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I find the three-loop corrections at leading order in QCD to the physical masses of the Higgs, W, and Z

bosons in the Standard Model. The results are obtained as functions of the MS Lagrangian parameters only,

using the tadpole-free scheme for the vacuum expectation value. The dependences of the computed masses

on the renormalization scale are found to be smaller than present experimental uncertainties in each case. In

the case of the Higgs boson mass, the new result is the state of the art, while the results for W and Z are in

good numerical agreement with corresponding results in the on-shell and hybrid schemes. These results are

now included in the Standard Model in Dimensional Regularization computer code.
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I. INTRODUCTION

Since the discovery of the Higgs boson in 2012, the

Standard Model is a mathematically complete theory, for

which precision calculations can be performed. In addition

to providing a test of the agreement of the theory with

experiment, this allows us to obtain accurate results for the

short-distance Lagrangian parameters, suitable for match-

ing to candidate ultraviolet completions. The goal of this

paper is to report the three-loop QCD contributions to the

pole masses of theW, Z, and Higgs bosons in the Standard
Model. In the case of the Higgs boson mass, the result

obtained is the new state-of-the-art result, including the

complete set of two-loop effects as well as the three-loop

terms proportional to α2Sy
2
t , including all momentum-

dependent effects, as well as the three-loop terms propor-

tional to αSy
4
t and y6t in the approximation that M2

h ≪ M2
t .

The results below are given in the pure MS renormal-

ization scheme [1,2] based on dimensional regularization

[3–7], so that all independent inputs are running

Lagrangian parameters. The calculation is also based on

the tadpole-free scheme for the Higgs vacuum expectation

value (VEV), which is defined to be the minimum of the

exact Landau gauge effective potential, currently known in

an approximation at full three-loop order [8–11] with the

leading four-loop order QCD part [12] and resummation of

the Goldstone boson contributions [13,14]. The tadpole-

free VEV scheme has a formally faster convergence in

perturbation theory than schemes based on a tree-level

VEV definition, since in the latter the tadpole diagrams

necessarily introduce inverse powers of the Higgs self-

coupling λ. The price to be paid for this improvement is that

the validity of the calculations is restricted to the Landau

gauge fixing prescription in the electroweak sector.

Previous two-loop calculations of the W and Z masses

have been given in Refs. [15–18], using the tree-level

definition for the VEV. In addition, there is a long history

of calculations of the ρ parameter including up to four-loop

order QCD contributions [19–41], which can be used to

relate theW boson on-shell mass to the Z boson mass. The

present paper relies on a quite different organization of

perturbation theory, by taking all physical masses as outputs

including theW and Z boson pole masses separately, rather

than using the Z boson on-shell mass as an input. The

complete two-loop W and Z boson pole squared masses in

the scheme adopted in this paper were given in refs. [42] and

[43] respectively. The present paper will add the three-loop

QCD contributions to those results in a consistent way.
In the case of the Higgs boson pole squared mass,

Ref. [44] provided the mixed QCD/electroweak parts,
Ref. [45] gave results in the gaugeless limit in which g,
g0 are neglected in the two-loop part, and Ref. [46] gave an
interpolating formula for the full two-loop approximation

in a hybrid MS/on-shell scheme. In Ref. [47], the full two-
loop corrections were extended to include the three-loop
contributions in the gaugeless effective potential limit

(formally, g2
3
; y2t ≫ λ; g2; g02, where g3; g; g

0 are the gauge

couplings, yt is the top-quark Yukawa coupling, and λ is the

Higgs self-coupling) using the pure MS tadpole-free
scheme. The present paper will extend this further to
include the momentum-dependent parts of the leading
QCD contribution to the Higgs boson self-energy in the
calculation of the pole squared mass.

To specify notation, the complex pole squared masses

for the electroweak bosons are each given in the loop-

expansion form
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sXpole≡ ðMX− iΓX=2Þ
2

¼m2
Xþ

1

16π2
Δ

ð1Þ
X þ

1

ð16π2Þ2
Δ

ð2Þ
X þ

1

ð16π2Þ3
Δ

ð3Þ
X þ…;

ð1:1Þ

with X ¼ W, Z, and h. Note that all of the quantities

appearing on the right-hand side of Eq. (1.1) depend only

on the MS input parameters of the theory. In particular,

the tree-level MS squared masses m2
X are given by

m2
W ¼ g2v2=4, m2

Z ¼ ðg2 þ g02Þv2=4, and m2

h ¼ 2λv2.

The complete one- and two-loop contributions given in

Refs. [42,43,47] were written in terms of master integrals

defined in Refs. [48,49], the latter of which provided a

computer program TSIL for their efficient numerical evalu-

ation. The computer program SMDR [50] incorporates these

calculations of the W, Z, and Higgs physical masses and

many other results within the pure MS tadpole-free scheme,

matching observables to Lagrangian parameters. Another

public code MR [51] provides similar functionality, but

using the tree-level VEV scheme.

For the vector bosons, it is important to note that the

standard practice in experimental papers and by the review

of particle properties (RPPs) [52] from the Particle Data

Group (PDG) is to report the on-shell masses found from a

variable-width Breit-Wigner linewidth fit, which should be

related to the complex pole mass and width MX and ΓX

defined in Eq. (1.1) by

MPDG ¼ M
1þ δ
ffiffiffiffiffiffiffiffiffiffi

1 − δ
p ; ð1:2Þ

Γ
PDG ¼ Γ

1þ δ

ð1 − δÞ3=2
; ð1:3Þ

where

δ ¼ Γ
2=4M2: ð1:4Þ

(In this paper, the superscript “PDG” refers to the con-

vention used by the PDG and not to the averaged

experimental results produced by the PDG in the RPPs.)

To add to the potential for confusion, in Refs. [42,43,47] by

the present author, and many publications by other authors,

a different parametrization for complex pole masses has

been used, denoted here by

spole ¼ M02
− iΓ0M0; ð1:5Þ

which is related to the M and Γ in Eq. (1.1) by

M0 ¼ M
ffiffiffiffiffiffiffiffiffiffi

1 − δ
p

; ð1:6Þ

Γ
0 ¼ Γ=

ffiffiffiffiffiffiffiffiffiffi

1 − δ
p

: ð1:7Þ

The ðMPDG;ΓPDGÞ and ðM0;Γ0Þ parametrizations can be

considered to contain the same information as ðM;ΓÞ,
through the defining relations in Eqs. (1.2)–(1.4), (1.6), and

(1.7). However, as emphasized in a recent paper [53], the

ðM;ΓÞ parametrization defined by Eq. (1.1) has the clear

advantage that Γ ¼ 1=τ is precisely the inverse mean

lifetime of the particle, unlike ΓPDG and Γ0. In the following
spole will be computed, but the information that it contains

must be converted to MPDG to compare directly with the

results quoted by the PDG and experimental collaborations.

