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I find the three-loop corrections at leading order in QCD to the physical masses of the Higgs, W, and Z
bosons in the Standard Model. The results are obtained as functions of the MS Lagrangian parameters only,
using the tadpole-free scheme for the vacuum expectation value. The dependences of the computed masses
on the renormalization scale are found to be smaller than present experimental uncertainties in each case. In
the case of the Higgs boson mass, the new result is the state of the art, while the results for W and Z are in
good numerical agreement with corresponding results in the on-shell and hybrid schemes. These results are
now included in the Standard Model in Dimensional Regularization computer code.
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I. INTRODUCTION

Since the discovery of the Higgs boson in 2012, the
Standard Model is a mathematically complete theory, for
which precision calculations can be performed. In addition
to providing a test of the agreement of the theory with
experiment, this allows us to obtain accurate results for the
short-distance Lagrangian parameters, suitable for match-
ing to candidate ultraviolet completions. The goal of this
paper is to report the three-loop QCD contributions to the
pole masses of the W, Z, and Higgs bosons in the Standard
Model. In the case of the Higgs boson mass, the result
obtained is the new state-of-the-art result, including the
complete set of two-loop effects as well as the three-loop
terms proportional to aZy?, including all momentum-
dependent effects, as well as the three-loop terms propor-
tional to agy; and y? in the approximation that M7 < M?.

The results below are given in the pure MS renormal-
ization scheme [1,2] based on dimensional regularization
[3-7], so that all independent inputs are running
Lagrangian parameters. The calculation is also based on
the tadpole-free scheme for the Higgs vacuum expectation
value (VEV), which is defined to be the minimum of the
exact Landau gauge effective potential, currently known in
an approximation at full three-loop order [8—11] with the
leading four-loop order QCD part [12] and resummation of
the Goldstone boson contributions [13,14]. The tadpole-
free VEV scheme has a formally faster convergence in
perturbation theory than schemes based on a tree-level
VEV definition, since in the latter the tadpole diagrams
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necessarily introduce inverse powers of the Higgs self-
coupling 4. The price to be paid for this improvement is that
the validity of the calculations is restricted to the Landau
gauge fixing prescription in the electroweak sector.

Previous two-loop calculations of the W and Z masses
have been given in Refs. [15-18], using the tree-level
definition for the VEV. In addition, there is a long history
of calculations of the p parameter including up to four-loop
order QCD contributions [19—41], which can be used to
relate the W boson on-shell mass to the Z boson mass. The
present paper relies on a quite different organization of
perturbation theory, by taking all physical masses as outputs
including the W and Z boson pole masses separately, rather
than using the Z boson on-shell mass as an input. The
complete two-loop W and Z boson pole squared masses in
the scheme adopted in this paper were given in refs. [42] and
[43] respectively. The present paper will add the three-loop
QCD contributions to those results in a consistent way.

In the case of the Higgs boson pole squared mass,
Ref. [44] provided the mixed QCD/electroweak parts,
Ref. [45] gave results in the gaugeless limit in which g,
¢ are neglected in the two-loop part, and Ref. [46] gave an
interpolating formula for the full two-loop approximation
in a hybrid MS/on-shell scheme. In Ref. [47], the full two-
loop corrections were extended to include the three-loop
contributions in the gaugeless effective potential limit
(formally, g3, y7 > 4, g%, g”*, where g3, 9, ¢ are the gauge
couplings, y, is the top-quark Yukawa coupling, and 4 is the
Higgs self-coupling) using the pure MS tadpole-free
scheme. The present paper will extend this further to
include the momentum-dependent parts of the leading
QCD contribution to the Higgs boson self-energy in the
calculation of the pole squared mass.

To specify notation, the complex pole squared masses
for the electroweak bosons are each given in the loop-
expansion form
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with X =W, Z, and h. Note that all of the quantities
appearing on the right-hand side of Eq. (1.1) depend only
on the MS input parameters of the theory. In particular,
the tree-level MS squared masses m% are given by
my, = ¢v /4, m% = (F +g*)v*/4, and mi =2M7
The complete one- and two-loop contributions given in
Refs. [42,43,47] were written in terms of master integrals
defined in Refs. [48,49], the latter of which provided a
computer program TSIL for their efficient numerical evalu-
ation. The computer program SMDR [50] incorporates these
calculations of the W, Z, and Higgs physical masses and
many other results within the pure MS tadpole-free scheme,
matching observables to Lagrangian parameters. Another
public code MR [51] provides similar functionality, but
using the tree-level VEV scheme.

For the vector bosons, it is important to note that the
standard practice in experimental papers and by the review
of particle properties (RPPs) [52] from the Particle Data
Group (PDG) is to report the on-shell masses found from a
variable-width Breit-Wigner linewidth fit, which should be
related to the complex pole mass and width My and T'y
defined in Eq. (1.1) by

1+06
MPDG:Mm, (12)
1+06
PDG __
F —Fm, (1.3)
where
6 =T17?%/4M>. (1.4)

(In this paper, the superscript “PDG” refers to the con-
vention used by the PDG and not to the averaged
experimental results produced by the PDG in the RPPs.)
To add to the potential for confusion, in Refs. [42,43,47] by
the present author, and many publications by other authors,
a different parametrization for complex pole masses has
been used, denoted here by

Spole = M —iT'M', (1.5)

which is related to the M and I" in Eq. (1.1) by
= MV1 -3, (1.6)
=T/V1-56. (1.7)

The (MPPG TPPG) and (M',T’) parametrizations can be
considered to contain the same information as (M,T),
through the defining relations in Egs. (1.2)—(1.4), (1.6), and
(1.7). However, as emphasized in a recent paper [53], the
(M,T') parametrization defined by Eq. (1.1) has the clear
advantage that I'=1/7 is precisely the inverse mean
lifetime of the particle, unlike '*PY and I". In the following
Spole Will be computed, but the information that it contains
must be converted to MPPS to compare directly with the
results quoted by the PDG and experimental collaborations.
The W and Z PDG-convention masses that are almost
always quoted are, respectively, about 0.020 and
0.026 GeV larger than the pole masses My, and M, and
about 0.027 and 0.034 GeV larger than M7, and M.
The experimental values from the 2021 update of the
2020 RPPs are' MEPS = 91.1876 +0.0021 and MEPS =
80.379 £ 0.012 and M, =125.25 +£0.17 GeV. The nggs
boson width (about4.1 MeV, according to theory) is so small
that the numerical distinction between the PDG-convention
and complex pole mass versions of the real part M), is
negligible.

