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The Standard Model can be defined quantitatively by running parameters in a mass-independent

renormalization scheme at a fixed reference scale. We provide a set of simple interpolation formulas that

give the fundamental Lagrangian parameters in the MS scheme at a renormalization scale of 200 GeV,

safely above the top-quark mass and suitable for matching to candidate new physics models at very high

mass scales using renormalization group equations. These interpolation formulas take as inputs the on-shell

experimental quantities and use the best available calculations in the pure MS scheme. They also serve as

an accounting of the parametric uncertainties for the short-distance Standard Model Lagrangian. We also

include an interpolating formula for the W-boson mass. This paper is based on results obtained with the

publicly available computer program SMDR.
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I. INTRODUCTION

The Standard Model of fundamental particle physics has

reached a high level of experimental maturity with the 2012

discovery of the Higgs boson and the increasingly accurate

measurements of its mass, production modes, and decays.

Meanwhile, the explorations of the Large Hadron Collider

(LHC) at the high-energy frontier have not revealed any

substantial and lasting deviations that would compel

extensions of the Standard Model, despite many motiva-

tions for such new physics.

Given this state of affairs, it is useful to summarize as

accurately as possible our quantitative knowledge of the

Standard Model in terms of the Lagrangian parameters that

define the theory. These defining parameters can then be

matched to a larger set of parameters in candidate new

physics theories characterized by large mass scales. It is

convenient to use the MS renormalization scheme [1,2]

based on dimensional regularization [3–7] for this purpose.

The Standard Model MS Lagrangian parameters to be

evaluated include

Higgs sector∶ λ; m2;

gauge couplings∶ g3; g; g
0;

quark Yukawa couplings∶ yt; yb; yc; ys; yu; yd;

lepton Yukawa couplings∶ yτ; yμ; ye; ð1:1Þ

where we have neglected the neutrino sector. Also omitted

here are the four physical parameters (three flavor-mixing

angles and one CP-violating phase angle) associated with

the Cabibbo-Kobayashi-Maskawa (CKM) matrix for

quarks, which can be considered separately and decouple

from the discussion below to a high degree of accuracy due

to unitarity of the CKM matrix. For a discussion and

numerical values of these four CKM angle parameters in

the Standard Model, see the relevant section of the Review

of Particle Properties (RPP) [8] published by the Particle

Data Group (PDG), and references therein.
Each of the 14 quantities in Eq. (1.1) is a running

parameter, dependent on the choice of MS renormalization
scale Q, governed by renormalization group equations that
are now known [9–35] with some effects through five-loop
order. The normalization convention of the Higgs sector

parameters is the now-standard one such that the tree-
level potential for the canonically normalized real neutral

component of the Higgs field is V ¼ 1

2
m2H2 þ λ

4
H4. In

particular, the Higgs squared mass parameter m2 is neg-
ative, as required by electroweak symmetry breaking, and
can be traded for the vacuum expectation value v for H,
defined as the minimum of the all-orders effective potential
in Landau gauge, so that the sum of all tadpole diagrams
(including the tree-level tadpole) simply vanishes. In prac-
tice, the effective potential is known fully at two-loop [36,37]
and three-loop [38–40] orders, supplemented by the QCD
four-loop contributions [33].

For the purposes of matching to ultraviolet new physics

proposals, one should work in a nondecoupling scheme, in

which all of the Standard Model particles including the top

quark are propagating degrees of freedom. For this reason,

we choose as a benchmark MS renormalization scale the

value Q ¼ 200 GeV, which is somewhat arbitrary but has
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the advantages of being a round number, safely above the
top-quark mass, and probably

1
well below the scale of new

physics. Furthermore, taking a fixed scale (rather than, say,

the experimental top-quark mass, which is subject to

uncertainty and change) provides for better numerical

stability. The results given here can then be evolved to

any desired matching scale by the Standard Model renorm-

alization group equations.

