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The Standard Model can be defined quantitatively by running parameters in a mass-independent
renormalization scheme at a fixed reference scale. We provide a set of simple interpolation formulas that
give the fundamental Lagrangian parameters in the MS scheme at a renormalization scale of 200 GeV,
safely above the top-quark mass and suitable for matching to candidate new physics models at very high
mass scales using renormalization group equations. These interpolation formulas take as inputs the on-shell

experimental quantities and use the best available calculations in the pure MS scheme. They also serve as
an accounting of the parametric uncertainties for the short-distance Standard Model Lagrangian. We also
include an interpolating formula for the W-boson mass. This paper is based on results obtained with the

publicly available computer program SMDR.
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I. INTRODUCTION

The Standard Model of fundamental particle physics has
reached a high level of experimental maturity with the 2012
discovery of the Higgs boson and the increasingly accurate
measurements of its mass, production modes, and decays.
Meanwhile, the explorations of the Large Hadron Collider
(LHC) at the high-energy frontier have not revealed any
substantial and lasting deviations that would compel
extensions of the Standard Model, despite many motiva-
tions for such new physics.

Given this state of affairs, it is useful to summarize as
accurately as possible our quantitative knowledge of the
Standard Model in terms of the Lagrangian parameters that
define the theory. These defining parameters can then be
matched to a larger set of parameters in candidate new
physics theories characterized by large mass scales. It is
convenient to use the MS renormalization scheme [1,2]
based on dimensional regularization [3—7] for this purpose.
The Standard Model MS Lagrangian parameters to be
evaluated include

Higgs sector: A, m?,

93,9, gl9
Yis Ybs Yes Yso Yus Vs
Yes Yus Yes

gauge couplings:
quark Yukawa couplings:

(1.1)

lepton Yukawa couplings:
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where we have neglected the neutrino sector. Also omitted
here are the four physical parameters (three flavor-mixing
angles and one CP-violating phase angle) associated with
the Cabibbo-Kobayashi-Maskawa (CKM) matrix for
quarks, which can be considered separately and decouple
from the discussion below to a high degree of accuracy due
to unitarity of the CKM matrix. For a discussion and
numerical values of these four CKM angle parameters in
the Standard Model, see the relevant section of the Review
of Particle Properties (RPP) [8] published by the Particle
Data Group (PDG), and references therein.

Each of the 14 quantities in Eq. (1.1) is a running
parameter, dependent on the choice of MS renormalization
scale Q, governed by renormalization group equations that
are now known [9-35] with some effects through five-loop
order. The normalization convention of the Higgs sector
parameters is the now-standard one such that the tree-
level potential for the canonically normalized real neutral
component of the Higgs field is V = %msz +%H4. In
particular, the Higgs squared mass parameter m? is neg-
ative, as required by electroweak symmetry breaking, and
can be traded for the vacuum expectation value v for H,
defined as the minimum of the all-orders effective potential
in Landau gauge, so that the sum of all tadpole diagrams
(including the tree-level tadpole) simply vanishes. In prac-
tice, the effective potential is known fully at two-loop [36,37]
and three-loop [38—40] orders, supplemented by the QCD
four-loop contributions [33].

For the purposes of matching to ultraviolet new physics
proposals, one should work in a nondecoupling scheme, in
which all of the Standard Model particles including the top
quark are propagating degrees of freedom. For this reason,
we choose as a benchmark MS renormalization scale the
value Q = 200 GeV, which is somewhat arbitrary but has
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the advantages of being a round number, safely above the
top-quark mass, and probably' well below the scale of new
physics. Furthermore, taking a fixed scale (rather than, say,
the experimental top-quark mass, which is subject to
uncertainty and change) provides for better numerical
stability. The results given here can then be evolved to
any desired matching scale by the Standard Model renorm-
alization group equations.

fine-structure constant:

Fermi decay constant: Gp,

5-quark QCD coupling: a(ss) (Mz),

heavy particle physical masses:
running light quark masses:

lepton pole masses:

