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I obtain identities satisfied by the three-loop self-energy master integrals with four or five propagators

with generic masses, including the derivatives with respect to each of the squared masses and the external

momentum invariant. These identities are then recast in terms of the corresponding renormalized master

integrals, enabling straightforward numerical evaluation of them by the differential equations approach.

Some benchmark examples are provided. The method used to obtain the derivative identities relies only on

the general form implied by integration by parts relations, without actually following the usual integration

by parts reduction procedure. As a byproduct, I find a simple formula giving the expansion of the master

integrals to arbitrary order in the external momentum invariant, in terms of known derivatives of the

corresponding vacuum integrals.

DOI: 10.1103/PhysRevD.107.053005

I. INTRODUCTION

In modern evaluations of dimensionally regularized [1–8]

loop integrals for quantum field theory, the integration by

parts (IBP) relations [9,10] often play an important role. By

applying IBP relations repeatedly [11–28], one can dis-

cover identities between different loop integrals with

common topological features, allowing one to eliminate

many of them in favor of a finite [29] number of master

integrals. In particular, derivatives of the master integrals

with respect to the propagator squared masses, and with

respect to external momentum invariants, can always be

written as linear combinations of the master integrals. This

results in differential equations whose solution (either

analytical or numerical) for the master integrals can be

obtained.

The proximate motivation for the present paper was the

problem of evaluating self-energy integrals at up to three-

loop order for use in the Standard Model, with the eventual

goal, certainly not realized in this paper, of evaluating the

complete three-loop corrections to the pole masses of the

electroweak bosons. This involves reduction of a general

three-loop self-energy to master integrals, and then the

evaluation of the master integrals, using differential equa-

tions in the external momentum invariant. In the following,

the differential equations satisfied by the three-loop self-

energy master integrals with four and five propagators will

be found explicitly, enabling their numerical computation.

For the Standard Model, there are only four distinct large

masses, that of the top quark, Higgs boson, and W and Z
bosons, so only a subset of the general kinematic three-loop

topologies will be necessary. However, it is useful to have

methods that work for general masses, for possible future

applications to extensions such as models with super-

symmetric particles or new vectorlike quarks and leptons,

and other models that may not be foreseen at present. The

discussion and results below are therefore formulated for

generic three-loop self-energy integrals, and it is hoped that

some of the ideas may have even broader applicability

beyond self-energy integrals.

In some cases, the reduction to master integrals using

IBP identities can be challenging, due to their number and

complexity. In this paper, I will employ a different method,

which makes use of the general form for results implied by

the IBP relations, without actually using the IBP reduction

procedure itself. The idea will be described in terms of self-

energy integrals involving an external momentum pμ, in

d ¼ 4 − 2ϵ ð1:1Þ

dimensions, assumed to be either Euclideanized or to have

the metric signature with mostly þ signs, so that the

external momentum invariant is

s ¼ −p2: ð1:2Þ

The integrals also depend on some number of internal

propagator squared masses denoted x; y;…. The IBP

procedure leads to identities that can always be written

in the form

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP

3
.

PHYSICAL REVIEW D 107, 053005 (2023)

2470-0010=2023=107(5)=053005(27) 053005-1 Published by the American Physical Society



X

k

CkIkðs; x; y;…Þ ¼ 0; ð1:3Þ

where the Ikðs; x; y;… are the loop integrals, and it is a

crucial feature that the Ck are polynomials in s, in the

internal squared masses, and in ϵ.

The idea to be exploited here is to obtain the identities of

the form of Eq. (1.3), not by repeatedly applying IBP

relations, but by making a guess for the degree in s of each
of the polynomials, and writing the most general form for

each polynomial Ck in terms of a finite number of unknown

coefficients. Then, after expanding the loop integrals

Ikðs; x; y;…Þ in small s, the unknown polynomial coef-

ficients in theCk can be fixed by requiring each power of s in
the expansion of Eq. (1.3) to have a vanishing coefficient. If

the degree in s of any one of the polynomials Ck has been

incorrectly guessed to be too low, this procedure will

encounter a contradiction. If the guessed degrees in s are

minimal, one may obtain a unique solution for the unknown

coefficients after expanding Eq. (1.3) in s to some finite

power, after which the next few powers in s will give

consistency checks. If the guessed degree in s for one or

more of the polynomials is larger, then one will find multi-

parameter consistent solutions for the polynomial coeffi-

cients, which can be resolved by setting any unnecessary

coefficients (of the highest powers of s in the Ck) to 0.

Of course, this method relies on the ability to evaluate the

expansions in s of the integrals Ik to sufficiently high order.
That is particularly straightforward for the examples

described below, which are the three-loop self-energy

integrals with four or five propagators with arbitrary

squared masses. In this paper, I will find the master

integrals and identities relating them, including the results

needed to numerically evaluate them using the differential

equations approach [30–44].

Note that the method used here works even if the small s
expansions for the integrals fail to converge for realistic

physical values. The method has several other advantages.

First, because one is looking for a finite set of integer

polynomial coefficients, one can find them by assigning

arbitrary rational numbers to all of the squared masses

x; y;… and even to ϵ, then repeating the process with

different rational numbers until either all coefficients have

been successfully identified, or until a contradiction has

been encountered. (In the latter case, one increases the

degrees of the polynomials, and tries again.) That was the

method used to obtain the results below; it greatly reduces

the computer memory and processing requirements, mak-

ing the calculation tractable in cases where it might be

much more difficult otherwise. The use of rational numbers

is similar to strategies described in the recent literature

for using finite fields and rational fields to reconstruct

identities between integrals, which follow from early work

in Refs. [23,45]. Several public codes employ these

methods, including FiniteFlow [45], the FIRE6 [17] IBP

code, FireFly [46,47], the Kira 2.0 [28] IBP code, and

Caravel [48] based on numerical unitarity.

A second advantage is that when one is evaluating a

physical observable, one need not solve for all of the

individual reducible integrals that may appear in it, or for

other reducible integrals in the same sectors, which are

often vast in number. Instead, one can choose one of the Ik
to be the whole integral expression (typically including

irreducible numerator factors) for the contribution to the

observable in question with a given diagram topology, and

let the others be the master integrals, which will have been

previously identified by finding other identities that elimi-

nate all other candidate masters. If the small s expansion of
the observable can be obtained, it can be used to find the

required polynomial coefficients expressing it in terms of

master integrals, again even if the expansion fails to

converge for the physical values of s and other parameters.

A third advantage is that it allows one to confidently make

statements such as “no identity relating the following

integrals exists, for polynomials Ck up to degrees nk in s.”
Such statements are harder to be completely certain of

using only the IBP procedure, since there are an infinite

number of IBP relations, and it is not even guaranteed that

the IBP relations capture all possible valid identities

between integrals.

One slight disadvantage must be admitted: one cannot be

absolutely certain (in the sense of a rigorous mathematical

proof) that an identity that one has obtained is correct, since

it could be that some contradiction will be encountered

after the expansion in s has been extended beyond the

particular level that one has chosen. However, rigorous

proofs aside, it seems extremely unlikely that an incorrect

identity would survive checks if the expansion in s has been
extended several levels beyond that necessary to uniquely

fix all of the unknown coefficients. Remaining doubts can

be reduced to an infinitesimal level by simply further

extending the expansion in s.
It should also be noted that the expansion need not be in

small s; for example, one could instead expand in some or

all of the squared masses treated as small. One could also

use a large s expansion to solve for the polynomial

coefficients, or even combine constraints on the polynomial

coefficients obtained from different expansions. The small

s expansion was chosen here because of the convenient

availability [43] of arbitrary derivatives of vacuum (no

external momenta) master integrals through three-loop

order. A somewhat similar proposal, based on a still

different type of expansion, may be found in Ref. [49],

and another approach for obtaining identities while avoid-

ing the use of huge numbers of IBP relations can be found

in Refs. [50–52].

The rest of this paper is organized as follows. In Sec. II, I

give my notations and conventions for the relevant scalar

loop integrals without numerators, which adhere to those

used in Refs. [41–44]. Sec. III gives a simple formula for

the expansion to arbitrary order in small s for a large class
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of self-energy integrals, including all of the ones discussed

in this paper, in terms of known derivatives of vacuum

master integrals. Secs. IV and V provide the identities for

the three-loop master integrals with four and five propa-

gators, respectively. Other useful approaches to calculating

three-loop vacuum and self-energy integrals are found in

Refs. [53–75]. In Sec. VI, I describe the numerical

computation of the master integrals using the differential

equations method, and give some benchmark values.

Sec. VII has some concluding remarks.

II. NOTATIONS AND CONVENTIONS

In the following, consider loop momentum integrals in

d ¼ 4 − 2ϵ Euclidean dimensions, written in terms of

Z

k

≡ 16π2μ2ϵ
Z

ddk

ð2πÞd : ð2:1Þ

The integrals appearing in this paper are shown in Figure 1.

The one-loop vacuum and self-energy master integrals are

AðxÞ ¼
Z

k

1

k2 þ x
¼ x

�

4πμ2

x

�

ϵ

Γðϵ − 1Þ; ð2:2Þ

Bðx; yÞ ¼
Z

k

1

½k2 þ x�½ðk − pÞ2 þ y� ; ð2:3Þ

and at two loops,

Iðx; y; zÞ ¼
Z

k

Z

q

1

½k2 þ x�½q2 þ y�½ðkþ qÞ2 þ z� ; ð2:4Þ

Sðx; y; zÞ ¼
Z

k

Z

q

1

½k2 þ x�½q2 þ y�½ðkþ q − pÞ2 þ z� ;

ð2:5Þ

Tðx; y; zÞ ¼
Z

k

Z

q

1

½k2 þ x�2½q2 þ y�½ðkþ q − pÞ2 þ z� :

ð2:6Þ

The three-loop vacuum and self-energy masters are

denoted by

Eðw; x; y; zÞ ¼
Z

k

Z

q

Z

r

1

½k2 þ w�½q2 þ x�½r2 þ y�½ðkþ qþ rÞ2 þ z� ; ð2:7Þ

Fðw; x; y; zÞ ¼
Z

k

Z

q

Z

r

1

½k2 þ w�2½q2 þ x�½r2 þ y�½ðkþ qþ rÞ2 þ z� ; ð2:8Þ

FIG. 1. Diagrams for vacuum and self-energy integrals appearing in this paper, as defined in Eqs. (2.2)–(2.13), following the same

conventions and notations used in Refs. [41–44]. The labels v, w, x, y, z on the internal lines denote the propagator squared masses.
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Gðv; w; x; y; zÞ ¼
Z

k

Z

q

Z

r

1

½k2 þ v�½q2 þ w�½ðkþ qÞ2 þ x�½r2 þ y�½ðkþ rÞ2 þ z� ; ð2:9Þ

I4ðw; x; y; zÞ ¼
Z

k

Z

q

Z

r

1

½k2 þ w�½q2 þ x�½r2 þ y�½ðkþ qþ r − pÞ2 þ z� ; ð2:10Þ

I5aðv; w; x; y; zÞ ¼
Z

k

Z

q

Z

r

1

½k2 þ v�½q2 þ w�½ðkþ q − pÞ2 þ x�½r2 þ y�½ðkþ r − pÞ2 þ z� ; ð2:11Þ

I5bðv; w; x; y; zÞ ¼
Z

k

Z

q

Z

r

1

½k2 þ v�½q2 þ w�½ðkþ q − pÞ2 þ x�½r2 þ y�½ðkþ rÞ2 þ z� ; ð2:12Þ

I5cðv; w; x; y; zÞ ¼
Z

k

Z

q

Z

r

1

½k2 þ v�½ðk − pÞ2 þ w�½q2 þ x�½r2 þ y�½ðkþ qþ r − pÞ2 þ z� : ð2:13Þ

Note that the external momentum invariant s is omitted

from the arguments of the self-energy integral functions.

The integral functions defined above have various sym-

metries under interchange of the squared-mass arguments,

which are obvious from the diagrams in Fig. 1, and will be

used below without commentary. The integral Eðw; x; y; zÞ
is sometimes convenient because of its symmetry proper-

ties, but it is technically not a master integral because it can

be eliminated in favor of the F integrals, through the

identity

ð3ϵ − 2ÞEðw; x; y; zÞ ¼ wFðw; x; y; zÞ þ xFðx; w; y; zÞ
þ yFðy; w; x; zÞ þ zFðz; w; x; yÞ;

ð2:14Þ

which follows from dimensional analysis.

In the following, we will use two different notations for

derivatives with respect to a squared mass x, depending on

the typographical situation. In some cases, we will write ∂x,

while in other cases we will use a prime on a squared-mass

argument of a function to denote differentiation with

respect to that argument, for example,

Tðx; y; zÞ ¼ −∂xSðx; y; zÞ ¼ −Sðx0; y; zÞ; ð2:15Þ

and

Fðw; x; y; zÞ ¼ −∂wEðw; x; y; zÞ ¼ −Eðw0; x; y; zÞ; ð2:16Þ

and for a generic function,

fðx0; y; x00Þ ¼ ∂x∂
2
zfðx; y; zÞjz¼x: ð2:17Þ

It is convenient to write expressions for physical observ-

ables in terms of renormalized master integrals, which are

obtained from the above by subtracting ultraviolet (UV)

divergences in a particular way, then taking the limit ϵ → 0,

and writing the results in terms of the scale Q defined by

Q2 ¼ 4πe−γμ2: ð2:18Þ

If the modified minimal subtraction (MS) renormalization

scheme [7,8] is used, then Q is the renormalization scale.