The standard reference for important experimental

results in high-energy physics, the RPP [8] published by

the PDG, instead (so far, at least) summarizes our knowl-

edge of the Standard Model in terms of what we will refer

to as the on-shell quantities. The RPP quantities that are in

the most direct correspondence to the Lagrangian param-

eters in Eq. (1.1) are

fine-structure constant∶ α ¼ 1=137.035999084…andΔα
ð5Þ
hadðMZÞ;

Fermi decay constant∶ GF;

5-quark QCD coupling∶ α
ð5Þ
S ðMZÞ;

heavy particle physical masses∶ Mt;Mh;MZ;MW ;

running light quark masses∶ mbðmbÞ; mcðmcÞ; msð2 GeVÞ; muð2 GeVÞ; mdð2 GeVÞ;
lepton pole masses∶ Mτ;Mμ;Me: ð1:2Þ

It should be noted that in this paper MZ and MW are the

on-shell masses in the PDG parametrization; these are

related to the gauge-invariant complex pole squared masses

sp ¼ ðMp − iΓp=2Þ2 by M ¼ Mpð1þ δÞ=
ffiffiffiffiffiffiffiffiffiffi

1 − δ
p

, where

δ ¼ Γ
2
p=4M

2
p in each case. (For recent discussions, see

Refs. [41,42].) In principle, the hadronic contribution to

the fine-structure constant, Δα
ð5Þ
hadðMZÞ is not independent

and could be determined in terms of the other quantities,

but in practice it cannot be perturbatively evaluated and

therefore is taken as an independent experimental input.

The W-boson mass MW can also be determined in terms

of the others. The other 14 on-shell quantities in Eq. (1.2)

are dual to those of the 14 independent MS parameters in

Eq. (1.1). This means that one can take the MS

parameters as theoretical inputs with the on-shell quan-

tities as outputs, or one can take the on-shell quantities as

experimental inputs and view the MS parameters as the

outputs.

A great deal of effort has gone into relating the two

sets of parameters and to evaluating MW in terms of

the others. For a necessarily incomplete set of earlier

references, see [43–106], and papers discussed therein.

The present work is based on the computer code

SMDR [107,108], which implements calculations in

Refs. [42,109–113] in the tadpole-free pure MS scheme.

This code contains command-line utilities and library

programs for fitting the on-shell parameters in terms of

the MS parameters, and vice versa, and for performing the

renormalization group running in the Standard Model,

implementing the state-of-the-art calculations.

The purpose of the present paper is to provide simple and

convenient interpolation formulas that accurately provide

the MS parameters in Eq. (1.1) and MW in terms of the on-

shell parameters in Eq. (1.2), obtained by doing a fit to the

results
2
of SMDR. The simplicity and accuracy of the

interpolation formulas is aided by the fact that the allowed

parameters in the Standard Model are now all experimen-

tally restricted to rather narrow ranges.

We now discuss the organization and notation of the

interpolation formulas below. First, define a set of bench-

mark (denoted by subscript 0) on-shell inputs, using the

values from the most recent 2022 PDG data:

1
In the case of supersymmetry, current bounds on squarks and gluinos are now generally well above 1 TeV, but there is still some

room for light weakly interacting superpartners. More generally, despite the LHC’s negative search results, the new physics might be
only very weakly coupled to the Standard Model.

2
More specifically, the interpolation formulas in the present paper have a similar functionality to the SMDR command-line invocation

calc_fit -Q 200, but with a drastically shorter evaluation time.
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α0 ¼ 1=137.035999084; Δα
ð5Þ
hadðMZÞ0 ¼ 0.027660;

GF0 ¼ 1.1663787 × 10−5; α
ð5Þ
S0 ðMZÞ ¼ 0.1179;

Mt0 ¼ 172.5 GeV; Mh0 ¼ 125.25 GeV; MZ0 ¼ 91.1876 GeV;

mbðmbÞ0 ¼ 4.18 GeV; mcðmcÞ0 ¼ 1.27 GeV; msð2 GeVÞ0 ¼ 93 MeV;

muð2 GeVÞ0 ¼ 2.16 MeV; mdð2 GeVÞ0 ¼ 4.67 MeV;

Mτ0 ¼ 1.77686 GeV; Mμ0 ¼ 0.1056583745 GeV;

Me0 ¼ 0.5109989461 MeV: ð1:3Þ

The Sommerfeld fine-structure constant α is very accu-

rately known compared to the others, with a fractional

uncertainty of 1.5 × 10−10, so no variation in it will be

considered.

