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We study the statistical significances for exclusion and discovery of proton decay at current and future

neutrino detectors. Various counterintuitive flaws associated with frequentist and modified frequentist

statistical measures of significance for multichannel counting experiments are discussed in a general

context and illustrated with examples. We argue in favor of conservative Bayesian-motivated statistical

æmeasures, and as an application we employ these measures to obtain the current lower limits on proton

partial lifetime at various confidence levels, based on Super-Kamiokande’s data, generalizing the 90% C.L.

published limits. Finally, we present projections for exclusion and discovery reaches for proton partial

lifetimes in p → ν̄Kþ and p → eþπ0 decay channels at Hyper-Kamiokande, DUNE, JUNO, and THEIA.
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I. INTRODUCTION

In order to account for the observed matter-antimatter

asymmetry in our universe, baryon number must be

violated as required by the Sakharov conditions [1].

Although baryon number is a global symmetry of the

(renormalizable) Standard Model (SM) Lagrangian, it may

be violated by nonperturbative electroweak sphaleron

effects (as yet unconfirmed by experiment) that are heavily

suppressed at temperatures much lower than the electro-

weak scale [2,3]. The sphaleron effects, however, together

with the CP-violation in the electroweak sector are not

sufficient to explain the observed baryon asymmetry,

and therefore provide a key motivation for theories

beyond the SM with additional B-violation. Grand unified

theories (GUTs), with or without supersymmetry, are well-

motivated and generically predict baryon number violation,

and therefore can lead to proton decay [4–43]. After

integrating out the heavy fields, the nonrenormalizable

operators built out of the SM fields that allow proton decay

are of dimension-six or higher, with the suppression scale

of order the GUT breaking scale.

In this paper, we consider proton decay in the p → ν̄Kþ

and p → eþπ0 decay channels that are typically predicted

to be the leading modes in supersymmetric [18–43] and

nonsupersymmetric [5–17] GUTs, respectively. At present,

the strongest constraints on these proton partial lifetimes

are from the Super-Kamioka neutrino detection experiment

(Super-Kamiokande), where the most stringent published

90% C.L. lower limits are 5.9 × 1033 years for the p →

ν̄Kþ mode [44] and 2.4 × 1034 years for the p → eþπ0

mode [45]. We will make projections for the exclusion

and discovery reaches for these proton modes decays at

future neutrino detectors at Deep Underground Neutrino

Experiment (DUNE) [46], Jiangmen Underground

Neutrino Observatory (JUNO) [47], Hyper-Kamiokande

(the successor to Super-Kamiokande, and an order of

magnitude larger) [48], and THEIA (a novel detector

concept with water based liquid scintillator, 10% liquid

scintillator and 90% water, that can detect and distinguish

between Cerenkov and the scintillation light) [49].

In order to project the exclusion and discovery reaches, it

is necessary to make choices regarding the statistical tools

to be employed. Indeed, the results for such projections are

only meaningful in the context of those choices. Here,

we are interested in counting experiments with multiple

independent channels with different signal rates and back-

grounds, with uncertainties.

Our statistical analysis choices are guided by several

requirements.

(i) We aim for statistical measures that avoid reporting

an exclusion or discovery when the experiment is

actually not sensitive to the physics signal hypoth-

esis under investigation. As we will discuss, pure

frequentist statistics can suffer from this problem.

(ii) We choose statistical measures such that the pres-

ence of a noninformative channel (one with a much

higher background and/or a much lower signal rate

than other channels) does not unduly affect the

exclusion or discovery conclusion.

(iii) We avoid statistical measures that contain the subtle

flaw that they could counterintuitively imply a
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greater sensitivity for an experiment if it increases

its background.

Regarding this last point, in a previous paper [50], we

have discussed the fact that the median expected signifi-

cance for discovery or exclusion has just such a counter-

intuitive flaw in the context of frequentist p-values for a
single-channel counting experiment. We proposed a sol-

ution to that problem. As we will see below, this type of

problem also occurs in the case of multichannel counting

experiments, and can be avoided using Bayesian-

motivated statistical measures.