It should be noted that in this paper M, and My, are the
on-shell masses in the PDG parametrization; these are
related to the gauge-invariant complex pole squared masses
sp=(M,—il',/2)> by M =M ,(1+68)/v1 -6, where
o= 1“%,/4M%7 in each case. (For recent discussions, see

Refs. [41,42].) In principle, the hadronic contribution to

the fine-structure constant, Aal(ézi(M 2) is not independent

and could be determined in terms of the other quantities,
but in practice it cannot be perturbatively evaluated and
therefore is taken as an independent experimental input.
The W-boson mass My can also be determined in terms
of the others. The other 14 on-shell quantities in Eq. (1.2)
are dual to those of the 14 independent MS parameters in
Eq. (1.1). This means that one can take the MS
parameters as theoretical inputs with the on-shell quan-
tities as outputs, or one can take the on-shell quantities as
experimental inputs and view the MS parameters as the
outputs.

A great deal of effort has gone into relating the two
sets of parameters and to evaluating My, in terms of
the others. For a necessarily incomplete set of earlier

The standard reference for important experimental
results in high-energy physics, the RPP [8] published by
the PDG, instead (so far, at least) summarizes our knowl-
edge of the Standard Model in terms of what we will refer
to as the on-shell quantities. The RPP quantities that are in
the most direct correspondence to the Lagrangian param-
eters in Eq. (1.1) are

a = 1/137.035999084...and Aal) (M),

MtthaMZ’MW7
my,(my), m.(m.), mg(2 GeV), m, (2 GeV), my(2 GeV),
M. M,.M,.

(1.2)

|

references, see [43-106], and papers discussed therein.
The present work is based on the computer code
SMDR [107,108], which implements calculations in
Refs. [42,109-113] in the tadpole-free pure MS scheme.
This code contains command-line utilities and library
programs for fitting the on-shell parameters in terms of
the MS parameters, and vice versa, and for performing the
renormalization group running in the Standard Model,
implementing the state-of-the-art calculations.

The purpose of the present paper is to provide simple and
convenient interpolation formulas that accurately provide
the MS parameters in Eq. (1.1) and M, in terms of the on-
shell parameters in Eq. (1.2), obtained by doing a fit to the
results’ of SMDR. The simplicity and accuracy of the
interpolation formulas is aided by the fact that the allowed
parameters in the Standard Model are now all experimen-
tally restricted to rather narrow ranges.

We now discuss the organization and notation of the
interpolation formulas below. First, define a set of bench-
mark (denoted by subscript 0) on-shell inputs, using the
values from the most recent 2022 PDG data:

'In the case of supersymmetry, current bounds on squarks and gluinos are now generally well above 1 TeV, but there is still some
room for light weakly interacting superpartners. More generally, despite the LHC’s negative search results, the new physics might be

only very weakly coupled to the Standard Model.

*More specifically, the interpolation formulas in the present paper have a similar functionality to the SMDR command-line invocation

calc_fit -Q 200, but with a drastically shorter evaluation time.
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ap = 1/137.035999084,

My = 172.5 GeV,
my,(my), = 4.18 GeV,
m, (2 GeV), = 2.16 MeV,
M., = 1.77686 GeV,
M, = 0.5109989461 MeV.

The Sommerfeld fine-structure constant « is very accu-
rately known compared to the others, with a fractional
uncertainty of 1.5 x 107'°, so no variation in it will be
considered.

For the other on-shell parameters, we next define the
following dimensionless quantities:

8, = (My — M) /(0.001 GeV), (1.4)
6, = (M,—-My)/(1 GeV), (1.5)

8y = (M, — M) /(0.1 GeV), (1.6)

85 = 1000[as” (M) — o (M), (1.7)
8a = 10 A0, (M7) — Aaiy (M), (1.8)

as measures of the deviation from the benchmark model.
The normalizations of these five quantities are chosen so
that a change in the on-shell input by an amount of order the
present experimental uncertainty will correspond very
roughly to an order 1 change in the corresponding 6. In
the interpolation formulas found below, we will often give
at least the contributions linear in the five §’s above, even
when they are numerically too small to be practically
significant, in order to quantitatively illustrate their con-
tributions to the parametric errors.

