructed BAO parameters and how the
cross-correlation with the pre-reconstructed measurements is performed, “Ref.” now refers to the public post-reconstructed
measurements used. The SDSS-III BOSS DR12 galaxy sample data are described in Refs. [91,143]. The pre-reconstructed
measurements are from BOSS catalogs DR12 (v5) combined CMASS-LOWZg [144]. More details can be found in Sec. IVof Ref. [108].

Pre-reconstructed measurements

Reference Estimator Code Redshift split Window

PLZ=CM
FKP

[147] FKP RUSTICO
a [147] LOWZ=CMASS Inconsistent normalization

PLZ=CM
FKP

[38] FKP PowSpecb [148]/NBODYKITc [149] LOWZ=CMASS Consistent normalization

ξLZ=CM [38] Landy and Slazay FCFC
d [148] LOWZ=CMASS Window-free

Pz1=z3
FKP

[150]e FKP � � � z1=z3 Consistent normalization

Pz1=z3
QUAD

[39] Quadratic SPECTRA WITHOUT WINDOWS
f[151] z1=z3 Window-free

Post-reconstructed measurements
Reference � � � � � � Redshift split Method

αLZ=CMrec [142] � � � � � � LOWZ=CMASS [101]

αz1=z3rec [152] � � � � � � z1=z3 [101]

βz1=z3rec [152] � � � � � � z1=z3 [153]

ahttps://github.com/hectorgil/Rustico.
bhttps://github.com/cheng-zhao/powspec.
chttps://github.com/bccp/nbodykit.
dhttps://github.com/cheng-zhao/FCFC.
ehttps://fbeutler.github.io/hub/deconv_paper.html.
fhttps://github.com/oliverphilcox/Spectra-Without-Windows.
ghttps://data.sdss.org/sas/dr12/boss/lss/.

12https://data.sdss.org/sas/dr12/boss/lss/. 13For discussions about this modeling, see Refs. [46–48].
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when replacing Planck TTTEEE with Planck TT650TEEE.
In the absence of CMB TTTEEE data, we refer to
the dataset EFTBOSSþ BBNþ Lensþ BAOþ Pan18
as BaseEFTBOSS. For all runs performed, we use
Planck conventions for the treatment of neutrinos, that
is, we include two massless and one massive species with
mν ¼ 0.06 eV [1]. In addition, we impose a large flat prior
on the dimensionless baryon energy density ωb, the
dimensionless cold dark matter energy density ωcdm, the
Hubble parameter today H0, the logarithm of the variance
of curvature perturbations centered around the pivot scale
kp ¼ 0.05 Mpc−1 (according to the Planck convention),
lnð1010AsÞ, the scalar spectral index ns, and the reioniza-
tion optical depth τreio. Regarding the three free parameters
of the EDE model, we impose a logarithmic prior on zc and
flat priors for fEDEðzcÞ and Θi,

3 ≤ log10ðzcÞ ≤ 4;

0 ≤ fEDEðzcÞ ≤ 0.5;

0 ≤ Θi ≤ π:

We define our MCMC chains to be converged when the
Gelman-Rubin criterion R − 1 < 0.05, except for runs
combining Planckþ EFTBOSSþ ACT, for which we
use a relaxed criterion of R − 1 < 0.1 due to the compli-
cated nature of the parameter space for the MCMC to
explore.14 Finally, we extract the best-fit parameters from
the procedure highlighted in the appendix of Ref. [48], and
we produce our figures thanks to GetDist [146].

C. Details on the BOSS measurements
and EFT likelihoods

In this paper, we perform a thorough comparison of the
constraints derived from the EFTBOSS data, in order to
assess the consistency of the various analyses presented in
the literature. Indeed, there are various BOSS two-point
function measurements available to perform full-shape
analyses, as well as a different EFT code. As described
in more detail in Ref. [108], the BOSS DR12 data can be
divided into two different sets of redshift splitting (LOWZ/
CMASS vs z1=z3). Furthermore, depending on the esti-
mator, the data are sometimes analyzed by convolving the
theory model with a window function, or not. For a
window-free analysis, one way is to use the configura-
tion-space correlation function ξ, another is to use a
quadratic estimator, which we denote with the subscript
“QUAD.” Finally, there are different ways to analyze the
post-reconstructed parameters, which are then combined
with the EFTBOSS data, denoted by αrec and βrec. These
different datasets include slightly different amounts of

information (due to different scale cuts) but they all
represent reasonable choices on how to analyze the
BOSS DR12 observations.
The characteristics of each measurement are listed in

Table I and more details can be found in Sec. IV of
Ref. [108]. The EFT implementation and BOSS data we
will focus on in this study are packaged in the PyBird

likelihood, based on the EFT prediction and likelihood
from PyBird

15 [101], and the CLASS-PT likelihood, based on
the EFT prediction from CLASS-PT16 [154] and likelihood
from Ref. [39].17 Details about the PyBird and CLASS-PT
likelihoods are presented in Sec. II of Ref. [108]. Here, let
us simply mention that CLASS-PT implements the IR-
resummation scheme proposed in Ref. [155] and general-
ized to redshift space in Ref. [156]. This is different than
that implemented in PyBird, proposed in Ref. [94], gener-
alized to redshift space in Ref. [157], and made numerically
efficient in Ref. [101]. The CLASS-PT scheme has been
shown to be an approximation of the one used in PyBird in
Ref. [158], where one considers only the resummation of
the bulk displacements around the BAO peak, rBAO ∼
110 Mpc=h. For this scheme to be made practical, one
further relies on a wiggle-no-wiggle split procedure to
isolate the BAO part. Although this scheme has been shown
to work fairly well within ΛCDM for cosmologies not too
far from the one of Planck, we cautiously observe that in
far-away cosmologies as the ones probed in EDE, the BAO
peak location happens to be dramatically modified, and it
thus remains to be checked that the approximations still
hold in these cases. For our prior choice (on fEDE), we have
checked that at least the wiggle-no-wiggle split procedure
as implemented in CLASS-PT is as numerically stable as for a
fiducial case where the BAO peak is ∼110 Mpc=h.

In addition, in Ref. [108], we have checked the validity
of the two pipelines by implementing in the PyBird like-
lihood the exact same prior as those used in the CLASS-PT
likelihood, and we found agreement on the 1D posteriors of
the cosmological parameters at ≲0.2σ in ΛCDM, where
these residual differences can be attributed to the different
implementations of the IR-resummation mentioned above.

III. UPDATED EFTBOSS CONSTRAINTS
ON EDE

A. Preliminary study

In the recent literature, there has been a number of
analyses showing hints of EDE and allowing for a
resolution of the Hubble tension [61,63,112–115]. In this
preliminary study, we will take the results of two repre-
sentative analyses. First, the baseline analysis of
BaseTTTEEEþ Lensþ SH0ES data (second column of

14Most parameters are converged at 0.01–0.05, the parameter
with the worse convergence is θi, which is often unconstrained or
multimodal in the analyses.

15https://github.com/pierrexyz/pybird.
16https://github.com/michalychforever/CLASS-PT.
17https://github.com/oliverphilcox/full_shape_likelihoods.
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Table III) has a best fit of fEDEðzcÞ ¼ 0.122, H0 ¼
71.89 km · s−1 · Mpc−1. Second, the analysis of
BaseTT650TEEEþ ACT (first column of Table IV) favors
an EDE model with significantly larger values of fEDEðzcÞ
and H0 compared to the BaseTTTEEEþ Lensþ SH0ES,
namely, fEDEðzcÞ ¼ 0.159, H0 ¼ 73.30 km · s−1 · Mpc−1

(see also [112–115]). In this section, we will gauge how
these two specific models fair against BOSS data following
Refs. [118,119].

Using the best-fit parameters listed in Table III (second
column) and Table IV (first column), we perform a prelimi-
nary study where we determine the χ2 of the EFTBOSS data
(using our fiducial PLZ=CM

FKP þ αLZ=CMrec data) after optimizing
only the EFT parameters (since the cosmological parameters
are fixed here). Using the PyBird code, we
show in Table II the χ2 associated with the EFTBOSS
data, and we plot in Fig. 1 the residuals with respect
to ΛCDM from the BaseTTTEEEþ Lensþ EFTBOSS

TABLE II. χ2 of each sky cut of the EFTBOSS dataset for the EDE best-fit models extracted from a fit to
BaseTTTEEEþ Lensþ SH0ES and BaseTT650TEEEþ ACT and the ΛCDM model from a fit to
BaseTTTEEEþ Lensþ EFTBOSS. We also indicated the Δχ2 with respect to the ΛCDM best-fit model. The
associated p value is calculated assuming that the data points are uncorrelated and taking 3 · 9 EFT parameters in
each fit (given that the cosmology is fixed).