For these reasons, Sec. II of this paper is devoted to a

rather extensive discussion of the statistical issues asso-

ciated with multichannel counting experiments with back-

ground and nuisance parameter uncertainties, in which we

highlight some of the problems that can occur and explain

our choices of statistical tools in a general context. In

Sec. III we apply these statistical measures to discuss

the present exclusions from Super-Kamiokande, and we

project exclusion and discovery prospects for proton decay

at DUNE, JUNO, Hyper-Kamiokande, and THEIA, for the

proton decay modes p → eþπ0 and p → ν̄Kþ. Section IV

summarizes our findings for exclusion and discovery

prospects for runtimes of 10 and 20 years.

II. STATISTICS FOR DISCOVERY AND

EXCLUSION

A. Basic definitions

In this paper we are concerned with new physics signals

and backgrounds, which are both assumed to occur as

random discrete events governed by Poisson statistics,

possibly in multiple independent channels. In general,

given data resulting from an experiment, the significance of

a possible exclusion or discovery can be given in terms of a

p-value, defined as the probability of obtaining a result of

equal or greater incompatibility with a null hypothesis H0.

In high-energy physics, the p-value is often conventionally
reported as a significance, defined by

Z≡
ffiffiffi

2

p
erfc−1ð2pÞ; ð2:1Þ

which in the special case of a Gaussian distribution would

coincide with the number of standard deviations.

The assumption for discovery is that the null hypothesis

is a background-only hypothesis H0 ¼ Hb, while for

exclusion the null hypothesis is a signal plus background

model H0 ¼ Hsþb. Consider a test-statistic Q defined in

such a way that larger Q is more signal-like and smaller Q
is more background-like. In a single-channel counting

experiment, for example, Q is simply the number of

observed events. Then, for an experimental outcome Qobs,

one has the p-value for discovery:

pdisc ¼ PðQ ≥ QobsjHbÞ; ð2:2Þ

and the p-value for exclusion:

pexcl ¼ PðQ ≤ QobsjHsþbÞ: ð2:3Þ

In a frequentist approach, the p-value for a given data

outcome is often used to provide a quantitative measure of

the credence we give toH0. However, the p-value cannot be
directly interpreted as the probability that the null hypothesis

is true, given the data. Nevertheless, small p-values are

considered a measure of evidence against H0 in frequentist

statistics. In particle physics, two popular standards for

exclusion are to require that pexcl < 0.10 or 0.05, commonly

referred to as 90% or 95% exclusion. For rejection of the

background-only hypothesis in favor of some new model,

a higher standard is almost always required, with either

Zdisc > 3 ðpdisc < 0.001350Þ for “evidence,” or Zdisc > 5

ðpdisc < 2.867 × 10−7Þ for “discovery”.
In high energy physics experiments in the 21st century,

starting with the Higgs boson searches at the LEP e−eþ

collider and for all kinds of searches for new phenomena

at the Large Hadron Collider (LHC), it has become very

common to use a modified frequentist statistical measure

for exclusion, called the CLs method. This is a more

conservative approach to assigning exclusion significances

than pexcl. The idea of CLs [51–54] is to divide the usual

p-value for exclusion by the p-value that would be

obtained with the signal assumed absent:

CLsðQobsÞ ¼
PðQ ≤ QobsjHsþbÞ
PðQ ≤ QobsjHbÞ

: ð2:4Þ

A specific motivation for using CLs rather than pexcl is to

avoid reporting an exclusion in cases for which the

experiment is actually not sensitive to the purported signal

hypothesis, but the observed data has a small p-value
anyway. This can occur, for example, in a counting

experiment if the observed number of events is significantly

smaller than the background estimate, as we will discuss in

detail shortly.