In the interpolation formulas for the Yukawa couplings at
0 = 200 GeV, we will also make use of the variations in
the fermion masses as needed, parametrized by

(1.9)

for f =b,c,s,u,d, 7, u, e, where the m; are running MS
masses m,(my), m.(m.), my(2 GeV), m,(2 GeV), and
my4(2 GeV) for the light quarks and pole (on-shell) masses
for the leptons my = M, M, and M. Also, in a few of the
interpolation formulas, we will include the small effect due
to a possible deviation in the Fermi decay constant from its

benchmark central value, parametrized by

Aal) (M), = 0.027660,
Gro=1.1663787 x 1075, o}
My = 125.25 GeV,
m.(m.), = 127 GeV,
my(2 GeV), = 4.67 MeV,
M, = 0.1056583745 GeV,

(M) = 0.1179,

My = 91.1876 GeV,
my(2 GeV), = 93 MeV,

(1.3)

Gr
AGF:GiFO— .

(1.10)
The effects of this are typically expected to be very small,
since the fractional uncertainty in G given in the RPP is
about 5 x 1077,

The interpolation formulas presented below were
obtained by running v1.2 of SMDR with its default choices
repeatedly for points in parameter space on grids that cover
the plausible allowed ranges and then performing a fit to
obtain the coefficients, which were then validated on more
parameter space grids. We aim to provide results accurate to
well under the experimental and theoretical uncertainties,
for deviations of the on-shell inputs by up to 5 times their
RPP quoted experimental uncertainties. Contributions
quadratic in the deviations therefore will also be included
when necessary to achieve relative precision goals for each
quantity as stated below. For each output parameter, we will
quote a conservative fractional precision, which in this
paper refers to the maximum fractional difference between
the interpolation formula result and the output of SMDR
with default scale-setting choices. The maximum refers to
the differences obtained in a scan as all on-shell inputs are
varied over ranges such that the total deviation from the
experimental central values, added in quadrature, is < So.
Here we interpret the uncertainties quoted in the RPP as 1o,
even though a Gaussian distribution of errors may not be
the appropriate description. It should be recognized that the
actual theoretical uncertainty and the parametric uncer-
tainty are both always much larger than this fractional
precision. We have attempted to err on the side of including
coefficients even when they are only significant for rather
large deviations from the experimental central values.

We now provide the benchmark output results obtained
using v1.2 of SMDR with default choices. We give many
more significant digits than justified by the theoretical and
parametric uncertainties, merely for the sake of reproduc-
ibility. The benchmark running MS parameters evaluated at
the scale O = 200 GeV are

930 = 1.1525136966, (1.11)

go = 0.64683244428, (1.12)

013010-3



ZAMIUL ALAM and STEPHEN P. MARTIN

PHYS. REV. D 107, 013010 (2023)

gy = 0.35885152738, (1.13)

Ao = 0.12353343830, (1.14)

m} = —(93.126827678 GeV)?, (1.15)
yio = 0.92377763013, (1.16)

ypo = 0.0153349059085, (1.17)
yeo = 0.00336181598480, (1.18)
V50 = 2.8885955612 x 107*, (1.19)
yao = 14505079604 x 1073, (1.20)
V.0 = 6.6738103560 x 107, (1.21)
v.0 = 0.0100065524355, (1.22)

My = My (1 + ¢ly, 6, + ¢y, 87 + ¢y, 8a + iy, Os + chy, O + iy 67),

Yo = 5.8908805223 x 1074, (1.23)

Vo0 = 2.7963423115 x 107°. (1.24)
Also, the physical W-boson mass in the PDG parametriza-
tion is found to be, for this benchmark set of parameters,

My, = 80.352476 GeV, (1.25)
where we have used the SMDR default by computing the
W-boson pole mass in terms of the running parameters at
Q = 160 GeV. The values in Egs. (1.11) will be used in the
interpolation formulas below, as they give the results when
all of the §’s vanish, by definition.