BaseTTTEEEþ Lensþ
SH0ES ðEDEÞ

BaseTT650TEEEþ
ACT ðEDEÞ

BaseTTTEEEþ Lensþ
EFTBOSS ðΛCDMÞ

χ2CMASS NGC 39.3 39.1 40.3
χ2CMASS SGC 45.2 46.0 44.0
χ2LOWZ NGC 34.4 35.1 33.5

χ2EFTBOSS 118.9 120.2 117.8
Δχ2minðEDE − ΛCDMÞ þ1.1 þ2.4 � � �
p value (%) 16.7 14.7 18.5

Ndata 132

FIG. 1. Residuals of the monopole and quadrupole of the galaxy power spectrum in two EDE models (see Table II) with respect to the
ΛCDM model (obtained from the baseTTTEEEþ Lensþ EFTBOSS analysis [103]) for the three sky cuts of the EFTBOSS data.
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analysis18 [103]. We also show the BOSS data residuals for
comparison with respect to the same model. First, one can
see that the changes in the residuals between those various
fits are almost imperceptible by eye with respect to BOSS
error bars. We find that the χ2 of the BOSS data is degraded
by þ1.1 for BaseTTTEEEþ Lensþ SH0ES (to be com-
pared with ∼þ 2.5 in Ref. [118]) and þ2.4 for
BaseTT650TEEEþ ACT, compared to the best fit χ2 of
EFTBOSS data in the ΛCDM model. Despite this small χ2

degradation, we note that the p value of BOSS data in the
EDE models that resolve the Hubble tension is still very
good. Nevertheless, we anticipate that the EFTBOSS data
could have a non-negligible constraining power in combi-
nation with BaseTT650TEEEþ ACT, while its impact
should be small in the context of the BaseTTTEEEþ
Lensþ SH0ES analysis.

B. Constraints from various BOSS data

As is done in Ref. [108] for ΛCDM, we compare the
constraints on EDE from the various BOSS two-point
function measurements, described in Table I, in combina-
tion with the BBN prior on ωb.
The comparison of the 2D posteriors is shown in Fig. 2,

while the 1D posteriors of ffEDEðzcÞ; h;ωcdm; lnð1010AsÞ;
ns;Ωmσ8; S8g are shown in Fig. 3. In these figures, we also
display the results from the BOSS data analyzed with the
EFT predictions convolved with inconsistently normalized
window functions, namely, PLZ=CM

FKP þ αLZ=CMrec , which dis-
favor the EDE model when they are combined with Planck
data [118,119] (see the discussion in Appendix A for the
impact of inconsistent normalization within the ΛCDM
model). Interestingly, using the PyBird likelihood, the
ΛCDM parameters are broadly consistent between
PLZ=CM
FKP þ αLZ=CMrec and Pz1=z3

QUAD þ αz1=z3rec , as we have a shift
of ≲0.3σ on ΛCDM parameters between these two mea-
surements. However, we find thatPLZ=CM

FKP þ αLZ=CMrec leads to
stronger constraints on EDE, namely,19 fEDEðzcÞ < 0.321,
while Pz1=z3

QUAD þ αz1=z3rec yields fEDEðzcÞ < 0.382.
Concerning ξLZ=CM þ αLZ=CMrec , we find different con-

straints, even for the ΛCDM parameters: comparing
ξLZ=CM þ αLZ=CMrec to PLZ=CM

FKP þ αLZ=CMrec , we find shifts of

≲1.2σ, whereas comparing ξLZ=CM þ αLZ=CMrec to Pz1=z3
QUAD þ

αz1=z3rec , we find shifts of≲1.0σ. Let us note that the constraints
on ΛCDM parameters reconstructed from ξLZ=CM þ αLZ=CMrec

are weaker than those of PLZ=CM
FKP þ αLZ=CMrec and Pz1=z3

QUAD þ
αz1=z3rec , which is consistent with what was found within the
ΛCDM model in our companion paper [108] (see also

Ref. [38] and explanations therein). Regarding the EDE
parameters, we obtain weaker constraints on fEDE, namely,
fEDEðzcÞ < 0.468. It is worth noting that, for the same
likelihood, the constraints on fEDEðzcÞ can be up to
∼35% different depending on the data (especially between
PLZ=CM
FKP þ αLZ=CMrec and ξLZ=CM þ αLZ=CMrec ). However, regard-

less of the data we consider, the BOSS full-shape (analyzed
on their own with a BBN prior) within EDE leads to
reconstructed values of H0 that are compatible with what
is obtained by the SH0ES Collaboration.
This conclusion also holds for the CLASS-PT baseline

(last line of Fig. 3), which is less constraining than the
PyBird likelihood for the EDE model. Indeed, we obtain
fEDEðzcÞ < 0.448, which is ∼15% weaker than the con-
straint obtained with the PyBird likelihood, even for similar
data (Pz1=z3

QUAD). Furthermore, we note that the fEDEðzcÞ
constraint reconstructed from PLZ=CM

FKP þ αLZ=CMrec , analyzed
with the PyBird likelihood, is ∼35% weaker than the
constraint obtained from Pz1=z3

QUAD þ βz1=z3rec , analyzed with

FIG. 2. Comparison of 2D posteriors of a subset of parameters
in the EDE model reconstructed from BOSS full-shape analyses
using PyBird baseline likelihood, with a BBN prior on ωb, of
various pre-reconstructed two-point function measurements and
handling of the window functions (PLZ=CM

FKP , PLZ=CM
FKP , ξLZ=CM,

Pz1=z3
QUAD) combined with various post-reconstructed BAO param-

eters (αLZ=CMrec , αz1=z3rec ). We recall that PLZ=CM
FKP þ αLZ=CMrec corre-

sponds to the BOSS FKP measurements analyzed with the EFT
predictions convolved with inconsistently normalized window
functions. The main EDE analyses of this work are based on
EFTBOSS, which corresponds to PLZ=CM

FKP þ αLZ=CMrec . We choose
to show only the cosmological parameters that are not completely
prior dominated.

18When combined with EFTBOSS, we do not include the
BOSS BAO þ fσ8 data.

19Per convention, we cite one-sided bound at 95% C.L. and
two-sided ones at 68% C.L.
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the CLASS-PT likelihood. We conclude that the standard
PyBird analysis setup (which consists of our baseline setup)
shows a higher constraining power than the standard
CLASS-PT analysis. Let us note that, for the H0 parameter,
we obtain a value 1.4σ higher than the Planck value
(h ¼ 0.6851þ0.0076

−0.014 at 68% C.L.) with the PyBird analysis
setup and a value 1.8σ higher with the CLASS-PT analysis
setup, which indicates a reasonably good consistency
between Planck and BOSS regarding H0. For a more
detailed discussion, including other data combinations, of
the differences between PyBird and CLASS-PT for the EDE
model, we refer to Appendix B. We, however, warn that the
cosmological constraints from EFTBOSS at the level of the
1D posteriors might be affected by prior effects, as
discussed in our companion paper [108] in the context
of ΛCDM.

C. Primary CMB-free constraints on EDE

To fully gauge the constraining power of a primary CMB-
free analysis, on top of the fiducial EFTBOSS data and BBN
prior, we now include other BOSS BAO measurements,
Planck lensing, and the Pantheon18 datasets. We recall that
this dataset is simply called BaseEFTBOSS, and we plot the
associated reconstructed 2D posteriors in Fig. 4 (blue
contours). We compare our results with the posteriors
reconstructed from a BaseTTTEEEþ Lensþ SH0ES (red
contours) and BaseTT650TEEEþ ACT (orange contours)
analysis. One can see that, while the primary CMB-free

analysis does not favor EDE (in the absence of a SH0ES
prior), constraints are relatively weak and the recon-
structed posteriors from the BaseEFTBOSS data are
not in tension with those reconstructed from the
BaseTTTEEEþ Lensþ SH0ES and BaseTT650TEEEþ
ACT analyses. Nevertheless, we note a clear narrowing
of the constraints in the ffEDEðzcÞ; log10ðzcÞg parameter
space around log10ðzcÞ ∼ 3.5, indicating that BOSS gains
constraining power right around matter-radiation equality.
To extract a meaningful CMB-independent bound on
fEDEðzcÞ, we perform an additional analysis now restricting
the log10ðzcÞ range to log10ðzcÞ ∈ ½3.4; 3.7�, which corre-
sponds to the region favored to resolve the Hubble tension.
We find that the combination of EFTBOSSþ BBNþ
Lensþ BAOþ Pan18 (i.e., BaseEFTBOSS) leads to
fEDEðzcÞ < 0.2 (95% C.L.) and h ¼ 0.710þ0.015

−0.025 , which
does not exclude the EDE models resolving the Hubble
tension.When performing the same analysis with CLASS-PT,
we find significantly weaker constraints, with fEDEðzcÞ <
0.284 (95% C.L.) and h ¼ 0.726þ0.02

−0.04 . Constraints from
CLASS-PT are shown in Appendix B, Fig. 9.

IV. EFTBOSS COMBINED WITH CMB DATA

A. EFTBOSS+PlanckTTTEEE

We now turn to studying the constraining power of
EFTBOSS data in combination with primary CMB data-
sets. We start by performing joint analyses with the full

FIG. 3. Comparison of 1D credible intervals in the EDE model reconstructed from BOSS full-shape analyses using PyBird baseline
likelihood, with a BBN prior on ωb, of various pre-reconstructed two-point function measurements and handling of the window
functions (PLZ=CM

FKP , PLZ=CM
FKP , ξLZ=CM, Pz1=z3

QUAD) combined with various post-reconstructed BAO parameters (αLZ=CMrec , αz1=z3rec , and βz1=z3rec ). We

recall that PLZ=CM
FKP þ αLZ=CMrec corresponds to the BOSS FKP measurements analyzed with the EFT predictions convolved with

inconsistently normalized window functions. The gray region corresponds to the EFTBOSS data that we use in our main analysis,
namely, PLZ=CM

FKP þ αLZ=CMrec . In the last line, we also show the results of Pz1=z3
QUAD þ βz1=z3rec analyzed using the CLASS-PT baseline likelihood.