Note that, by design, CLs is not a p-value or even a

probability, but rather a ratio of probabilities. Nevertheless,

the exclusion is reported using CLs in place of the

exclusion p-value, so that one reports 95% (or 90%)

exclusion if CLs < 0.05 (or 0.1). Because the denominator

is always less than 1, the modified frequentist measure CLs

is always more conservative in reporting exclusions than

the frequentist p value, in the sense that using it reduces the

false exclusion rate compared to using pexcl. In particle

physics literature, CLs was introduced in Ref. [51] and

detailed (along with its advantages, reviewed and illustrated

below) in Refs. [52–54].

It is also useful to have a counterpart to the pdisc statistic

that similarly guards against claiming discovery in situa-

tions where the experiment is not sensitive to the signal

model. In Ref. [55], an approach to discovery significance
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was proposed using the Bayes factor [56–58] of the

null hypothesis H0 ¼ Hb to the alternative hypothesis

H1 ¼ Hsþb. For an experiment investigating a putative

signal with strength s, the Bayes factor B01 is (using the

probabilities in place of the likelihoods, to which they are

proportional):

B01 ¼
PðQobsjHbÞ

R

∞
0

ds0πðs0ÞPðQobsjHs0þbÞ
; ð2:5Þ

where πðs0Þ is a Bayesian prior probability distribution for

the signal strength. As mentioned in [55], this expression is

only meaningful in the case of a prior that is proper, i.e.,
R

∞
0

ds0πðs0Þ ¼ 1, since otherwise the arbitrary normaliza-

tion of an improper prior would make the Bayes factor B01

also arbitrary. This precludes the use of a flat prior, for

example. For a single-channel counting experiment with

background mean b, that reference argues in favor of the

proper prior πðs0Þ ¼ b=ðs0 þ bÞ2, referred to as the objec-

tive signal prior. However, we find it counterintuitive to use

a prior for the signal that depends on the background.

Instead, we choose simply πðs0Þ ¼ δðs0 − sÞ, expressing
certainty in the prediction of the signal model. If the signal

model prediction is not perfectly well known, it is

straightforward to generalize this with an appropriate πðs0Þ.
We therefore define the simple likelihood ratio statistic for

the confidence level in the discovery,

CLdiscðQobsÞ ¼
PðQobsjHbÞ
PðQobsjHsþbÞ

: ð2:6Þ

While various scales have been proposed (see, e.g., Jeffreys’

in [58] and Kass and Raftery’s in [57]) to interpret the Bayes

factor as a measure of evidence in favor of or against a null

hypothesis, we propose to use CLdisc in place of p in

Eq. (2.1) to obtain a discovery significance Z, in exactly the

same way that a frequentist pdisc would be used. As we will

illustrate below, our choice gives results that are always more

conservative than the significances obtained from pdisc. This

is very similar to the way the modified frequentist measure

CLs is now commonly used in place of p in Eq. (2.1) to

report an exclusion significance that is always more

conservative than that of the standard frequentist method,

even though CLs, like CLdisc, is not a probability.

B. Single-channel counting experiments

To illustrate the statistical methods discussed above let

us consider the special case of a simple experiment that

counts the number of events n, with signal and background
modeled as independent Poisson processes with means s
and b respectively. For a mean μ, the Poisson probability to

observe n events is

PðnjμÞ ¼ μne−μ

n!
: ð2:7Þ

Therefore, in the idealized case of perfectly known back-

ground, the p-value for discovery is the probability that

data generated under hypothesis H0 ¼ Hb is equally or

more signal-like than the actual observed number of

events n:

pdiscðn; bÞ ¼
X

∞

k¼n

PðkjbÞ ¼ γðn; bÞ=ΓðnÞ: ð2:8Þ

The p-value for exclusion is the probability that data

generated under hypothesis H0 ¼ Hsþb is equally or

more backgroundlike than the actual observed number of

events n:

pexclðn;b;sÞ ¼
X

n

k¼0

PðkjsþbÞ ¼ Γðnþ 1; sþbÞ=Γðnþ 1Þ:

ð2:9Þ

In these equations, γðz; xÞ and Γðz; xÞ are the lower

and upper incomplete gamma functions, respectively,

defined by

γðz; xÞ ¼
Z

x

0

dt tz−1e−t; Γðz; xÞ ¼
Z

∞

x

dt tz−1e−t;

ð2:10Þ

so that ΓðzÞ ¼ γðz; xÞ þ Γðz; xÞ is the ordinary gamma

function.