The W and Z PDG-convention masses that are almost

always quoted are, respectively, about 0.020 and

0.026 GeV larger than the pole masses MW and MZ, and

about 0.027 and 0.034 GeV larger than M0
W and M0

Z.

The experimental values from the 2021 update of the

2020 RPPs are
1
MPDG

Z ¼ 91.1876% 0.0021 and MPDG
W ¼

80.379% 0.012 andMh ¼ 125.25% 0.17 GeV. The Higgs

bosonwidth (about 4.1MeV, according to theory) is so small

that the numerical distinction between the PDG-convention

and complex pole mass versions of the real part Mh is

negligible.

The three-loop integrals to be used below have been

defined and discussed in Secs. IV, VI, and VII of Ref. [55].

The master integrals are given there as a renormalized

ϵ-finite basis, defined so that expansions of integrals to

positive powers in ϵ will never be needed, even when the

results of the present paper are (eventually) extended to

four-loop order or beyond. Denoting the lists of one-, two-,

and three-loop renormalized ϵ-finite master integrals

by I
ð1Þ
j , I

ð2Þ
j , and I

ð3Þ
j , respectively, then the general form

of a three-loop contribution to the pole mass of X ¼ W, Z,
or h is

Δ
ð3Þ
X ¼

X

j

cð3ÞI
ð3Þ
j þ

X

j;k

c
ð2;1Þ
j;k I

ð2Þ
j I

ð1Þ
k

þ
X

j;k;l

c
ð1;1;1Þ
j;k;l I

ð1Þ
j I

ð1Þ
k I

ð1Þ
l þ

X

j

c
ð2Þ
j I

ð2Þ
j

þ
X

j;k

c
ð1;1Þ
j;k I

ð1Þ
j I

ð1Þ
k þ

X

j

c
ð1Þ
j I

ð1Þ
j þ cð0Þ; ð1:8Þ

where all of the coefficients cð3Þ; c
ð2;1Þ
j;k ;…; cð0Þ are dimen-

sionless MS couplings multiplied by rational functions of

the MS top-quark squared mass

t ¼ y2t v
2=2 ð1:9Þ

and either s ¼ W, Z, or h as appropriate, where

1
After the first version of the present paper, the CDF

Collaboration released [54] a new measurement of the W mass
that is substantially higher, MPDG

W ¼ 80.4335% 0.0064stat%
0.0069syst GeV. See Figs. 5 and 6.
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W ¼ m2
W ¼ g2v2=4; ð1:10Þ

Z ¼ m2
Z ¼ ðg2 þ g02Þv2=4; ð1:11Þ

h ¼ m2

h ¼ 2λv2: ð1:12Þ

The VEV v is defined to be the minimum of the MS

effective potential in Landau gauge at all orders in

perturbation theory, so that the sum of all Higgs tadpole

diagrams vanishes. Note that the name of each particle is

being used as a synonym for the tree-level MS squared

mass in the tadpole-free scheme. (All other fermions are

taken to be massless, except in the one-loop parts Δ
ð1Þ
X .)

Note also that the tree-level MS squared masses t, W, Z,
and h are not gauge invariant, but are specific to Landau

gauge, due to their dependence on the VEV. However, as is

well known, the complex pole masses [and thus the PDG-

convention masses for W and Z, defined by Eqs. (1.2)–

(1.4)] are gauge invariant.

The loop integrals include logarithmic dependences on

the MS renormalization scale Q, written in this paper in

terms of

Lt ≡ lnðt=Q2Þ; ð1:13Þ

L
−s ≡ lnðs=Q2Þ − iπ; ð1:14Þ

for the external momentum invariant s, which has a positive

infinitesimal imaginary part. In the three-loop parts Δ
ð3Þ
X ,

the integrals will always be evaluated at external momen-

tum invariant equal to the tree-level squared mass, s ¼ W,

Z, or h. This is just as consistent as choosing to evaluate

them at the (real part of) the corresponding pole squared

mass instead, as the difference is of four-loop order and

numerically small.

In order to provide more opportunities for checks, the

results below will be given in terms of SUð3Þc group theory
quantities,

CG ¼ Nc ¼ 3; CF ¼ ðN2
c − 1Þ=2Nc ¼ 4=3;

TF ¼ 1=2; ng ¼ 3: ð1:15Þ

Here Nc is the number of colors, CG and CF are the

quadratic Casimir invariants of the adjoint and fundamental

representations, respectively, TF is the Dynkin index of the

fundamental representation, and ng is the number of

fermion generations.

For numerical results shown below, I will use a bench-

mark StandardModel designed to give output parameters in

agreement with the current central values of the 2021

update of the 2020 RPPs [52],

Mt ¼ 172.5 GeV; Mh ¼ 125.25 GeV; MPDG
Z ¼ 91.1876 GeV;

GF ¼ 1.1663787 × 10−5 GeV2; α0 ¼ 1=137.035999084; α
ð5Þ
S ðMZÞ ¼ 0.1179;

mbðmbÞ ¼ 4.18 GeV; mcðmcÞ ¼ 1.27 GeV; msð2 GeVÞ ¼ 0.093 GeV;

mdð2 GeVÞ ¼ 0.00467 GeV; muð2 GeVÞ ¼ 0.00216 GeV; Mτ ¼ 1.77686 GeV;

Mμ ¼ 0.1056583745 GeV; Me ¼ 0.000510998946 GeV;

Δα
ð5Þ
hadðMZÞ ¼ 0.02766: ð1:16Þ

Using the latest version 1.2 of the computer program SMDR [50], which incorporates the new results of the present paper,

these are best fit by the MS input parameters (using the tadpole-free scheme for the Landau gauge VEVand writing g3 for
the QCD coupling in the full six-quark Standard Model theory),

Q0 ¼ 172.5 GeV;

vðQ0Þ ¼ 246.603216913 GeV; λðQ0Þ ¼ 0.12639276585;

g3ðQ0Þ ¼ 1.16300624875; gðQ0Þ ¼ 0.647606757306; g0ðQ0Þ ¼ 0.358550211695;

ytðQ0Þ ¼ 0.93157701535; ybðQ0Þ ¼ 0.015503239387; yτðQ0Þ ¼ 0.0099944376213;

ycðQ0Þ ¼ 0.003394710569; ysðQ0Þ ¼ 0.0002916507520; yμðQ0Þ ¼ 0.0005883797990;

ydðQ0Þ ¼ 1.464523924362 × 10−5; yuðQ0Þ ¼ 6.739112138367 × 10−6;

yeðQ0Þ ¼ 2.792980305214 × 10−6: ð1:17Þ
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Specifically, the values in Eq. (1.17) were obtained by

applying the command-line utility calc_fit of SMDR to the

values in Eq. (1.16). The code proceeds iteratively, con-

verging to a stable relative precision of better than 10−12 in

all outputs after a few iterations. Here I have included many

more significant digits than justified by the theoretical

errors, merely for the sake of reproducibility. These MS

quantities can be run to a different renormalization scale

choice Q, where the pole squared masses can be recom-

puted. In the idealized case, the pole squared masses, being

observables, would be independent of the scale Q at which

they are computed.