For the other on-shell parameters, we next define the

following dimensionless quantities:

δZ ¼ ðMZ −MZ0Þ=ð0.001 GeVÞ; ð1:4Þ

δt ¼ ðMt −Mt0Þ=ð1 GeVÞ; ð1:5Þ

δh ¼ ðMh −Mh0Þ=ð0.1 GeVÞ; ð1:6Þ

δS ¼ 1000½αð5ÞS ðMZÞ − α
ð5Þ
S0 ðMZÞ�; ð1:7Þ

δa ¼ 104½Δαð5ÞhadðMZÞ − Δα
ð5Þ
had;0ðMZÞ�; ð1:8Þ

as measures of the deviation from the benchmark model.

The normalizations of these five quantities are chosen so

that a change in the on-shell input by an amount of order the

present experimental uncertainty will correspond very

roughly to an order 1 change in the corresponding δ. In

the interpolation formulas found below, we will often give

at least the contributions linear in the five δ’s above, even

when they are numerically too small to be practically

significant, in order to quantitatively illustrate their con-

tributions to the parametric errors.

In the interpolation formulas for the Yukawa couplings at

Q ¼ 200 GeV, we will also make use of the variations in

the fermion masses as needed, parametrized by

Δf ¼
mf

mf0

− 1; ð1:9Þ

for f ¼ b; c; s; u; d; τ; μ; e, where the mf are running MS

masses mbðmbÞ, mcðmcÞ, msð2 GeVÞ, muð2 GeVÞ, and

mdð2 GeVÞ for the light quarks and pole (on-shell) masses

for the leptonsmf ¼ Mτ,Mμ, andMe. Also, in a few of the

interpolation formulas, we will include the small effect due

to a possible deviation in the Fermi decay constant from its

benchmark central value, parametrized by

ΔGF
¼ GF

GF0

− 1: ð1:10Þ

The effects of this are typically expected to be very small,

since the fractional uncertainty in GF given in the RPP is

about 5 × 10−7.

The interpolation formulas presented below were

obtained by running v1.2 of SMDR with its default choices

repeatedly for points in parameter space on grids that cover

the plausible allowed ranges and then performing a fit to

obtain the coefficients, which were then validated on more

parameter space grids. We aim to provide results accurate to

well under the experimental and theoretical uncertainties,

for deviations of the on-shell inputs by up to 5 times their

RPP quoted experimental uncertainties. Contributions

quadratic in the deviations therefore will also be included

when necessary to achieve relative precision goals for each

quantity as stated below. For each output parameter, we will

quote a conservative fractional precision, which in this

paper refers to the maximum fractional difference between

the interpolation formula result and the output of SMDR

with default scale-setting choices. The maximum refers to

the differences obtained in a scan as all on-shell inputs are

varied over ranges such that the total deviation from the

experimental central values, added in quadrature, is ≤ 5σ.

Here we interpret the uncertainties quoted in the RPP as 1σ,

even though a Gaussian distribution of errors may not be

the appropriate description. It should be recognized that the

actual theoretical uncertainty and the parametric uncer-

tainty are both always much larger than this fractional

precision. We have attempted to err on the side of including

coefficients even when they are only significant for rather

large deviations from the experimental central values.

We now provide the benchmark output results obtained

using v1.2 of SMDR with default choices. We give many

more significant digits than justified by the theoretical and

parametric uncertainties, merely for the sake of reproduc-

ibility. The benchmark running MS parameters evaluated at

the scale Q ¼ 200 GeV are

g30 ¼ 1.1525136966; ð1:11Þ

g0 ¼ 0.64683244428; ð1:12Þ
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g0
0
¼ 0.35885152738; ð1:13Þ