(This does not obligate one to use the MS scheme,

however.)

As explained in Ref. [44], the renormalized master

integrals have the key advantage that expansions of the

master integrals at a given loop order to positive powers of ϵ

are never needed, even for calculations at higher loop order.

(In fact, in practice this feature provides a very useful

consistency check on calculations.) The renormalized

ϵ-finite basis of master integrals thus constitutes an optimal

and minimal set for expressing physical results. In general,

this assumes that one has first chosen an ϵ-finite basis, in

the sense of Chetyrkin, Faisst, Sturm, and Tentyukov in

Ref. [13], who showed that it is always possible to find a

basis such that the coefficients multiplying the master

integrals in an arbitrary observable are finite as ϵ → 0.

In the present paper, since the masses are treated as

generic, this is trivial; any basis defined in terms of basic

integrals is ϵ finite (unless one introduces poles in ϵ by

hand). For special cases in which masses either vanish or

are equal to each other or are at thresholds, one should first

identify (or verify) the ϵ-finite basis using the algorithm of

Ref. [13] or by other means, then renormalize the integrals

as described below. For more details, and explicit exam-

ples at up to three-loop order, of the feature that renor-

malized ϵ-finite master integrals indeed do not require

evaluation of the components of positive powers in the

expansions in ϵ, see Refs. [33,76–84]. At least in the case

of Ref. [84], the presence of infrared divergences in ϵ in

individual diagrams does not cause problems; in the other

papers listed, infrared divergences were dealt with instead

by including infinitesimal masses, but I believe this is not

necessary.

Each renormalized integral is denoted by a nonboldfaced

letter corresponding to the boldfaced letters in the definitions
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above, and includes counterterms for each ultraviolet-

divergent subdiagram. Explicitly, one defines

AðxÞ ¼ lim
ϵ→0

½AðxÞ þ x=ϵ� ¼ x lnðx=Q2Þ − x; ð2:19Þ

Bðx; yÞ ¼ lim
ϵ→0

½Bðx; yÞ þ 1=ϵ� ð2:20Þ

at one-loop order, and

Sðx; y; zÞ ¼ lim
ϵ→0

½Sðx; y; zÞ − S1;divðx; y; zÞ − S2;divðx; y; zÞ�;

ð2:21Þ

where the one-loop and two-loop UV subdivergences are

S1;divðx; y; zÞ ¼ 1

ϵ
½AðxÞ þAðyÞ þAðzÞ�; ð2:22Þ

S2;divðx; y; zÞ ¼ 1

2ϵ2
ðxþ yþ zÞ þ 1

2ϵ
ðs=2 − x − y − zÞ:

ð2:23Þ

From this, one also has

Iðx; y; zÞ ¼ Sðx; y; zÞjs¼0; ð2:24Þ

Tðx; y; zÞ ¼ −Sðx0; y; zÞ: ð2:25Þ

For the three-loop self-energy integrals, one defines

IXðw; x; y; zÞ ¼ lim
ϵ→0

½IXðw; x; y; zÞ − I
1;div
X ðw; x; y; zÞ − I

2;div
X ðw; x; y; zÞ − I

3;div
X ðw; x; y; zÞ�; ð2:26Þ

for X ¼ 4, 5a, 5b, and 5c, where the UV subdivergences are

I
1;div
4 ðw; x; y; zÞ ¼ 1

ϵ
½AðwÞAðxÞ þAðwÞAðyÞ þAðwÞAðzÞ þAðxÞAðyÞ þAðxÞAðzÞ þAðyÞAðzÞ�; ð2:27Þ

I
2;div
4 ðw; x; y; zÞ ¼

��

1

2ϵ2
−

1

2ϵ

�

ðxþ yþ zÞ þ 1

4ϵ
ðsþ wÞ

�

AðwÞ þ ðw ↔ xÞ þ ðw ↔ yÞ þ ðw ↔ zÞ; ð2:28Þ

I
3;div
4 ðw; x; y; zÞ ¼ s2

36ϵ
þ
�

1

6ϵ2
−

1

8ϵ

�

sðwþ xþ yþ zÞ þ
�

1

6ϵ2
−

3

8ϵ

�

ðw2 þ x2 þ y2 þ z2Þ

þ
�

1

3ϵ3
−

2

3ϵ2
þ 1

3ϵ

�

ðwxþ wyþ wzþ xyþ xzþ yzÞ; ð2:29Þ

and

I
1;div
5a ðv; w; x; y; zÞ ¼ 1

ϵ
½Sðv; w; xÞ þ Sðv; y; zÞ�; ð2:30Þ

I
2;div
5a ðv; w; x; y; zÞ ¼ −

1

ϵ2
AðvÞ þ

�

1

2ϵ
−

1

2ϵ2

�

½AðwÞ þAðxÞ þAðyÞ þAðzÞ�; ð2:31Þ

I
3;div
5a ðv; w; x; y; zÞ ¼

�

−

1

6ϵ2
þ 1

12ϵ

�

sþ
�

−

1

6ϵ3
þ 1

2ϵ2
−

2

3ϵ

�

ðwþ xþ yþ zÞ þ
�

−

1

3ϵ3
þ 1

3ϵ2
þ 1

3ϵ

�

v; ð2:32Þ

and

I
1;div
5b ðv; w; x; y; zÞ ¼ 1

ϵ
½Sðv; w; xÞ þ Iðv; y; zÞ�; ð2:33Þ

I
2;div
5b ðv; w; x; y; zÞ ¼ −

1

ϵ2
AðvÞ þ

�

1

2ϵ
−

1

2ϵ2

�

½AðwÞ þAðxÞ þAðyÞ þAðzÞ�; ð2:34Þ

I
3;div
5b ðv; w; x; y; zÞ ¼

�

−

1

12ϵ2
þ 5

24ϵ

�

sþ
�

−

1

6ϵ3
þ 1

2ϵ2
−

2

3ϵ

�

ðwþ xþ yþ zÞ þ
�

−

1

3ϵ3
þ 1

3ϵ2
þ 1

3ϵ

�

v; ð2:35Þ

and
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I
1;div
5c ðv; w; x; y; zÞ ¼ 1

ϵ
Bðv; wÞ½AðxÞ þAðyÞ þAðzÞ�; ð2:36Þ

I
2;div
5c ðv;w;x;y;zÞ ¼−

1

4ϵ
AðvÞþ

�

1

2ϵ
−

1

2ϵ2

�

½AðxÞþAðyÞþAðzÞ�þ
��

1

2ϵ2
−

1

2ϵ

�

ðxþ yþ zÞþ 1

4ϵ
w

�

Bðv;wÞ; ð2:37Þ

I
3;div
5c ðv; w; x; y; zÞ ¼ −

1

12ϵ
sþ

�

−

1

6ϵ2
þ 3

8ϵ

�

ðvþ wÞ þ
�

−

1

3ϵ3
þ 2

3ϵ2
−

1

3ϵ

�

ðxþ yþ zÞ: ð2:38Þ

Also, one has

Eðw; x; y; zÞ ¼ I4ðw; x; y; zÞjs¼0; ð2:39Þ

Fðw; x; y; zÞ ¼ −I4ðw0; x; y; zÞjs¼0; ð2:40Þ

Gðv; w; x; y; zÞ ¼ I5aðv; w; x; y; zÞjs¼0 ¼ I5bðv; w; x; y; zÞjs¼0; ð2:41Þ

as in Ref. [43]. The renormalized integrals have a dependence on Q given by

Q2
∂

∂Q2
AðxÞ ¼ −x; ð2:42Þ

Q2
∂

∂Q2
Bðx; yÞ ¼ 1; ð2:43Þ

Q2
∂

∂Q2
Iðx; y; zÞ ¼ AðxÞ þ AðyÞ þ AðzÞ − x − y − z; ð2:44Þ

Q2
∂

∂Q2
Sðx; y; zÞ ¼ AðxÞ þ AðyÞ þ AðzÞ − x − y − zþ s=2; ð2:45Þ

Q2
∂

∂Q2
Tðx; y; zÞ ¼ −AðxÞ=x; ð2:46Þ

Q2
∂

∂Q2
Fðw; x; y; zÞ ¼ ½xþ yþ z − w − AðxÞ − AðyÞ − AðzÞ�AðwÞ=wþ 7w=4; ð2:47Þ

Q2
∂

∂Q2
I4ðw; x; y; zÞ ¼ 2AðwÞAðxÞ þ 2AðwÞAðyÞ þ 2AðwÞAðzÞ þ 2AðxÞAðyÞ þ 2AðxÞAðzÞ þ 2AðyÞAðzÞ

þ ðsþ w − 2x − 2y − 2zÞAðwÞ þ ðsþ x − 2w − 2y − 2zÞAðxÞ
þ ðsþ y − 2w − 2x − 2zÞAðyÞ þ ðsþ z − 2w − 2x − 2yÞAðzÞ

þ s2

6
−

3

4
sðwþ xþ yþ zÞ − 9

4
ðw2 þ x2 þ y2 þ z2Þ

þ 2ðwxþ wyþ wzþ xyþ xzþ yzÞ; ð2:48Þ

Q2
∂

∂Q2
I5aðv;w;x;y;zÞ ¼ Sðv;w;xÞþSðv;y;zÞþAðwÞþAðxÞþAðyÞþAðzÞþv− 2w− 2x− 2y− 2zþ s=4; ð2:49Þ

Q2
∂

∂Q2
I5bðv;w;x; y; zÞ ¼ Sðv;w;xÞ þ Iðv; y; zÞ þAðwÞ þAðxÞ þAðyÞ þAðzÞ þ v− 2w− 2x− 2y− 2zþ 5s=8; ð2:50Þ

Q2
∂

∂Q2
I5cðv; w; x; y; zÞ ¼ ½AðxÞ þ AðyÞ þ AðzÞ − x − y − zþ w=2�Bðv; wÞ þ AðxÞ þ AðyÞ þ AðzÞ − AðvÞ=2 − x

− y − zþ 9ðvþ wÞ=8 − s=4: ð2:51Þ
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It is crucial that only the renormalized (nonboldfaced) master integrals appear in renormalized expressions for physical

observables (for examples, see Refs. [33,76–84]), and therefore require numerical evaluation.

The results below involve polynomials that encode the threshold structure of the integrals, and which appear as

denominators in derivatives of the master integrals. They are the triangle function,

Δðx; y; zÞ ¼ ð
ffiffiffi

x
p

−

ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffi

x
p

þ ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffi

x
p

−

ffiffiffi

y
p þ ffiffiffi

z
p Þð

ffiffiffi

x
p

þ ffiffiffi

y
p þ ffiffiffi

z
p Þ ð2:52Þ

¼ x2 þ y2 þ z2 − 2xy − 2xz − 2yz; ð2:53Þ

and the corresponding kinematic threshold function with four arguments,

Ψðw; x; y; zÞ ¼ ð
ffiffiffiffi

w
p

−

ffiffiffi

x
p

−

ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffiffi

w
p

þ
ffiffiffi

x
p

−

ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffiffi

w
p

−

ffiffiffi

x
p

þ ffiffiffi

y
p

−

ffiffiffi

z
p Þ

× ð
ffiffiffiffi

w
p

þ
ffiffiffi

x
p

þ ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffiffi

w
p

−

ffiffiffi

x
p

−

ffiffiffi

y
p þ ffiffiffi

z
p Þð

ffiffiffiffi

w
p

þ
ffiffiffi

x
p

−

ffiffiffi

y
p þ ffiffiffi

z
p Þ

× ð
ffiffiffiffi

w
p

−

ffiffiffi

x
p

þ ffiffiffi

y
p þ ffiffiffi

z
p Þð

ffiffiffiffi

w
p

þ
ffiffiffi

x
p

þ ffiffiffi

y
p þ ffiffiffi

z
p Þ ð2:54Þ

¼ w4 þ x4 þ y4 þ z4 − 4ðw3xþ w3yþ w3zþ wx3 þ wy3 þ wz3 þ x3y

þ x3zþ xy3 þ xz3 þ y3zþ yz3Þ þ 4ðw2xyþ w2xzþ w2yzþ wx2y

þ wx2zþ wxy2 þ wxz2 þ wy2zþ wyz2 þ x2yzþ xy2zþ xyz2Þ
þ 6ðw2x2 þ w2y2 þ x2y2 þ w2z2 þ x2z2 þ y2z2Þ − 40wxyz; ð2:55Þ

and the threshold function with five arguments:

Ωðs; w; x; y; zÞ ¼ ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

−

ffiffiffi

x
p

−

ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

−

ffiffiffi

x
p

−

ffiffiffi

y
p

−

ffiffiffi

z
p Þ

× ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

þ
ffiffiffi

x
p

−

ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

þ
ffiffiffi

x
p

−

ffiffiffi

y
p

−

ffiffiffi

z
p Þ

× ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

−

ffiffiffi

x
p

þ ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

−

ffiffiffi

x
p

þ ffiffiffi

y
p

−

ffiffiffi

z
p Þ

× ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

þ
ffiffiffi

x
p

þ ffiffiffi

y
p

−

ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

þ
ffiffiffi

x
p

þ ffiffiffi

y
p

−

ffiffiffi

z
p Þ

× ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

−

ffiffiffi

x
p

−

ffiffiffi

y
p þ ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

−

ffiffiffi

x
p

−

ffiffiffi

y
p þ ffiffiffi

z
p Þ

× ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

þ
ffiffiffi

x
p

−

ffiffiffi

y
p þ ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

þ
ffiffiffi

x
p

−

ffiffiffi

y
p þ ffiffiffi

z
p Þ

× ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

−

ffiffiffi

x
p

þ ffiffiffi

y
p þ ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

−

ffiffiffi

x
p

þ ffiffiffi

y
p þ ffiffiffi

z
p Þ

× ð
ffiffiffi

s
p

−

ffiffiffiffi

w
p

þ
ffiffiffi

x
p

þ ffiffiffi

y
p þ ffiffiffi

z
p Þð

ffiffiffi

s
p

þ
ffiffiffiffi

w
p

þ
ffiffiffi

x
p

þ ffiffiffi

y
p þ ffiffiffi

z
p Þ: ð2:56Þ

Despite the appearances of square roots, this expands to a

homogeneous polynomial of degree 8 in s, w, x, y, z, with
495 terms.