The three-loop integrals to be used below have been
defined and discussed in Secs. IV, VI, and VII of Ref. [55].
The master integrals are given there as a renormalized
e-finite basis, defined so that expansions of integrals to
positive powers in € will never be needed, even when the
results of the present paper are (eventually) extended to
four-loop order or beyond. Denoting the lists of one-, two-,
and three-loop renormalized e-finite master integrals

by 7; () A @) ,and 7 ) , respectively, then the general form

of a three loop contrlbution to the pole mass of X = W, Z,
or h is

Agf):z:c(3 +Zc
+Z 111 j

Jok,d

z
ik

1 2 2
oap ey
7

+ Zc;UZﬁl) +c0, (1.8)
J

where all of the coefficients ¢(®), cf,;”,

, ¢ are dimen-
sionless MS couplings multiplied by rational functions of
the MS top-quark squared mass

t=y>?/2 (1.9)

and either s = W, Z, or h as appropriate, where

"After the first version of the present paper, the CDF
Collaboration released [54] a new measurement of the W mass
that is substantially higher, M‘V"PG = 80.4335 4+ 0.0064,, £
0.0069,, GeV. See Figs. 5 and 6.
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W =m3, = g*v*/4, (1.10)
Z=mZ = (g + g*)v*/4, (1.11)
h=m? = 240", (1.12)

The VEV v is defined to be the minimum of the MS
effective potential in Landau gauge at all orders in
perturbation theory, so that the sum of all Higgs tadpole
diagrams vanishes. Note that the name of each particle is
being used as a synonym for the tree-level MS squared
mass in the tadpole-free scheme. (All other fermions are

taken to be massless, except in the one-loop parts A;”.)
Note also that the tree-level MS squared masses t, W, Z,
and /& are not gauge invariant, but are specific to Landau
gauge, due to their dependence on the VEV. However, as is
well known, the complex pole masses [and thus the PDG-
convention masses for W and Z, defined by Eqgs. (1.2)-
(1.4)] are gauge invariant.

The loop integrals include logarithmic dependences on
the MS renormalization scale Q, written in this paper in
terms of

L,=1n(t/Q?%), (1.13)

L_,=1In(s/Q?) —ix, (1.14)

M, =172.5 GeV,
Gr = 1.1663787 x 107> GeV?,
my(my) = 4.18 GeV,
my(2 GeV) = 0.00467 GeV,
M, = 0.1056583745 GeV,
(5

Aal) (M) = 0.02766.

M, = 125.25 GeV,
a = 1/137.035999084,
m.(m.) = 1.27 GeV,

m,(2 GeV) = 0.00216 GeV,

for the external momentum invariant s, which has a positive

infinitesimal imaginary part. In the three-loop parts Ag?,

the integrals will always be evaluated at external momen-
tum invariant equal to the tree-level squared mass, s = W,
Z, or h. This is just as consistent as choosing to evaluate
them at the (real part of) the corresponding pole squared
mass instead, as the difference is of four-loop order and
numerically small.

In order to provide more opportunities for checks, the
results below will be given in terms of SU(3),. group theory
quantities,

CG :Nc :3,
TF: 1/2,

Cr=(N7—1)/2N. =4/3,

ng:3.

(1.15)

Here N_. is the number of colors, C; and Cp are the
quadratic Casimir invariants of the adjoint and fundamental
representations, respectively, 7' is the Dynkin index of the
fundamental representation, and n, is the number of
fermion generations.

For numerical results shown below, I will use a bench-
mark Standard Model designed to give output parameters in
agreement with the current central values of the 2021
update of the 2020 RPPs [52],

MEPS = 91,1876 GeV,

o) (M) =0.1179,
m(2 GeV) = 0.093 GeV,

M, = 1.77686 GeV,

M, = 0.000510998946 GeV,

(1.16)

Using the latest version 1.2 of the computer program SMDR [50], which incorporates the new results of the present paper,
these are best fit by the MS input parameters (using the tadpole-free scheme for the Landau gauge VEV and writing g; for
the QCD coupling in the full six-quark Standard Model theory),

Qo = 172.5 GeV,
v(Qp) = 246.603216913 GeV,
93(Qp) = 1.16300624875,
y:(Qp) = 0.93157701535,
y.(Qp) = 0.003394710569,
va(Qo) = 1.464523924362 x 107,
ye(Qp) = 2.792980305214 x 1075,

v,(Qy) = 0.0002916507520,
vu(Qp) = 6.739112138367 x 1076,

AMQp) = 0.12639276585,
9(Qg) = 0.647606757306,
v5(Qo) = 0.015503239387,

d(Qp) = 0.358550211695,
v:(Qp) = 0.0099944376213,
¥.(Qo) = 0.0005883797990,

(1.17)
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Specifically, the values in Eq. (1.17) were obtained by
applying the command-line utility calc_fit of SMDR to the
values in Eq. (1.16). The code proceeds iteratively, con-
verging to a stable relative precision of better than 10~!2 in
all outputs after a few iterations. Here I have included many
more significant digits than justified by the theoretical
errors, merely for the sake of reproducibility. These MS
quantities can be run to a different renormalization scale
choice Q, where the pole squared masses can be recom-
puted. In the idealized case, the pole squared masses, being
observables, would be independent of the scale Q at which
they are computed.