Below, Iwill show figures illustrating thenumerical results

for the Z boson pole mass and width, the Higgs boson mass

andwidth, theHiggs boson self-interaction, and theW boson

mass and width. In the cases of the Z and Higgs boson

masses, the numerical results shown are of course not

predictions, in the sense that the numerical inputs were

determined by the data in Eq. (1.16). Instead, they serve to

show the dependence of the calculation on the choice of

renormalization scale Q. In the case of the Higgs self-

coupling, the results reflect the present state-of-the-art

calculation, given the Higgs mass and other on-shell inputs.

In the case of the W boson mass, the result is a genuine

prediction, since it is not included in the data of Eq. (1.16).

More generally, the results of this paper, as incorporated in

SMDR, can be used to calculate the on-shell quantities for any

chosen values of the MS input quantities in Eq. (1.17). Or,

conversely, theMS parameters can be obtained iteratively by

the SMDR code for any values of the on-shell quantities

in Eq. (1.16).

The renormalization group running is carried out using

the state-of-the-art beta functions for the Standard Model.

The two- and three-loop beta functions were found in

[56–60] and [61–69], respectively. The four-loop beta

function for the QCD coupling g3 was found in [70–74] in
the approximation that only g3, yt, and λ are included. The
pure QCD five-loop beta functions were obtained in

[75,76], and the four- and five-loop QCD contributions

to the quark Yukawa beta functions were obtained in

Refs. [77,78] and Ref. [79] respectively, and the four-loop

QCD contributions to the beta function of the Higgs self-

coupling λ were obtained from [12,80]. Finally, the

complete four-loop beta functions for the three gauge

couplings have been provided by [81]. All of these results

have been included in the latest version of the code SMDR,

which was used to carry out the numerical computations

described below. The code also implements results for

multiloop threshold matching of electroweak couplings

[17,18,82–85], the QCD coupling [86–91], and quark and

lepton masses [92–103].

II. THE Z BOSON POLE MASS

Consider the Z boson complex pole squared mass sZpole in
the form of Eq. (1.1). The complete one- and two-loop

contributions Δ
ð1Þ
Z and Δ

ð2Þ
Z were given in the tadpole-free

pure MS scheme in Ref. [43]. The three-loop QCD part can

be split into contributions from 13 distinct classes of self-

energy diagrams with different group theory structures,

using the quantities defined in Eq. (1.15),

Δ
ð3Þ;g4

3

Z ¼ g4
3
NcCFfða2uL þa2uRÞ½CGΔ

ð3;aÞ
Z þCFΔ

ð3;bÞ
Z þTFΔ

ð3;cÞ
Z þð2ng−1ÞTFΔ

ð3;dÞ
Z '

þ2auLauR ½CGΔ
ð3;eÞ
Z þCFΔ

ð3;fÞ
Z þTFΔ

ð3;gÞ
Z þð2ng−1ÞTFΔ

ð3;hÞ
Z 'þðg2þg02ÞTFΔ

ð3;iÞ
Z

þ½ðng−1Þða2uL þa2uRÞþngða
2

dL
þa2dRÞ'½CGΔ

ð3;jÞ
Z þCFΔ

ð3;kÞ
Z þTFΔ

ð3;lÞ
Z þð2ng−1ÞTFΔ

ð3;mÞ
Z 'g; ð2:1Þ

where the tree-level couplings of the Z boson to up- and

down-type quarks are

auR ¼−
2

3

g02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2þg02
p ; auL ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2þg02
q

þauR ; ð2:2Þ

adR ¼
1

3

g02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2þg02
p ; adL ¼−

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2þg02
q

þadR : ð2:3Þ

Most of the three-loop diagrams are straightforward to

set up and can be carried out with a naive treatment of γ5,

taken to anticommute with all of the other gamma matrices.

The known exception to this is the double triangle diagrams

shown in Fig. 1, which feature two distinct triangle quark

FIG. 1. Three-loop contribution to the Z boson mass from

diagrams involving two triangle quark loops, which give a

nonvanishing contribution with a consistent treatment of the

axial vector coupling. These contributions are individually

divergent for each of ðq; q0Þ ¼ ðt; tÞ; ðt; bÞ; ðb; tÞ; ðb; bÞ, but are
finite and gauge invariant after the combination. Contributions

involving sums over other ðq; q0Þ quark doublet combinations

vanish in the massless quark limit.
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loops each containing a γ5 from the axial vector coupling to

the Z boson. (The vector couplings to the Z boson give

vanishing contributions for the sum of these diagrams.) The

contributions from ðq; q0Þ ¼ ðt; tÞ; ðt; bÞ; ðb; tÞ; ðb; bÞ are

separately divergent, but their sum is finite and gauge

invariant. Therefore, for these diagrams only, one can use

the prescription [104,105]

γμγ5 →
i

6
ϵμνρσγνγργσ; ð2:4Þ

based on the ‘t Hooft–Veltman treatment [6] of γ5, and then

carry out the Lorentz algebra in four dimensions before

reducing to master integrals in d dimensions. The result is

the contribution Δ
ð3;iÞ
Z in Eq. (2.1). The contributions

from diagrams with one or both of q and q0 summed

over the other quark doublets ðu; dÞ and ðc; sÞ vanish,

because the axial couplings aqL − aqR for down- and up-

type quarks have the same magnitude and opposite sign,

and they are being treated as mass degenerate (specifically,

massless). The result for general nonzero s ¼ Z found here

reduces to Δ
ð3;iÞ
Z → 21ζ3 for s ¼ 0, which agrees with the

original calculation in that limit [106] and with the

corresponding contribution to the ρ parameter obtained

in [27,28,39].

The contributions from the diagrams in which the Z
boson couples directly to a single massless (in the present

approximation, nontop) quark loop are relatively simple,

and can be written as

Δ
ð3;jÞ
Z ¼ Z

"

−
44215

324
þ
908

9
ζ3 þ

40

3
ζ5 þ

#

41 −
88

3
ζ3

$

L
−Z −

11

3
L2
−Z

%

; ð2:5Þ

Δ
ð3;kÞ
Z ¼ Z

"

143

9
þ
148

3
ζ3 − 80ζ5 − L

−Z

%

; ð2:6Þ

Δ
ð3;lÞ
Z ¼

16

27
Zð7tþ 3ZÞI7cð0; 0; 0; 0; 0; t; tÞ þ

16

243
ð128tþ 43ZÞI6cð0; 0; 0; 0; t; tÞ −

8

27
ð18tþ 7ZÞI6fð0; 0; 0; 0; t; tÞ

þ
32

243t
ð5Z − 17tÞI5cð0; 0; 0; t; tÞ þ

160

81t
I4ð0; 0; t; tÞ þ

"