The numerators of expressions for derivatives of the

master integrals contain many other complicated polyno-

mials. The explicit form of these results is relegated to

ancillary electronic files, suitable for use with computers.

The derivatives of the one-loop master integrals with

respect to squared-mass arguments are well-known:

Aðx0Þ ¼ ð1 − ϵÞAðxÞ=x; ð2:57Þ

Bðx0; yÞ ¼ ½ð1 − 2ϵÞðx − y − sÞBðx; yÞ
þ ð1 − ϵÞðxþ y − sÞAðxÞ=x
þ 2ðϵ − 1ÞAðyÞ�=Δðs; x; yÞ: ð2:58Þ

For convenience, these and the more complicated

known results for Iðx0; y; zÞ, Sðx0; y; zÞ, Tðx0; y; zÞ,
Tðx; y0; zÞ, Fðw0; x; y; zÞ, Fðw; x0; y; zÞ, Gðv0; w; x; y; zÞ,
and Gðv; w0; x; y; zÞ are provided in the ancillary file

“derivativesbold,” in computer-readable form [85]. Also

given in that file are the derivatives with respect to s of

Bðx; yÞ, Sðx; y; zÞ, Tðx; y; zÞ. All of the corresponding

results for derivatives of the renormalized integrals AðxÞ,
Bðx; yÞ, Iðx; y; zÞ, Sðx; y; zÞ, Tðx; y; zÞ, Fðw; x; y; zÞ, and
Gðv; w; x; y; zÞ with respect to the squared masses, s, and

Q2 are collected in the ancillary file “derivatives” [85].

In the following, master integrals are simply chosen as

the ones that have unit numerators and the fewest possible

number of propagators, with one exception in Sec. IV. That

exception is made in order to eliminate an avoidable

pseudothreshold denominator factor in the differential

equations. Other than that single exception, in the cases
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encountered in this paper, there are no arbitrary choices to

be made, because of the generic masses.

III. EXPANSIONS IN SMALL EXTERNAL

MOMENTUM INVARIANT

Consider the class of self-energy integrals in which at

least one of the propagators connects the two vertices where

the external legs are attached, as shown in Fig. 2. Let

the momentum and squared mass of this propagator be kμ

and x respectively, and the external momentum is pμ with

invariant s ¼ −p2. The integral in question is denoted

fðs; x;…Þ, with the dependence on the other internal

squared masses indicated by the ellipses. The purpose of

this section is to derive a simple formula for the small-s
expansion of fðs; x;…Þ, in terms of vacuum integrals,

specifically the derivatives of fð0; x;…Þ with respect to x,
which are known for general masses up to three-loop

order [43].

To begin, let the other internal propagator momenta

meeting at one of the external vertices be called q
μ
j , with

j ¼ 1;…; m. Then the integral can be expressed as

fðs; x;…Þ ¼
Z

ddθ

ð2πÞd
Z

ddk e
iθ·ðp−k−

P

j
qjÞ G

1

k2 þ x
;

ð3:1Þ

where G denotes the rest of the integral, and contains other

propagators and momentum integrations, including inte-

grations over the q
μ
j , and can even have numerator factors,

but has no direct dependence on pμ or kμ. This allows us
to write

∂

∂pμ

∂

∂pμ
fðs; x;…Þ ¼

Z

ddθ

ð2πÞd
Z

ddk e
iθ·ðp−k−

P

j
qjÞ

× G
∂

∂kμ

∂

∂kμ
1

k2 þ x
; ð3:2Þ

which in turn can be expressed in terms of derivatives with

respect to x. Doing this n times gives

�

∂

∂pμ

∂

∂pμ

�

n

fðs; x;…Þ

¼
�

−4x
∂
2

∂x2
þ 2ðd − 4Þ ∂

∂x

�

n

fðs; x;…Þ: ð3:3Þ

Now, using the identity

�

∂

∂pμ

∂

∂pμ

�

n

ðp2Þn ¼ dðdþ 2Þ…ðdþ 2n − 2Þ2nn!; ð3:4Þ

which can be verified by induction, I obtain a simple power

series in s ¼ −p2,

fðs; x;…Þ ¼
X

∞

n¼0

snanD
n
xfð0; x;…Þ; ð3:5Þ

where I have defined a differential operator,

Dx ¼ x
∂
2

∂x2
þ ϵ

∂

∂x
; ð3:6Þ

and the coefficients appearing in the expansion are

an ¼
1

n!

Γð2 − ϵÞ
Γðnþ 2 − ϵÞ : ð3:7Þ

Because derivatives of vacuum integrals fð0; x;…Þ with

respect to squared-mass arguments are relatively easy to

find (see Ref. [43] for the general case through three-loop

order), Eqs. (3.5)–(3.7) allow a fast and straightforward

evaluation of the small-s expansion of all self-energy

integrals of this class. This is the key result used to obtain

the identities below.

In some cases, more than one of the internal masses can

play the role of x in the preceding discussion. Suppose that

x and y are squared masses appearing in distinct single

propagators that both directly connect the two external

vertices. Then, because it does not matter whether one uses

Dx or Dy in the expansion, one obtains the simple but

nontrivial identity

Dxfðs; x; y;…Þ ¼ Dyfðs; x; y;…Þ: ð3:8Þ

For example, at one-loop order, one finds that the self-

energy master integral obeys

DxBðx; yÞ ¼ DyBðx; yÞ; ð3:9Þ

which can be checked using Eqs. (2.57) and (2.58).

Similarly, for the two-loop sunset integral,

FIG. 2. Diagram for a loop integral fðs; x;…Þ with the property
that the vertices where the two external legs are attached share an

internal propagator with squared mass x and momentum kμ. The

external momentum invariant is s ¼ −p2. The small s expansion
for integrals of this type is given by Eqs. (3.5)–(3.7), in terms of

derivatives with respect to x of the corresponding vacuum

integral fð0; x;…Þ.
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DxSðx; y; zÞ ¼ DySðx; y; zÞ ¼ DzSðx; y; zÞ: ð3:10Þ

This identity was noted in Eq. (3.7) of Ref. [41], where it

was expressed in terms of the renormalized version

Sðx; y; zÞ. Until now, the author had been somewhat

perplexed by the existence of this identity, since it is not

immediately obvious from the definition of the sunset

integral or its symmetries.

Similarly, for the three-loop self-energy integrals con-

sidered in this paper, the above argument informs us that

DwI4ðw; x; y; zÞ ¼ DxI4ðw; x; y; zÞ
¼ DyI4ðw; x; y; zÞ ¼ DzI4ðw; x; y; zÞ;

ð3:11Þ

and

DwI5bðv; w; x; y; zÞ ¼ DxI5bðv; w; x; y; zÞ; ð3:12Þ

identities whose existence would otherwise be mysterious,

at least to this author.

IV. THREE-LOOP FOUR-PROPAGATOR

SELF-ENERGY INTEGRALS

A. Inference of four-propagator self-energy

integral identities from small s expansions

Consider the integral I4ðw; x; y; zÞ. The expansion of this
function to arbitrary order in s can be obtained from

Eq. (3.5) using Eðw; x; y; zÞ in the role of fð0; x;…Þ.
The derivatives with respect to x are obtained using first

Eq. (2.16) above, and then iteratively using the results

for the derivatives of Fðx; w; y; zÞ given originally in the

ancillary file “derivatives.txt” included with Ref. [43], and

also provided in the ancillary file “derivativesbold” of the

present paper [85]. Computing D
n
xEðw; x; y; zÞ in this way,

I obtained the expansion to order s24 of I4ðw; x; y; zÞ. This
was then used to obtain the expansions for its first, second,

and third derivatives with respect to the squared masses w,
x, y, z. Then, plugging these into trial identities of the

form of Eq. (1.3), the polynomials giving valid identities

between these integrals were solved for and checked, by

considering for each power of s the coefficients of each of

the eight linearly independent vacuum master integrals

Fðw; x; y; zÞ, Fðx; w; y; zÞ, Fðy; w; x; zÞ, Fðz; w; x; yÞ,
AðwÞAðxÞAðyÞ, AðwÞAðxÞAðzÞ, AðwÞAðyÞAðzÞ, and

AðxÞAðyÞAðzÞ, and demanding that they vanish.

The simplest such nontrivial result involves the integral

defined as follows:

J4ðw; x; y; zÞ ¼ DwI4ðw; x; y; zÞ: ð4:1Þ

I find that this obeys

ðs − w − x − y − zÞJ4ðw; x; y; zÞ
¼ fð3 − 4ϵÞð2 − 3ϵÞ þ ð6ϵ − 4Þ½w∂w þ x∂x þ y∂y þ z∂z�
þ 2½wx∂w∂x þ wy∂w∂y þ wz∂w∂z þ xy∂x∂y

þ xz∂x∂z þ yz∂y∂z�gI4ðw; x; y; zÞ: ð4:2Þ

This identity has the very special feature that only the

polynomial multiplying J4ðw; x; y; zÞ involves s at all, and
it is linear in s. The fact that J4ðw; x; y; zÞ is invariant under
interchange of any of its arguments w, x, y, z is not manifest

from its definition in Eq. (4.1), but is clear from Eq. (4.2), in

agreement with the argument leading to Eq. (3.11).

Equation (4.2) allows us to eliminate one of the integrals

involved in it from the list of candidate master integrals.

It is convenient to keep J4ðw; x; y; zÞ as a master integral,

and eliminate I4ðw; x; y; zÞ instead, because this prevents

the appearance of factors of s − w − x − y − z in denom-

inators of expressions for derivatives of the master inte-

grals. (This choice is made mainly for the sake of

keeping the expressions as simple as possible. It also

makes the numerical evaluation more efficient for s equal

to, or very close to, wþ xþ yþ z, but this is not crucial to
get the numerical evaluation to work, as will be discussed

further in Sec. VI.) Also, the integrals I4ðw00; x; y; zÞ,
I4ðx00; w; y; zÞ, I4ðy00; w; x; zÞ, and I4ðz00; w; x; yÞ are all

easily eliminated, because they can be written in terms of

I4ðw0; x; y; zÞ, I4ðx0; w; y; zÞ, I4ðy0; w; x; zÞ, I4ðz0; w; x; yÞ,
and J4ðw; x; y; zÞ, using Eqs. (3.11) and (4.1). I thus find

that a good set of four-propagator master integrals for

generic w, x, y, z can be chosen to be

J4ðw; x; y; zÞ; I4ðw0; x; y; zÞ; I4ðx0; w; y; zÞ;
I4ðy0; w; x; zÞ; I4ðz0; w; x; yÞ;
I4ðw0; x0; y; zÞ; I4ðw0; y0; x; zÞ; I4ðw0; z0; x; yÞ;
I4ðx0; y0; w; zÞ; I4ðx0; z0; w; yÞ; I4ðy0; z0; w; xÞ;

ð4:3Þ

and the descendants of these integrals are obtained by

removing one propagator:

AðwÞAðxÞAðyÞ; AðwÞAðxÞAðzÞ;
AðwÞAðyÞAðzÞ; AðxÞAðyÞAðzÞ: ð4:4Þ

The derivatives of the master integrals in Eq. (4.3) with

respect to the squared-mass arguments can now be obtained

using the same strategy for constructing and verifying

identities, as outlined in the Introduction. In the following,

Ω ≡ Ωðs; w; x; y; zÞ. I find that
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ΩJ4ðw0; x; y; zÞ ¼ ð1 − 2ϵÞP7J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞP7I4ðw0; x; y; zÞ
þ ð1 − 2ϵÞð2 − 3ϵÞ½P6xI4ðx0; w; y; zÞ þ fx ↔ yg þ fx ↔ zg�
þ ð1 − 2ϵÞ½P7xI4ðw0; x0; y; zÞ þ fx ↔ yg þ fx ↔ zg�
þ ð1 − 2ϵÞ½P6xyI4ðx0; y0; w; zÞ þ fx ↔ zg þ fy ↔ zg�
þ ð1 − ϵÞ3½P6AðxÞAðyÞ þ fx ↔ zg þ fy ↔ zg�AðwÞ=w
þ ð1 − ϵÞ3P5AðxÞAðyÞAðzÞ; ð4:5Þ

where each instance of Pn indicates schematically the presence of a homogeneous polynomial in w, x, y, z, and s, of degree
n in the latter. Each such appearance of Pn, even within the same equation, stands for a different such polynomial, with the

actual results found in the ancillary files. (In most cases, n is also the squared-mass dimension of Pn, but in a few cases the

coefficient of sn is linear in the internal squared masses v; w; x;…, so that the squared-mass dimension of Pn is nþ 1.) Note

that the dependences on ϵ have been factored out explicitly. Similarly, I find the following schematic forms:

ΩI4ðw0; x0; y0; zÞ ¼ ð1 − 2ϵÞP6J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞP5zI4ðz0; w; x; yÞ
þ ð1 − 2ϵÞð2 − 3ϵÞ½P6I4ðw0; x; y; zÞ þ fw ↔ xg þ fw ↔ yg�
þ ð1 − 2ϵÞ½P7I4ðw0; x0; y; zÞ þ fw ↔ yg þ fx ↔ yg�
þ ð1 − 2ϵÞ½P6zI4ðw0; z0; x; yÞ þ fw ↔ xg þ fw ↔ yg�
þ ð1 − ϵÞ3½P6AðwÞAðxÞ=wxþ fw ↔ yg þ fx ↔ yg�AðzÞ
þ ð1 − ϵÞ3P7AðwÞAðxÞAðyÞ=wxy; ð4:6Þ

ΩwI4ðw00; x0; y; zÞ ¼ ð1 − 2ϵÞP7J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞP6wI4ðw0; x; y; zÞ
þ ð1 − 2ϵÞð2 − 3ϵÞP7I4ðx0; w; y; zÞ
þ ð1 − 2ϵÞð2 − 3ϵÞ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg�
þ ½ð1 − 2ϵÞP7w − ϵΩ�I4ðw0; x0; y; zÞ þ ð1 − 2ϵÞP6yzI4ðy0; z0; w; xÞ
þ ð1 − 2ϵÞ½P6wyI4ðw0; y0; x; zÞ þ fy ↔ zg�
þ ð1 − 2ϵÞ½P7yI4ðx0; y0; w; zÞ þ fy ↔ zg�
þ ð1 − ϵÞ3½P6AðyÞ þ fy ↔ zg�AðwÞAðxÞ=x
þ ð1 − ϵÞ3P5AðwÞAðyÞAðzÞ þ ð1 − ϵÞ3P6AðxÞAðyÞAðzÞ=x: ð4:7Þ

The full explicit forms for Eqs. (4.5)–(4.7) are given in the

ancillary file “derivativesbold” [85]. These equations,

applied recursively, enable one to find all higher derivatives

with respect to the squared masses of the master integrals

listed in Eq. (4.3).

The derivatives of the master integrals with respect to s
can also be obtained from the preceding, by making use of

the dimensional analysis constraint

s
∂

∂s
þ w

∂

∂w
þ x

∂

∂x
þ y

∂

∂y
þ z

∂

∂z
− np ¼ 0; ð4:8Þ

where np is the squared-mass dimension of the integral

being acted on, excluding the μ dependence. (For example,

np ¼ 2–3ϵ for I4, and np ¼ 1–3ϵ for J4.) The results are of

the forms

s
∂

∂s
I4ðw0; x; y; zÞ ¼ ð1 − 2ϵÞI4ðw0; x; y; zÞ − J4ðw; x; y; zÞ

− xI4ðw0; x0; y; zÞ − yI4ðw0; y0; x; zÞ
− zI4ðw0; z0; x; yÞ; ð4:9Þ

and

STEPHEN P. MARTIN PHYS. REV. D 107, 053005 (2023)

053005-10



Ωs
∂

∂s
I4ðw0; x0; y; zÞ ¼ ð1 − 2ϵÞP6sJ4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞ½P7I4ðw0; x; y; zÞ þ fw ↔ xg�

þ ð1 − 2ϵÞð2 − 3ϵÞ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg� þ ½ð1 − 2ϵÞP6 − ϵΩ�I4ðw0; x0; y; zÞ
þ ð1 − 2ϵÞP6yzI4ðy0; z0; w; xÞ þ ð1 − 2ϵÞð½P7yI4ðw0; y0; x; zÞ þ fw ↔ xg� þ fy ↔ zgÞ
þ ð1 − ϵÞ3½P7AðyÞ þ fy ↔ zg�AðwÞAðxÞ=wxþ ð1 − ϵÞ3½P6AðwÞ=wþ fw ↔ xg�AðyÞAðzÞ;

ð4:10Þ

and

Ωs
∂

∂s
J4ðw; x; y; zÞ ¼ ½ð1 − 3ϵÞΩþ ð1 − 2ϵÞP7�J4ðw; x; y; zÞ þ ð1 − 2ϵÞð2 − 3ϵÞ½P7wI4ðw0; x; y; zÞ þ fw ↔ xg

þ fw ↔ yg þ fw ↔ zg� þ ð1 − 2ϵÞ½P7wxI4ðw0; x0; y; zÞ þ ð5 permutationsÞ�
þ ð1 − ϵÞ3½P6AðwÞAðxÞAðyÞ þ fw ↔ zg þ fx ↔ zg þ fy ↔ zg�: ð4:11Þ

Again, the full explicit formulas are given in the ancillary file “derivativesbold” [85].

For practical applications and numerical evaluation, it is appropriate to express results in terms of the renormalized

(nonboldfaced) integrals

J4ðw; x; y; zÞ; I4ðw0; x; y; zÞ; I4ðx0; w; y; zÞ; I4ðy0; w; x; zÞ; I4ðz0; w; x; yÞ;
I4ðw0; x0; y; zÞ; I4ðw0; y0; x; zÞ; I4ðw0; z0; x; yÞ;
I4ðx0; y0; w; zÞ; I4ðx0; z0; w; yÞ; I4ðy0; z0; w; xÞ; ð4:12Þ

defined by (2.26)–(2.29) along with the one-loop integrals AðwÞ, AðxÞ, AðyÞ, and AðzÞ defined by Eq. (2.19). Here the

counterparts of Eqs. (4.1) and (4.2) are the definition

J4ðw; x; y; zÞ ¼ wI4ðw00; x; y; zÞ þ AðwÞ=4 − 13w=12 ð4:13Þ

and the identity

ðs − w − x − y − zÞJ4ðw; x; y; zÞ ¼ f6 − 4½w∂w þ x∂x þ y∂y þ z∂z� þ 2½wx∂w∂x þ wy∂w∂y þ wz∂w∂z þ xy∂x∂y

þ xz∂x∂z þ yz∂y∂z�gI4ðw; x; y; zÞ − AðwÞAðxÞ − AðwÞAðyÞ − AðwÞAðzÞ − AðxÞAðyÞ
− AðxÞAðzÞ − AðyÞAðzÞ þ ð2xþ 2yþ 2z − 3w=4 − 5s=4ÞAðwÞ þ ð2wþ 2yþ 2z

− 3x=4 − 5s=4ÞAðxÞ þ ð2wþ 2xþ 2z − 3y=4 − 5s=4ÞAðyÞ
þ ð2wþ 2xþ 2y − 3z=4 − 5s=4ÞAðzÞ þ ½−25s2 þ 102sðwþ xþ yþ zÞ
þ 195ðw2 þ x2 þ y2 þ z2Þ − 216ðwxþ wyþ wzþ xyþ xzþ yzÞ�=72; ð4:14Þ

which shows that I4ðw; x; y; zÞ can be eliminated in favor of J4ðw; x; y; zÞ, thus avoiding the appearance of s − w − x −
y − z in denominators, and also shows the nontrivial property that J4ðw; x; y; zÞ is invariant under interchange of any two of
w, x, y, z.
It then follows from the results above that the squared-mass derivatives of the renormalized master integrals are

schematically of the forms

ΩJ4ðw0; x; y; zÞ ¼ P7J4ðw; x; y; zÞ þ P7I4ðw0; x; y; zÞ þ ½P6xI4ðx0; w; y; zÞ þ fx ↔ yg þ fx ↔ zg�
þ ½P7xI4ðw0; x0; y; zÞ þ fx ↔ yg þ fx ↔ zg� þ ½P6xyI4ðx0; y0; w; zÞ þ fx ↔ zg þ fy ↔ zg�
þ ½P6AðxÞAðyÞ þ fx ↔ zg þ fy ↔ zg�AðwÞ=wþ P5AðxÞAðyÞAðzÞ
þ ½P7AðxÞ þ fx ↔ yg þ fx ↔ zg�AðwÞ=wþ ½P6AðxÞAðyÞ þ fx ↔ zg þ fy ↔ zg�
þ P8AðwÞ=wþ ½P7AðxÞ þ fx ↔ zg þ fy ↔ zg� þ P8; ð4:15Þ
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ΩI4ðw0; x0; y0; zÞ ¼ P6J4ðw; x; y; zÞ þ P5zI4ðz0; w; x; yÞ þ ½P6I4ðw0; x; y; zÞ þ fw ↔ xg þ fw ↔ yg�
þ ½P7I4ðw0; x0; y; zÞ þ fw ↔ yg þ fx ↔ yg� þ ½P6zI4ðw0; z0; x; yÞ þ fw ↔ xg þ fw ↔ yg�
þ ½P6AðwÞAðxÞ=wxþ fw ↔ yg þ fx ↔ yg�AðzÞ þ P7AðwÞAðxÞAðyÞ=wxy
þ ½P7AðwÞAðxÞ=wxþ fw ↔ yg þ fx ↔ yg� þ ½P6AðwÞ=wþ fw ↔ xg þ fw ↔ yg�AðzÞ
þ ½P7AðwÞ=wþ fw ↔ xg þ fw ↔ yg� þ P6AðzÞ þ P7; ð4:16Þ

ΩwI4ðw00; x0; y; zÞ ¼ P7J4ðw; x; y; zÞ þ P6wI4ðw0; x; y; zÞ þ P7I4ðx0; w; y; zÞ
þ ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg� þ P7wI4ðw0; x0; y; zÞ
þ P6yzI4ðy0; z0; w; xÞ þ ½P6wyI4ðw0; y0; x; zÞ þ ðy ↔ zÞ�
þ ½P7yI4ðx0; y0; w; zÞ þ ðy ↔ zÞ� þ ½P6AðyÞ þ fy ↔ zg�AðwÞAðxÞ=x
þ P5AðwÞAðyÞAðzÞ þ P6AðxÞAðyÞAðzÞ=xþ P7AðwÞAðxÞ=x
þ ½P6AðyÞ þ fy ↔ zg�AðwÞ þ ½P7AðyÞ þ fy ↔ zg�AðxÞ=x
þ P6AðyÞAðzÞ þ P7AðwÞ þ P8AðxÞ=xþ ½P7AðyÞ þ fy ↔ zg� þ P8; ð4:17Þ

while the derivatives with respect to s are

s
∂

∂s
I4ðw0; x; y; zÞ ¼ I4ðw0; x; y; zÞ − J4ðw; x; y; zÞ − xI4ðw0; x0; y; zÞ − yI4ðw0; y0; x; zÞ

− zI4ðw0; z0; x; yÞ −
�

AðxÞ þ AðyÞ þ AðzÞ þ xþ yþ z −
3w

4
−

s

2

�

AðwÞ=wþ 2w

3
−

s

8
; ð4:18Þ

Ωs
∂

∂s
J4ðw; x; y; zÞ ¼ P8J4ðw; x; y; zÞ þ ½P7wI4ðw0; x; y; zÞ þ fw ↔ xg þ fw ↔ yg þ fw ↔ zg�

þ ½P7wxI4ðw0; x0; y; zÞ þ ð5 permutationsÞ�
þ ½P6AðwÞAðxÞAðyÞ þ fw ↔ zg þ fx ↔ zg þ fy ↔ zg�
þ ½P7AðwÞAðxÞ þ ð5 permutationsÞ�
þ ½P8AðwÞ þ fw ↔ xg þ fw ↔ yg þ fw ↔ zg� þ P9; ð4:19Þ

Ωs
∂

∂s
I4ðw0; x0; y; zÞ ¼ P6sJ4ðw; x; y; zÞ þ ½P7I4ðw0; x; y; zÞ þ fw ↔ xg�

þ ½P6yI4ðy0; w; x; zÞ þ fy ↔ zg� þ P7I4ðw0; x0; y; zÞ þ P6yzI4ðy0; z0; w; xÞ
þ ð½P7yI4ðw0; y0; x; zÞ þ fw ↔ xg� þ fy ↔ zgÞ
þ ½P7AðyÞ þ fy ↔ zg�AðwÞAðxÞ=wx
þ ½P6AðwÞ=wþ fw ↔ xg�AðyÞAðzÞ þ P8AðwÞAðxÞ=wx
þ ð½P6AðwÞAðyÞ=wþ fw ↔ xg� þ fy ↔ zgÞ þ P5AðyÞAðzÞ
þ ½P8AðwÞ=wþ fw ↔ xg� þ ½P7AðyÞ þ fy ↔ zg� þ P8: ð4:20Þ

The full explicit expressions for Eqs. (4.15)–(4.20) are

given in the ancillary file “derivatives” [85]. Note that, as

promised in Ref. [44], contributions of positive powers of ϵ

in the expansions of AðxÞ, etc., do not appear. A further

consistency check is provided by comparing the special

case w ¼ x ¼ y ¼ z to the results obtained in Ref. [44].