Relevant information regarding the measurements and their notations are summarized in Table I. We choose to show only the
cosmological parameters that are not prior dominated. For fEDE, we quote instead the 2σ bound.
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PlanckTTTEEE datasets. All relevant χ2 statistics are given
in Appendix C, Tables VII and VIII, while the recon-
structed posteriors and best-fit values of parameters are
given in Table III. In the left panel of Fig. 5, we compare
constraints obtained with the consistently and inconsis-
tently normalized EFTBOSS data to that obtained with
the compressed BAO=fσ8 data. One can see that the
correction of the normalization of the window function
leads the new EFTBOSS data to have a constraining power
only slightly stronger than the compressed BAO=fσ8 data.
We derive a BaseTTTEEEþ Lensþ EFTBOSS constraint
of fEDEðzcÞ < 0.083, to be compared with fEDEðzcÞ <
0.088 from BaseTTTEEEþ Lensþ fσ8, while the

EFTBOSS data with wrong normalization incorrectly lead
to fEDEðzcÞ < 0.054.
Moreover, as was already pointed out in various works

[48,120,121,123], posteriors are highly non-Gaussian with
long tails toward high H0, and therefore these constraints
should be interpreted with care. This is further attested by
the fact that the best-fit point lies at the 2σ limit of
our constraints (e.g., fEDE at the best fit is 0.082 for
BaseTTTEEEþ Lensþ EFTBOSS). We defer to future
work to compare constraints derived here with a Bayesian
analysis to those derived with a profile likelihood approach
(e.g., [123,124]), which will be affected by our update to
the survey window function calculation.

FIG. 4. 2D posterior distributions reconstructed from the BaseEFTBOSS dataset compared with the posterior reconstructed from
BaseTTTEEEþ Lensþ SH0ES and BaseTT650TEEEþ ACT. We recall that BaseEFTBOSS refers to EFTBOSSþ BBNþ Lensþ
BAOþ Pan18, BaseTTTTEEE refers to Planck TTTEEþ BAOþ Pan18, and BaseTT650TEEE to Planck TT650TEEþ
BAOþ Pan18.
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As advocated recently, we will gauge the level of the
Hubble tension by computing the tension metric QDMAP≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ðw=SH0ESÞ−χ2ðw=oSH0ESÞ

p
[48,159], which agrees

with the usual Gaussian metric tension for Gaussian
posteriors, but better captures the non-Gaussianity of the
posterior.

Once the SH0ES prior is included in the BaseTTTEEEþ
Lensþ EFTBOSS analysis, we reconstruct fEDEðzcÞ ¼
0.103þ0.027

−0.023 with h ¼ 0.713� 0.009 and find the tension
metric QDMAP ¼ 2.1σ (while we find 4.8σ in ΛCDM), see
Table III and Fig. 5, right panel. This is only a minor
difference compared to the results without BOSS fσ8 or

TABLE III. Mean (best fit) �1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE model confronted to various
datasets, including Planck TTTEEE.

BaseTTTEEE þ Lens BaseTTTEEEþ Lensþ fσ8 BaseTTTEEEþ Lensþ EFTBOSS

H0 prior? No Yes No Yes No Yes

fEDEðzcÞ <0.091ð0.088Þ 0.109ð0.122Þþ0.030
−0.024 <0.088ð0.057Þ 0.102ð0.118Þþ0.030

−0.024 <0.083ð0.082Þ 0.103ð0.116Þþ0.027
−0.023

log10ðzcÞ Unconstrained (3.55) 3.599ð3.568Þþ0.029
−0.081 Unconstrained (3.78) 3.603ð3.569Þþ0.037

−0.11 Unconstrained (3.82) 3.67ð3.83Þþ0.21
−0.15

θi Unconstrained (2.8) 2.65ð2.73Þþ0.22
−0.025 Unconstrained (2.94) 2.58ð2.76Þþ0.33

þ0.034 Unconstrained (2.9) 2.73ð2.89Þþ0.19
−0.065

h 0.688ð0.706Þþ0.006
−0.011 0.715ð0.719Þ � 0.009 0.687ð0.694Þþ0.006

−0.011 0.712ð0.718Þ � 0.009 0.687ð0.700Þþ0.006
−0.011 0.713ð0.715Þ � 0.009

ωcdm 0.1227ð0.1281Þþ0.0018
−0.0036 0.1303ð0.1319Þ � 0.0035 0.1227ð0.1246Þþ0.0016

−0.0036 0.1296ð0.1314Þ � 0.0035 0.1221ð0.1269Þþ0.0015
−0.0033 0.1288ð0.1297Þ � 0.0032

102ωb 2.258ð2.266Þþ0.018
−0.020 2.283ð2.303Þ � 0.020 2.258ð2.266Þþ0.017

−0.021 2.282ð2.279Þ � 0.021 2.257ð2.275Þþ0.017
−0.020 2.287ð2.301Þ � 0.023

109As 2.122ð2.135Þ � 0.032 2.153ð2.145Þ � 0.032 2.119ð2.119Þþ0.029
−0.033 2.146ð2.164Þ � 0.031 2.113ð2.120Þ � 0.032 2.144ð2.144Þ � 0.032

ns 0.9734ð0.9823Þþ0.0053
−0.0076 0.9883ð0.9895Þ � 0.0060 0.9730ð0.9809Þþ0.0048

−0.0074 0.9868ð0.9899Þ � 0.0062 0.9715ð0.9827Þþ0.0049
−0.0076 0.9867ð0.9921Þ � 0.0065

τreio 0.0570ð0.0574Þþ0.0069
−0.0076 0.0582ð0.0579Þ�0.0075 0.0564ð0.0553Þ�0.0072 0.0572ð0.059Þ � 0.0073 0.0562ð0.0553Þ�0.0073 0.0586ð0.0599Þþ0.0068

−0.0076

S8 0.831ð0.839Þþ0.011
−0.013 0.839ð0.843Þ � 0.012 0.831ð0.833Þþ0.011

−0.012 0.838ð0.843Þ � 0.013 0.826ð0.836Þ � 0.011 0.833ð0.835Þ � 0.012

Ωm 0.3084ð0.3041Þ�0.0058 0.3008ð0.3005Þ�0.0048 0.3089ð0.3074Þ�0.0054 0.3019ð0.3003Þ�0.0051 0.3077ð0.3065Þ�0.0054 0.2998ð0.3004Þ�0.0050

Total χ2min 3799.2 3802.9 3801.8 3806.1 3912.7 3917.3
Δχ2min −3.8 −23.7 −3.9 −23.0 −4.7 −22.7

QDMAP 1.9σ 2.0σ 2.1σ

FIG. 5. Left: 2Dposterior distributions fromBaseTTTEEEþLens,BaseTTTEEEþLensþfσ8, andBaseTTTEEEþLensþEFTBOSS.
We also show the results from the EFTBOSS data with a wrong normalization for comparison. Right: 2D posterior distributions from
BaseEFTBOSS and BaseTTTTEEEþ Lensþ SH0ES, with and without EFTBOSS data. We recall that BaseTTTTEEE refers to Planck
TTTEEþ BAOþ Pan18, while BaseEFTBOSS refers to EFTBOSSþ BBNþ Lensþ BAOþ Pan18.
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full-shape information, for which we get fEDEðzcÞ ¼
0.109þ0.030

−0.024 with h ¼ 0.715� 0.009 and the QDMAP

metric gives a 1.9σ tension between SH0ES and other
datasets.20 Similarly, when the fσ8 information is included,
we find a 2.0σ tension with fEDEðzcÞ ¼ 0.102þ0.030

−0.024
and h ¼ 0.712� 0.009.
Analyses with CLASS-PT are presented in Appendix B,

and similar results are found. Therefore, current full-shape
EFTBOSS data provide little additional constraining power
(∼10%) on the EDE model over Planck and fσ8. We
conclude that the EFTBOSS data are in agreement with the
model reconstructed when including a SH0ES prior, as the
preliminary study suggested, and BOSS data do not
exclude the EDE resolution to the Hubble tension.