II. INTERPOLATION FORMULA
FOR THE W-BOSON MASS

For the W-boson physical mass in the PDG convention,’
we find

where My, was given in Eq. (1.25), and the other potentially significant coefficients are

Chy, =761 107, cfy =1.56x107,

c,SV,W = —8.8 x 107°, c},{hv =-59x 1077,

This interpolation formula reproduces the results of SMDR
(with its default scale-setting choices) to better than
0.1 MeV, which is much smaller than the current theoretical
and experimental uncertainties, when the input on-shell
parameters are varied such that the total deviation from the
central values, added in quadrature, is < So.

The results above are based on the pure MS scheme used
by SMDR and can be compared with similar interpolation
formula results based on on-shell [80] and hybrid [98]
scheme calculations, which both used fits to a much wider
range for the Higgs mass. A numerical comparison between
the results from these three different approaches was made in
Ref. [42] (see in particular Figs. 4.1 and 4.2), showing
that they agree well within the theoretical uncertainty
due to renormalization scale dependence and supporting a
|

(2.1)
¢y, = =229 x 1075,
chy, = 1.3x 1077 (2.2)

|
theoretical error estimate of perhaps +4 MeV. This is
less than the parametric error, coming principally from
the top-quark mass, of about 6.118, + 1.256, — 1.845,—
0.7165 — 0.0476;, + 0.01057, in MeV, which can be read off
from Eq. (2.2). The relatively large uncertainty associated
with the top-quark mass is difficult to reduce, since itis due in
large part to the problems in connecting hadron collider
measurements and simulations to a well-defined short-
distance top-quark mass or Yukawa coupling.

III. INTERPOLATION FORMULAS
FOR THE MS PARAMETERS

A. Higgs sector
For the Higgs self-coupling 4 at Q = 200 GeV, we find

A= 2o(1 4 8y + cid, + c£67 + ¢§65 + ¢46, + cll67 + 76,65 + )5,

+ 86, + S35 + 58,85 + 18} + cS828s + LA, + cT AG,),

(3.1)

where 4; was given in Eq. (1.14), and the other coefficients are

The result for My, has recently become of heightened interest because of a report [114] from the Fermilab Tevatron’s CDF
Collaboration which is incompatible with the Standard Model prediction and in strong tension with other experimental results [8].
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" =1.6823 x 107, ch =—-1.488 x 1074, cf =-35x107,
i =-22x1077, cf =34x107, ' =1.528 x 107,
¥ =—4.02 x 107, ch =7.0x1077, = -6.1x107,
¢35 =3.0x 1077, S =6.4x1078, " =1.9x107,
S = -7.6x 1078, b =45x%x107, cff = 0.95. (3.2)
This formula, based on a fit to the best available calculation of the physical Higgs boson mass [42,109], agrees with the
results of SMDR to better than 107° fractional precision in A as the input parameters are varied over ranges with a total
deviation, added in quadrature, of 5¢ from their central values. Again, the theoretical and parametric errors are much larger
than this fractional precision, with the top-quark mass giving the largest contribution to the error budget other than the Higgs
boson mass itself.
For the running Higgs squared mass parameter at Q = 200 GeV, we find
m* = m3(1+ ci’125h +cl6 + ciﬁs + ¢Z,6, + 58, + CZ25,2 + 6225,55 + ci’fﬁé,zl + cf;’zﬁhé,), (3.3)

where m% was given in Eq. (1.15), and the other significant coefficients are

Cﬁlz =1.4319 x 1073, Cinz =12.337 x 1073, Cfnz = —1.052 x 1074,
chz =-57x%x1077, ¢y =54x% 1077, ey =2.02 x 1073,
C;fz = -2.45x107°, Cﬁ’”@ =5.8x%x 1077, 62’1’2 =—-43x 1077, (3.4)

This formula provides agreement with the output of SMDR to a fractional precision of better than 107>,

B. Gauge couplings
For the SU(3). MS gauge coupling g; evaluated at Q = 200 GeV, we obtained the following interpolation formula:

g5 = g30(1 + 5,85 + 1.5, + 536% + ch 5y + 2.5, + ¢ 8,). (3.5)
where g;o was given in Eq. (1.11), and the coefficients are