Obtaining the numerical results for the renormalized

master integrals is now straightforward, using exactly

the same method used for two-loop self-energy integrals

in Ref. [42]. The coupled first-order differential equa-

tions (4.18)–(4.20) can be solved numerically, by applying

a Runge-Kutta or similar method to integrate with respect

to s in the upper half complex plane, starting from s ¼ 0

using the boundary conditions

J4ðw; x; y; zÞjs¼0 ¼ −wFðw0; x; y; zÞ þ AðwÞ=4 − 13w=12;

ð4:21Þ
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I4ðw0; x; y; zÞjs¼0 ¼ −Fðw; x; y; zÞ; ð4:22Þ

I4ðw0; x0; y; zÞjs¼0 ¼ −Fðw; x0; y; zÞ; ð4:23Þ

and obvious permutations thereof. The numerical values of

the right sides of these boundary conditions can be

evaluated using the results for the derivatives of F in the

ancillary file “derivatives” and the 3VIL code [43]. For

reasons of numerical stability, it is often better to start at a

value slightly displaced from s ¼ 0, which can be done

using the series expansions implied by Eq. (3.5).

B. Alternative method: Expansions in one large mass

As noted near the end of the Introduction, the method of

inferring identities using the polynomial form of coefficients

resulting from IBP relations, without actually using the IBP

procedure, can instead be carried out using other expansions

(rather than small s). In this subsection I will briefly remark

on a method that allows one to discover the identities for the

Bðx; yÞ system at the one-loop, two-loop Sðx; y; zÞ and

Tðx; y; zÞ system, and the three-loop four-propagator case,

yielding the same results as in the previous subsection.

The idea is to choose one of the squared masses z on a

propagator connecting both external vertices as large, and

to expand simultaneously in s and all other squared masses.

The tools necessary to find expansions of this type for all

N-loop integrals with N þ 1 propagators were worked out

in Ref. [54]. Applying the methods of that reference, one

finds the completely analytic expansions valid when z is

large compared with s, w, x, y:

AðzÞ ¼ z

�

4πμ2

z

�

ϵ

Γðϵ − 1Þ ð4:24Þ

Bðy; zÞ ¼
�

4πμ2

z

�

ϵ

Γðϵ − 1ÞΓð2 − ϵÞ
X

∞

n¼0

X

∞

k¼0

ðnþ kÞ!
n!k!Γðnþ 2 − ϵÞ

�

s

z

�

n
�

y

z

�

k
��

y

z

�

1−ϵ Γðnþ kþ 2 − ϵÞ
Γðkþ 2 − ϵÞ −

Γðnþ kþ ϵÞ
Γðkþ ϵÞ

�

ð4:25Þ

Sðx; y; zÞ ¼ z

�

4πμ2

z

�

2ϵ

½Γðϵ − 1ÞΓð2 − ϵÞ�2
X

∞

n¼0

X

∞

k¼0

X

∞

j¼0

ðs=zÞnðx=zÞkðy=zÞj
n!k!j!Γðnþ 2 − ϵÞ

�

Γðjþ kþ nþ ϵÞΓðjþ kþ n − 1þ 2ϵÞ
Γðkþ ϵÞΓðjþ ϵÞ

−

�

y

z

�

1−ϵ Γðjþ kþ nþ 1ÞΓðjþ kþ nþ ϵÞ
Γðkþ ϵÞΓðjþ 2 − ϵÞ −

�

x

z

�

1−ϵ Γðjþ kþ nþ 1ÞΓðjþ kþ nþ ϵÞ
Γðkþ 2 − ϵÞΓðjþ ϵÞ

�

þ
�

x

z

�

1−ϵ
�

y

z

�

1−ϵ Γðjþ kþ nþ 1ÞΓðjþ kþ nþ 2 − ϵÞ
Γðkþ 2 − ϵÞΓðjþ 2 − ϵÞ

�

ð4:26Þ

I4ðw; x; y; zÞ ¼ −z2
�

4πμ2

z

�

3ϵ

½Γðϵ − 1ÞΓð2 − ϵÞ�3
X

∞

n¼0

X

∞

k¼0

X

∞

j¼0

X

∞

l¼0

ðs=zÞnðw=zÞkðx=zÞjðy=zÞl
n!k!j!l!Γðnþ 2 − ϵÞ

×

�

Γðjþ kþ lþ n − 2þ 3ϵÞΓðjþ kþ lþ n − 1þ 2ϵÞ
Γðkþ ϵÞΓðjþ ϵÞΓðlþ ϵÞ

−

�

y

z

�

1−ϵ Γðjþ kþ lþ n − 1þ 2ϵÞΓðjþ kþ lþ nþ ϵÞ
Γðkþ ϵÞΓðjþ ϵÞΓðlþ 2 − ϵÞ

−

�

x

z

�

1−ϵ Γðjþ kþ lþ n − 1þ 2ϵÞΓðjþ kþ lþ nþ ϵÞ
Γðkþ ϵÞΓðjþ 2 − ϵÞΓðlþ ϵÞ

−

�

w

z

�

1−ϵ Γðjþ kþ lþ n − 1þ 2ϵÞΓðjþ kþ lþ nþ ϵÞ
Γðkþ 2 − ϵÞΓðjþ ϵÞΓðlþ ϵÞ

þ
�

y

z

�

1−ϵ
�

x

z

�

1−ϵ Γðjþ kþ lþ nþ ϵÞΓðjþ kþ lþ nþ 1Þ
Γðkþ ϵÞΓðjþ 2 − ϵÞΓðlþ 2 − ϵÞ

þ
�

y

z

�

1−ϵ
�

w

z

�

1−ϵ Γðjþ kþ lþ nþ ϵÞΓðjþ kþ lþ nþ 1Þ
Γðkþ 2 − ϵÞΓðjþ ϵÞΓðlþ 2 − ϵÞ

þ
�

x

z

�

1−ϵ
�

w

z

�

1−ϵ Γðjþ kþ lþ nþ ϵÞΓðjþ kþ lþ nþ 1Þ
Γðkþ 2 − ϵÞΓðjþ 2 − ϵÞΓðlþ ϵÞ

−

�

y

z

�

1−ϵ
�

x

z

�

1−ϵ
�

w

z

�

1−ϵ Γðjþ kþ lþ nþ 1ÞΓðjþ kþ lþ nþ 2 − ϵÞ
Γðkþ 2 − ϵÞΓðjþ 2 − ϵÞΓðlþ 2 − ϵÞ

�

: ð4:27Þ
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For the three-loop four-propagator case, arbitrary deriva-

tives of I4ðw; x; y; zÞ are immediately obtained from

Eq. (4.27). Then, consider a trial identity of the form of

Eq. (1.3), with polynomials Ck that are linear combinations

of spswpwxpxypyzpz , subject to the constraints that ps, pw,

px, py, and pz are all non-negative integers, with

ps þ pw þ px þ py þ pz ¼ nk. One can now consider in

turn each coefficient of a fixed power of s, w, x, y in the

identity, and require it to vanish, solving for one of the

polynomial coefficients each time. Note that the power of s
in the identity is always a non-negative integer, while each

of the powers ofw, x, y can be either an integer or an integer
minus ϵ, giving eight linearly independent constraints for

each set of integer powers of s, w, x, y. By using Eq. (4.27)
truncated at large n, k, l, j, I have used this method to check

the three-loop I4 topology identities claimed in the pre-

vious subsection. The same method applied to Eqs. (4.25)

and (4.26) can be used to check the previously known

identities for the one-loop and two-loop topologies.

I emphasize again that the validity of the identities

obtained by this method does not rely on the convergence

of the expansions for physically relevant values of s and the
squared masses. Once an identity has been put into

polynomial coefficient form by multiplying by common

denominators, one can even set z ¼ 0 with impunity,

despite the fact that the expansion used to obtain it relied

on the large z limit (in this subsection) or the small s limit

(in the previous subsection).

V. THREE-LOOP FIVE-PROPAGATOR

SELF-ENERGY INTEGRALS

A. Topology I5a

Consider the self-energy integrals given by the topology

I5a shown in Figure 1. The small-s expansion of the

integral I5aðv; w; x; y; zÞ can in principle be obtained to

arbitrary order using Eqs. (3.5)–(3.7), with v playing the

role of x, andGðv; w; x; y; zÞ playing the role of fð0; v;…Þ.
This can then be used to obtain the small-s expansions of

the derivatives of I5aðv; w; x; y; zÞ with respect to its

squared masses, in terms of the 17 linearly independent

master vacuum integrals

Gðv; w; x; y; zÞ; Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
AðwÞIðv; y; zÞ; AðxÞIðv; y; zÞ; AðyÞIðv; w; xÞ; AðzÞIðv; w; xÞ;
AðvÞAðwÞAðyÞ; AðvÞAðwÞAðzÞ; AðvÞAðxÞAðyÞ; AðvÞAðxÞAðzÞ;
AðwÞAðxÞAðyÞ; AðwÞAðxÞAðzÞ; AðwÞAðyÞAðzÞ; AðxÞAðyÞAðzÞ: ð5:1Þ

The results below were found and checked by doing the expansion to order s20, using different rational numerical values of

v, w, x, y, z repeatedly in order to keep the sizes of the expressions small, until no further information could be obtained.

Then, using the method for discovering identities discussed in the Introduction, I checked that the five-propagator master

integrals for this topology are

I5aðv; w; x; y; zÞ; I5aðv0; w; x; y; zÞ; I5aðv; w0; x; y; zÞ;
I5aðv; x0; w; y; zÞ; I5aðv; y0; z; w; xÞ; I5aðv; z0; y; w; xÞ; ð5:2Þ

and their descendants obtained by removing one of the propagators,

Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
AðyÞSðv; w; xÞ; AðyÞTðv; w; xÞ; AðyÞTðw; v; xÞ; AðyÞTðx; v; wÞ;
AðzÞSðv; w; xÞ; AðzÞTðv; w; xÞ; AðzÞTðw; v; xÞ; AðzÞTðx; v; wÞ;
AðwÞSðv; y; zÞ; AðwÞTðv; y; zÞ; AðwÞTðy; v; zÞ; AðwÞTðz; v; yÞ;
AðxÞSðv; y; zÞ; AðxÞTðv; y; zÞ; AðxÞTðy; v; zÞ; AðxÞTðz; v; yÞ; ð5:3Þ

and further vacuum integral descendants AðvÞAðwÞAðyÞ,
etc., obtained by removing another propagator. The deriv-

atives of the master integrals in Eq. (5.3) were all

previously known, and are given for completeness in the

ancillary file “derivativesbold ” [85].

I then used the same method described in the

Introduction to obtain the identities for the derivatives of

the master integrals in Eq. (5.2) as linear combinations of

the integrals in Eqs. (5.2) and (5.3). The results for

I5aðv00; w; x; y; zÞ; I5aðv0; w0; x; y; zÞ; ð5:4Þ
I5aðv;w00;x;y;zÞ; I5aðv;w0;x0;y;zÞ; I5aðv;w0;x;y0;zÞ;

ð5:5Þ
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and permutations dictated by symmetries, have the pro-

perty that the coefficients are rational functions of v, w,
x, y, z, s, and ϵ, with denominators involving Ψðs; v; w; xÞ,

Ψðs; v; y; zÞ, and s − v, but no other polynomials in s. The
derivatives of the master integrals with respect to s are then
obtained using dimensional analysis:

s
∂

∂s
I5aðv; w; x; y; zÞ ¼ ð1 − 3ϵÞI5aðv; w; x; y; zÞ − vI5aðv0; w; x; y; zÞ − wI5aðv; w0; x; y; zÞ

− xI5aðv; x0; w; y; zÞ − yI5aðv; y0; z; w; xÞ − zI5aðv; z0; y; w; xÞ ð5:6Þ

s
∂

∂s
I5aðv0; w; x; y; zÞ ¼ −3ϵI5aðv0; w; x; y; zÞ − vI5aðv00; w; x; y; zÞ − wI5aðv0; w0; x; y; zÞ

− xI5aðv0; x0; w; y; zÞ − yI5aðv0; y0; z; w; xÞ − zI5aðv0; z0; y; w; xÞ ð5:7Þ

s
∂

∂s
I5aðv; w0; x; y; zÞ ¼ −3ϵI5aðv; w0; x; y; zÞ − vI5aðv0; w0; x; y; zÞ − wI5aðv; w00; x; y; zÞ

− xI5aðv; w0; x0; y; zÞ − yI5aðv; w0; x; y0; zÞ − zI5aðv; w0; x; z0; yÞ: ð5:8Þ

The results for Eqs. (5.4)–(5.8) are given explicitly in terms of the master integrals in the ancillary file

“derivativesbold” [85].