B. EFTBOSS+PlanckTT650TEE+ACT

We now turn to the combination of Planck data with
ACT. We start with a restricted version of Planck temper-
ature data at l < 650 (chosen to mimic WMAP and
perform a consistency test between CMB datasets), com-
bined with Planck polarization and ACT data. This data
combination21 is known to favor22 EDE at ∼3σ [112–115],
with large values of fEDEðzcÞ ¼ 0.128þ0.064

−0.039 and h ¼
0.723þ0.021

−0.017 (see Table IV, first column). In Ref. [115], it

was shown that BOSS fσ8 and Planck lensing data
decreased the preference23 to 2.6σ. We now test whether
the EFT analysis of BOSS data can put further pressure on
this hint of EDE, as our preliminary study indicates. All
relevant χ2 statistics are given in Appendix C, Table IX,
while we give the reconstructed posteriors of parameters in
Table IV. We show in Fig. 6 (left panel) the 2D posterior
distribution ffEDEðzcÞ;ωcdm; h; log10ðzcÞg reconstructed
from the analysis of BaseTT650TEEEþ ACT compared
with that reconstructed with the addition of either fσ8 or
EFTBOSS data.
One can see that, in this case, the EFTBOSS data do

reduce the preference for EDE, with fEDE now compatible
with zero at 1σ. For the BaseTT650TEEEþ ACTþ
Lensþ EFTBOSS dataset, represented by the dark blue
line on Fig. 6 (left panel), we find a weak upper limit
fEDE < 0.172 and h ¼ 0.708þ0.015

−0.022 , with best-fit values
fEDE ≃ 0.148 and h ≃ 0.725 in good agreement with the
SH0ES determination. Quantifying the preference over
ΛCDM, we find a Δχ2 ¼ −11.1 in favor of EDE (2.5σ),
decreased from −14.6 without EFTBOSS and Planck
lensing data. The χ2 of EFTBOSS data is degraded
by þ1.7 in the EDE model compared to ΛCDM,
while the improvement in the fit of ACT and Planck
TT650TEEE is fairly stable, with Δχ2ðACTÞ ¼ −7.6
and Δχ2ðPlanckTT650TEEEÞ ¼ −6.1, respectively.
Additionally, we note that, for this more extreme EDE

TABLE IV. Mean (best fit) �1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE model confronted to various
datasets, including Planck TT650TEEEþ ACT.

BaseTT650TEEEþ ACT
BaseTT650TEEEþ

ACTþ fσ8
BaseTT650TEEEþ ACTþ

EFTBOSS
BaseTT650TEEEþ ACTþ

Lensþ EFTBOSS

fEDEðzcÞ 0.128ð0.159Þþ0.064
−0.039 0.116ð0.148Þþ0.059

−0.046 0.093ð0.148Þþ0.047
−0.066 <0.172ð0.148Þ

log10ðzcÞ 3.509ð3.521Þþ0.048
−0.033 3.505ð3.514Þþ0.056

−0.049 3.493ð3.514Þþ0.080
−0.093 3.486ð3.514Þþ0.091

−0.13
θi 2.63ð2.77Þþ0.24

þ0.023 2.53ð2.78Þþ0.37
þ0.094 2.54ð2.78Þþ0.47

0.065 2.41ð2.78Þþ0.65
0.12

h 0.723ð0.733Þþ0.021
−0.017 0.718ð0.728Þ � 0.018 0.713ð0.730Þþ0.017

−0.021 0.708ð0.725Þþ0.015
−0.022

ωcdm 0.1332ð0.1369Þþ0.0071
−0.0059 0.1320ð0.1355Þ � 0.0062 0.1285ð0.1355Þþ0.0057

−0.0067 0.1276ð0.1355Þþ0.0047
−0.0074

102ωb 2.268ð2.267Þ � 0.019 2.266ð2.261Þ � 0.020 2.265ð2.266Þ � 0.020 2.263ð2.265Þ � 0.019
109As 2.144ð2.148Þ � 0.037 2.136ð2.144Þ � 0.038 2.128ð2.147Þ � 0.040 2.127ð2.143Þ � 0.034
ns 0.9928ð0.9963Þþ0.0092

−0.0078 0.9910ð0.9936Þþ0.0090
−0.0081 0.9885ð0.9936Þ � 0.0091 0.9865ð0.9936Þ � 0.0086

τreio 0.0520ð0.0508Þ � 0.0077 0.0511ð0.0506Þ � 0.0079 0.0519ð0.0506Þ � 0.0077 0.0523ð0.0506Þ � 0.0072

S8 0.842ð0.846Þ � 0.016 0.841ð0.845Þ � 0.017 0.830ð0.838Þ � 0.016 0.831ð0.837Þþ0.013
−0.014

Ωm 0.2996ð0.2982Þþ0.0061
−0.0072 0.3013ð0.2995Þ � 0.0068 0.2990ð0.2995Þ � 0.0069 0.3008ð0.2995Þ � 0.0059

Total χ2min 3571.9 3575.8 3688.3 3698.4
Δχ2ðEDE −
ΛCDMÞ

−14.6 −13.3 −12.0 −11.1

20This is different than what was reported in Ref. [48], because
of an updated H0 prior with tighter error bars.

21The preference persists until PlanckTT data at l ≳ 1300 are
included, while the inclusion of SPT-3G TEEE data has little
impact (in fact, slightly strengthening the hint of EDE) [115].

22As discussed by the ACT Collaboration [112], it is still a
possibility that the apparent preference for EDE arises from
remaining systematic errors in the data.

23In the following, the preference is computed assuming the
Δχ2 follows a χ2 distribution with 3 degrees of freedom. We
stress that this is just an approximation, as the true number of
degrees of freedom is more complicated to estimate due to
log10ðzcÞ and θi becoming ill defined when fEDE → 0.
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model, the full EFTBOSS data provide stronger constraints
than the conventional BAO=fσ8 data. Although current
data do not fully erase the preference for EDE overΛCDM,
this confirms that BOSS data, and more generally meas-
urement of the matter power spectrum in the late Universe,
provide an important probe of large EDE fraction in the
early Universe. We find similar results with CLASS-PT (see
Appendix B for details), attesting that once BOSS data are

combined with CMB data, the results obtained are robust to
reasonable choices in the EFT analysis.

C. EFTBOSS+PlanckTTTEE+ACT

Except for consistency tests, there are no good reasons
to remove part of the high-l Planck TT data. In the
following, we present results of combined analyses of

FIG. 6. Left: 2D posterior distributions from BaseTT650TEEEþ ACT in combination with fσ8, EFTBOSS, and Planck lensing. We
recall that BaseTT650TEEE refers to Planck TT650TEEEþ BAOþ Pan18 data. Right: 2D posterior distributions from ACTþ
Lensþ EFTBOSS in combination with either BaseTT650TEEE or BaseTTTEEEE with and without SH0ES.

TABLE V. Mean (best fit) �1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE model
confronted to BaseTTTEEEþ ACTþ Lensþ EFTBOSS, with and without SH0ES.

BaseTTTEEEþ ACTþ Lensþ EFTBOSS

H0 prior? No Yes

fEDEðzcÞ <0.110ð0.074Þ 0.108ð0.124Þþ0.028
−0.021

log10ðzcÞ 3.48ð3.51Þ � 0.21 3.552ð3.531Þþ0.026
−0.065

θi Unconstrained 2.77ð2.81Þþ0.13
−0.070

h 0.691ð0.7Þþ0.006
−0.013 0.715ð0.72Þ � 0.009

ωcdm 0.1229ð0.1267Þþ0.0017
−0.0042 0.1300ð0.1322Þþ0.0035

−0.0031
102ωb 2.247ð2.248Þþ0.015

−0.017 2.260ð2.255Þ � 0.018
109As 2.126ð2.133Þþ0.028

−0.032 2.153ð2.156Þ � 0.030
ns 0.9758ð0.9795Þþ0.0049

−0.0080 0.9873ð0.9893Þ � 0.0058
τreio 0.0540ð0.0534Þ � 0.0070 0.0548ð0.0539Þ � 0.0070

S8 0.829ð0.843Þþ0.010
−0.012 0.837ð0.843Þ � 0.012

Ωm 0.3061ð0.3052Þ � 0.0054 0.2997ð0.3Þ � 0.0047

Total χ2min 4157.6 4159.8
Δχ2minðEDE − ΛCDMÞ −6.4 −26.1

QDMAP 1.5σ
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PlanckTTTEEEþ ACTþ EFTBOSS (i.e., including full
Planck data) in Table Vand Fig. 6 (right panel). All relevant
χ2 statistics are given in Appendix C, Table X. We quantify
the residual tension with SH0ES using the QDMAP metric
introduced previously. In that case, we find that the
preference for EDE without SH0ES is strongly reduced,
in agreement with previous works, but the 2σ upper limit on
fEDE < 0.110 is much weaker than in the BaseTTTEEEþ
Lensþ EFTBOSS analysis presented previously,
fEDE < 0.083. As a result, the tension metric between
BaseTTTEEEþ ACTþ Lensþ EFTBOSS and SH0ES is
released to 1.5σ compared to 4.7σ in ΛCDM (and 2.1σ
without ACT data). When the SH0ES prior is included, we
find fEDE ¼ 0.108þ0.028

−0.021 and h ¼ 0.715� 0.009 (in very
good agreement with the results presented earlier without
ACT), with no degradation in the χ2 of EFTBOSS. This
confirms that the EFTBOSS data can accommodate the
amount of EDE required to resolve the Hubble tension
(with fEDE ∼ 0.1 and h ∼ 0.72), but constrain more extreme
EDE contributions.