Below, I will show figures illustrating the numerical results
for the Z boson pole mass and width, the Higgs boson mass
and width, the Higgs boson self-interaction, and the W boson
mass and width. In the cases of the Z and Higgs boson
masses, the numerical results shown are of course not
predictions, in the sense that the numerical inputs were
determined by the data in Eq. (1.16). Instead, they serve to
show the dependence of the calculation on the choice of
renormalization scale Q. In the case of the Higgs self-
coupling, the results reflect the present state-of-the-art
calculation, given the Higgs mass and other on-shell inputs.
In the case of the W boson mass, the result is a genuine
prediction, since it is not included in the data of Eq. (1.16).
More generally, the results of this paper, as incorporated in
SMDR, can be used to calculate the on-shell quantities for any
chosen values of the MS input quantities in Eq. (1.17). Or,
conversely, the MS parameters can be obtained iteratively by
the SMDR code for any values of the on-shell quantities
in Eq. (1.16).

3).43

A — AN, Cr{(a

a b
@, +a2 ) [CoAS ™ + CrAl? + Ay

The renormalization group running is carried out using
the state-of-the-art beta functions for the Standard Model.
The two- and three-loop beta functions were found in
[56-60] and [61-69], respectively. The four-loop beta
function for the QCD coupling g; was found in [70-74] in
the approximation that only g3, y;, and A are included. The
pure QCD five-loop beta functions were obtained in
[75,76], and the four- and five-loop QCD contributions
to the quark Yukawa beta functions were obtained in
Refs. [77,78] and Ref. [79] respectively, and the four-loop
QCD contributions to the beta function of the Higgs self-
coupling 4 were obtained from [12,80]. Finally, the
complete four-loop beta functions for the three gauge
couplings have been provided by [81]. All of these results
have been included in the latest version of the code SMDR,
which was used to carry out the numerical computations
described below. The code also implements results for
multiloop threshold matching of electroweak couplings
[17,18,82-85], the QCD coupling [86-91], and quark and
lepton masses [92—103].

II. THE Z BOSON POLE MASS

Consider the Z boson complex pole squared mass spole in
the form of Eq. (1.1). The complete one- and two-loop

contributions A(Zl) and A(Zz) were given in the tadpole-free
pure MS scheme in Ref. [43]. The three-loop QCD part can
be split into contributions from 13 distinct classes of self-

energy diagrams with different group theory structures,
using the quantities defined in Eq. (1.15),

4 2n, = 1)TpAG]

+2a,,aq,, [CGA(“’ )+CFA(3'f>+TFA(3’g)+(2” —1)TFA(Z3’h)]+(92+9/2)TFA(Z3J)

+{(ny=1)(a2, +a2,) +ny(a3 +a3 )[CoAS” + CralH +TpAGT" +(2n

where the tree-level couplings of the Z boson to up- and
down-type quarks are

a __% g _11/f+g’2+a (2.2)
133 3 /7924_‘9/2 uL 2 ug»

1 2 1
ag, = g ——\/92+9,2+adk-

Most of the three-loop diagrams are straightforward to
set up and can be carried out with a naive treatment of ys,
taken to anticommute with all of the other gamma matrices.
The known exception to this is the double triangle diagrams
shown in Fig. 1, which feature two distinct triangle quark

,~DTeAS™]) (20

@WW@W

FIG. 1. Three-loop contribution to the Z boson mass from
diagrams involving two triangle quark loops, which give a
nonvanishing contribution with a consistent treatment of the
axial vector coupling. These contributions are individually
divergent for each of (q,q') = (1,1), (¢, b), (b, 1), (b, b), but are
finite and gauge invariant after the combination. Contributions
involving sums over other (g, q’) quark doublet combinations
vanish in the massless quark limit.
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loops each containing a y5 from the axial vector coupling to
the Z boson. (The vector couplings to the Z boson give
vanishing contributions for the sum of these diagrams.) The
contributions from (q,q’) = (1,1), (t,b), (b, 1), (b, D) are
separately divergent, but their sum is finite and gauge
invariant. Therefore, for these diagrams only, one can use
the prescription [104,105]

i
7'rs = g€ N T (2.4)
based on the ‘t Hooft—Veltman treatment [6] of y5, and then
carry out the Lorentz algebra in four dimensions before
reducing to master integrals in d dimensions. The result is

the contribution A(Z3’i) in Eq. (2.1). The contributions
|

from diagrams with one or both of ¢ and ¢’ summed
over the other quark doublets (u,d) and (c,s) vanish,
because the axial couplings a,, —a,, for down- and up-
type quarks have the same magnitude and opposite sign,
and they are being treated as mass degenerate (specifically,
massless). The result for general nonzero s = Z found here

reduces to A<Z3’l) — 21¢5 for s = 0, which agrees with the
original calculation in that limit [106] and with the
corresponding contribution to the p parameter obtained
in [27,28,39].