896

243
ζ3 −

8276

729

%

tþ
2599

243
Z þ

80

2187

Z2

t

þ

"

11144

243
t −

224

9
ζ3t −

3320

243
Z

%

Lt −
352

81
tL2

t −
112

243
tL3

t þ
4

243
ð884t − 217ZÞL

−Z þ

"

160

27
Z −

32

3
t

%

LtL−Z

þ
272

81
tL2

tL−Z þ
20

81
ZL2

−Z −
16

243
ð17tþ 10ZÞLtL

2
−Z; ð2:7Þ

Δ
ð3;mÞ
Z ¼ Z

"

3701

81
−
304

9
ζ3 þ

#

32

3
ζ3 −

44

3

$

L
−Z þ

4

3
L2
−Z

%

: ð2:8Þ

Here, Δ
ð3;lÞ
Z contains a top-quark loop that corrects a gluon propagator, rather than connecting to the external Z boson. The

remaining contributions in Eq. (2.1) are much more complicated, and are given in the Supplemental Material [107]. Each of

the contributions has the form of Eq. (1.8), with master integrals chosen in Ref. [55],

I ð1Þ ¼ fAðtÞ; Bð0; 0Þ; Bðt; tÞg; ð2:9Þ

I ð2Þ ¼ fζ3; Vðt; t; 0; tÞ;Mðt; t; t; t; 0Þ;Mð0; t; 0; t; tÞg; ð2:10Þ

I ð3Þ ¼ fζ5; Hð0; 0; t; 0; t; tÞ; Hð0; t; t; t; 0; tÞ; I4ðt; t; t; tÞ; I5aðt; 0; t; 0; tÞ; I5bð0; t; t; t; tÞ;

I5cðt; t; t; t; tÞ; I6cðt; t; t; 0; t; tÞ; I6c2ðt; t; t; 0; 0; 0Þ; I6dð0; t; t; t; t; 0Þ; I6dðt; 0; t; 0; t; 0Þ;

I6dðt; 0; t; t; 0; tÞ; I6eð0; 0; 0; 0; t; tÞ; I6eð0; t; t; t; 0; tÞ; I6eðt; t; t; 0; t; tÞ; I6fð0; 0; 0; 0; t; tÞ;

I6f5ð0; 0; 0; 0; t; tÞ; I7að0; 0; t; t; t; t; tÞ; I7aðt; t; t; t; t; t; 0Þ; I7a3ðt; t; t; t; t; t; 0Þ;

I7bð0; t; t; t; t; 0; 0Þ; I7bðt; 0; t; t; t; t; 0Þ; I7b4ðt; 0; t; t; t; t; 0Þ; I7b4ðt; t; 0; t; t; 0; tÞ;

I7cðt; t; t; t; 0; 0; 0Þ; I7dðt; t; 0; t; 0; t; 0Þ; I7dðt; t; 0; t; t; 0; tÞ; I7eð0; 0; 0; 0; 0; t; tÞ;

I7eð0; 0; t; t; t; 0; 0Þ; I8aðt; 0; t; t; t; t; t; 0Þ; I8aðt; t; t; t; t; 0; 0; 0Þ; I8bðt; t; t; t; t; 0; 0; tÞ;

I8cðt; 0; t; t; t; t; t; 0Þ; I
pk
8c ðt; t; t; t; t; 0; 0; tÞg; ð2:11Þ
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with AðtÞ ¼ tðLt − 1Þ and Bð0; 0Þ ¼ 2 − L
−Z. However, in

Eq. (2.7) above, I have chosen to write the expression for

Δ
ð3;lÞ
Z in terms of candidate master integrals that were

solved for in Ref. [55], rather than the master integrals

listed above [which are a subset of the ones listed in

Eq. (7.4) in Ref. [55], joined by Bð0; 0Þ and ζ3 and ζ5 from
the integrals with all propagators massless]. This simplifies

the expression somewhat, because the integrals used in

Eq. (2.7) have the same propagator structures as descend-

ants of the underlying Feynman diagrams for the Δ
ð3;lÞ
Z

contribution.

As a check of Eq. (2.1), I have verified that the full

expression for the observable sZpole is renormalization group

invariant through three-loop terms proportional to g4
3
, using

the derivatives of the master integrals with respect to Q
found in the ancillary file QddQ of Ref. [55].

For practical numerical evaluation, after using the

Standard Model group theory values in Eq. (1.15) and

applying the expansions for the master integrals in the

ancillary file Ievenseries of Ref. [55], I find

Δ
ð3Þ;g4

3

Z ¼ g4
3
tfðg2 þ g02ÞðδZ

1
þ δZ

2
Þ þ auLauRδ

Z
3

þ ½2ða2uL þ a2uRÞ þ 3ða2dL þ a2dRÞ'δ
Z
4
g; ð2:12Þ

where the series expansions of δZ
1
, δZ

2
, δZ

3
, and δZ

4
are given

in the Supplemental Material [107] to order r18Z , where

rZ ≡

Z

4t
¼

g2 þ g02

8y2t
: ð2:13Þ

The contribution δZ
1
isolates the results form the double

triangle diagrams in Fig. 1. The series expansion coeffi-

cients are given both numerically and analytically in terms

of Lt, L−Z, and the constants ζ3, ζ5, and

c0H ¼ 32Li4ð1=2Þ − 22ζ4 þ
4

3
ln2ð2Þ½ln2ð2Þ − π2Þ'

≈ −13.2665092775…: ð2:14Þ

The series converge for all rZ < 1, which is clearly satisfied

in actuality. The first few terms in the expansions are

δZ
1
¼ 50.486þ rZ½79.645þ 49.333ðLt − L

−ZÞ þ 8ðLt − L
−ZÞ

2'

þ r2Z½−15.758þ 5.531ðLt − L
−ZÞ' þ r3Z½−3.066 − 1.493ðLt − L

−ZÞ' þ ( ( ( ; ð2:15Þ

δZ
2
¼ 9.978þ 49.258Lt þ 18L2

t − 30L3
t þ rZð−113.200 − 90.222Lt þ 28L2

t Þ

þ r2Zð−42.485 − 63.002Lt − 4.8L2
t Þ þ r3Zð−45.813 − 74.011Lt − 32.914L2

t Þ þ ( ( ( ; ð2:16Þ

δZ
3
¼ rZð−687.728 − 298.667Lt þ 224L2

t Þ þ r2Zð−733.683 − 685.827Lt − 51.200L2
t Þ

þ r3Zð−707.875 − 962.072Lt − 394.971L2
t Þ þ ( ( ( ; ð2:17Þ

δZ
4
¼ rZð−56.799−14.758Lt−10.667L2

t þ180.381L
−Zþ21.333LtL−Z−122.667L2

−ZÞ

þ r2Z½−88.570−33.375ðLt−L
−ZÞ−3.793ðLt−L

−ZÞ
2'þ r3Z½4.074þ2.521ðLt−L

−ZÞþ0.406ðLt−L
−ZÞ

2'þ (( ( :