λ0 ¼ 0.12353343830; ð1:14Þ

m2
0
¼ −ð93.126827678 GeVÞ2; ð1:15Þ

yt0 ¼ 0.92377763013; ð1:16Þ

yb0 ¼ 0.0153349059085; ð1:17Þ

yc0 ¼ 0.00336181598480; ð1:18Þ

ys0 ¼ 2.8885955612 × 10−4; ð1:19Þ

yd0 ¼ 1.4505079604 × 10−5; ð1:20Þ

yu0 ¼ 6.6738103560 × 10−6; ð1:21Þ

yτ0 ¼ 0.0100065524355; ð1:22Þ

yμ0 ¼ 5.8908805223 × 10−4; ð1:23Þ

ye0 ¼ 2.7963423115 × 10−6: ð1:24Þ

Also, the physical W-boson mass in the PDG parametriza-

tion is found to be, for this benchmark set of parameters,

MW0 ¼ 80.352476 GeV; ð1:25Þ

where we have used the SMDR default by computing the

W-boson pole mass in terms of the running parameters at

Q ¼ 160 GeV. The values in Eqs. (1.11) will be used in the

interpolation formulas below, as they give the results when

all of the δ’s vanish, by definition.

II. INTERPOLATION FORMULA

FOR THE W-BOSON MASS

For theW-boson physical mass in the PDG convention,
3

we find

MW ¼ MW0ð1þ ctMW
δt þ cZMW

δZ þ caMW
δa þ cSMW

δS þ chMW
δh þ cttMW

δ2t Þ; ð2:1Þ

where MW0 was given in Eq. (1.25), and the other potentially significant coefficients are

ctMW
¼ 7.61 × 10−5; cZMW

¼ 1.56 × 10−5; caMW
¼ −2.29 × 10−5;

cSMW
¼ −8.8 × 10−6; chMW

¼ −5.9 × 10−7; cttMW
¼ 1.3 × 10−7: ð2:2Þ

This interpolation formula reproduces the results of SMDR

(with its default scale-setting choices) to better than

0.1 MeV, which is much smaller than the current theoretical

and experimental uncertainties, when the input on-shell

parameters are varied such that the total deviation from the

central values, added in quadrature, is ≤ 5σ.

The results above are based on the pure MS scheme used

by SMDR and can be compared with similar interpolation

formula results based on on-shell [80] and hybrid [98]

scheme calculations, which both used fits to a much wider

range for the Higgs mass. A numerical comparison between

the results from these three different approaches wasmade in

Ref. [42] (see in particular Figs. 4.1 and 4.2), showing

that they agree well within the theoretical uncertainty

due to renormalization scale dependence and supporting a

theoretical error estimate of perhaps �4 MeV. This is

less than the parametric error, coming principally from

the top-quark mass, of about 6.11δt þ 1.25δZ − 1.84δa−

0.71δS − 0.047δh þ 0.010δ2t , in MeV, which can be read off

from Eq. (2.2). The relatively large uncertainty associated

with the top-quarkmass is difficult to reduce, since it is due in

large part to the problems in connecting hadron collider

measurements and simulations to a well-defined short-

distance top-quark mass or Yukawa coupling.

III. INTERPOLATION FORMULAS

FOR THE MS PARAMETERS

A. Higgs sector

For the Higgs self-coupling λ at Q ¼ 200 GeV, we find

λ ¼ λ0ð1þ chλδh þ ctλδt þ cZλ δZ þ cSλδS þ caλδa þ cttλ δ
2
t þ ctSλ δtδS þ chhλ δ2h

þ chtλ δhδt þ cSSλ δ2S þ chSλ δhδS þ ctttλ δ3t þ cttSλ δ2t δS þ cbλΔb þ c
GF

λ ΔGF
Þ; ð3:1Þ

where λ0 was given in Eq. (1.14), and the other coefficients are

3
The result for MW has recently become of heightened interest because of a report [114] from the Fermilab Tevatron’s CDF

Collaboration which is incompatible with the Standard Model prediction and in strong tension with other experimental results [8].
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chλ ¼ 1.6823 × 10−3; ctλ ¼ −1.488 × 10−4; cZλ ¼ −3.5 × 10−7;

cSλ ¼ −2.2 × 10−7; caλ ¼ 3.4 × 10−7; cttλ ¼ 1.528 × 10−5;

ctSλ ¼ −4.02 × 10−6; chhλ ¼ 7.0 × 10−7; chtλ ¼ −6.1 × 10−7;

cSSλ ¼ 3.0 × 10−7; chSλ ¼ 6.4 × 10−8; ctttλ ¼ 1.9 × 10−7;

cttSλ ¼ −7.6 × 10−8; cbλ ¼ 4.5 × 10−5; c
GF

λ ¼ 0.95: ð3:2Þ

This formula, based on a fit to the best available calculation of the physical Higgs boson mass [42,109], agrees with the

results of SMDR to better than 10−6 fractional precision in λ as the input parameters are varied over ranges with a total

deviation, added in quadrature, of 5σ from their central values. Again, the theoretical and parametric errors are much larger

than this fractional precision, with the top-quark mass giving the largest contribution to the error budget other than the Higgs

boson mass itself.