The CLs statistic for exclusion in this case is

CLsðn; b; sÞ ¼
pexclðn; b; sÞ
pexclðn; b; 0Þ

¼ Γðnþ 1; sþ bÞ
Γðnþ 1; bÞ : ð2:11Þ

This is larger than pexclðn; b; sÞ by a factor Γðnþ 1Þ=
Γðnþ 1; bÞ.
Figure 1 illustrates the idea of the CLs method [51–54].

In the figure, pexclðn; b; sÞ (the shaded area under the blue

histograms) is divided by pexclðn; b; 0Þ (the shaded area

under the red histograms) to give CLs. The first panel

shows the case b ¼ 2.2, s ¼ 8.4, and n ¼ 5. In situations

like this, where the Hb and Hsþb hypothesis distributions

do not have much overlap, pexcl and CLs evaluate to very

similar results due to the denominator of the CLs definition

being close to 1. For this particular case, one finds pexcl ¼
0.0475 and CLs ¼ 0.0487, and by either criterion one

would report a better than 95% exclusion.

The second panel of Fig. 1 illustrates the case b ¼ 8.4,

s ¼ 2.2, and n ¼ 5, so that the overlap between the

distributions for Hb and Hsþb is much larger. In cases

like this with a larger overlap (i.e., the signal regions get

polluted by the background) statistical conclusions based

on pexcl alone can be too aggressive. Since we engineered

this example to have the same bþ s and n as for the first
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panel, we get the same
1
pexcl ¼ 0.0475, which taken at face

value would again give a better than 95% exclusion.

However, proponents of the CLs criteria point out that

here it must be recognized that for b ¼ 8.4, the outcome

n ≤ 5 would have been a low-probability occurrence no

matter what
2
the signal mean s was. Thus, the frequentist

pexcl is really telling us more about the observed data than

making a useful statement about the signal hypothesis.

One finds that CLs ¼ 0.3022, and using this one would,

sensibly and conservatively, refrain from excluding the

signal hypothesis.

In fact, no matter the outcome for n, the experiment with

b ¼ 8.4 simply lacks the statistical ability to exclude the

s ¼ 2.2 signal model at 90% confidence, according to

the CLs statistic. This can be seen by computing it for

the least signal-like outcome, n¼0, which gives CLs ¼
0.1108. One possible practical interpretation of the very

small pexcl in such cases with n significantly less than b
might be that the background estimate could be wrong for

reasons unknown, while another is that the background

simply fluctuated low from its true mean. In any case,

the intuitive interpretation of the CLs statistic is that the

quoted significance for exclusion should be reduced

from the usual frequentist value, due to the large overlap

between the signalþ background region and the

background-only region.

Indeed, if the number of events is sufficiently small,

one finds that the usual frequentist p-value would corre-

spond to an exclusion even in cases that defy sensible

practical interpretation. Considering the case n ¼ 0 more

generally, one finds pexclðn ¼ 0; s; bÞ ¼ e−ðsþbÞ, which

becomes arbitrarily small for any fixed s, if b is sufficiently

large. One could use this to make an absurd claim of

exclusion for a model that predicted s ¼ 10−500 or even

s ¼ 0 exactly, simply by observing a smaller than expected

number of events, if the background is large enough. In

contrast, usage of the statistic CLsðn ¼ 0; b; sÞ ¼ e−s con-
forms to the intuitively reasonable idea that, as an absolute

prerequisite for excluding a signal hypothesis, the expected

signal strength must not be too small. Specifically,

only models that predict s > − lnð0.05Þ ≈ 2.996 can be

excluded at 95% confidence according to the CLs measure,

for any b and for any possible experimental outcome n.
Similarly, 90% exclusion by the CLs method requires

s > − lnð0.1Þ ≈ 2.303.