From the above results, it is straightforward to obtain the corresponding nontrivial derivatives of the renormalized master

integrals:

I5aðv00; w; x; y; zÞ; I5aðv0; w0; x; y; zÞ; ð5:9Þ

I5aðv; w00; x; y; zÞ; I5aðv; w0; x0; y; zÞ; I5aðv; w0; x; y0; zÞ; ð5:10Þ

s
∂

∂s
I5aðv; w; x; y; zÞ; s

∂

∂s
I5aðv0; w; x; y; zÞ; s

∂

∂s
I5aðv; w0; x; y; zÞ; ð5:11Þ

Q2
∂

∂Q2
I5aðv; w; x; y; zÞ; Q2

∂

∂Q2
I5aðv0; w; x; y; zÞ; Q2

∂

∂Q2
I5aðv; w0; x; y; zÞ: ð5:12Þ

They are given in the ancillary file “derivatives” [85].

The numerical evaluation of the renormalized master integrals

I5aðv; w; x; y; zÞ; I5aðv0; w; x; y; zÞ; I5aðv; w0; x; y; zÞ;
I5aðv; x0; w; y; zÞ; I5aðv; y0; z; w; xÞ; I5aðv; z0; y; w; xÞ;
Sðv; w; xÞ; Tðv; w; xÞ; Tðw; v; xÞ; Tðx; v; wÞ;
Sðv; y; zÞ; Tðv; y; zÞ; Tðy; v; zÞ; Tðz; v; yÞ; ð5:13Þ

can now be accomplished by solving the coupled first-order

differential equations in s. The numerical solution by

Runge-Kutta or a similar method starts from the boundary

conditions at s ¼ 0 (or small s) in terms of the renormalized

versions of the vacuum integrals in Eq. (5.1), which can be

obtained from the results for the derivatives of I, F, and G
in the ancillary file “derivatives,” and then using the

code 3VIL.

Besides the polynomials in s, the denominators of the

expressions for I5aðv; w00; x; y; zÞ and I5aðv; w0; x0; y; zÞ
contain factors of w − x andΨðw; x; y; zÞ, which can vanish
when w ¼ x and when y ¼ z. The expression for

I5aðv; w0; x; y0; zÞ also has a factor of Ψðw; x; y; zÞ. The

same holds for the derivatives of the corresponding

renormalized master integrals in Eq. (5.10). In the special

cases w ¼ x and y ¼ z, the identities can be obtained by

taking the corresponding limits. More importantly from a

practical point of view, it should be noted that the s
derivatives of the master integrals in Eq. (5.11) are

completely free of denominators that vanish when w ¼ x
and/or y ¼ z, so that there is no obstacle to evaluating the

master integrals numerically even in those special cases. In

particular, I have checked that in the special case of

v ¼ w ¼ x ¼ y ¼ z, all of the results described above

agree with those found (using the traditional IBP method)

in Ref. [44].
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B. Topology I5b

Next, consider the self-energy integrals given by the

topology I5b shown in Figure 1. The small-s expansion of

the integral I5bðv; w; x; y; zÞ can in principle be obtained to
arbitrary order using Eqs. (3.5)–(3.7), with fð0; x;…Þ ¼
Gðv; w; x; y; zÞ. This can then be used to obtain the small-s
expansions of arbitrary derivatives of I5bðv; w; x; y; zÞ with

respect to its squared-mass arguments, in terms of the

same 17 linearly independent master vacuum integrals that

appeared in Eq. (5.1). In practice, I found the results below

using expansions to order s20, repeatedly choosing different
rational values for v, w, x, y, z to keep the expressions

tractable, until no further information could be obtained.

Doing so, I checked that the master integrals are

I5bðv; w; x; y; zÞ; I5bðv0; w; x; y; zÞ; I5bðv; w0; x; y; zÞ; I5bðv; x0; w; y; zÞ; ð5:14Þ

along with their descendants obtained by removing one propagator, including the master integrals associated with the

subsidiary topology I4ðw; x; y; zÞ found in Eq. (4.3), as well as

AðyÞSðv; w; xÞ; AðyÞTðv; w; xÞ; AðyÞTðw; v; xÞ; AðyÞTðx; w; vÞ;
AðzÞSðv; w; xÞ; AðzÞTðv; w; xÞ; AðzÞTðw; v; xÞ; AðzÞTðx; w; vÞ;
AðwÞIðv; y; zÞ; AðxÞIðv; y; zÞ; ð5:15Þ

and further vacuum integral descendants AðvÞAðwÞAðyÞ, etc., obtained by removing another propagator.

I then used the method described in the Introduction to obtain the identities yielding the derivatives of the master integrals

in Eq. (5.14):

I5bðv; w; x; y0; zÞ; I5bðv00; w; x; y; zÞ; I5bðv0; w0; x; y; zÞ;
I5bðv; w0; x0; y; zÞ; I5bðv; w00; x; y; zÞ; ð5:16Þ

and others related to them by symmetries, as linear combinations of the master integrals. The first of these identities is

particularly simple, as there are only a few terms, and all of the polynomials are actually independent of s:

Δðv; y; zÞI5bðv; w; x; y0; zÞ ¼ ð1 − 2ϵÞðy − v − zÞI5bðv; w; x; y; zÞ þ ðv − y − zÞI4ðy0; w; x; zÞ
þ 2zI4ðz0; w; x; yÞ þ ð1 − ϵÞSðv; w; xÞ½ðyþ z − vÞAðyÞ=y − 2AðzÞ�: ð5:17Þ

From the results for Eq. (5.16), all higher derivatives [such as I5bðv000; w; x; y; zÞ and Iðv0; w; x; y0; zÞ] can be obtained by

iteration, and the identity given above as Eq. (3.12) can be verified. Furthermore, the derivatives with respect to s are

obtained using

s
∂

∂s
I5bðv; w; x; y; zÞ ¼ ð1 − 3ϵÞI5bðv; w; x; y; zÞ − vI5bðv0; w; x; y; zÞ − wI5bðv; w0; x; y; zÞ

− xI5bðv; x0; w; y; zÞ − yI5bðv; w; x; y0; zÞ − zI5bðv; w; x; z0; yÞ; ð5:18Þ

s
∂

∂s
I5bðv0; w; x; y; zÞ ¼ −3ϵI5bðv0; w; x; y; zÞ − vI5bðv00; w; x; y; zÞ − wI5bðv0; w0; x; y; zÞ

− xI5bðv0; x0; w; y; zÞ − yI5bðv0; w; x; y0; zÞ − zI5bðv0; w; x; z0; yÞ; ð5:19Þ

s
∂

∂s
I5bðv; w0; x; y; zÞ ¼ −3ϵI5bðv; w0; x; y; zÞ − vI5bðv0; w0; x; y; zÞ − wI5bðv; w00; x; y; zÞ

− xI5bðv; w0; x0; y; zÞ − yI5bðv; w0; x; y0; zÞ − zI5bðv; w0; x; z0; yÞ: ð5:20Þ

The explicit results for Eqs. (5.16)–(5.20) are given in the ancillary file “derivativesbold” [85]. Each of these results is a

linear combination of the master integrals in Eqs. (5.14)–(5.15), with coefficients that are rational functions of s, v, w, x, y,
z, and ϵ, with denominator polynomials Ψðs; w; x; vÞ and Δðv; y; zÞ.
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For the renormalized master integrals, the above results can be used to obtain the nontrivial derivatives

I5bðv; w; x; y0; zÞ; I5bðv00; w; x; y; zÞ; I5bðv0; w0; x; y; zÞ;
I5bðv; w0; x0; y; zÞ; I5bðv; w00; x; y; zÞ; ð5:21Þ

s
∂

∂s
I5bðv; w; x; y; zÞ; s

∂

∂s
I5bðv0; w; x; y; zÞ; s

∂

∂s
I5bðv; w0; x; y; zÞ; ð5:22Þ

Q2
∂

∂Q2
I5bðv; w; x; y; zÞ; Q2

∂

∂Q2
I5bðv0; w; x; y; zÞ; Q2

∂

∂Q2
I5bðv; w0; x; y; zÞ; ð5:23Þ

and others related by symmetries. They are given explicitly in

the ancillary file “derivatives” [85]. I checked that in the special

case v ¼ w ¼ x ¼ y ¼ z, all of the results described above

agree with those found using the traditional IBP method in

Ref. [44]. The first-order coupled linear differential equa-

tions (5.22), together with the ones listed in Eq. (4.12) and the

ones for Sðv; w; xÞ, Tðv; w; xÞ, Tðw; v; xÞ, Tðx; w; vÞ, all
listed in the same ancillary file “derivatives,” can be numeri-

cally solved simultaneously using Runge-Kutta, as discussed

above.

C. Topology I5c

Finally, consider the self-energy integrals given by the

topology I5c depicted in Figure 1. The small-s expansion of

the integral I5cðv; w; x; y; zÞ can in principle be obtained to

arbitrary order using Eqs. (3.5)–(3.7), with v playing the

role of x, and

fð0; v;…Þ ¼ Eðv; x; y; zÞ −Eðw; x; y; zÞ
w − v

: ð5:24Þ

This can then be used to obtain the small-s expansions of

derivatives of I5cðv; w; x; y; zÞ with respect to its squared-

mass arguments, in terms of the 15 linearly independent

master vacuum integrals

Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
Fðv; x; y; zÞ; Fðx; v; y; zÞ; Fðy; v; x; zÞ; Fðz; v; x; yÞ;
AðwÞAðxÞAðyÞ; AðwÞAðxÞAðzÞ; AðwÞAðyÞAðzÞ; AðxÞAðyÞAðzÞ;
AðvÞAðxÞAðyÞ; AðvÞAðxÞAðzÞ; AðvÞAðyÞAðzÞ: ð5:25Þ

In practice, I obtained the results below using expansions to order s20, repeatedly choosing different rational values for v, w,
x, y, z until no further information could be obtained.

Doing so, I found that the master integrals for this topology are

I5cðv; w; x; y; zÞ; I5cðv; w; x0; y; zÞ; I5cðv; w; y0; x; zÞ; I5cðv; w; z0; x; yÞ; ð5:26Þ

together with the ones for I4ðv; x; y; zÞ, obtained from Sec. IVAwith w → v, and the other master integrals for descendants

obtained by removing one of the propagators in other ways:

Fðw; x; y; zÞ; Fðx; w; y; zÞ; Fðy; w; x; zÞ; Fðz; w; x; yÞ;
AðxÞAðyÞBðv; wÞ; AðxÞAðzÞBðv; wÞ; AðyÞAðzÞBðv; wÞ: ð5:27Þ

Then, I used the method outlined in the Introduction to obtain expressions for the derivatives of the master integrals,

I5cðv0; w; x; y; zÞ; I5cðv; w0; x; y; zÞ; I5cðv; w; x00; y; zÞ; I5cðv; w; x0; y0; zÞ; ð5:28Þ

as linear combinations of the master integrals. The first two can be written in a remarkably compact form, in terms of

Δðs; v; wÞ (denoted as Δ in the remainder of this subsection):
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ΔI5cðv0; w; x; y; zÞ ¼ ð1 − 2ϵÞðv − w − sÞI5cðv; w; x; y; zÞ þ ðw − 3v − sÞI4ðv0; x; y; zÞ
− 2xI4ðx0; v; y; zÞ − 2yI4ðy0; v; x; zÞ − 2zI4ðz0; v; x; yÞ
þ 2ð3 − 4ϵÞI4ðv; x; y; zÞ þ 2ðϵ − 1ÞEðw; x; y; zÞ; ð5:29Þ

ΔwI5cðv; w0; x; y; zÞ ¼ ð1 − 2ϵÞðs2 − 2sv − 3swþ v2 − 3vwþ 2w2ÞI5cðv; w; x; y; zÞ
− Δ½xI5cðv; w; x0; y; zÞ þ yI5cðv; w; y0; x; zÞ þ zI5cðv; w; z0; x; yÞ�
þ ð3 − 4ϵÞðs − v − wÞI4ðv; x; y; zÞ þ 2ðv − sÞvI4ðv0; x; y; zÞ
þ ðvþ w − sÞ½xI4ðx0; v; y; zÞ þ yI4ðy0; v; x; zÞ þ zI4ðz0; v; x; yÞ
þ ð1 − ϵÞEðw; x; y; zÞ�: ð5:30Þ

Here I have used Eqs. (2.14) and (4.2) to make the formulas even more compact. For the remaining two quantities in

Eq. (5.28), the coefficients of the master integrals are somewhat more complicated but do not depend on s at all, and have

denominator polynomials Ψðw; x; y; zÞ. The results for derivatives indicated in Eq. (5.28) are provided in the ancillary file

“derivativesbold” [85].