D. Impact of Pantheon+ data

To finish, we perform an analysis with the new
Pantheonþ SNIa catalog [127], which is known to favor
a higher Ωm ¼ 0.338� 0.018, to illustrate the impact that
these new data have on the EDE model. We perform
analyses of four datasets in combination with Pantheon+,
following our baseline data, namely, BaseEFTBOSS,
BaseTTTEEE þ Lens þ EFTBOSSðþSH0ESÞ, and
BaseTT650TEEEþACTþLensþEFTBOSS. The results
of these analyses are presented in Table VI and in
Fig. 7, while all relevant χ2 statistics are given in

Appendix C, Table XI. First, without information from
the primary CMB, we find that the combination
of EFTBOSSþ BBNþ Lensþ BAOþ PanPlus (i.e.,
BaseEFTBOSSþ PanPlus) leads to a weak constraint on
fEDEðzcÞ < 0.228 with h ¼ 0.717þ0.015

−0.026 in good agreement
with SH0ES. In fact, even within ΛCDM we find
h ¼ 0.694þ0.012

−0.014 , which is not in significant tension with
SH0ES. This data combination was recently argued to
constrain new physics solution to the Hubble tension that
affects the sound horizon, due to the fact that measurement
of h based on the scale of matter-radiation equality keq
(which can be extracted by marginalizing over the sound
horizon information24) is in tension with the SH0ES
measurement [39,126,151]. In our analysis, we stress that
we do not marginalize over the sound horizon in the
EFTBOSS analysis. We do not expect that removing part
of the data through the marginalization procedure would
make BOSS data appear in strong tension with SH0ES, at
least in EDE. Rather, we expect that constraints would
significantly weaken. We leave for future work to test
whether the determination of h from keq is robust to
changes in the cosmological model.
When combiningwith Planck TTTEEE,we find that con-

straints on EDE are increased by ∼5% with respect
to the analogous analysis with Pantheon18, with
fEDEðzcÞ < 0.079. This can be understood by noting that
the larger Ωm favored by Pantheonþ, coupled with the
positive correlation between fEDEðzcÞ − h, can lead to high

TABLE VI. Mean (best fit) �1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE model confronted to various
datasets, including the recent PanPlus SNIa catalog.

BaseEFTBOSSþ PanPlus
BaseTTTEEEþ Lensþ
EFTBOSSþ PanPlus

BaseTTTEEEþ Lensþ
EFTBOSSþ

PanPlusþ SH0ES

BaseTT650TEEEþ
ACT þ Lensþ

EFTBOSSþ PanPlus

fEDEðzcÞ <0.228ð0.01Þ <0.079ð0.056Þ 0.123ð0.141Þþ0.030
−0.018 <0.137ð0.11Þ

log10ðzcÞ Unconstrained (3.91) 3.59ð3.57Þþ0.25
−0.21 3.64ð3.57Þþ0.23

−0.13 <3.5ð3.5Þ
θi Unconstrained (2.98) Unconstrained (2.74) 2.59ð2.77Þþ0.31

þ0.064
Unconstrained (2.78)

h 0.717ð0.692Þþ0.015
−0.026 0.684ð0.692Þþ0.006

−0.001 0.719ð0.724Þþ0.009
−0.008 0.700ð0.714Þþ0.013

−0.019
ωcdm 0.142ð0.131Þþ0.010

−0.014 0.1222ð0.1251Þþ0.0015
−0.0028 0.1317ð0.1346Þ � 0.0031 0.1258ð0.1306Þþ0.0039

−0.0058
10−2ωb 2.276ð0.023Þþ0.035

−0.039 2.251ð2.254Þ � 0.018 2.291ð2.275Þþ0.020
−0.024 2.258ð2.259Þ � 0.019

109As 1.88ð1.929Þþ0.16
−0.20 2.114ð2.148Þ � 0.029 2.155ð2.157Þþ0.030

−0.036 2.120ð2.135Þ � 0.033
ns 0.873ð0.889Þ � 0.049 0.9700ð0.9752Þþ0.0046

−0.0071 0.9911ð0.9912Þþ0.0062
−0.0071 0.9827ð0.9877Þ � 0.0081

τreio � � � 0.0562ð0.0558Þ � 0.0069 0.0582ð0.0554Þ � 0.0077 0.0519ð0.0516Þþ0.0065
−0.0075

S8 0.815ð0.824Þ � 0.018 0.832ð0.837Þ � 0.010 0.840ð0.847Þ � 0.012 0.831ð0.839Þþ0.012
−0.011

Ωm 0.321ð0.324Þ � 0.013 0.3116ð0.3093Þ � 0.0056 0.3000ð0.3014Þ � 0.0047 0.3041ð0.3016Þ � 0.0061

Total χ2min 1537.9 4304.0 4187.0 4085.1
Δχ2minðEDE−
ΛCDMÞ

0 −1.1 −32.3 −9.2

24More precisely, in Refs. [39,126,151], the marginalization
over the sound horizon information is intended as a consistency
test to be performed within ΛCDM.
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ωm ¼ Ωmh2 which are constrained by CMB data. However,
once the SH0ES Cepheid calibration of SNIa is included,
we find a strong preference for EDE, with fEDEðzcÞ ¼
0.123þ0.030

−0.018 (i.e., nonzero at more than 5σ) and a
Δχ2ðEDE − ΛCDMÞ ¼ −32.3 (compared to −22.7 with
Pantheon18). The cost in χ2 for Planck TTTEEEþ Lens
and EFTBOSS compared to the analysis without the

SH0ES calibration is small, with χ2ðPlanckÞ increasing
by þ2.3 and χ2ðEFTBOSSÞ increasing by þ0.9, which
further attests to the non-Gaussianity of the posterior in the
absence of the SH0ES calibration. The QDMAP tension
metric introduced earlier cannot be used as easily, due to
the fact that the SH0ES data are now modeled in a more
involved way, making use of a correlation matrix

FIG. 7. Top left: 2D posterior distributions from BaseTTTEEEþ Lensþ EFTBOSS in combination with either Pantheon18 or
Pantheonþ data, and the SH0ES Cepheid calibration. We recall that BaseTTTEEE refers to Planck TTTEEEþ BAOþ Pan18 data. Top
right: 2D posterior distributions from BaseEFTBOSS and BaseTT650TEEEþ ACTþ Lensþ EFTBOSS, in combination with either
Pantheon18 or Pantheonþ data. We recall that BaseTT650TEEE refers to Planck TT650TEEEþ BAOþ Pan18 data, while
BaseEFTBOSS refers to EFTBOSSþ BBNþ Lensþ BAOþ Pan18. Bottom: 2D posterior distributions from BaseEFTBOSS, with
either Pantheon18 or Pantheonþ data.
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connecting SNIa calibrators and high z SNIa [2], rather
than the simple Gaussian prior on h.
Finally, when combining with Planck TT650TEEE and

ACT, we find that the preference for EDE seen within ACT
data further decreases to Δχ2 ¼ −9.2 (2.2σ) and we derive
a limit fEDEðzcÞ < 0.137, with h ¼ 0.700þ0.013

−0.019 and a ≲2σ
tension with SH0ES. We defer to future work to further test
the ability of EDE (and other promising models) to resolve
the Hubble tension in light of this new Pantheonþ SNIa
catalog.

V. DISCUSSION AND CONCLUSIONS

The developments of the predictions for the galaxy
clustering statistics from the EFTofLSS have made possible
the study of BOSS data beyond the conventional analyses
dedicated to extracting BAO and fσ8 information. There
has been in the recent literature a number of studies aiming
at measuring the ΛCDM parameters at precision compa-
rable with that of Planck CMB data (see, e.g.,
Refs. [38,39,98–102,104]). Additionally, it was shown that
BOSS full-shape data, when analyzed using the one-loop
predictions from the EFTofLSS (here called EFTBOSS
data), can lead to strong constraints on extension to the
ΛCDM model. In particular, the EDE model, currently one
of the most promising models to resolve the Hubble tension
[48,61], was shown to be severely constrained by
EFTBOSS data [118,119]. However, it was subsequently
argued that part of the constraints may come from a
mismatch in the primordial power spectrum As amplitude
between EFTBOSS and Planck [120].
Recently, it was found that the original EFTBOSS data

used in these analyses were affected by an inconsistency
between the normalization of the survey window function
and the one of the data measurements, which led to a
mismatch in As. A proper reanalysis of the EFTBOSS data
constraints on the EDE model was lacking until now.
In this paper, we have performed a thorough investiga-

tion of the constraints on EDE in light of the correctly
normalized EFTBOSS data and estimated the shifts intro-
duced on the reconstructed cosmological parameters and
their errors between various analysis strategies. A similar
analysis within the ΛCDMmodel is presented in Sec. IVof
our companion paper [108]. Our results are summarized in
the following.

A. EFTBOSS constraints on EDE alone

We have shown in Sec. III B that, regardless of the
BOSS data or the likelihood we consider, the BOSS full
shape (analyzed on their own with a BBN prior) leads to
reconstructed values of H0 that are compatible with what is
obtained by the SH0ES Collaboration. Yet, the various
EFTBOSS measurements, as well as the PyBird and
CLASS-PT likelihoods, do not have the same constraining
power on EDE:

(i) When using the PyBird likelihood, we found
fEDEðzcÞ<0.321 when analyzing PLZ=CM

FKP þαLZ=CMrec ,
while analyzing Pz1=z3

QUAD þ αz1=z3rec yields fEDEðzcÞ <
0.382, a ∼20% difference.

(ii) When using the same BOSS data, namely, Pz1=z3
QUAD,

we have found that the PyBird likelihood gives
fEDEðzcÞ < 0.382, while the CLASS-PT likelihood
gives fEDEðzcÞ < 0.448, i.e., a ∼15% difference.

(iii) Restricting our analysis to the range of critical
redshift log10ðzcÞ ∈ ½3.4; 3.7� that can resolve the
Hubble tension, we have shown that the combination
of EFTBOSSþBBNþLensþBAOþPan18, leads
to the constraints fEDEðzcÞ < 0.2 (95% C.L.) and
h ¼ 0.710þ0.015

−0.025 , which does not exclude the EDE
models resolving the Hubble tension.