ð2:18Þ
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FIG. 2. The Z boson mass in the PDG-convention MPDG
Z (left) and the width ΓZ (right), obtained from the calculated complex pole

mass sZpole, as a function of the renormalization scale Q. The different lines show various approximations as labeled. The MS input

parameters are as given in Eq. (1.17), which provide for MPDG
Z ¼ 91.1876 GeV when calculated at the renormalization scale Q ¼

160 GeV using the full two-loop plus three-loop QCD approximation.
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It is interesting to note that, in the expansion in small rZ,
the subleading contribution is numerically comparable

to (or even larger than, for smaller Q) the leading

contribution obtained by rZ ¼ 0. This is due mostly to

the term proportional to rZL
2
−Z in the contribution

Eq. (2.18) from massless quark loops, because of the large

magnitude of the coefficient −122.667 and because L2
−Z ¼

½−iπ þ lnðZ=Q2Þ'2 provides up to an order of magnitude

enhancement.

The resulting contribution of Eq. (2.12) has now been

included in the latest version 1.2 of the code SMDR [50].

Figure 2 shows the results for the PDG-convention mass

MPDG
Z and the width ΓZ obtained from the pole mass, for the

MS input parameters given in Eq. (1.17). These benchmark

parameters were chosen so that the calculated MPDG
Z , with

all known contributions included and using the renormal-

ization scale Q ¼ 160 GeV, is equal to the experimental

central value 91.1876 GeV. To obtain the results in the

figure, the MS input parameters are run to other MS scales

Q using the most complete available renormalization group

equations (as listed at the end of the Introduction), and

sZpole is then recalculated. In the idealized case, the results

should not depend on Q. I find that, with inclusion of the

three-loop QCD corrections, the scale dependence of MZ

is remarkably small, less than 0.8 MeV as Q is varied

between 50 and 220 GeV. However, given the larger scale

dependence found in Sec. IV for the similar case of the W
boson mass, I surmise that this very mild scale depend-

ence is partly accidental, and the actual theoretical

error due to neglecting higher order contributions is likely

to be larger.

The scale dependence of ΓZ shown in the right panel of

Fig. 2 is less mild and not so much improved over the

complete two-loop result, as it varies by a total of about

4 MeV (between minimum and maximum) as Q is varied

between 80 and 220 GeV. Note that this determination of

ΓZ from the complex pole mass (in which the leading

contribution arises only as a one-loop effect) is essentially

one-loop order less accurate than a direction calculation of

the Z boson decay width (in which the leading contribution

is a tree-level effect).

III. THE HIGGS BOSON POLE MASS

Next, consider the complex pole mass shpole for the

Standard Model Higgs boson, written in the form

of Eq. (1.1). In this section, I extend the results of

Ref. [47] to include the momentum-dependent three-loop

self-energy corrections to Δ
ð3Þ
h that are proportional to

g4
3
y2t t. Also included below are the three-loop contribu-

tions proportional to g2
3
y4t t and y

6
t t, in an effective potential

approximation, which amounts to g2
3
; y2t ≫ λ; g2; g02. For

the y6t t part, I provide below an improvement over the

result in [47]. Together with the full two-loop results,

these constitute the most complete calculation of the

Standard Model Higgs boson mass that is presently

available.

The functions Δ
ð1Þ
h and the QCD part of Δ

ð2Þ
h were given

in Eqs. (2.46) and (2.47) in Ref. [47] and are evaluated at

s ¼ Re½shpole', determined by iteration. The remaining, non-

QCD part of Δ
ð2Þ
h was given in an ancillary file of Ref. [47],

where the master integrals were also evaluated at

s ¼ Re½shpole'. However, in the present paper, I adopt a

slightly different organization by evaluating the non-QCD

part of Δ
ð2Þ
h as exactly the same function but evaluated

instead at s ¼ h, which is consistent up to three-loop terms

of order y6t t. This allows an easier extension to three-loop

order, as indicated below.

For the leading QCD part of Δ
ð3Þ
h proportional to g4

3
y2t t,

the new result can be written in terms of the contributions of

four distinct classes of self-energy diagrams characterized

by their group theory structures,

Δ
ð3Þ;g4

3
y2t t

h ¼ g4
3
y2tNcCFðCGΔ

ð3;aÞ
h þ CFΔ

ð3;bÞ
h þ TFΔ

ð3;cÞ
h

þ ð2ng − 1ÞTFΔ
ð3;dÞ
h Þ: ð3:1Þ

The results forΔ
ð3;aÞ
h ,Δ

ð3;bÞ
h ,Δ

ð3;cÞ
h , andΔ

ð3;dÞ
h are somewhat

lengthy, and so are given in the Supplemental Material (file

DeltaH3) provided with this paper [107]. They are written

in terms of the same list of three-loop self-energy master

integrals as for the Z boson, listed in Eqs. (2.9)–(2.11),

with the exceptions that I8bðt; 0; t; t; t; t; t; 0Þ is also needed

in I ð3Þ, and ζ5, I6eð0; 0; 0; 0; t; tÞ, I6fð0; 0; 0; 0; t; tÞ,
I6f5ð0; 0; 0; 0; t; tÞ, I7eð0; 0; 0; 0; 0; t; tÞ, and I7eð0; 0;
t; t; t; 0; 0Þ are not needed, and of course one should use

s ¼ h rather than s ¼ Z.
Using the expansions of the master integrals given in

Ref. [55], setting s ¼ h in Δ
ð3Þ;g4

3
y2t t

h (which is consistent up

to terms of four-loop order), and plugging in the group

theory constants from Eq. (1.15), the result becomes a

power series in

rh ≡
h

4t
¼

λ

y2t
; ð3:2Þ

with coefficients that depend on Lt ≡ lnðt=Q2Þ and L
−h ≡

lnðh=Q2Þ − iπ and the constants ζ3 and c
0
H from Eq. (2.14).

The expansion converges for rh < 1 and does so rapidly for

the value realized in the Standard Model. It is given to order

r24h in Supplemental Material (file DeltaH3series) [107],

both in analytic and numerical forms. The first few terms of

the numerical form are
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Δ
ð3Þ;g4

3
y2t t

h ¼ g4
3
y2t tð248.122þ839.197Ltþ160L2

t −736L3
t

þ rh½−716.898−1546.064Ltþ336L2
t þ240L3

t '

þ r2h½479.663þ72.770Ltþ28.444L
−h'

þ r3h½−27.675−83.837Lt−5.486L2
t

þ13.274L
−h'þ ( ( (Þ: ð3:3Þ

As a nontrivial check, the result obtained with rh ¼ 0

agrees with that provided in the first line of Eq. (3.3) of

Ref. [47]. The terms with positive powers of rh are new in

the present paper.