For the running Higgs squared mass parameter at Q ¼ 200 GeV, we find

m2 ¼ m2
0
ð1þ ch

m2δh þ ct
m2δt þ cS

m2δS þ cZ
m2δZ þ ca

m2δa þ ctt
m2δ

2
t þ ctS

m2δtδS þ chh
m2δ

2
h þ cht

m2δhδtÞ; ð3:3Þ

where m2
0
was given in Eq. (1.15), and the other significant coefficients are

ch
m2 ¼ 1.4319 × 10−3; ct

m2 ¼ 2.337 × 10−3; cS
m2 ¼ −1.052 × 10−4;

cZ
m2 ¼ −5.7 × 10−7; ca

m2 ¼ 5.4 × 10−7; ctt
m2 ¼ 2.02 × 10−5;

ctS
m2 ¼ −2.45 × 10−6; chh

m2 ¼ 5.8 × 10−7; cht
m2 ¼ −4.3 × 10−7: ð3:4Þ

This formula provides agreement with the output of SMDR to a fractional precision of better than 10−5.

B. Gauge couplings

For the SUð3Þc MS gauge coupling g3 evaluated at Q ¼ 200 GeV, we obtained the following interpolation formula:

g3 ¼ g30ð1þ cSg3δS þ ctg3δt þ cSSg3 δ
2
S þ chg3δh þ cZg3δZ þ cag3δaÞ; ð3:5Þ

where g30 was given in Eq. (1.11), and the coefficients are

cSg3 ¼ 3.7875 × 10−3; ctg3 ¼ −3.98 × 10−5; cSSg3 ¼ −1.07 × 10−5;

chg3 ¼ 2.5 × 10−8; cZg3 ¼ 2.7 × 10−9; cag3 ¼ −2.0 × 10−9: ð3:6Þ

Note that the top-quark mass is significant here because we are relating the five-quark QCD coupling α
ð5Þ
S ðMZÞ to the

Standard Model QCD coupling g3 with the top quark not decoupled. The three terms proportional to δS, δt, and δ2S are

sufficient to obtain a fractional precision compared to SMDR of better than 10−5, but the linear deviation coefficients chg3 , c
Z
g3
,

and cag3 are also listed in order to illustrate the small size of the parametric errors.

For the SUð2ÞL gauge coupling g, we find

g ¼ g0ð1þ ctgδt þ cagδa þ cZg δZ þ cSgδS þ chgδh þ cttg δ
2
t þ ctSg δtδS þ c

GF
g ΔGF

Þ; ð3:7Þ

where g0 was given in Eq. (1.12), and the other coefficients are

ctg ¼ 5.735 × 10−5; cag ¼ −2.295 × 10−5; cZg ¼ 1.558 × 10−5;

cSg ¼ −5.97 × 10−6; chg ¼ −8.5 × 10−7; cttg ¼ 1.9 × 10−7;

ctSg ¼ −7.8 × 10−8; c
GF
g ¼ 0.71: ð3:8Þ

This formula provides a fractional precision of better than 10−6 as the input on-shell parameters are varied with ≤ 5σ total

deviation from their central values, added in quadrature.
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For the Uð1ÞY gauge coupling, we find

g0 ¼ g0
0
ð1þ ct

g0δt þ ca
g0δa þ cZ

g0δZ þ cS
g0δS þ ch

g0δhÞ; ð3:9Þ

where g0
0
was given in Eq. (1.13), and the other coefficients are

ct
g0 ¼ −2.609 × 10−5; ca

g0 ¼ 7.714 × 10−5; cZ
g0 ¼ −4.70 × 10−6;

cS
g0 ¼ 3.29 × 10−6; ch

g0 ¼ 2.6 × 10−7: ð3:10Þ

This formula again provides a fractional precision of better than 10−6 compared to SMDR.