(iv) The inclusion of the recent Pantheonþ data does not
affect this conclusion, as we find h ¼ 0.717þ0.015

−0.026 .
We do not expect that marginalizing over the sound
horizon as done in Refs. [39,126,151] would alter
our conclusions, as it would simply remove infor-
mation from the data. This question will be thor-
oughly explored elsewhere.

B. Planck+EFTBOSS constraints on EDE

In combination with Planck TTTEEE data, we have
shown that constraints on EDE have changed due to the
correction of the normalization of the window function:

(i) The combination of Planck TTTEEEþ Lensþ
BAOþ Pan18þ EFTBOSS leads to fEDEðzcÞ <
0.083, which is a ∼10% improvement over the
constraints without BOSS data and a ∼5% improve-
ment over the constraints with conventional
BAO=fσ8 data. Yet, this is much weaker than the
constraints reported with the incorrect normaliza-
tion, namely, fEDE < 0.054. We quantify that the
Hubble tension is reduced to the 2.1σ level in the
EDE cosmology (1.9σ without EFTBOSS) com-
pared to 4.8σ in the ΛCDM model, and we find
fEDEðzcÞ ¼ 0.103þ0.027

−0.023 at zc ¼ 3970þ255
−205 when the

SH0ES prior is included.
(ii) Replacing Pantheon18 by the new Pantheonþ data

improves the constraints on EDE to fEDEðzcÞ <
0.079. Yet, the inclusion of the SH0ES Cepheid
calibration leads to fEDEðzcÞ ¼ 0.123þ0.030

−0.018 at zc ¼
4365þ3000

−1100 , i.e., a nonzero fEDEðzcÞ at more than 5σ
with Δχ2ðEDE − ΛCDMÞ ¼ −32.3. The cost in χ2

for PlanckTTTEEEþ Lens and EFTBOSS com-
pared to the analysis without the SH0ES calibration
is small, with χ2ðPlanckÞ increasing by þ2.3 and
χ2ðEFTBOSSÞ increasing by þ0.9, which attests of
the non-Gaussianity of the posterior in the absence
of the SH0ES calibration. This deserves to be
studied further through a profile likelihood approach
[123,124].
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C. ACT+EFTBOSS constraints on EDE

Finally, we have studied the impact of EFTBOSS data on
the recent hints of EDE observed within ACT DR4 data:

(i) EFTBOSS reduces the preference for EDE over
ΛCDM seen when analyzing ACT DR4, alone or in
combination with restricted Planck TT data. The
combination of Planck TT650TEEEþ Lensþ
BAOþ Pan18þ ACTþ EFTBOSS leads to a mild
constraints on fEDEðzcÞ < 0.172 with Δχ2ðEDE−
ΛCDMÞ ¼ −11.1, to be compared with fEDEðzcÞ ¼
0.128þ0.064

−0.039 without EFTBOSSþ Lens, with
Δχ2ðEDE − ΛCDMÞ ¼ −14.6.

(ii) The inclusion of Pantheonþ data further restricts
fEDEðzcÞ < 0.137, with Δχ2ðEDE−ΛCDMÞ¼−9.2.

(iii) When full Planck data are included, we derived a
constraint fEDEðzcÞ < 0.110, which is ∼30%weaker
than without ACT data. When all CMB data are
included in combination with EFTBOSS, the Hub-
ble tension is reduced to 1.5σ in the EDE model, to
be compared with 4.7σ in ΛCDM. The inclusion of
the SH0ES prior leads to fEDEðzcÞ ¼ 0.108þ0.028

−0.021
at zc ¼ 3565þ220

−495 .
We conclude that EFTBOSS data do not exclude

EDE as a resolution to the Hubble tension, where we
consistently find fEDEðzcÞ ∼ 10–12% at zc ∼ 3500–4000,
with h ∼ 0.72, when the Cepheid calibration is included in
the analyses. However, EFTBOSS data do constrain very
high EDE fraction as seen when analyzing ACT DR4 data.

D. Final comments

There are a number of relevant caveats to stress regarding
our analyses. First, we note that the reconstructed S8 values
from the various analyses that favor EDE are ∼2.8–3.2σ
higher than those coming from weak lensing measurement
(and their cross-correlation with galaxy clustering) such as
DES [35] and KiDS [34]. As was already pointed out in the
past, this indicates that weak lensing data (and the existence
of a S8 tension) could be used to further restrict the
existence of EDE. Nevertheless, it has been noted that
solutions to the S8 tension may be due to systematic effects
[42] or nonlinear modeling including the effect of baryons
at very small scales [41] or to a more complete dynamics in
the dark sector [160,161]. In fact, models that resolve the S8
tension leave the EDE resolution unaffected [162,163] such
that, although perhaps theoretically unappealing, it is
possible that solutions to the H0 and S8 lie in different
sectors. We leave for future work a robust study of EDE in
light of the combination of EFTBOSS and weak lensing
data, which will require better handling of the modeling of
physical effects at scales beyond the range of validity of our
EFT. Second, it will be very important to extend this work
to include the bispectrum, which was recently analyzed at
the one-loop level within ΛCDM [40,164]. It will also be
interesting to see if the eBOSS surveys can shed light on

EDE [165]: although the inclusion of eBOSS BAO was
shown to not significantly modify the constraints on EDE
(see, e.g., Refs. [48,119]), the analysis of the full-shape of
eBOSS quasars may have the potential to put stronger
limits given the large size of the survey. Additional
constraints on EDE may also arise from measurements
of the age of old objects such as globular clusters of stars
[166,167], or the halo mass function at high z [168].
Interestingly, using N-body simulations, Ref. [168] showed
that EDE predicts 50% more massive clusters at z ¼ 1 and
twice more galaxy-mass halos at z ¼ 4 than ΛCDM. These
predictions can be tested by observations from the James
Webb Space Telescope and the first publicly available data
are, in part, better fit by EDE than ΛCDM [169].
To close this work, we mention that we find here in

agreement with previous literature, that the cosmological
data including SH0ES prefer a higher value for the spectral
tilt ns in the EDE model than in ΛCDM, with ns ∼ 1
allowed at ≲2σ depending on the combination of data
considered. Of interest here, we see that the inclusion of
EFTBOSS data does not significantly pull back ns to lower
value, and when analyzed alone (with a BBN prior) also
independently favors a value of ns consistent with scale
independence at ∼1σ. A value of ns close to that of the
Harrison-Zeldovich spectrum, when put in perspective of
CMB measurements of the tensor-to-scalar ratio, would
dramatically change the status of the preferred inflationary
models [170] (see also Refs. [171–173]). Therefore, if EDE
is firmly detected with future cosmological data, beyond
serving as resolution of the H0 tension, it would also have
important consequences for early Universe physics.
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APPENDIX A: WINDOW FUNCTION
NORMALIZATION

As discussed in Refs. [150,174,175] (see also [176]), the
window function measurements, which are required to
make an accurate theoretical calculation, have to be
consistently normalized with the power spectrum measure-
ments. The estimator for the power spectrum we are
concerned with is the Feldman, Kaiser and Peacock
(FKP) estimator [177], later generalized to redshift space
in Refs. [178,179]. For fast estimation using FFTs
[180,181], the line of sight for a given galaxy pair is
chosen to be in the direction of one of galaxy in the pair, r1.
For clarity in the discussion we are going to have next, let
us first gather here pieces of derivations that can be found
partially in Refs. [98,182]. It is easy to see that the
expectation value of the power spectrum FKP estimator
reads (see, e.g., [183])

hP̂lðkÞi ¼
2lþ 1

NP

Z
dΩk

4π
d3r1d3se−ik·sΘðr1ÞΘðr1 þ sÞ

× n̄wðr1Þn̄wðr1 þ sÞξðs; r1ÞLlðk̂ · r̂1Þ; ðA1Þ

where Ll is the Legendre polynomial of order l. Here
n̄wðrÞ≡ wðrÞn̄ðrÞ is the weighted mean galaxy density,
with weight wðrÞ being the FKP weights times some
correction weights (usually to account for veto and instru-
mental/observational systematics), ΘðrÞ is one if the galaxy
at position r falls inside the survey, zero otherwise, and
ξðs; r1Þ is the correlation function, with s the separation
between two galaxies. Importantly, NP is a normalization
factor that is chosen by the user (see below). Using the
following identity:

Z
dΩk

4π
e−ik·sLlðk̂ · r̂1Þ ¼ ð−iÞljlðksÞLlðŝ · r̂1Þ; ðA2Þ

where jl is the spherical-Bessel function of order l, we
obtain

hP̂lðkÞi ¼
ð2lþ 1Þ

NP
ð−iÞl

Z
ds s2jlðksÞ

Z
dΩs

×
Z

d3r1Θðr1ÞΘðr1 þ sÞn̄wðr1Þn̄wðr1 þ sÞ

× ξðs; r1ÞLlðμÞ; ðA3Þ

where we have introduced the notation μ≡ ŝ · r̂1. We now
make the following approximation. We assume that the
redshift evolution of the correlation function can be
neglected within the observational bin such that