5, = 3.7875 x 1073, by =-3.98x107, ey =—1.07 x 107,
ch =25%1078, 2 =27x107, ¢4 =-2.0x10"". (3.6)

Note that the top-quark mass is significant here because we are relating the five-quark QCD coupling a(SS)(M z) to the

Standard Model QCD coupling g; with the top quark not decoupled. The three terms proportional to Jg, §;, and 6% are

sufficient to obtain a fractional precision compared to SMDR of better than 107>, but the linear deviation coefficients cé}}, cé,
and cg; are also listed in order to illustrate the small size of the parametric errors.
For the SU(2), gauge coupling g, we find
9= go(1 + €18, + 28, + 28, + 385 + chdy + 6 + ¢156,65 + 5T Ag, ), (3.7)

where g, was given in Eq. (1.12), and the other coefficients are

ch=5735%x107°, ¢4 =-2295x107, & =1558x107",

g =-597x10"°  h=-85x107, cf=19x107",

¢S =-78x107%,  cf" =071 (3.8)

This formula provides a fractional precision of better than 10 as the input on-shell parameters are varied with < 5¢ total
deviation from their central values, added in quadrature.
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For the U(1), gauge coupling, we find
9 = go(1 + ¢y, + c§d, + ¢h8, + 55 + c!’}éh), (3.9)
where g, was given in Eq. (1.13), and the other coefficients are

¢l = =2.609 x 1077, ¢4 =7714x 107, ;= —4.70 x 107°,
¢y =329%x107°, ¢} =26x107. (3.10)

This formula again provides a fractional precision of better than 10™® compared to SMDR.

C. Top-quark Yukawa coupling
For the top-quark Yukawa coupling at QO = 200 GeV, we find

Vi = Yol + ¢4 8, + ¢5 85 + ¢t &) + ¢l 67 + 3565 + 58, + ¢8.8,), (3.11)
where y,, was given in Eq. (1.16), and the other coefficients are

[ =6352x107°, ¢ =-776x107%, ¢! =-236x107,

¢l =89 %107, S =-1.23x107°, ¢ =-16x107,

¢4 =22x1078, (3.12)
The five terms proportional to &,, g, 8, 67, and 5% are sufficient to obtain a fractional precision better than 1073, and

the linear deviation coefficients cyZ,f and c§, are also included in order to show their small contribution to the parametric
error budget.

D. Yukawa couplings of light quarks

In the interpolation formulas for light-quark Yukawa couplings in the present subsection, the quantities o, J;,, and o,
make a relatively insignificant difference and are therefore omitted.
For the bottom-quark Yukawa coupling at Q = 200 GeV, we find

yp = ypo(l + cthb + cfbbAi + cfSAhés + c§h55 + ¢}, 0, + cf,fé% + cfhsség), (3.13)

b

where y,, was given in Eq. (1.17), and the other coefficients are

ch =1.185,  =0075,  cBS=-33x107, ¢ =-6.125x 107,

Vb

cf, ==24x107, F=-21x107, ¥ =-15x10". (3.14)

This agrees with the results of SMDR to a fractional precision of better than 10~. For the charm-quark Yukawa coupling at
0 = 200 GeV, we obtain

Ye = Yeo(l 4+ ¢§ A+ ¢SEAZ + ¢55A S5 + ¢ 55 + 355 + 355653
+ ey A+ 57 ALSs + ¢3,6), (3.15)

where y., was given in Eq. (1.18), and the other coefficients are

cy, = 1.415, c5¢ = 0.078, 55 =-3.0x 1073,
ey = —0.01746, 85 = —2.34 x 1074, ¢$55 = —6.5 x 107,
b =-0027.  IS=-16x107, ¢ =-15x10". (3.16)

This result for the charm-quark Yukawa coupling agrees with SMDR to a fractional precision of better than 107*.
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For the strange, down, and up Yukawa couplings, the interpolation formulas have a simpler, universal form, due to the
fact that the “on-shell” input parameters from the RPP are actually running MS parameters determined at a common scale of

0 =2 GeV, so that the same QCD corrections apply to all three in the same way. For the Yukawa couplings at
0 = 200 GeV, we find