The dependence of the exclusion significance on b is

shown for fixed s ¼ 4 and n ¼ 0, 1, 2, 3 in Fig. 2. For very

small b, the two statistics are nearly equal, pexcl ≃ CLs. For

any fixed n, in the limit of large b one has CLs ¼ e−s, while
pexcl becomes absurdly small in comparison, which would

imply an absurdly large Zexcl.

FIG. 1. Illustration of the idea of the CLs statistic for exclusion

as an improvement over pexcl. The Poisson distributions PðkjμÞ
are generated under the hypotheses that signal and background

are both present μ ¼ sþ b (blue histograms) and that the signal is

absent μ ¼ b (red histograms). For the observed number of events

n, pexclðn; b; sÞ [from Eq. (2.9)] is shown by the shaded area part

under the blue histogram, and pexclðn; b; 0Þ is the shaded area part
under the red histogram, while CLs [from Eq. (2.11)] is their

ratio. In the first plot, the Poisson means of the signal and

background are taken to be s ¼ 8.4 and b ¼ 2.2, respectively,

while in the second plot they are s ¼ 2.2 and b ¼ 8.4. In both

plots, the observed number of events is n ¼ 5. In the first plot,

there is little overlap between the distributions from the Hb and

Hsþb hypotheses, and pexcl ¼ 0.0475 and CLs ¼ 0.0487, so one

would report better than 95% exclusion using either criterion. In

the second plot, the overlap is much larger. Although pexcl ¼
0.0475 is the same (since sþ b and n did not change), one finds

CLs ¼ 0.3022, and one refrains from reporting an exclusion of

the hypothesis Hsþb.

1
The general fact that pexclðn; b; sÞ depends only on the sum

sþ b, and not on s or b separately, is a clear reason to reject it as a
measure of confidence in the presence of the signal model,
because it says that any exclusion for signal s and background b
would imply an equally strong exclusion for the case that the
signal is s ¼ 0 if the background b were increased by the
numerical value of s.

2
Here we are taking it as a requirement that s ≥ 0, although in

some situations quantum interference with the background could
allow for s < 0. See, for example, the case of a digluon resonance
at the LHC [59].
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Nonobservation of a significant excess above back-

ground expectations can be used to constrain new physics.

In particular, for a single-channel counting experiment,

the minimum signal needed to claim an exclusion at a

given confidence level 1 − α, equivalent to significance

Z ¼
ffiffiffi

2
p

erfc−1ð2αÞ, for a perfectly known background

mean b, is obtained [60,61] by solving for s in either

α ¼ Γðnþ 1; sþ bÞ
Γðnþ 1Þ ðpexcl methodÞ ð2:12Þ

in the standard frequentist approach, or

α ¼ Γðnþ 1; sþ bÞ
Γðnþ 1; bÞ ðCLsmethodÞ ð2:13Þ

in the modified frequentist approach. Figure 3 shows the

90% C.L. (α ¼ 0.1, left panel) and 95% C.L. (α ¼ 0.05,

right panel) upper limits on signal as functions of the

background mean, for a fixed number of observed events

n ¼ 0, 1, 2, using the pexcl (red lines) and CLs (blue lines)

criteria. Also shown in the figure are the 90% C.L. and

95% C.L. upper limits on s that are obtained using the

Feldman-Cousins (FC) method based on an ordering

principle introduced in Ref. [62]. The upper limits obtained

by the FC method for a fixed n do not always decrease with

increasing b; instead they have a sawtooth pattern, as can be
seen from the dotted lines in the figure. This behavior is

because of the discreteness of Poisson distributions. The

solid black lines in Fig. 3 show the results obtained by the

FC method after requiring them to be nonincreasing as a

function of background mean.

It is clear from the figure that the upper limits on s
obtained using the standard frequentist pexcl approach are

FIG. 2. Comparison of significances Z obtained using Eq. (2.1)

from pexcl [dashed lines, from Eq. (2.9)] and CLs [solid lines,

from Eq. (2.11)], for fixed s ¼ 4 as a function of varying b, for
n ¼ 0, 1, 2, and 3. For very small b, the two statistics are nearly

equal, pexcl ≃ CLs. In the limit of large b one has CLs ¼ e−s,
independent of n, while pexcl becomes absurdly small in

comparison.