The contributions from the diagrams in which the Z
boson couples directly to a single massless (in the present
approximation, nontop) quark loop are relatively simple,
and can be written as

GJ)_ [ 44215 908 40 88 1L,
Ay _z< o1 to B3 Gt [H-F G L -5 L), (2.5)
143
ASH = Z(T 5 C3 = 80Zs L_Z>, (2.6)
Gy 16 16 8
AV = ﬁz(% +37)1,.(0,0,0,0,0,¢,1) + 3 (1287 + 43Z)14.(0,0,0,0,17,1) — 77 (18t 47Z)14£(0,0,0,0,1,1)
32 160 896 . 8276\ = 2599 80 72
= (5Z = 170)15.(0,0,0,1,1) + ——1,(0,0,2,1) + (== &3 — -
pbver Mse( )+ g1 1l )+ <243€3 729) 437 o187
11144 224 3320 352, 112, 4 160 32
272 20 16
+ g Loz + g 2L, = 52 (171 4+ 10Z)L,L2 . (2.7)
Gom) 3701 304 32, 44 4
AV =z - S —— L, +-1%,). 2.
z <81 g Gt |73 oG5 | Lzt 3Ll (2.8)

Here, A(Z3’l) contains a top-quark loop that corrects a gluon propagator, rather than connecting to the external Z boson. The
remaining contributions in Eq. (2.1) are much more complicated, and are given in the Supplemental Material [107]. Each of
the contributions has the form of Eq. (1.8), with master integrals chosen in Ref. [55],

W = {A(1). B(0,0), B(1,1)}

T®) = {5, V(1,1,0,1),M(1,1,1,1,0),M(0,1,0,1,1)},

(2.9)

(2.10)

I0) = {¢5,H(0,0,£,0,1,1), H(0,1,1,1,0,1), I4(t, 1, 1,1), I5,(1,0,1,0,1), I5,(0, 1, 1,1, 1),
Is.(t, 0,8, 8,1), I (2, 1,2,0,8, 1), [52(2,2,1,0,0,0), I54(0, £, 1,1, 1,0), I4(2,0, £,0,£,0),
I64(1,0,2,1,0,1),16,(0,0,0,0,2,1),16,(0,2,2,1,0,1), I, (2. 1,1,0,1,1), I5(0,0,0,0,1,1),
I645(0,0,0,0,2,1),17,(0,0, 1,1, t, 1, 1), I;,(t. 1.1, 1,1,1,0), I;,5(t, t. £, 1,1, 1,0),
17,(0,1,1,1,1,0,0), 17,(2,0,¢,£,1,1,0), I7,4(2,0, 2,1, 1,1,0), I74(2,,0,1,1,0,1),
I;.(t,1,1,1,0,0,0), I74(1,1,0,1,0,1,0), I;4(2,1,0,¢,1,0,1),1.(0,0,0,0,0, ¢, 1),

(
1,.(0,0,1,1,1,0,0),I3,(2,0,1,t,t,1,1,0), I3,(t, t,1,1,1,0,0,0), Iy, (2,2, ,1,10,0,1),
(

I5.(1,0,1,1,1,1,1,0), I25(t,1,1,1,1,0,0, 1)},

(2.11)
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FIG. 2. The Z boson mass in the PDG-convention MEDG (left) and the width I'; (right), obtained from the calculated complex pole

z
mass Spoes

as a function of the renormalization scale Q. The different lines show various approximations as labeled. The MS input

parameters are as given in Eq. (1.17), which provide for MYPS = 91.1876 GeV when calculated at the renormalization scale Q =
160 GeV using the full two-loop plus three-loop QCD approximation.

with A(¢) = t(L, — 1) and B(0,0) = 2 — L_,. However, in
Eq. (2.7) above, I have chosen to write the expression for
A<Z3’l) in terms of candidate master integrals that were
solved for in Ref. [55], rather than the master integrals
listed above [which are a subset of the ones listed in
Eq. (7.4) in Ref. [55], joined by B(0, 0) and {5 and {5 from
the integrals with all propagators massless]. This simplifies
the expression somewhat, because the integrals used in
Eq. (2.7) have the same propagator structures as descend-

ants of the underlying Feynman diagrams for the A(Z”)
contribution.

As a check of Eq. (2.1), I have verified that the full
expression for the observable sgole is renormalization group
invariant through three-loop terms proportional to g3, using
the derivatives of the master integrals with respect to Q
found in the ancillary file QddQ of Ref. [55].

For practical numerical evaluation, after using the
Standard Model group theory values in Eq. (1.15) and
applying the expansions for the master integrals in the
ancillary file Ievenseries of Ref. [55], I find

3 R 4
AP = B e{(g? + ¢2)(7 + 2) + ay, a,, 5

+ [2(az, +az,) +3(ay, +aj )55}, (2.12)

where the series expansions of 67, &5, 55, and &7 are given
in the Supplemental Material [107] to order r¥, where
Z gF+4?
r, === )
L7 41 8y?

(2.13)

The contribution &7 isolates the results form the double
triangle diagrams in Fig. 1. The series expansion coeffi-
cients are given both numerically and analytically in terms
of L,, L_,, and the constants {3, {5, and

¢ = 30Liy(1/2) = 22¢, + glnz(Z) 1n2(2) — 72)]

~ —13.2665092775.... (2.14)

The series converge for all r, < 1, which is clearly satisfied
in actuality. The first few terms in the expansions are

87 = 50.486 + r4[79.645 + 49.333(L, — L_;) + 8(L, — L_,)?]

+r5[-15.758 + 5.531(L, — L_;)] + r3[-3.066 — 1.493(L, — L_y)] + - - -,

(2.15)

8% = 9.978 4 49.258L, 4 18L2 — 30L3 + r,(—113.200 — 90.222L, + 28L?)

+ 12(—42.485 — 63.002L, — 4.8L2) + 13 (—45.813 — T4.011L, — 32.914L2) + - - -,

(2.16)

67 = r,(—687.728 — 298.667L, + 224L?) + 1%(~733.683 — 685.827L, — 51.200L2)

+ r5(=707.875 — 962.072L, — 394.971L?) + - - -,

(2.17)

6% =r;(—56.799 — 14.758L, — 10.667L? +180.381L_, +21.333L,L_, — 122.667L? )
+71%[-88.570-33.375(L, — L_;) = 3.793(L, — L_;)*] + r3[4.074+2.521(L, — L_;) + 0.406(L, — L_;)*] +---.