For the part of Δ
ð3Þ
h proportional to g2

3
y4t t, the effective

potential approximation gives the second line of Eq. (3.3)

of Ref. [47], which is not improved on in the present paper,

but is reproduced here for reference and comparison,

Δ
ð3Þ;g2

3
y4t t

h ¼ g2
3
y4t tð2764.365þ 1283.716Lt − 360L2

t

þ 240L3
t Þ: ð3:4Þ

It is interesting that Δ
ð3Þ;g4

3
y2t t

h is numerically smaller than

Δ
ð3Þ;g2

3
y4t t

h , despite the parametric relative enhancement

Ncg
2

3
=y2t of the former. In the approximation rh ¼ 0, this

effect was noted in Refs. [10,47] [see the discussion

involving Eqs. (6.21)–(6.28) of the former reference] as

the result of an unexplained but dramatic near cancellation

and is found here to be not changed by the inclusion of

terms higher order in rh.
Finally, for the part of Δ

ð3Þ
h proportional to y6t t, the

effective potential approximation of Ref. [47] can be

improved on slightly as follows. In the present paper,

the non-QCD part of Δ
ð2Þ
h is evaluated using master

integrals with external momentum invariant h rather than

Re½shpole'. Then, due to the fortunate circumstance that the

leading one-loop behavior of shpole − h in the limit y2t ≫

λ; g2; g02 is proportional to Lt,

shpole − h ¼
1

16π2
4Ncy

2
t tLt; ð3:5Þ

we can fully repair the error in the three-loop part (caused by

using h rather than Re½shpole' in the two-loop part), simply by

requiring renormalization group invariance of the polemass.

This allows inference of the complete dependence propor-

tional to y6t tLt, due to the explicit dependence on Q. By

demanding (and checking) renormalization group invari-

ance of shpole through terms of three-loop order in the

approximation g2
3
; y2t ≫ λ; g2; g02, I find that the end result

for the leading non-QCD three-loop contribution is that

Eq. (3.4) of Ref. [47] should be replaced by

Δ
ð3Þ;y6t t

M2

h

¼ y6t t½−3433.724 − 2426.808Lt − 101.016L2
t

− 360L3
t þ Lhð36þ 648Lt þ 324L2

t Þ'; ð3:6Þ

where the analytic forms of the decimal coefficients are

−3433.724 ≈ −673 −
17π2

2
− 1962ζ3 þ 24c0H; ð3:7Þ

−2426.808 ≈ −
10491

4
þ 144

ffiffiffi

3
p

π − 42π2 − 144ζ3; ð3:8Þ

−101.016 ≈ −
855

2
þ 60

ffiffiffi

3
p

π: ð3:9Þ

This result differs from Eq. (3.4) of Ref. [47] by terms that

vanish when Lt ¼ 0, consistent with the approximation

made in that reference.

To recapitulate, in order to consistently include the three-

loop results given above, the non-QCD part ofΔ
ð2Þ
h found in

the ancillary file of Ref. [47] should use s ¼ h in the

evaluation of the integrals, while Δ
ð1Þ
h and the QCD part of

Δ
ð2Þ
h provided in that reference should use s ¼ Re½shpole'

determined by iteration. All of these results for the Higgs

boson pole mass have now been implemented in version 1.2

of the computer code SMDR [50]. Figure 3 shows the results

for Mh, for the benchmark MS input parameters given in

Eq. (1.17). Recall that these parameters were chosen so as

to give the present experimental central value from the

RPPs,Mh ¼ 125.25 GeV, as the result of the calculation at

renormalization scale Q ¼ 160 GeV. The other results in

the figure were obtained by running the MS parameters in

Eq. (1.17) from the input scale Q0 ¼ 172.5 GeV to each
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FIG. 3. The real part of the calculated Higgs boson pole mass,

as a function of the renormalization scale Q. The different lines

show various approximations as labeled. The MS input param-

eters are as given in Eq. (1.17), which provide for Mh ¼
125.25 GeV when calculated at the renormalization scale Q ¼
160 GeV with the best available approximation as described in

the text.
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scale Q and redoing the calculation. The new contribu-

tions found in this paper give the best approximation

available at this writing, but still imply a scale dependence

of several tens of MeV. For example, the calculated Mh

decreases by about 56 MeV when Q is varied from 100 to

200 GeV, for fixed values of the MS input parameters.

This provides a lower bound on the theoretical error and

suggests that a still more refined calculation of the Higgs

pole mass, to include three-loop electroweak parts and

even leading four-loop contributions, would be worth-

while, since the experimental uncertainty on Mh from

future collider experiments may well be smaller [108]. It is

also possible [109] to refine further the gaugeless limit by

including momentum-dependent parts of the Higgs boson

self-energy function.

A famous feature of the observed Higgs boson mass

is that the Standard Model with no extensions can then

have the Higgs self-coupling λ run negative at a scale

that is far above the electroweak scale, but below the

Planck scale, implying a possibly metastable electro-

weak vacuum. This is illustrated in Fig. 4, using the

latest experimental values and the results of this paper to

relate Mh to λ in the most accurate available way. As is

well known (see, for example, Refs. [44–46,110]), the

scale of possible instability is lowered if the top-quark

mass is higher, or the QCD coupling is lower, or the

Higgs mass is lower, than their benchmark values, while

it is possible for the instability to be avoided up to the

Planck scale if the deviations are in the opposite

directions. While improved formulas and experimental

values for Mh are welcome, the dominant uncertainty in

these instability discussions comes from Mt (or yt), and
the second most important uncertainty is that of

α
ð5Þ
S ðMZÞ, through their renormalization group running

influence on λ.

IV. THE W BOSON POLE MASS

Consider the W boson complex pole squared mass sWpole
as in Eq. (1.1). The complete one- and two-loop parts Δ

ð1Þ
W

and Δ
ð2Þ
W were given in Ref. [42]. The three-loop QCD part

splits into eight distinct contributions with different group

theory structures,

Δ
ð3Þ;g4

3

W ¼ g4
3
g2NcCFðCG½Δ

ð3;aÞ
W þ ðng − 1ÞΔ

ð3;bÞ
W ' þ CF½Δ

ð3;cÞ
W þ ðng − 1ÞΔ

ð3;dÞ
W '

þ TF½Δ
ð3;eÞ
W þ ðng − 1ÞΔ

ð3;fÞ
W þ ð2ng − 1ÞΔ

ð3;gÞ
W þ ð2ng − 1Þðng − 1ÞΔ

ð3;hÞ
W 'Þ: ð4:1Þ

The four contributions from diagrams in which the W boson couples directly to massless quarks are relatively simple,

Δ
ð3;bÞ
W ¼ W

"

−
44215

648
þ
454

9
ζ3 þ

20

3
ζ5 þ

#

41

2
−
44

3
ζ3

$

L
−W −

11

6
L2
−W

%

; ð4:2Þ

Δ
ð3;dÞ
W ¼ W

"