FIG. 3. The 90% C.L. (left panel) and 95% C.L. (right panel) upper limits on signal as functions of the background mean b, for a fixed
number of observed events n ¼ 0, 1, 2, using the CLs technique [blue lines, from Eq. (2.13)], standard frequentist p-value approach [red
lines, from Eq. (2.12)], and Feldman-Cousins method [solid black lines, from Ref. [62]]. The dotted black lines show the results

obtained by the Feldman-Cousins method before requiring them to be nonincreasing as a function of background mean.
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the least conservative, and can even go negative in the case

where the number of observed events n is small compared

to the expected background mean. For a fixed n, despite the
upper limits given by the CLs and FC methods being very

different from each other, we note that they are both almost

flat at very small backgrounds and then decrease slowly (or

stay constant) as a function of background, always remain-

ing positive. For small b the FC upper limits are more

conservative, and for large b, the CLs upper limits are more

conservative. The other striking difference between these

two upper limits is that, for n ¼ 0, the FC upper limits

decrease with b, but the CLs upper limits are independent

of b. In particular, at a chosen confidence level 1 − α, for

n ¼ 0 the CLs upper limit on s is − lnðαÞ. The same result

also holds for any n in the limit that the background is

extremely large. At 90% (95%) C.L., the upper limit

given by CLs for n ¼ 0, or for any n as b → ∞, is around

2.303 (2.996). On the other hand, the upper limit given by

the FC method decreases as a function of b and approaches

a constant value at large b. For example, for n ¼ 0, the

90% (95%) C.L. upper limit given by the FC method, after

requiring it to be nonincreasing as a function of b, is

approximately 0.8 (1.34) at large b.
It is important for the following that the result for

CLsðn; b; sÞ in the case of a single Poisson channel in

Eq. (2.11) can also be obtained [63] as a Bayesian credible

interval, using a flat prior for the signal and likelihoods

Lðsjn; bÞ ∝ Pðnjsþ bÞ:

CLexclðn; b; sÞ ¼
R

∞
s ds0Lðs0jn; bÞ
R

∞
0

ds0Lðs0jn; bÞ

¼
R

∞
s ds0e−ðs

0þbÞðs0 þ bÞn
R

∞
0

ds0e−ðs
0þbÞðs0 þ bÞn

: ð2:14Þ

Performing the integrations, CLexclðn; b; sÞ as defined by

Eq. (2.14) is precisely equal to CLsðn; b; sÞ as defined by

Eq. (2.11).
3
However, despite the numerical equivalence,

the interpretation is quite different, since the ratio of

frequentist p-values is not directly a Bayesian confidence

interval. Moreover, the equivalence between CLs and

CLexcl is only approximate in more complicated general-

izations. Looking ahead to the case of experiments which

collect counts in multiple independent channels governed

by Poisson statistics, and which may have nuisance

parameters including uncertainties in the backgrounds,

we will argue for a generalization based straightforwardly

on the Bayesian version CLexcl as given in Eq. (2.14)

rather than CLs given in Eq. (2.4) or its specialization

Eq. (2.11).

For a single-channel counting experiment, the discovery

confidence level statistic defined in Eq. (2.6) becomes

CLdiscðn; b; sÞ ¼
PðnjbÞ

Pðnjbþ sÞ ¼
es

ð1þ s=bÞn ; ð2:15Þ

which can be used in place of p in Eq. (2.1) to obtain a

discovery significance. (If the result is greater than 1,

then clearly no discovery claim should be contemplated.)