(2.18)
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It is interesting to note that, in the expansion in small r,
the subleading contribution is numerically comparable
to (or even larger than, for smaller Q) the leading
contribution obtained by r; = 0. This is due mostly to
the term proportional to r,L?, in the contribution
Eq. (2.18) from massless quark loops, because of the large
magnitude of the coefficient —122.667 and because L2, =
[—iz + In(Z/Q?)]* provides up to an order of magnitude
enhancement.

The resulting contribution of Eq. (2.12) has now been
included in the latest version 1.2 of the code sMDR [50].
Figure 2 shows the results for the PDG-convention mass
MPPS and the width ", obtained from the pole mass, for the
MS input parameters given in Eq. (1.17). These benchmark
parameters were chosen so that the calculated MEDG, with
all known contributions included and using the renormal-
ization scale Q = 160 GeV, is equal to the experimental
central value 91.1876 GeV. To obtain the results in the
figure, the MS input parameters are run to other MS scales
Q using the most complete available renormalization group
equations (as listed at the end of the Introduction), and
sgole is then recalculated. In the idealized case, the results

should not depend on Q. I find that, with inclusion of the
three-loop QCD corrections, the scale dependence of M,
is remarkably small, less than 0.8 MeV as Q is varied
between 50 and 220 GeV. However, given the larger scale
dependence found in Sec. IV for the similar case of the W
boson mass, I surmise that this very mild scale depend-
ence is partly accidental, and the actual theoretical
error due to neglecting higher order contributions is likely
to be larger.

The scale dependence of I", shown in the right panel of
Fig. 2 is less mild and not so much improved over the
complete two-loop result, as it varies by a total of about
4 MeV (between minimum and maximum) as Q is varied
between 80 and 220 GeV. Note that this determination of
I'; from the complex pole mass (in which the leading
contribution arises only as a one-loop effect) is essentially
one-loop order less accurate than a direction calculation of
the Z boson decay width (in which the leading contribution
is a tree-level effect).

III. THE HIGGS BOSON POLE MASS

Next, consider the complex pole mass sgole for the

Standard Model Higgs boson, written in the form
of Eq. (1.1). In this section, I extend the results of
Ref. [47] to include the momentum-dependent three-loop
self-energy corrections to Af) that are proportional to
giy?t. Also included below are the three-loop contribu-
tions proportional to g3y}# and y®t, in an effective potential
approximation, which amounts to ¢3,y? > 1, ¢%, ¢’*>. For
the y%t part, I provide below an improvement over the
result in [47]. Together with the full two-loop results,

these constitute the most complete calculation of the
Standard Model Higgs boson mass that is presently
available.

The functions A;,l) and the QCD part of Af) were given
in Egs. (2.46) and (2.47) in Ref. [47] and are evaluated at
s = Re[s};], determined by iteration. The remaining, non-

QCD part of Af) was given in an ancillary file of Ref. [47],
where the master integrals were also evaluated at
s = Re[sgole]. However, in the present paper, I adopt a
slightly different organization by evaluating the non-QCD

part of Af) as exactly the same function but evaluated
instead at s = h, which is consistent up to three-loop terms
of order y°z. This allows an easier extension to three-loop
order, as indicated below.

For the leading QCD part of Af) proportional to g3y?1,
the new result can be written in terms of the contributions of
four distinct classes of self-energy diagrams characterized
by their group theory structures,

4.2 i
AT = AN CR(CAT + A + Tpal

+ (2n, - NTpAP?). (3.1)

The results for Af’a), Af’b), Af‘”, and Af’d) are somewhat
lengthy, and so are given in the Supplemental Material (file
DeltaH3) provided with this paper [107]. They are written
in terms of the same list of three-loop self-energy master
integrals as for the Z boson, listed in Eqgs. (2.9)—(2.11),
with the exceptions that I, (2,0, ¢, 7,1, , t,0) is also needed
in 7O, and 5, 16,(0,0,0,0,2,1), 15:(0,0,0,0,11),
I445(0,0,0,0,¢,1), 17,(0,0,0,0,0,2,¢), and 1.(0,0,
t,1,1,0,0) are not needed, and of course one should use
s = h rather than s = Z.

Using the expansions of the master integrals given in

Ref. [55], setting s = h in Af) Gt (which is consistent up
to terms of four-loop order), and plugging in the group
theory constants from Eq. (1.15), the result becomes a
power series in

_h 2

rp, =—

, 3.2
4t y,2 (3:2)

with coefficients that depend on L, = In(t/Q?) and L_;, =
In(h/Q?) — iz and the constants {3 and ¢}, from Eq. (2.14).
The expansion converges for r;, < 1 and does so rapidly for
the value realized in the Standard Model. It is given to order
r7* in Supplemental Material (file DeltaH3series) [107],
both in analytic and numerical forms. The first few terms of
the numerical form are
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Af),g‘éy?t = g4y71(248.122+839.197L, + 160L? — 736L;}
+ ry[=716.898 — 1546.064L, + 336L7 4 240L?|
+ r2[479.663 +72.770L, 4 28.444L _,]
+13[~27.675—83.837L, — 5.486L>

F13.274L ] +---). (3.3)

As a nontrivial check, the result obtained with r, =0
agrees with that provided in the first line of Eq. (3.3) of
Ref. [47]. The terms with positive powers of r;, are new in
the present paper.

For the part of A< ) proportional to g3ytt the effective
potential approximation gives the second line of Eq. (3.3)
of Ref. [47], which is not improved on in the present paper,
but is reproduced here for reference and comparison,

AP 2044(2764.365 + 1283.716L, — 360L

+240L3). (3.4)
.. . (3).g4y%t . .
It is interesting that A, """ is numerically smaller than
2.4
Af)’%} ’t, despite the parametric relative enhancement

N, g3/y? of the former. In the approximation r;, = 0, this
effect was noted in Refs. [10,47] [see the discussion
involving Eqs. (6.21)-(6.28) of the former reference] as
the result of an unexplained but dramatic near cancellation
and is found here to be not changed by the inclusion of
terms higher order in 7.