143

18
þ
74

3
ζ3 − 40ζ5 −

1

2
L
−W

%

; ð4:3Þ

Δ
ð3;fÞ
W ¼

8

27
Wð7tþ 3WÞI7cð0; 0; 0; 0; 0; t; tÞ þ

8

243
ð128tþ 43WÞI6cð0; 0; 0; 0; t; tÞ −

4

27
ð18tþ 7WÞI6fð0; 0; 0; 0; t; tÞ

þ
16

243t
ð5W − 17tÞI5cð0; 0; 0; t; tÞ þ

80

81t
I4ð0; 0; t; tÞ þ

"

448

243
ζ3 −

4138

729

%

tþ
2599

486
W þ

40

2187

W2

t

þ

"

5572

243
t −

112

9
ζ3t −

1660

243
W

%

Lt −
176

81
tL2

t −
56

243
tL3

t þ
2

243
ð884t − 217WÞL

−W þ

"

80

27
W −

16

3
t

%

LtL−W

þ
136

81
tL2

tL−W þ
10

81
WL2

−W −
8

243
ð17tþ 10WÞLtL

2
−W ; ð4:4Þ
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FIG. 4. The running Higgs self-coupling parameter λ as a

function of the MS renormalization scale Q, using the results of

this paper to relate it to Mh in the most accurate available way.

The central value obtained from the present experimental data as

in Eqs. (1.16) and (1.17) is the black line. The shaded envelopes

are the envelopes obtained by varying Mh ¼ 125.25%0.17GeV,

Mt ¼ 172.5% 0.7 GeV, and α
ð5Þ
S ðMZÞ ¼ 0.1179% 0.0010 in

their 1-sigma and 2-sigma ranges.

THREE-LOOP QCD CORRECTIONS TO THE ELECTROWEAK … PHYS. REV. D 106, 013007 (2022)

013007-9



Δ
ð3;hÞ
W ¼W

"

3701

162
−
152

9
ζ3þ

#

16

3
ζ3−

22

3

$

L
−W þ

2

3
L2
−W

%

:

ð4:5Þ

In fact, Δ
ð3;bÞ
W , Δ

ð3;dÞ
W , Δ

ð3;fÞ
W , and Δ

ð3;hÞ
W can be obtained

from, respectively, Δ
ð3;jÞ
Z , Δ

ð3;kÞ
Z , Δ

ð3;lÞ
Z , and Δ

ð3;mÞ
Z in

Eqs. (2.5)–(2.8) by replacing Z → W and dividing by 2.

The reason for this is that they come from exactly the same

Feynman diagram topologies.

The remaining four contributions Δ
ð3;aÞ
W , Δ

ð3;cÞ
W , Δ

ð3;eÞ
W ,

and Δ
ð3;gÞ
W in Eq. (4.1) are more complicated and are

relegated to the Supplemental Material (file DeltaW3)

[107]. They each have the form of Eq. (1.8), with

renormalized ϵ-finite master integrals that are a subset of

Eqs. (6.2)–(6.4) of Ref. [55],

I ð1Þ ¼ fAðtÞ; Bð0; tÞg; ð4:6Þ

I ð2Þ ¼ fSð0; 0; tÞ; Sðt; t; tÞ; Uðt; 0; t; tÞ;Mð0; 0; t; t; 0Þg;
ð4:7Þ

I ð3Þ ¼ fHð0; t; t; t; 0; tÞ; I4ð0; t; t; tÞ; I6dð0; 0; t; 0; t; 0Þ; I6dð0; 0; t; t; 0; tÞ; I6dðt; 0; 0; 0; 0; 0Þ;

I6eð0; t; 0; 0; 0; tÞ; I6eðt; 0; t; 0; 0; tÞ; I6fð0; t; t; 0; 0; tÞ; I6f1ðt; 0; 0; t; 0; tÞ;

I7að0; 0; 0; 0; t; t; tÞ; I7að0; 0; t; t; 0; 0; 0Þ; I7að0; t; t; 0; 0; t; 0Þ; I7aðt; t; 0; 0; t; t; 0Þ;

I7a5ðt; t; 0; 0; t; t; 0Þ; I7bð0; 0; t; 0; t; 0; 0Þ; I7cð0; 0; t; t; 0; 0; 0Þ; I7dð0; t; 0; t; t; 0; tÞ;

I7eð0; t; t; 0; 0; 0; 0Þ; I8bð0; 0; 0; t; t; 0; 0; tÞ; I8cð0; 0; 0; t; t; 0; 0; tÞ; I
pk
8c ðt; t; t; 0; 0; 0; 0; 0Þg: ð4:8Þ

I have checked that Eq. (4.1) gives a pole mass sWpole that is
renormalization group invariant through three-loop terms

of order g4
3
, using the derivatives of the master integrals

with respect to Q found in the ancillary file QddQ of

Ref. [55].

For practical numerical evaluation, after plugging in the

Standard Model group theory values in Eq. (1.15) and

applying the expansions for the master integrals in the

Ref. [55] ancillary files Ioddseries and Ievenseries (the

latter being needed only for the contribution Δ
ð3;fÞ
W in which

theW boson couplings are to a massless quark loop, with a

top-quark loop correcting a gluon propagator), I obtain a

series expansion

Δ
ð3Þ;g4

3

W ¼ g4
3
g2tðδW

1
þ δW

2
Þ; ð4:9Þ

where δW
1

comes from Δ
ð3;aÞ
W , Δ

ð3;cÞ
W , Δ

ð3;eÞ
W , and Δ

ð3;gÞ
W ,

which follow from diagrams where the W boson couples

directly to a top-bottom pair, and δW
2

comes from

Δ
ð3;bÞ
W , Δ

ð3;dÞ
W , Δ

ð3;fÞ
W , and Δ

ð3;hÞ
W from diagrams in which

the W boson couples directly to light-quark pairs. The

Supplemental Material [107] (file DeltaW3series) provided

with this paper gives the results, both analytically and

numerically, to orders ρ30W and r16W , where

ρW ≡

W

t
¼

g2

2y2t
and rW ¼

ρW

4
; ð4:10Þ

and the coefficients involve Lt ¼ lnðt=Q2Þ and L
−W ¼

lnðW=Q2Þ − iπ ¼ 2 − Bð0; 0Þjs¼Wþiϵ, as well as ζ2, ζ3, ζ4,

ζ5, c
0
H from Eq. (2.14), and

cI ¼
ffiffiffi

3
p

Im½Li2ðe
2πi=3Þ' ≈ 1.1719536193…: ð4:11Þ

Note that δW
2
is the same as δZ

4
appearing in Eqs. (2.12) and

(2.18) with the replacement rZ → rW . The series for δ
W
1
and

δW
2
converge for ρW < 1 and rW < 1, respectively, which is

clearly satisfied by the relevant value of W=t in the

Standard Model.