The results for the derivatives of the master integrals with respect to s follow from dimensional analysis, and are simple

enough that they can be written on a few lines:

Δs
∂

∂s
I5cðv; w; x; y; zÞ ¼ fð1 − 2ϵÞ½sðvþ wÞ − ðv − wÞ2� − ϵΔgI5cðv; w; x; y; zÞ

þ ð3sþ v − wÞvI4ðv0; x; y; zÞ þ ðsþ v − wÞ½ð4ϵ − 3ÞI4ðv; x; y; zÞ
þ xI4ðx0; v; y; zÞ þ yI4ðy0; v; x; zÞ þ zI4ðz0; v; x; yÞ þ ð1 − ϵÞEðw; x; y; zÞ�; ð5:31Þ

Δs
∂

∂s
I5cðv; w; x0; y; zÞ ¼ fð1 − 2ϵÞ½sðvþ wÞ − ðv − wÞ2� − ϵΔgI5cðv; w; x0; y; zÞ

þ ð3sþ v − wÞvI4ðv0; x0; y; zÞ þ ðsþ v − wÞ½ð3ϵ − 2ÞI4ðx0; v; y; zÞ
þ zI4ðx0; z0; v; yÞ þ yI4ðx0; y0; v; zÞ þ J4ðv; x; y; zÞ þ ðϵ − 1ÞFðx; w; y; zÞ�; ð5:32Þ

and the obvious permutations obtained from the latter equation with x ↔ y or x ↔ z. For convenience, these are also

included in the ancillary file “derivativesbold” in computer readable form, but written directly in terms of the master

integrals rather than Eðw; x; y; zÞ and I4ðv; x; y; zÞ.
The corresponding results for the renormalized master integrals,

I5cðv0; w; x; y; zÞ; I5cðv; w0; x; y; zÞ; I5cðv; w; x00; y; zÞ; I5cðv; w; x0; y0; zÞ;

s
∂

∂s
I5cðv; w; x; y; zÞ; s

∂

∂s
I5cðv; w; x0; y; zÞ;

Q2
∂

∂Q2
I5cðv; w; x; y; zÞ; Q2

∂

∂Q2
I5cðv; w; x0; y; zÞ; ð5:33Þ

and others related to them by symmetries are given in the ancillary file “derivatives” [85]. In particular, the derivatives of the

master integrals with respect to s are simple enough to present explicitly here:

Δs
∂

∂s
I5cðv; w; x; y; zÞ ¼ ½sðvþ wÞ − ðv − wÞ2�I5cðv; w; x; y; zÞ þ ð3sþ v − wÞvI4ðv0; x; y; zÞ

þ ðsþ v − wÞ½−3I4ðv; x; y; zÞ þ xI4ðx0; v; y; zÞ þ yI4ðy0; v; x; zÞ þ zI4ðz0; v; x; yÞ þ Eðw; x; y; zÞ
þ AðvÞAðxÞ þ AðvÞAðyÞ þ AðvÞAðzÞ þ AðxÞAðyÞ þ AðxÞAðzÞ þ AðyÞAðzÞ
þ ð−x − y − zþ v=2þ s=2ÞAðvÞ þ ð−v − y − zþ x=2þ s=4ÞAðxÞ
þ ð−v − x − zþ y=2þ s=4ÞAðyÞ þ ð−v − x − yþ z=2þ s=4ÞAðzÞ
þ vxþ vyþ vzþ xyþ xzþ yz − 9ðv2 þ x2 þ y2 þ z2Þ=8
− sð½23vþ 7w�=24þ ½xþ yþ z�=6Þ þ 7s2=36�; ð5:34Þ
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Δs
∂

∂s
I5cðv; w; x0; y; zÞ ¼ ½sðvþ wÞ − ðv − wÞ2�I5cðv; w; x0; y; zÞ

þ ð3sþ v − wÞvI4ðv0; x0; y; zÞ þ ðsþ v − wÞ½−2I4ðx0; v; y; zÞ
þ zI4ðx0; z0; v; yÞ þ yI4ðx0; y0; v; zÞ þ J4ðv; x; y; zÞ − Fðx; w; y; zÞ
þ ½AðvÞ þ AðyÞ þ AðzÞ − v − y − zþ 3x=4þ s=4�AðxÞ=x − 2x=3þ s=12�: ð5:35Þ

Note that these differential equations are free of denom-

inator factors that could vanish identically when w ¼ x and
y ¼ z. These results, together with the derivatives of

Bðv; wÞ and the master integrals for the four-propagator

topology with arguments v, x, y, z, as worked out in

section IVA, can be used for numerical evaluation of the

master integrals, as discussed above. I have again checked

that in the special case v ¼ w ¼ x ¼ y ¼ z, all of the

results described above agree with those found using the

traditional IBP method in Ref. [44].

VI. NUMERICAL EVALUATION

As already mentioned above, one of the main reasons for

obtaining the identities above is to enable the numerical

computation of the master integrals. In general, one starts

with the master integrals at (or near) s ¼ 0, using the values

of vacuum integrals obtained by using, for example, the

code 3VIL [43]. Then, the coupled first-order differential

equations for master integrals IjðsÞ are of the form

d

ds
Ij ¼

X

k

cjkðsÞIk; ð6:1Þ

which can be solved by Runge-Kutta or similar methods.

The explicit forms of the differential equations are given

in the ancillary file “derivatives” [85]. In order to get

the branch cuts correct, a rectangular contour is chosen in

the upper-half complex s plane to avoid threshold and

pseudo-threshold singularities, as shown in Figure 3, as

first suggested in Ref. [38–40]. The height of the contour is

arbitrary, and can be varied as a check on the numerical

accuracy and stability. Because of the possibility that there

may be a threshold or pseudothreshold singularity at or near

the desired final value of s, one should choose a Runge-

Kutta algorithm that does not use calculation of the Runge-

Kutta coefficients exactly at the final endpoint; a specific

example of such an algorithm was provided in Ref. [42],

but there are many other such algorithms. To speed up the

computation for a Runge-Kutta program with adaptive

step size, and increase the accuracy for a fixed working

precision, it is preferable to choose master integrals in such

a way as to avoid singularities in the differential equations,

to the extent possible. (We did this for the case of the

topology I4ðw; x; y; zÞ, by avoiding the basis where a

denominator s − w − x − y − z would have appeared.)

However, with arbitrary precision arithmetic and adaptive

step-size control algorithms, any desired accuracy can in

principle be obtained even if there are singular points on the

real-s line, at the cost of some computation time.

For the initial condition at s ¼ 0, the necessary boundary

values for the master integrals treated in this paper are as

follows:

Bðv; wÞjs¼0 ¼ ½AðvÞ − AðwÞ�=ðw − vÞ; ð6:2Þ

Sðx; y; zÞjs¼0 ¼ Iðx; y; zÞ; ð6:3Þ

Tðx; y; zÞjs¼0 ¼ −Iðx0; y; zÞ; ð6:4Þ

I4ðw; x; y; zÞjs¼0 ¼ Eðw; x; y; zÞ; ð6:5Þ

I4ðw0; x; y; zÞjs¼0 ¼ −Fðw; x; y; zÞ; ð6:6Þ

I4ðw0; x0; y; zÞjs¼0 ¼ −Fðw; x0; y; zÞ; ð6:7Þ

J4ðw; x; y; zÞjs¼0 ¼ −wFðw0; x; y; zÞ þ AðwÞ=4 − 13w=12;

ð6:8Þ

I5aðv; w; x; y; zÞjs¼0 ¼ Gðv; w; x; y; zÞ; ð6:9Þ

I5aðv0; w; x; y; zÞjs¼0 ¼ Gðv0; w; x; y; zÞ; ð6:10Þ

I5aðv; w0; x; y; zÞjs¼0 ¼ Gðv; w0; x; y; zÞ; ð6:11Þ

I5bðv; w; x; y; zÞjs¼0 ¼ Gðv; w; x; y; zÞ; ð6:12Þ

FIG. 3. Contour for evaluation of self-energy master integrals

by using their coupled first-order differential equations in the

external momentum invariant s. The initial boundary conditions

are set at (or near) s ¼ 0 in terms of vacuum integrals as in

Eqs. (6.2)–(6.16), and then evolved by Runge-Kutta or similar

methods along the path in the upper-half complex s plane, thus

avoiding threshold and pseudothreshold singularities indicated as

dots on the real-s axis.
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I5bðv0; w; x; y; zÞjs¼0 ¼ Gðv0; w; x; y; zÞ; ð6:13Þ

I5bðv; w0; x; y; zÞjs¼0 ¼ Gðv; w0; x; y; zÞ; ð6:14Þ

I5cðv;w;x;y;zÞjs¼0 ¼ ½Eðv;x;y;zÞ−Eðw;x;y;zÞ�=ðw−vÞ;
ð6:15Þ

I5cðv;w;x0; y; zÞjs¼0 ¼ ½Fðx;w;y; zÞ−Fðx;v;y;zÞ�=ðw−vÞ:
ð6:16Þ

The derivatives of the vacuum master integral on the right-

hand sides of these equations can be obtained in terms of

the vacuum master integrals, using the results presented in

the same notation in the ancillary file “derivatives.txt” of

Ref. [43]. For v ¼ w, Eqs. (6.2), (6.15), and (6.16) have

singular denominators, but the limits are smooth:

Bðw;wÞjs¼0 ¼ −1 − AðwÞ=w; ð6:17Þ

I5cðw;w; x; y; zÞjs¼0 ¼ Fðw; x; y; zÞ; ð6:18Þ

I5cðw;w; x0; y; zÞjs¼0 ¼ Fðw; x0; y; zÞ: ð6:19Þ

The nongeneric case of masses x, x, y, y for the four-

propagator vacuum integrals requires some care, as it

corresponds to the somewhat less trivial combined limit

w → x and z → y, for which I now present the results

necessary for their evaluation. First, one has the identity

Fðy; y; x; xÞ þ Fðx; x; y; yÞ ¼ ½AðxÞ þ AðyÞ − 2ðxþ yÞ�AðxÞAðyÞ=xyþ AðxÞ2=xþ AðyÞ2=y
þ ½2y=x − 15=4�AðxÞ þ ½2x=y − 15=4�AðyÞ þ 14ðxþ yÞ=3: ð6:20Þ

Then one has the derivative formulas

4xFðx0; x; y; yÞ ¼ −Gð0; x; x; y; yÞ þ xþ y

x − y
Fðx; x; y; yÞ þ 2

xðy − xÞAðxÞ
2AðyÞ þ 1

xy
AðxÞAðyÞ2 þ 2

x
AðxÞ2

þ x − 3y

yðx − yÞAðyÞ
2 þ 2ðxþ yÞ

xðx − yÞ AðxÞAðyÞ þ
3x2 þ 3xy − 8y2

4xðx − yÞ AðxÞ þ 4y

x − y
AðyÞ þ 17x2 þ xyþ 10y2

3ðy − xÞ ;

ð6:21Þ

4xFðx; x0; y; yÞ ¼ Gð0; x; x; y; yÞ þ 3x − y

x − y
Fðx; x; y; yÞ þ 2

xðy − xÞAðxÞ
2AðyÞ − 1

xy
AðxÞAðyÞ2 þ 2

x
AðxÞ2

þ xþ y

yðy − xÞAðyÞ
2 þ 2ð3x − yÞ

xðx − yÞ AðxÞAðyÞ þ 3x2 þ 7xy − 8y2

4xðy − xÞ AðxÞ þ 4y

x − y
AðyÞ þ 4x2 þ 10xyþ 14y2

3ðy − xÞ ;

ð6:22Þ

ðx − yÞFðx; y0; x; yÞ ¼ −Fðx; x; y; yÞ=2þ AðxÞ2AðyÞ=2xyþ AðyÞ2=2y − AðxÞAðyÞ=x
þ ðy=x − 7=8ÞAðxÞ − AðyÞ þ 4x=3þ y: ð6:23Þ

The integrals Fðx; x; y; yÞ and Gð0; x; x; y; yÞ appearing in Eqs. (6.20)–(6.23) are given in terms of polylogarithms in

Ref. [43], and so can be very quickly evaluated to arbitrary accuracy. The further limit y → x is also smooth:

Fðx; x; x; xÞ ¼ AðxÞ3=x2 − AðxÞ2=x − 7AðxÞ=4þ 14x=3; ð6:24Þ

Fðx0; x; x; xÞ ¼ 2AðxÞ2=x2 − 15AðxÞ=4xþ 35=12 − 7ζ3; ð6:25Þ

Fðx; x0; x; xÞ ¼ AðxÞ3=3x3 þ 7ζ3=3: ð6:26Þ

In general, for faster performance, one can also use initial

boundary conditions at a small nonzero value of s, obtained

by deriving the power series solution to the differential

equation in s using the results above for the s0 terms. (Here

it is important that the initial value of s is not above, or

close to, the lowest threshold of the integral. In particular, it

is assumed that s ¼ 0 is not a threshold; otherwise terms

involving lnð−sÞ would be necessary in the expansion.)
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FIG. 4. Sample results, as a function of
ffiffiffi

s
p

, for renormalized master integrals I4ð30; 50; 7; 9Þ, I5að1; 70; 9; 3; 5Þ, I5bð1; 30; 5; 7; 9Þ, and
I5cð3; 1; 50; 7; 9Þ. The left panels show the real parts, and the right panels show the imaginary parts. For the real part, the solid line is the

full result, while the short-dashed and long-dashed lines are the expansions in small s at order s1 and s2, respectively.
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For the master integrals studied in this paper, I have used

the out-of-the-box differential equation solver NDSolve in

Mathematica as a proof of principle for the numerical

evaluation. (The same method was used for the three-

loop vacuum integrals that were used as the boundary

conditions.) This is not particulary fast, but allows for

arbitrary numerical precision by a suitable choice of the

WorkingPrecision parameter. A few minutes’ total comput-

ing time is needed with a single 4.2 GHz processor to

obtain 24 digits of precision for all of the five-propagator

0 20 40 60 80 100 120 140

s
1/2

  (GeV)

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

I 4
(Z

, 
H

, 
T

, 
T

) 
  

  
  

  
 

0 20 40 60 80 100 120 140

s
1/2

  (GeV)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

I 4
(Z

, 
H

, 
T

, 
T

) 
  

  
  

  
 

0 20 40 60 80 100 120 140

s
1/2

  (GeV)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

I 4
(H

, 
Z

, 
T

, 
T

) 
  

  
  

  
 

0 20 40 60 80 100 120 140

s
1/2

  (GeV)

1.14

1.15

1.16

1.17

1.18
I 5

a
(T

, 
H

, 
T

, 
Z

, 
T

) 
  

  
  

  
 

(T
, 

T
, 

Z
, 

H
, 

T
) 

 

0 20 40 60 80 100 120 140

s
1/2

  (GeV)

-14.0

-13.9

-13.8

-13.7

I 5
b
(T

, 
Z

, 
T

, 
H

, 
T

) 
  

  
  

  
 

0 20 40 60 80 100 120 140

s
1/2

  (GeV)

1.2

1.3

1.4

1.5

1.6

1.7

I 5
c

FIG. 5. Results for renormalized master integrals I4ðZ;H; T; TÞ, I4ðZ0; H; T; TÞ, I4ðZ;H0; T; TÞ, I5aðT;H0; T; Z; TÞ,
I5bðT; Z; T;H; TÞ, and I5cðT; T; Z;H; TÞ, normalized in units of T ¼ ð173 GeVÞ2, as a function of

ffiffiffi

s
p

, for H ¼ ð125 GeVÞ2 and

Z ¼ ð91 GeVÞ2. The solid line is the full result, while the dashed lines are the expansions in small s at order s1.
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topologies at a fixed s, with somewhat longer times needed

when s is at (or very close to) a threshold, and shorter

times needed when s is smaller. Note that the differential

equations method computes simultaneously all of the

relevant master integrals for a given topology and its sub-

topologies. A much more efficient and optimized dedi-

cated code is certainly possible, and may appear after the

corresponding results for six-, seven-, and eight-propagator

master integrals become available.

As a first example, consider the master integrals for the

topologies I4ð3; 5; 7; 9Þ, I5að1; 3; 5; 7; 9Þ, I5bð1; 3; 5; 7; 9Þ,
and I5cð3; 1; 5; 7; 9Þ. There is a four-particle threshold

at
ffiffiffi

s
p ¼

ffiffiffi

3
p

þ
ffiffiffi

5
p

þ
ffiffiffi

7
p

þ 3 ≈ 9.614 for I4ð3; 5; 7; 9Þ,
I5bð1; 3; 5; 7; 9Þ, I5cð3; 1; 5; 7; 9Þ and their derivatives; a

3-particle threshold at
ffiffiffi

s
p ¼ 1þ

ffiffiffi

3
p

þ
ffiffiffi

5
p

≈ 4.968 for

I5að1; 7; 9; 3; 5Þ, I5bð1; 3; 5; 7; 9Þ, and their derivatives;

another three-particle threshold
ffiffiffi

s
p ¼ 4þ

ffiffiffi

7
p

≈ 6.646

for I5að1; 3; 5; 7; 9Þ and its derivatives; and a two-particle

threshold
ffiffiffi

s
p ¼ 1þ

ffiffiffi

3
p

≈ 2.732 (with cuspy behavior) for

I5cð3; 1; 5; 7; 9Þ and its derivatives. The results for four

sample dimensionless master integrals are shown as a

function of
ffiffiffi

s
p

in Fig. 4, with real parts shown in the left

panels and imaginary parts shown in the right panels.

The imaginary parts turn on for
ffiffiffi

s
p

larger than the lowest

threshold in each case.

As another benchmark example, relevant for the Standard

Model, I consider the integrals obtained from the topologies

I4ðZ;H; T; TÞ, I5aðT;H; T; Z; TÞ, I5bðT; Z; T;H; TÞ, and
I5cðT; T; Z;H; TÞ, which arise in the three-loop self-energies
and pole masses of the Higgs and Z bosons. For simplicity,

I take squared mass arguments

T ¼ Q ¼ ð173 GeVÞ2; ð6:27Þ

H ¼ ð125 GeVÞ2; ð6:28Þ

TABLE I. Benchmark values for the renormalized master integrals following from the topologies I4ðZ;H; T; TÞ
and I5aðT; Z; T;H; TÞ and I5bðT; Z; T;H; TÞ and I5cðT; T; Z;H; TÞ, for T ¼ Q ¼ ð173 GeVÞ2, H ¼ ð125 GeVÞ2,
and Z ¼ ð91 GeVÞ2. The results are given to 16 digits of relative accuracy, and in units such that the top-quark mass

is unity, so that T ¼ 1 and 1 GeV ¼ 1=173. This is equivalent to multiplying each integral by the appropriate power

of T to make it dimensionless.

Integral s ¼ Z s ¼ H

BðT; TÞ 0.04744351586953098 0.09192546525780287

SðZ; T; TÞ −4.703771341470273 −4.760582805362995

TðT; Z; TÞ 0.08378683288496525 0.1364935723146822

TðZ; T; TÞ −1.0837868328849654 −1.0059164828526561

SðH; T; TÞ −4.459767166902337 −4.533014718203875

TðT;H; TÞ −0.1972725394703064 −0.14936776548906433

TðH; T; TÞ −0.9092134235860295 −0.8506322345109357

J4ðZ;H; T; TÞ −3.7648277272371593 −3.861531900214871

I4ðZ;H; T; TÞ 4.671030470289084 4.340032890945725

I4ðT 0; Z; H; TÞ −1.5389591085746437 −1.4394297253491581

I4ðZ0; H; T; TÞ 0.31126684040808783 0.6287408011731227

I4ðH0; Z; T; TÞ −0.3439228747220906 −0.1270716818364309

I4ðZ0; T 0; H; TÞ −2.392283625188141 −2.2572720592690305

I4ðT 0; T 0; Z;HÞ 0.5816634714095499 0.6783516671195731

I4ðH0; T 0; Z; TÞ −1.110806285033397 −0.995579455324551

I4ðZ0; H0; T; TÞ −5.479015505305125 −5.317553339995855

I5aðT; Z; T;H; TÞ −13.622488723207809 −13.488450608458654

I5aðT 0; Z; T;H; TÞ −2.0416981691719878 −1.9715402873940417

I5aðT; T 0; Z;H; TÞ 2.5994642205657446 2.603265962001946

I5aðT; Z0; T;H; TÞ 1.9742385083634955 1.9789726508216219

I5aðT; T 0; H; Z; TÞ 1.7041404263890743 1.7007051476320272

I5aðT;H0; T; Z; TÞ 1.1558139055810304 1.151248509704206

I5bðT; Z; T;H; TÞ −13.86191527817819 −13.939919181091156

I5bðT 0; Z; T;H; TÞ −2.096130262915311 −2.0730906512207676

I5bðT; T 0; Z;H; TÞ 2.622312357453426 2.6470911925905387

I5bðT; Z0; T;H; TÞ 2.002565676860892 2.033414650054237

I5cðT; T; Z;H; TÞ 1.5021951295702383 1.354662946221542

I5cðT; T; Z0; H; TÞ 2.59121942635416 2.634353749579119

I5cðT; T; T 0; Z; HÞ −0.4805187352659836 −0.4883968583818474

I5cðT; T;H0; Z; TÞ 1.2635192651839127 1.2843120129525298
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Z ¼ ð91 GeVÞ2; ð6:29Þ

and present results using units in which the top-quarkmass is

1, so that T ¼ 1, and 1 GeV ¼ 1=173. (This is equivalent to
multiplying each integral by the appropriate integer power of

T to make it dimensionless.) The results for some selected

integrals are shown in Figure 5 for
ffiffiffi

s
p

up to 140 GeV. For

comparison, the results of the expansions around s ¼ 0 up to

linear order in s are also shown. In these cases, the results of a

series expansion to order s2 would be visually almost

indistinguishable from the full results on these plots. This

makes it seem likely that simply expanding the integrals to

order s2 would be sufficient for practical results, at least for a
Higgs andZ self-energy evaluation near the physical masses.

However, some care is needed, because there could be

cancellations between different master integrals in a given

observable, and because in other mass configurations the

small s expansions of integrals will not converge if there are
lower thresholds. As benchmarks, the numerical results of all

of the master integrals are given in Table I for s ¼ Z and

s ¼ H, to 16 digits of relative accuracy.

VII. OUTLOOK

In this paper, I have provided results for the master

integrals for three-loop self-energy integrals with four or

five propagators with generic masses. Provided in ancillary

files in computer readable form, these results include the

derivatives with respect to each of the squared masses and

the external momentum invariant [85]. In particular, the

results for derivatives with respect to s enable the numerical

computation of the renormalized master integrals for

general arguments, using the coupled first-order differential

equations starting from (or near) s ¼ 0 and integrating

along a contour in the upper half complex s plane.

In some cases of nongeneric masses that are either

equal to each other or to 0, the results as given above

require some care, because the polynomials in denomi-

nators of some of the identities can vanish identically for

all s, for example due to the appearance ofΨðx; x; y; yÞ ¼ 0

or Δð0; x; xÞ ¼ 0. The corresponding identities between

master integrals, and elimination of nonmasters, can be

derived either by reprising the procedure outlined in this

paper with the nongeneric mass relations implemented, or

simply by taking limits of the identities given here when put

into polynomial coefficient form. In the cases considered in

the present paper, the offending denominators do not

appear in the derivatives with respect to s anyway, so that

there is no obstacle to their numerical computation. In

particular, there are no Standard Model master integrals

with four and five propagators for which the limits cannot

be obtained very simply, except the ones with 0 masses

already covered in Ref. [44] and references therein.

For practical applications, it will be necessary to extend

these results to the remaining three-loop self-energy master

integrals with six, seven, and eight propagators, since self-

energies and pole masses of scalars, fermions, and vector

bosons in the Standard Model and its extensions will

always involve such integrals. I think it is likely that a

relatively efficient way to obtain those results will be to use

the same sort of approach as in this paper, relying on the

form guaranteed by the structure of the IBP relations but

without actually following the IBP reduction and elimina-

tion procedure. It would be interesting to see whether

traditional IBP methods and codes can produce the results

for general masses. In any case, the eventual goal will be to

produce computer code that can evaluate all pertinent

renormalized master integrals for a given three-loop self-

energy topology on demand, and an algorithm that can

reduce any given self-energy loop integral functions,

including those involving nontrivial numerators, to the

masters. The latter algorithm might be applied only at the

numerical level (perhaps in terms of rational numbers

that closely approximate physical masses), because of

the extreme algebraic complexity involved if the squared

masses are general and treated symbolically.

The expansion method outlined in Sec. III can be applied

in the very same way to the topologies that were called I6a,
I6c, I6d, and I7d in Fig. 3.2 of Ref. [44]. The expansions of s
for the remaining diagram topologies with six, seven, or

eight propagators will not be quite so straightforward, since

they are not of the form assumed in Sec. III. However, they

can in principle always be found by simply expanding

denominators to move all pμ factors to numerators, result-

ing in linear combinations of scalar vacuum integrals,

which can in turn be reduced to masters. More optimis-

tically, it also seems plausible to me that one can instead

obtain more general all-orders formulas for the expansions

in s, in terms of differential operators containing derivatives

of the masses acting on the vacuum integrals, similar to and

generalizing Eqs. (3.5)–(3.7).
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