C. Top-quark Yukawa coupling

For the top-quark Yukawa coupling at Q ¼ 200 GeV, we find

yt ¼ yt0ð1þ ctytδt þ cSytδS þ chytδh þ cttytδ
2
t þ cSSyt δ

2
S þ cZytδZ þ caytδaÞ; ð3:11Þ

where yt0 was given in Eq. (1.16), and the other coefficients are

ctyt ¼ 6.352 × 10−3; cSyt ¼ −7.76 × 10−4; chyt ¼ −2.36 × 10−6;

cttyt ¼ 8.9 × 10−7; cSSyt ¼ −1.23 × 10−6; cZyt ¼ −1.6 × 10−7;

cayt ¼ 2.2 × 10−8: ð3:12Þ

The five terms proportional to δt, δS, δh, δ
2
t , and δ2S are sufficient to obtain a fractional precision better than 10−5, and

the linear deviation coefficients cZyt and cayt are also included in order to show their small contribution to the parametric

error budget.

D. Yukawa couplings of light quarks

In the interpolation formulas for light-quark Yukawa couplings in the present subsection, the quantities δa, δh, and δZ
make a relatively insignificant difference and are therefore omitted.

For the bottom-quark Yukawa coupling at Q ¼ 200 GeV, we find

yb ¼ yb0ð1þ cbybΔb þ cbbyb Δ
2
b þ cbSyb ΔbδS þ cSybδS þ ctybδt þ cSSyb δ

2
S þ cSSSyb

δ3SÞ; ð3:13Þ

where yb0 was given in Eq. (1.17), and the other coefficients are

cbyb ¼ 1.185; cbbyb ¼ 0.075; cbSyb ¼ −3.3 × 10−3; cSyb ¼ −6.125 × 10−3;

ctyb ¼ −2.4 × 10−5; cSSyb ¼ −2.1 × 10−5; cSSSyb
¼ −1.5 × 10−7: ð3:14Þ

This agrees with the results of SMDR to a fractional precision of better than 10−4. For the charm-quark Yukawa coupling at

Q ¼ 200 GeV, we obtain

yc ¼ yc0ð1þ ccycΔc þ cccycΔ
2
c þ ccSycΔcδS þ cSycδS þ cSSyc δ

2
S þ cSSSyc

δ3S

þ cbycΔb þ cbSyc ΔbδS þ ctycδtÞ; ð3:15Þ

where yc0 was given in Eq. (1.18), and the other coefficients are

ccyc ¼ 1.415; cccyc ¼ 0.078; ccSyc ¼ −3.0 × 10−3;

cSyc ¼ −0.01746; cSSyc ¼ −2.34 × 10−4; cSSSyc
¼ −6.5 × 10−6;

cbyc ¼ −0.027; cbSyc ¼ −1.6 × 10−3; ctyc ¼ −1.5 × 10−5: ð3:16Þ

This result for the charm-quark Yukawa coupling agrees with SMDR to a fractional precision of better than 10−4.
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For the strange, down, and up Yukawa couplings, the interpolation formulas have a simpler, universal form, due to the

fact that the “on-shell” input parameters from the RPP are actually runningMS parameters determined at a common scale of

Q ¼ 2 GeV, so that the same QCD corrections apply to all three in the same way. For the Yukawa couplings at

Q ¼ 200 GeV, we find

yq ¼ yq0ð1þ ΔqÞð1þ cSyqδS þ cSSyq δ
2
S þ cSSSyq

δ3S þ cbyqΔb þ ctyqδtÞ; ð3:17Þ

where the coefficients in all three cases (q ¼ s, d, u) are approximated well by

cSyq ¼ −0.01089; cSSyq ¼ −7.93 × 10−5; cSSSyq
¼ −1.2 × 10−6;

cbyq ¼ −0.0128; ctyq ¼ −1.5 × 10−5; ð3:18Þ

and ys0, yd0, and yu0 were given, respectively, in Eqs. (1.19)–(1.21). These formulas agree with those obtained by SMDR to a

fractional precision of better than 10−4.