ξðs; r1Þ≡ ξðs; μ; r1ðzÞÞ ≃ ξðs; μ; zeffÞ≡ ξðs; μÞ, where the
latter is evaluated at the effective redshift zeff of the
survey.25 As such, we can pull out ξðs; μÞ from the integral
over d3r1. We can further expand in multipoles ξðs; μÞ ¼P

l0 ξl0 ðsÞLl0 ðμÞ to pull out ξl0 ðsÞ from the angular
integrals. Then, using the identity

LlðμÞLl0 ðμÞ ¼
X
L

�
l L l0

0 0 0

�
2

ð2Lþ 1ÞLLðμÞ; ðA4Þ

where ðl
0
L
0
l0
0
Þ are the Wigner 3-j symbols, we get

hP̂lðkÞi ¼ 4πð2lþ 1Þð−iÞl
X
l0;L

�
l L l0

0 0 0

�
2

×
Z

ds s2jlðksÞξl0 ðsÞQLðsÞ; ðA5Þ

where we have defined the window functions

QLðsÞ≡ ð2Lþ 1Þ
NP

Z
dΩs

4π

Z
d3r1Θðr1ÞΘðr1 þ sÞ

× n̄wðr1Þn̄wðr1 þ sÞLLðμÞ: ðA6Þ
Inserting the relation between the multipoles of the corre-
lation function and those of the power spectrum,

ξl0 ðsÞ ¼ il
0
Z

dk0

2π2
k02Pl0 ðk0Þjl0 ðk0sÞ; ðA7Þ

we finally obtain

hP̂lðkÞi ¼
Z

dk0 k02
X
l0

Wll0 ðk; k0ÞPl0 ðk0Þ; ðA8Þ

where we have defined

Wl;l0 ðk; k0Þ ¼ 2

π
ð2lþ 1Þð−iÞlil0

Z
ds s2jlðksÞjl0 ðk0sÞ

×
X
L

�
l L l0

0 0 0

�
2

QLðsÞ: ðA9Þ

Notice that, for clarity, we have neglected the integral
constraints [174], as well as wide-angle contributions
[182].26 Our master formula is Eq. (A8): to predict the
observed power spectrum hP̂lðkÞi, we simply need to
convolve our predictions Pl0 ðk0Þ with Wl;l0 ðk; k0Þ given by
Eq. (A9). Wl;l0 ðk; k0Þ can be precomputed, and the only
input we need is QLðsÞ.

25See Ref. [183] for a BOSS analysis that does not rely on this
approximation.

26We have checked that neglecting the integral constraints in
the BOSS full-shape analysis leads to small shifts in the
posteriors of ≲1=4 · σ.
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The window function QLðsÞ, Eq. (A6), can be
obtained in the following way [182]. Using Eq. (A7)
and the identity

Z
dk

ðksÞ2
2π2

jLðksÞjLðks0Þ ¼
1

4π
δDðs − s0Þ; ðA10Þ

where δD is the Dirac delta distribution, we see that

QLðsÞ ¼ iL
Z

dk
2π2

k2QLðkÞjLðksÞ; ðA11Þ

where QLðkÞ is the expectation value of a power spectrum
as defined in Eq. (A3) given ξðs; r1Þ≡ 1. Therefore,QLðkÞ
can be measured as the power spectrum Pr

LðkÞ of random
objects (whose distribution is approaching Poisson) within
the same geometry survey that we are dealing with,

QLðkÞ≡ αhP̂r
LðkÞi; ðA12Þ

where α ¼ Ng=Nr is the ratio of the number of data
“galaxy” objects to the number of random objects. Such
catalog of random objects is already available to us, as it is
also required for the estimation of the power spectrum.
The key point is the following: QLðkÞ is normalized by

the same normalization factor as PlðkÞ, namely, NP. As
such, in the limit of vanishing separation s → 0, the
window function monopole does not go to unity,
Q0ðsÞ ≠ 1, but instead

Q0ðs → 0Þ → 1

NP

Z
d3r1n̄2wðrÞ: ðA13Þ

Given that one does not know the value of the numerator in
the equation above prior tomaking themeasurement,NP can
only be estimated approximately in order to have Q0ðsÞ
approaching 1 at vanishing separation s → 0. It is in this
sense that NP is chosen by the user. However, the normali-
zation choice is not important as long as thewindow function
measurements are consistently normalized with the power
spectrum measurements. Given the measurement protocol

sketched above, this is automatic if one is able to evaluate
(A11) accurately.27

In past BOSS full-shape analyses, e.g., [98–100,118,119],
the window function normalizations were instead inconsis-
tently enforced to Qwrong

0 ð0Þ≡ 1, while in reality Q0ð0Þ ∼
0.9 given the choice ofNP. Such inconsistency of∼0.9 led to
a shift in As of around −1σ depending on the normalization
choice. Let us list two choices for the normalization
factor NP:

(i) Choice 1: NP ¼ α
P

fi∈randomsg n̄ðriÞw2
FKPðriÞ.28 This

was the choice in Ref. [184], which measurements
were used in, e.g., Refs. [99,118].

(ii) Choice 2: NP ¼ A � R drn̄2wðrÞ, where n̄wðrÞ is
inferred from counting galaxies and binning them
in shells and A is an associated estimated area.29

This was the choice in Ref. [147], which measure-
mentsPLZ=CM

FKP were used in, e.g., Refs. [98,100,119].

PLZ=CM
FKP , as defined in Table I, is assigned window

functions that are inconsistently normalized.
We stress again that those choices are not important as long as
the same NP is used to normalize the window functions and

FIG. 8. Comparison of ΛCDM results from BOSS full-shape analysis of the power spectrum measurements PLZ=CM
FKP and PLZ=CM

FKP ,
analyzed with window functions inconsistently and consistently normalized, respectively (see Table I). The gray bands are centered on
the results from the PLZ=CM

FKP data.

27At https://github.com/pierrexyz/fkpwin, we provide a code
written to perform the window function measurements, based on
NBODYKIT. Let us note that we find that it is not straightforward to
get a precise measurements of Q̂LðkÞ, namely, the power
spectrum of the random objects over the whole range of k for
which Q̂LðkÞ contributes significantly to the integral in Eq. (A11).
Furthermore, the estimator in Eq. (A12) might have a non-
negligible variance, given that only one catalog is used. We
nevertheless have checked that, letting the normalization of the
window functions to be different from the one of the power
spectrum by a few percents leads to tolerable shifts in the
posteriors (≲1σ=5) inferred fitting BOSS data. For future
large-volume datasets, it would be, however, desirable to have
a better numerical control over the measurements of QLðsÞ such
that the normalization consistency with PlðkÞ is achieved to
sufficient accuracy given increasing precision of the data.

28Naively one might think that the sum over enough objects is
a good approximation to the volume integral; Actually, choice 1
poorly estimates the integral in Eq. (A13) because in the FKP
estimator, n̄ is measured from the grid for FFT with finite cell
resolution, while in choice 1, we are counting the objects instead.

29We thank Hector Gil-Marín for private correspondence on
this point.
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the power spectrummeasurements. As already mentioned in
the main text, except forPLZ=CM

FKP that is used in this paper for
illustration purposes, all power spectrum measurements
obtained with the FKP estimator, namely, PLZ=CM

FKP and

Pz1=z3
FKP , are instead consistently normalizedwith their window

functions (see Table I for more details on themeasurements).
We finish this section by noting that, in analyses using
measurements obtained from the FKP estimator, but also
from the other estimators, the posteriors may depend on the
effective-redshift approximation used above. This suggests
that, for each estimator, more work is needed to understand
the accuracy of this approximation, along the line of, e.g.,
[183] for the correlation function.
In Fig. 8, we show a comparison of the 1D posteriors

from the full-shape analysis of the BOSS power spectrum
measured with the FKP estimator, using window functions
with consistent or inconsistent normalization. The incon-
sistency leads to a lower amplitude As, or equivalently σ8,
as well as higherΩm ∼ f, where f is the logarithmic growth
rate, through anticorrelation. We find notable shifts on
ωcdm, lnð1010AsÞ, Ωm and σ8 of 0.9σ, 1.1σ, 1.1σ, and 0.8σ,
respectively.

APPENDIX B: ADDITIONAL COMPARISON
BETWEEN THE PyBird AND CLASS-PT

LIKELIHOOD IN EDE

In Figs. 9–11, we show the 2D posterior distributions
reconstructed from BaseEFTBOSS, BaseTTTEEEþ
Lensþ EFTBOSS, and BaseTT650TEEEþACTþLensþ
EFTBOSS, respectively, comparing the results from
the PyBird and the CLASS-PT likelihoods.30 In addition,
we recall that EFTBOSS corresponds to PLZ=CM

FKP þ αz1=z3rec

in the framework of the PyBird likelihood and to Pz1=z3
QUAD þ

βz1=z3rec in the framework of the CLASS-PT likelihood (see
Table I). The most striking differences occur in the
BaseEFTBOSS alone case, for which CLASS-PT leads to
much weaker constraints on fEDEðzcÞ and much larger error
bars on h and ωcdm. The origin of these differences can be
traced back to the discussion presented in our companion

FIG. 9. Comparison between the 2D posterior distributions of a subset of parameters in the EDE model reconstructed from the PyBird
or CLASS-PT likelihood, in combination with BBNþ Lensþ BAOþ Pan18 (i.e., BaseEFTBOSS).