Finally, for the part of A() proportional to y%¢, the
effective potential approximation of Ref. [47] can be
improved on slightly as follows. In the present paper,

the non-QCD part of Af) is evaluated using master
integrals with external momentum invariant 4 rather than
Re[sp,.]. Then, due to the fortunate circumstance that the

leading one-loop behavior of s/ . — in the limit y7 >

A, ¢*, ¢* is proportional to L,,

11 —h

Spole — N1 = @‘Wc)’%ﬂm

(3.5)

we can fully repair the error in the three-loop part (caused by
using & rather than Re[s Pole} in the two-loop part), simply by
requiring renormalization group invariance of the pole mass.
This allows inference of the complete dependence propor-
tional to y®tL,, due to the explicit dependence on Q. By
demanding (and checking) renormalization group invari-

ance of spole through terms of three-loop order in the

approximation g3, y7 > 1, ¢*, ¢%, I find that the end result
for the leading non-QCD three-loop contribution is that
Eq. (3.4) of Ref. [47] should be replaced by

1256 T T T
————— 1-loop

— ——— 1-loop + 2-loop QCD 3
— — —- full 2-loop
2-loop plus leading 3-loop| 1

125.5F
A

125.4F\

125.3F = ]

~

1252r 3
\

M, [GeV]

" 125.1E\ - 3
125.0F < -7 7
124.9F / 3

124.8

100 150 200
Renormalization scale Q [GeV]
FIG. 3. The real part of the calculated Higgs boson pole mass,
as a function of the renormalization scale Q. The different lines
show various approximations as labeled. The MS input param-
eters are as given in Eq. (1.17), which provide for M, =
125.25 GeV when calculated at the renormalization scale Q =

160 GeV with the best available approximation as described in
the text.

A(3)’-‘”6' _ .6 2
wr " = y01[=3433.724 - 2426.808L, — 101.016L3

—360L} + L, (36 + 648L, +324L%)],  (3.6)
where the analytic forms of the decimal coefficients are

1772

—3433.724 & 673 = —— — 19625 + 24cyy.  (3.7)
10491

—2426.808 & —— —+ 144\/37 — 4272 — 144¢5,  (3.8)

~101. 016N—85—5+60f (3.9)

This result differs from Eq. (3.4) of Ref. [47] by terms that
vanish when L, =0, consistent with the approximation
made in that reference.

To recapitulate, in order to consistently include the three-
loop results given above, the non-QCD part of A;l ) found in
the ancillary file of Ref. [47] should use s =/ in the

evaluation of the integrals, while A Ell) and the QCD part of

( ) provided in that reference should use s = Rels Shote)

determlned by iteration. All of these results for the Higgs
boson pole mass have now been implemented in version 1.2
of the computer code SMDR [50]. Figure 3 shows the results
for M, for the benchmark MS input parameters given in
Eq. (1.17). Recall that these parameters were chosen so as
to give the present experimental central value from the
RPPs, M, = 125.25 GeV, as the result of the calculation at
renormalization scale Q = 160 GeV. The other results in
the figure were obtained by running the MS parameters in
Eq. (1.17) from the input scale Q, = 172.5 GeV to each
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scale Q and redoing the calculation. The new contribu-
tions found in this paper give the best approximation
available at this writing, but still imply a scale dependence
of several tens of MeV. For example, the calculated M,
decreases by about 56 MeV when Q is varied from 100 to
200 GeV, for fixed values of the MS input parameters.
This provides a lower bound on the theoretical error and
suggests that a still more refined calculation of the Higgs
pole mass, to include three-loop electroweak parts and
even leading four-loop contributions, would be worth-
while, since the experimental uncertainty on M, from
future collider experiments may well be smaller [108]. It is
also possible [109] to refine further the gaugeless limit by
including momentum-dependent parts of the Higgs boson
self-energy function.

A famous feature of the observed Higgs boson mass
is that the Standard Model with no extensions can then
have the Higgs self-coupling A1 run negative at a scale
that is far above the electroweak scale, but below the
Planck scale, implying a possibly metastable electro-
weak vacuum. This is illustrated in Fig. 4, using the
latest experimental values and the results of this paper to
relate M), to A in the most accurate available way. As is
well known (see, for example, Refs. [44-46,110]), the
scale of possible instability is lowered if the top-quark
mass is higher, or the QCD coupling is lower, or the
Higgs mass is lower, than their benchmark values, while
it is possible for the instability to be avoided up to the
Planck scale if the deviations are in the opposite
directions. While improved formulas and experimental
values for M, are welcome, the dominant uncertainty in
these instability discussions comes from M, (or y,), and
the second most important uncertainty is that of

|

01 5 T T T T T T T T
1-sigma M,, M,, o, envelope| |
2-sigma Mh, Mt, og envelope|

2 4 6 8
log,,(Q/GeV)

10 12 14 16 18

FIG. 4. The running Higgs self-coupling parameter 1 as a
function of the MS renormalization scale Q, using the results of
this paper to relate it to M, in the most accurate available way.
The central value obtained from the present experimental data as
in Egs. (1.16) and (1.17) is the black line. The shaded envelopes
are the envelopes obtained by varying M, =125.254+0.17 GeV,
M,=1725+0.7 GeV, and a{’ (M) =0.1179 +0.0010 in
their 1-sigma and 2-sigma ranges.

ags)(M z), through their renormalization group running
influence on 4.

IV. THE W BOSON POLE MASS

Consider the W boson complex pole squared mass s;‘(’)le

as in Eq. (1.1). The complete one- and two-loop parts A&,ll,)
and A<v12/) were given in Ref. [42]. The three-loop QCD part
splits into eight distinct contributions with different group
theory structures,

3).9% 3.a b .«c .d
AR = EPNCH(ColATY + (ny = DARY] + Co[AG) + (n, - 1)AG"]

+ TAAG + (n, - 1)AST + (20, - 1)AG? + (21, — 1)(n, — 1)AG]).