E. Yukawa couplings of leptons

For the tau-lepton Yukawa coupling at Q ¼ 200 GeV, we obtain

yτ ¼ yτ0ð1þ Δτ þ 0.5ΔGF
þ ctyτδt þ cSyτδS þ cayτδa þ chyτδh þ cZyτδZ

þ cttyτδ
2
t þ ctSyτδtδSÞ; ð3:19Þ

where yτ0 was given in Eq. (1.22), the coefficients of Δτ and ΔGF
are very close to 1 and 0.5 as indicated, and the other

coefficients are

ctyτ ¼ −1.252 × 10−5; cSyτ ¼ 2.63 × 10−6; cayτ ¼ −1.83 × 10−6;

chyτ ¼ 1.74 × 10−6; cZyτ ¼ −1.8 × 10−7; cttyτ ¼ −6.9 × 10−7;

ctSyτ ¼ 1.3 × 10−7: ð3:20Þ

This interpolation formula gives agreement with SMDR to a fractional precision of better than 10−7.

The Yukawa couplings for l ¼ μ, e at Q ¼ 200 GeV are written in the common form:

yl ¼ yl0ð1þ Δl þ 0.5ΔGF
þ ctylδt þ cSylδS þ caylδa þ chylδh þ cZylδZ

þ cttylδ
2
t þ ctSylδtδS þ ccylΔc þ cbylΔbÞ; ð3:21Þ

where yμ0 and ye0 were given in Eqs. (1.23) and (1.24), respectively. For the muon, the other coefficients are

ctyμ ¼ −1.3105 × 10−5; cSyμ ¼ 2.17 × 10−6; cayμ ¼ −2.84 × 10−6;

chyμ ¼ 1.73 × 10−6; cZyμ ¼ −1.78 × 10−7; cttyμ ¼ −6.93 × 10−7;

ctSyμ ¼ 1.26 × 10−7; ccyμ ¼ −3.3 × 10−5; cbyμ ¼ −4.1 × 10−6: ð3:22Þ

For the electron, the coefficients are

ctye ¼ −1.312 × 10−5; cSye ¼ 2.87 × 10−6; caye ¼ −4.72 × 10−6;

chye ¼ 1.73 × 10−6; cZye ¼ −1.78 × 10−7; cttye ¼ −6.93 × 10−7;

ctSye ¼ 1.26 × 10−7; ccye ¼ −8.1 × 10−5; cbye ¼ −1.4 × 10−5: ð3:23Þ

The fractional precisions, compared to the results from SMDR, are less than 10−9. Since the present fractional uncertainties in

Mμ andMe are about 2 × 10−8 and 6 × 10−9, respectively, we see that for each lepton, the bottleneck for obtaining the most

accurate possible Yukawa coupling in the ultraviolet is not the uncertainty in the corresponding lepton mass, but rather the

uncertainty associated with the top-quark mass, which is difficult to reduce as we have already mentioned.
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IV. OUTLOOK

In this paper we have presented simple interpolation

formulas that provide the fundamental Lagrangian param-

eters for the Standard Model, given the corresponding on-

shell experimental values as inputs. (The three physical

angles and CP-violating phase associated with CKM

mixing are omitted, having a tiny effect on these results

due to CKM unitarity, and can be obtained from Ref. [8]

and sources referenced therein.) These results are an

alternative to a more time-consuming and complicated

evaluation using e.g., the computer code SMDR, on which

our results are based. The structure of the interpolation

formulas has been designed so as to avoid any numerically

significant loss of precision and are made to provide

results at the MS renormalization scale Q ¼ 200 GeV as

a reference. For convenience, we have included as

Supplemental Material [115] a simple interactive com-

mand-line PYTHON code sm200.py implementing the

interpolation formulas above. We intend to update our

results in the preprint version of this paper and in that code

as new theoretical refinements and experimental measure-

ments become available.

Besides satisfying basic curiosity about the fundamental

parameters of the Standard Model, the results given here

will have applications in matching to various candidate

ultraviolet completions of the Standard Model, provided

that the mass scales associated with new physics are

sufficiently high that nonrenormalizable terms in the

effective theory can be neglected or corrected for. The

results also can be viewed as providing the parametric error

budget for the defining couplings of the Standard Model

Lagrangian.
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