The numerical form of the first few terms in the series are

δW
1
¼ 12.8299þ 24.9541Lt þ 63L2

t − 30L3
t þ ρWð−23.800 − 54.693Lt þ 14L2

t Þ

þ ρ2Wð−2.327 − 17.873Lt − 1.5L2
t Þ þ ρ3Wð−0.700 − 7.496Lt − 7.2L2

t Þ þ ( ( ( ; ð4:12Þ

δW
2
¼ rWð−56.799 − 14.758Lt − 10.667L2

t þ 180.381L
−W þ 21.333LtL−W − 122.667L2

−WÞ

þ r2W ½−88.570 − 33.375ðLt − L
−WÞ − 3.793ðLt − L

−WÞ
2'

þ r3W ½4.074þ 2.521ðLt − L
−WÞ þ 0.406ðLt − L

−WÞ
2' þ ( ( ( : ð4:13Þ
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As in the case of the Z boson, it is interesting to note that, in

this expansion in small W=t, the subleading contribution is

numerically comparable to or larger than the leading

contribution (obtained by ρW ¼ rW ¼ 0), depending on

the choice ofQ. This is due mostly to the term proportional

to rWL
2
−W in the contribution from massless quark loops,

because of the large magnitude of the coefficient −122.667

and because L2
−W ¼ ½−iπ þ lnðW=Q2Þ'2 provides up to an

order of magnitude enhancement.

The contribution Δ
ð3Þ;g4

3

W is now implemented in the new

version 1.2 of the computer code SMDR [50]. Figure 5

shows the results for MPDG
W and for ΓW obtained from the

complex pole squared mass sWpole, for the MS input

parameters in Eq. (1.17) at the reference scale

Q0 ¼ 172.5 GeV. The default scale used by SMDR v1.2

for the W mass calculation is Q ¼ 160 GeV, which gives

MPDG
W ¼ 80.3525 and ΓW ¼ 2.0896 GeV. The results for

other renormalization scalesQ are obtained by first running

the MS parameters to Q and then recalculating sWpole. The

three-loop QCD contribution toMPDG
W is seen to be as large

as about 6 MeV. In the idealized case, the total sWpole would

not depend on Q. The computed value of MPDG
W varies by

less than 2.4 MeVas Q is varied from 80 to 180 GeV. This

is significantly larger than the scale dependence of the

computed MPDG
Z as found in Fig. 2, but compares

quite favorably to the present experimental uncertainty

of 12 MeV. The range for MPDG
W from the average

of experimental data released through 2021 is

80.379% 0.012 GeV. The CDF Collaboration has recently

produced a result that is substantially higher,

80.4335% 0.0064stat % 0.0069syst GeV, which is in stark

disagreement with the Standard Model prediction. These

results are also shown in Fig. 5. As seen in the right panel of

Fig. 5, the total variation in ΓW as Q varies from 60 to

220 GeV is about 3.5 MeV, but the spread is only about

2.3 MeV as Q varies from 80 to 180 GeV. These scale

variations are improved over the full two-loop order

calculation found in Ref. [42]. For comparison, the largest

parametric uncertainty contributing to theMW prediction is

that of the top-quark pole massMt. If one fixes Eqs. (1.16)

and (1.17) as a reference model and then adjusts the

Standard Model inputs to fit varying Mt;MZ;Δα
ð5Þ
had, and

α
ð5Þ
S ðMZÞ, then one finds approximately
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FIG. 6. Comparison of Standard Model predictions for the W
boson mass in the PDG convention, as a function of the top-quark

pole massMt, using data forM
PDG
Z ,Gμ, α

ð5Þ
S ðMZÞ, Δα

ð5Þ
had, andMh

from Eq. (1.16). The solid black line is the pure MS scheme

result, obtained using SMDR v1.2 incorporating the results of this

paper. The short dashed (blue) line is the on-shell scheme result,

obtained from the interpolating formula in Ref. [38]. The long

dashed (red) line is the result from the hybrid MS-on-shell

scheme of Ref. [17]. Also shown are the experimental central

values and 1σ ranges forMPDF
W as given by the 2021 update to the

2020 RPPs and from the 2022 result from CDF [54].
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FIG. 5. The PDG-conventionW boson mass, and the width ΓW , obtained from the calculated complex pole mass sWpole, as a function of

the renormalization scale Q. The different lines show various approximations as labeled. The MS input parameters are as given in

Eq. (1.17). Also shown are the experimental central values and 1σ ranges for MPDF
W as given by the 2021 update to the 2020 RPPs and

from the 2022 result from CDF [54] with statistical and systematic errors combined in quadrature.
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MPDG
W ¼ MPDG;ref

W þ 6.1 MeV

"

Mt −Mref
t

GeV

%

þ 1.3 MeV

"

MPDG
Z −MPDG;ref

Z

MeV

%

− 1.8 MeV

"

Δα
ð5Þ
had − Δα

ð5Þ;ref
had

0.0001

%

− 0.7 MeV

"

α
ð5Þ
S ðMZÞ − α

ð5Þ
S ðMZÞ

ref

0.001

%

ð4:14Þ

as the prediction for the W boson mass in the PDG

convention, with MPDG;ref
W ¼ 80.3525 GeV.

In Fig. 6, I compare the prediction for MPDF
W from

SMDR v1.2 (incorporating the results of this paper) in the pure

MS scheme to the corresponding results in the on-shell

scheme using the interpolation formula in Ref. [38] and to

those in the hybrid MS-on-shell scheme of Ref. [17], as a

function of the top-quark pole mass. The other on-shell

parameters MPDG
Z , Gμ, α

ð5Þ
S ðMZÞ, Δα

ð5Þ
had, and Mh are

chosen to be the same and equal to the data given from

Eq. (1.16) from the 2021 update to the 2020RPPs, so that the

results are directly comparable. (In the MS scheme, this

entails doing a fit to determine the Lagrangian parameters,

which is readily accomplished using the C function

SMDR_Fit_Inputs or the interactive command-line tool calc_

fit-int.) The pure MS scheme gives results between those of

the on-shell and hybrid schemes, with a total spread between

the three schemes of about 4.5 MeV.

V. OUTLOOK

In this paper, I have reported the three-loop QCD con-

tributions to the W, Z, and Higgs boson physical masses in

the StandardModel, in the pure MS renormalization scheme

with a tadpole-free treatment of the Higgs VEV. The results

show improved renormalization group scale independence,

especially for theW and Z boson cases, and in all three cases

the scale variation is less than the present experimental

uncertainty. Alternative methods based on on-shell type

schemes have already included four-loopQCDcontributions

through the rho parameter, but it is not clear that these should

be numerically more important than three-loop mixed and

pure electroweak contributions. The results of this paper have

all been incorporated in the latest version 1.2 of the code

SMDR [50]. Further improvements in the approach of the

present paper could come from computing all of the

remaining three-loop self-energy contributions to the pole

masses, which in the case of the most general diagrams will

be a challenging, but perhaps not insurmountable, goal.
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