(4.1)

The four contributions from diagrams in which the W boson couples directly to massless quarks are relatively simple,

44215 454 20 41 44 11
A = W<——+TC3 +?Cs+ {——?53]L—W__L%W)’

648

143 74
A<M3,’d>:W< +¢

18

1
(40551 ).

(4.2)

2 6

(4.3)

8 8 4
A = Z W(7t + 3W)1,.(0,0,0,0,0, £, 1) + 545 (1281 43W)16,(0,0.0,0. 1) = 5= (181 +TW)15;(0.0.0,0.1.1)

27
16

243t 81t

80
+—(5W = 171)15.(0,0,0, ¢, 1) + ——14(0,0,1,1) + <

2 4 2
599W—|— 0w

486 2187 ¢

448C 4138
24373 729

5572 112, 1660 176 . 56 2 80 16

P e W L, 2 - 223 (8840 — 21TW) Ly + (oW —— 1 |L,L_

(243 9 5" 43 ) TR Vel yel ) W+<27 3 ) e

136 10 8

ULRL b WLy — — (171 + 10W)L,L2 44
+ 81 t —W+81W -Ww 243( + 0W> t~—w» ( )
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) 3701 152 16, 22 2,
Ay =W(—F—-—1F —G-—|Loy+5L2y ).
v (162 g &3 kvl

(4.5)

In fact, Agf,’b), A&,?,’d), A(vs,’f ), and Agf,’h) can be obtained

from, respectively, A(Z3‘j>, A(Zlk), A(ZM)» and A(Z3,m) i

Egs. (2.5)—(2.8) by replacing Z — W and dividing by 2.
The reason for this is that they come from exactly the same
Feynman diagram topologies.

The remaining four contributions Ay, AR A<,
and Aif,’g) in Eq. (4.1) are more complicated and are
|

relegated to the Supplemental Material (file DeltaW3)
[107]. They each have the form of Eq. (1.8), with
renormalized e-finite master integrals that are a subset of
Eqgs. (6.2)-(6.4) of Ref. [55],

M = {A(1), B(0,1)}, (4.6)

Z® = {5(0,0,1),8(t,1,1),U(1,0,t,1),M(0,0,1,1,0)},
(4.7)

Z0) = {H(0,1,1,1,0,1),14(0,,,1),164(0,0,£,0,1,0), I54(0,0,12,1,0,1), I4(2,0,0,0,0,0),
16.(0,1,0,0,0,1),I6,(2,0,2,0,0,1), I£(0,2,£,0,0, 1), 54 (2.0,0,2,0,1),
17,(0,0,0,0,¢,1¢,1),17,(0,0,t1¢0,0,0),17,(0,¢1¢0,0,¢0), I;,(¢,1,0,0,1,1,0),
I7,5(2,1,0,0,¢,1,0),1,4(0,0,¢,0,¢0,0),1,.(0,0,¢1¢0,0,0), [74(0,2,0,¢,1¢0,1),

1,.(0,1,¢,0,0,0,0), I3,(0,0,0,2,¢,0,0,1), I3.(0,0,0, 10,0, ), I{{f(r, 1,1,0,0,0,0,0)}.

I have checked that Eq. (4.1) gives a pole mass s]‘;‘gle that is
renormalization group invariant through three-loop terms
of order g3, using the derivatives of the master integrals
with respect to Q found in the ancillary file QddQ of
Ref. [55].

For practical numerical evaluation, after plugging in the
Standard Model group theory values in Eq. (1.15) and
applying the expansions for the master integrals in the
Ref. [55] ancillary files Toddseries and levenseries (the
latter being needed only for the contribution A@i’f )in which
the W boson couplings are to a massless quark loop, with a
top-quark loop correcting a gluon propagator), I obtain a
series expansion

ADE = (oW + 8% (4.9)

w 3 1 2 ) :
where 6% comes from AJY, A AP and AP,
which follow from diagrams where the W boson couples
directly to a top-bottom pair, and &Y comes from

Ag’b), Ag,?,’d), Ag’f ), and Ag’h) from diagrams in which
|

(4.8)

I
the W boson couples directly to light-quark pairs. The
Supplemental Material [107] (file DeltaW3series) provided
with this paper gives the results, both analytically and
numerically, to orders p3? and rl?, where

o=V T nd =P
W—[ 2)7[2 w 4’

(4.10)
and the coefficients involve L, =In(t/Q?) and L_y =
In(W/Q?) — iz =2 - B(0,0)[s—w-e» as well as £y, £3, 4,
s, ¢}y from Eq. (2.14), and

¢; = V3Im[Liy (e¥/3)] % 1.1719536193....  (4.11)
Note that 8} is the same as §7 appearing in Egs. (2.12) and
(2.18) with the replacement r, — ry,. The series for 6} and
5Y converge for py < 1 and ry < 1, respectively, which is
clearly satisfied by the relevant value of W/t in the

Standard Model.
The numerical form of the first few terms in the series are

8V = 12.8299 + 24.9541L, + 63L% — 30L3 + pyy(—23.800 — 54.693L, + 14L?)

+ p§(=2.327 — 17.873L, — 1.5L}) + p3,(=0.700 — 7.496L, — 7.2L}) + - - -,

(4.12)

8Y = ry(=56.799 — 14.758L, — 10.667L? + 180.381L _y + 21.333L,L_y, — 122.667L%,)
+ 1%, [-88.570 — 33.375(L, — L_y) — 3.793(L, — L_y)?]