Yo = Yool + Ag) (1 + ¢ 85 + 5565 + 35563 + ¢ A, + ¢}, 5,), (3.17)
where the coefficients in all three cases (¢ = s, d, u) are approximated well by

y = —0.01089, c§f =-7.93x 1073, cf,fs =-12x107°,

b =-00128, ¢} =-15x107, (3.18)

and y, Y40, and y,o were given, respectively, in Egs. (1.19)—(1.21). These formulas agree with those obtained by SMDR to a
fractional precision of better than 10™*

E. Yukawa couplings of leptons

For the tau-lepton Yukawa coupling at Q = 200 GeV, we obtain

Ve =Yl + A, +0.5Ag, + ¢! 8 + ¢ 85+ ¢85, + ch s, + 2oy,
+ .87 + ¢536,65). (3.19)

where y, was given in Eq. (1.22), the coefficients of A, and Ag, are very close to 1 and 0.5 as indicated, and the other
coefficients are

¢l =-1.252x107, ey =2.63x107°, ¢4 =-1.83x107°,
et =1.74x107°, cf =-1.8x1077, ¢l =-6.9x 1077,
¥ =13x107". (3.20)
This interpolation formula gives agreement with SMDR to a fractional precision of better than 1077,
The Yukawa couplings for £ = u, e at Q = 200 GeV are written in the common form:
ve =yeo(l+Ap+ 0506, + ¢4 6,4 ¢85 + 3,6, + ¢t .6, + c£.6;,
+ ClL 87 + 8,85+ ¢5, A + ¢y Ay), (3.21)

where y,o and y,, were given in Egs. (1.23) and (1.24), respectively. For the muon, the other coefficients are

= —1.3105 x 1073, cfﬂ =2.17x 1079, ¢ =-284x107°,

[

Cy, Sy,
= 173x107°, ¢ =—178x 107, cff =—6.93x 1077,
cy,

clf
=126x 107,  ¢§ =-33x107, ¢} =-41x 107, (3.22)

For the electron, the coefficients are

¢, =—-1312x107,  ¢§ =287 x107°, ¢4 =-472x107°,

Ve
Z = _1.78 x 1077, cll =—-6.93x 107,

et =1.73x107, cl

¢$ =126 107, ¢ =-8.1x107, b =-1.4x107. (3.23)
The fractional precisions, compared to the results from SMDR, are less than 10~. Since the present fractional uncertainties in
M, and M, are about 2 x 1078 and 6 x 1077, respectively, we see that for each lepton, the bottleneck for obtaining the most
accurate possible Yukawa coupling in the ultraviolet is not the uncertainty in the corresponding lepton mass, but rather the

uncertainty associated with the top-quark mass, which is difficult to reduce as we have already mentioned.
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IV. OUTLOOK

In this paper we have presented simple interpolation
formulas that provide the fundamental Lagrangian param-
eters for the Standard Model, given the corresponding on-
shell experimental values as inputs. (The three physical
angles and CP-violating phase associated with CKM
mixing are omitted, having a tiny effect on these results
due to CKM unitarity, and can be obtained from Ref. [8]
and sources referenced therein.) These results are an
alternative to a more time-consuming and complicated
evaluation using e.g., the computer code SMDR, on which
our results are based. The structure of the interpolation
formulas has been designed so as to avoid any numerically
significant loss of precision and are made to provide
results at the MS renormalization scale Q = 200 GeV as
a reference. For convenience, we have included as
Supplemental Material [115] a simple interactive com-
mand-line PYTHON code sm200.py implementing the

interpolation formulas above. We intend to update our
results in the preprint version of this paper and in that code
as new theoretical refinements and experimental measure-
ments become available.

Besides satisfying basic curiosity about the fundamental
parameters of the Standard Model, the results given here
will have applications in matching to various candidate
ultraviolet completions of the Standard Model, provided
that the mass scales associated with new physics are
sufficiently high that nonrenormalizable terms in the
effective theory can be neglected or corrected for. The
results also can be viewed as providing the parametric error
budget for the defining couplings of the Standard Model
Lagrangian.
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