30For this comparison, LOWZ SGC is not included in the
PyBird likelihood. As expected, we have checked that the addition
of this sky cut does not change the posteriors for the correspond-
ing analyses.
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paper [108], namely, to the choice of the power spectrum
estimators, the BOSS post-reconstructed measurements
used, the scale cut, the number of multipoles, and more
importantly, the choice of EFT parameter priors. Once
PlanckTTTEEE or PlanckTT650TEEEþ ACT data are
included in the analysis, we find that the reconstructed
posteriors are very similar between the two EFTBOSS

implementations and mostly driven by CMB data. We
conclude that the main results of this paper, drawn from
the combination of CMB and LSS data, are unaffected by
the choice of EFT implementation. However, parameter
reconstruction based on EFTBOSS data alone may vary at
the 1σ level.

FIG. 10. Comparison between the 2D posterior distributions of a subset of parameters in the EDE model reconstructed from the PyBird
or CLASS-PT likelihood, in combination with BaseTTTEEEþ Lens.
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APPENDIX C: χ 2 PER EXPERIMENT

In this appendix, we report the best-fit χ2 per experiment
for both ΛCDM and EDE models. In Tables VII and VIII

are presented the runs including Planck data, in Table IX
the runs including ACT data, and in Table X the combi-
nation of the full Planck data and ACT data. Finally,
Table XI present runs including the PanPlus data.

FIG. 11. Comparison between the 2D posterior distributions of a subset of parameters in the EDE model reconstructed from the PyBird
or CLASS-PT likelihood, in combination with BaseTT650TEEEþ ACTþ Lens.

TABLE VII. Best-fit χ2 per experiment (and total) for ΛCDM when fit to different data combinations: BaseTTTEEEþ Lens,
BaseTTTEEEþ Lensþ fσ8, BaseTTTEEEþ Lensþ EFTBOSS, with and without SH0ES. We also report the tension metric
QDMAP ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ðw=SH0ESÞ − χ2ðw=o SH0ESÞ

p
.

ΛCDM

Planck high-l TTTEEE 2342.2 2345.0 2342.2 2344.6 2342.2 2345.2
Planck low-l TT 23.4 22.9 23.5 23.0 23.4 22.8
Planck low-l EE 396.3 397.2 396.1 397.2 396.3 397.2
Planck lensing 8.9 9.4 9.0 9.4 9.0 9.4
BOSS BAO low z 1.2 1.9 1.2 1.8 1.2 1.9
BOSS BAO DR12 4.3 3.4 � � � � � � � � � � � �
BOSS BAO=fσ8 DR12 � � � � � � 6.7 5.9 � � � � � �
EFTBOSS CMASS � � � � � � � � � � � � 84.6 83.1
EFTBOSS LOWZ � � � � � � � � � � � � 33.5 33.7
Pantheon 1027.2 1026.9 1027.2 1026.9 1027.2 1026.9
SH0ES � � � 19.9 � � � 20.4 � � � 19.8

Total χ2min 3803.6 3826.6 3805.7 3829.1 3917.4 3940.0

QDMAP 4.8σ 4.8σ 4.8σ
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TABLE VIII. Best-fit χ2 per experiment (and total) for EDE when fit to different data combinations: BaseTTTEEEþ Lens,
BaseTTTEEEþ Lensþ fσ8, BaseTTTEEEþ Lensþ EFTBOSS, with and without SH0ES. We also report the Δχ2min ≡ χ2minðEDEÞ −
χ2minðΛCDMÞ and the tension metric QDMAP ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ðw=SH0ESÞ − χ2ðw=o SH0ESÞ

p
.

EDE

Planck high-l TTTEEE 2339.4 2341.5 2339.1 2340.9 2339.3 2341.1
Planck low-l TT 21.8 20.4 22.0 20.6 21.1 20.5
Planck low-l EE 396.4 396.8 396.1 396.4 396.1 396.9
Planck lensing 9.5 10.0 9.3 9.9 9.6 9.9
BOSS BAO low z 1.6 1.8 1.4 1.7 1.4 1.9
BOSS BAO DR12 3.7 3.5 � � � � � � � � � � � �
BOSS BAO=fσ8 DR12 � � � � � � 6.5 7.0 � � � � � �
EFTBOSS CMASS � � � � � � � � � � � � 84.1 83.3
EFTBOSS LOWZ � � � � � � � � � � � � 34.0 34.4
Pantheon 1027.0 1026.9 1027.0 1026.9 1027.0 1026.9
SH0ES � � � 2.0 � � � 3.2 � � � 2.3

Total χ2min 3799.2 3802.9 3801.8 3806.1 3912.7 3917.3
Δχ2minðEDE − ΛCDMÞ −3.8 −23.7 −3.9 −23.0 −4.7 −22.7
Preference over ΛCDM 1σ 4.2σ 1.1σ 4.1σ 1.3σ 4.1σ

QDMAP 1.9σ 2.0σ 2.1σ

TABLE IX. Best-fit χ2 per experiment (and total) for ΛCDM and EDE when fit to different data combinations:
BaseTT650TEEEþ ACT, BaseTT650TEEEþ ACTþ fσ8, BaseTT650TEEEþ ACTþ EFTBOSS, BaseTT650TEEEþ ACTþ
Lensþ EFTBOSS, and BaseTT650TEEEþ ACTþ Lensþ EFTBOSSþ PanPlus. We also report the Δχ2min ≡ χ2minðEDEÞ −
χ2minðΛCDMÞ and the corresponding preference over ΛCDM, computed assuming the Δχ2 follows a χ2 distribution with 3 degrees
of freedom.

ΛCDM EDE

Planck high-l TT650TEEE 1843.5 1842.6 1842.9 1842.8 1842.6 1837.5 1838.0 1836.9 1836.8 1837.7
Planck low-l TT 21.5 21.7 21.5 21.7 21.8 20.7 20.9 20.8 20.9 21.2
Planck low-l EE 395.7 395.7 395.8 395.9 � � � 395.8 395.8 395.8 395.8 395.8
Planck lensing � � � � � � � � � 9.0 9.0 � � � � � � � � � 10.2 9.9
ACT DR4 293.8 294.5 294.4 294.2 294.3 285.4 285.0 285.9 286.4 286.9
BOSS BAO low z 1.5 1.4 1.6 1.5 1.4 2.1 2.0 2.4 2.3 1.9
BOSS BAO DR12 3.7 � � � � � � � � � � � � 3.5 � � � � � � � � � � � �
BOSS BAO=fσ8 DR12 � � � 6.1 � � � � � � � � � � � � 7.2 � � � � � � � � �
EFTBOSS CMASS � � � � � � 83.4 83.6 84.9 � � � � � � 84.5 84.3 84.3
EFTBOSS LOWZ � � � � � � 33.7 33.7 33.7 � � � � � � 35.1 34.7 34.4
Pantheon 1026.8 1027.0 1027.0 1027.0 � � � 1026.9 1026.9 1026.9 1026.9 � � �
Pantheonþ � � � � � � � � � � � � 1411.8 � � � � � � � � � � � � 1413.0

Total χ2min 3586.5 3589.1 3700.3 3709.5 4094.3 3571.9 3575.8 3688.3 3698.4 4085.1
Δχ2minðEDE − ΛCDMÞ � � � � � � � � � � � � � � � −14.6 −13.3 −12.0 −11.1 −9.2
Preference over ΛCDM � � � � � � � � � � � � � � � 3.1σ 2.9σ 2.7σ 2.5σ 2.2σ

TABLE X. Best-fit χ2 per experiment (and total) for ΛCDM and EDE when fit to BaseTTTEEEþ
ACTþ Lensþ EFTBOSS, with and without SH0ES. We also report the Δχ2min ≡ χ2minðEDEÞ − χ2minðΛCDMÞ
and the tension metric QDMAP ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2ðw=SH0ESÞ − χ2ðw=o SH0ESÞ

p
.

ΛCDM EDE

Planck high-l TTTEEE 2349.8 2352.0 2346.2 2347.2
Planck low-l TT 22.4 22.0 21.9 21.2
Planck low-l EE 396.2 396.8 396.1 396.4
Planck lensing 8.9 8.9 9.6 9.8

(Table continued)
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TABLE X. (Continued)

ΛCDM EDE

ACT DR4 240.6 241.0 236.8 236.2
BOSS BAO low z 1.4 2.0 1.7 2.2
EFTBOSS CMASS 84.1 82.9 84.2 84.2
EFTBOSS LOWZ 33.6 33.8 34.2 34.6
Pantheon 1027.1 1026.9 1026.9 1026.9
SH0ES � � � 19.5 � � � 1.10

Total χ2min 4164.0 4185.9 4157.6 4159.8
Δχ2minðEDE − ΛCDMÞ � � � � � � −6.4 −26.1
Preference over ΛCDM � � � � � � 1.7σ 4.4σ

QDMAP 4.7σ 1.5σ

TABLE XI. Best-fit χ2 per experiment (and total) for ΛCDM and EDE when fit to BaseTTTEEEþ Lensþ
EFTBOSSþ PanPlus, with and without SH0ES. We also report the Δχ2min ≡ χ2minðEDEÞ − χ2minðΛCDMÞ and the
corresponding preference over ΛCDM, computed assuming the Δχ2 follows a χ2 distribution with 3 degrees of
freedom.
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Planck high-l TTTEEE 2346.18 2349.5 2344.0 2346.9
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Preference over ΛCDM � � � � � � 0.5σ 5σ
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