+ 13,[4.074 +2.521(L, — L_y) + 0.406(L, — L_y)?] + - --

(4.13)
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The PDG-convention W boson mass, and the width 'y, obtained from the calculated complex pole mass sggle, as a function of

the renormalization scale Q. The different lines show various approximations as labeled. The MS input parameters are as given in
Eq. (1.17). Also shown are the experimental central values and 1o ranges for M5PF as given by the 2021 update to the 2020 RPPs and
from the 2022 result from CDF [54] with statistical and systematic errors combined in quadrature.

As in the case of the Z boson, it is interesting to note that, in
this expansion in small W/, the subleading contribution is
numerically comparable to or larger than the leading
contribution (obtained by py = ry = 0), depending on
the choice of Q. This is due mostly to the term proportional
to ry L2y, in the contribution from massless quark loops,
because of the large magnitude of the coefficient —122.667
and because L%y, = [—iz + In(W/Q?)]? provides up to an
order of magnitude enhancement.

_ 3).4% . . .
The contribution Agv) % is now implemented in the new

version 1.2 of the computer code SMDR [50]. Figure 5
shows the results for MEPS and for 'y, obtained from the
complex pole squared mass s;‘;le, for the MS input
parameters in Eq. (1.17) at the reference scale
Qo = 172.5 GeV. The default scale used by SMDR vi.2
for the W mass calculation is Q = 160 GeV, which gives
MEPS = 80.3525 and I'y, = 2.0896 GeV. The results for
other renormalization scales Q are obtained by first running

the MS parameters to Q and then recalculating sy, . The

three-loop QCD contribution to M}}PG is seen to be as large
as about 6 MeV. In the idealized case, the total sg‘(’,le would

not depend on Q. The computed value of MYPS varies by
less than 2.4 MeV as Q is varied from 80 to 180 GeV. This
is significantly larger than the scale dependence of the
computed MEPS as found in Fig. 2, but compares
quite favorably to the present experimental uncertainty
of 12 MeV. The range for MIPS from the average
of experimental data released through 2021 is
80.379 £ 0.012 GeV. The CDF Collaboration has recently
produced a result that is substantially higher,
80.4335 + 0.0064, + 0.0069,, GeV, which is in stark
disagreement with the Standard Model prediction. These
results are also shown in Fig. 5. As seen in the right panel of
Fig. 5, the total variation in I'y, as Q varies from 60 to

220 GeV is about 3.5 MeV, but the spread is only about
2.3 MeV as Q varies from 80 to 180 GeV. These scale
variations are improved over the full two-loop order
calculation found in Ref. [42]. For comparison, the largest
parametric uncertainty contributing to the My, prediction is
that of the top-quark pole mass M,. If one fixes Egs. (1.16)
and (1.17) as a reference model and then adjusts the

Standard Model inputs to fit varying M,, M ,, Aal(zzi, and

ags)(M 7), then one finds approximately

M,, (PDG convention) [GeV]

pure MS 3
— — —— on-shell
— — — . hybrid o

174

Top-quark pole mass [GeV]

FIG. 6. Comparison of Standard Model predictions for the W
boson mass in the PDG convention, as a function of the top-quark
pole mass M,, using data for M5PS, G, a(SS) (My), Aa}flzj, and M,
from Eq. (1.16). The solid black line is the pure MS scheme
result, obtained using SMDR v1.2 incorporating the results of this
paper. The short dashed (blue) line is the on-shell scheme result,
obtained from the interpolating formula in Ref. [38]. The long
dashed (red) line is the result from the hybrid MS-on-shell
scheme of Ref. [17]. Also shown are the experimental central
values and 1o ranges for MEPT as given by the 2021 update to the
2020 RPPs and from the 2022 result from CDF [54].
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M, — Mref
PDG,ref
MEPS = M7 + 6.1 MeV ([Gth>

MPDG _ MPDG,I'Cf
+ 1.3 MeV <%)
MeV

Aa(S) _ Aa(S),ref
— 1.8 MeV had had
¢ ( 0.0001

() (5) ref
_ (ZS (Mz) - (ZS (Mz)
0.7 MeV( oo (4.14)

as the prediction for the W boson mass in the PDG
convention, with M}P%™ = 80.3525 GeV.

In Fig. 6, I compare the prediction for MEPF from
SMDR v1.2 (incorporating the results of this paper) in the pure
MS scheme to the corresponding results in the on-shell
scheme using the interpolation formula in Ref. [38] and to
those in the hybrid MS-on-shell scheme of Ref. [17], as a
function of the top-quark pole mass. The other on-shell
parameters M5°C, G, ags) (M), Aa@i, and M, are
chosen to be the same and equal to the data given from
Eq. (1.16) from the 2021 update to the 2020 RPPs, so that the
results are directly comparable. (In the MS scheme, this
entails doing a fit to determine the Lagrangian parameters,
which is readily accomplished using the c function
SMDR_Fit_Inputs or the interactive command-line tool calc_
fit-int.) The pure MS scheme gives results between those of

the on-shell and hybrid schemes, with a total spread between
the three schemes of about 4.5 MeV.

V. OUTLOOK

In this paper, I have reported the three-loop QCD con-
tributions to the W, Z, and Higgs boson physical masses in
the Standard Model, in the pure MS renormalization scheme
with a tadpole-free treatment of the Higgs VEV. The results
show improved renormalization group scale independence,
especially for the W and Z boson cases, and in all three cases
the scale variation is less than the present experimental
uncertainty. Alternative methods based on on-shell type
schemes have already included four-loop QCD contributions
through the rho parameter, but it is not clear that these should
be numerically more important than three-loop mixed and
pure electroweak contributions. The results of this paper have
all been incorporated in the latest version 1.2 of the code
SMDR [50]. Further improvements in the approach of the
present paper could come from computing all of the
remaining three-loop self-energy contributions to the pole
masses, which in the case of the most general diagrams will
be a challenging, but perhaps not insurmountable, goal.
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