Note that unlike pdiscðn; bÞ, the result for CLdiscðn; b; sÞ
depends on the strength of the signal whose discovery is

under investigation. It is always more conservative than

pdiscðn; bÞ in claiming discovery, just as CLs is more

conservative than pexcl in claiming exclusion. For example,

in the extreme case s ¼ 0, one has CLdiscðn; b; s ¼ 0Þ ¼ 1

for any b and n, so one would never claim discovery using

that criteria. In contrast, the frequentist statistic pdiscðn; bÞ
can be arbitrarily small, implying an arbitrarily large

discovery significance Z, even in situations where the

physics provides absolutely no possible source for a

signal.
4
As we will see below, CLdisc also generalizes more

straightforwardly to cases that have multiple independent

channels governed by Poisson statistics, and which may

have nuisance parameters including uncertainties in the

backgrounds.

Figure 4 compares the discovery significance obtained

from pdisc and CLdisc as a function of s for fixed n, with
different curves for different values of b. Note that the

discovery significance obtained from CLdisc, which is

always more conservative than that of pdisc, is maximized

at s ¼ n − b.
Given the number of observed events n and an expected

background mean, the standard p-value for discovery pdisc

does not depend on the signal. So, for a perfectly known

background mean b, we can compute the number of events

needed for discovery at a significance Z by solving for n
from [see Eqs. (2.1) and (2.8)]

1

2
erfc

�

Z
ffiffiffi

2
p

�

¼ γðn; bÞ
ΓðnÞ ðpdisc methodÞ: ð2:16Þ

On the other hand, CLdisc depends also on the signal,

in which case the number of events needed for discovery

for a known background b and signal mean s at a given

significance Z can be obtained by solving for n from [see

Eqs. (2.1) and (2.15)]

3
If the signal mean is instead allowed to be negative with

sþ b ≥ 0 (see previous footnote), then CLexclðn; b; sÞ can be

defined as CLexclðn; b; sÞ ¼
R

∞

s
ds0e−ðs

0þbÞðs0þbÞn
R

∞

−b
ds0e−ðs

0þbÞðs0þbÞn
. After performing

the integrations, CLexclðn; b; sÞ is now precisely equal to
pexclðn; b; sÞ as defined in Eq. (2.9).

4
For example, imagine a search for a new fundamental particle

of mass 1 TeV, conducted by dropping a bag of hammers from the
top of a tall building, with a somewhat noisy detector surrounding
the impact point on the sidewalk. For this experiment, theoretical
modeling confidently predicts s ¼ 0, so one should reasonably
refrain from announcing discovery even if one estimated
b ¼ 0.01 and observed n ¼ 3.
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1

2
erfc

�

Z
ffiffiffi

2
p

�

¼ es

ð1þ s=bÞn ðCLdiscmethodÞ: ð2:17Þ

Figure 5 shows the observed number of events required for

Z ¼ 3 evidence (left panel) and Z ¼ 5 discovery (right

panel) given by the pdisc approach (solid black lines), and

the CLdisc approach for two choices of the signal mean

s ¼ 2 (dashed red lines) and 10 (dashed blue lines) as

functions of b. It is clear from the figure that, for a given

background mean, the observed number of events needed

for discovery given by the CLdisc approach are at least as

large as the result given by the pdisc criterion, and often

much larger when the background is not very small.

We now turn to the question of projecting expectations

for exclusion and discovery at ongoing and future experi-

ments. In simulations or assessments of a proposed experi-

ment, one considers the statistics of pseudodata generated

under an alternative hypothesis H1. For assessments of

prospects for exclusion the alternative hypothesis is that the

FIG. 5. The observed number of events n needed for Z ¼ 3 evidence (left panel) and Z ¼ 5 discovery (right panel) as functions of the

expected background mean b. The solid black lines show the result obtained from Eq. (2.16) using the standard frequentist approach

based on pdisc, which is independent of the signal mean s. The dashed red and blue lines show the results obtained from Eq. (2.17) using

CLdisc for the cases of signal mean s ¼ 2 and 10, respectively.

FIG. 4. Comparison of discovery significances obtained using Eq. (2.1) from pdisc [dashed lines, from Eq. (2.8)] and CLdisc [solid

lines, from Eq. (2.15)] as a function of s for n ¼ 3 (left panel) and n ¼ 10 (right panel), for various choices of b.
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signal source is absent, H1 ¼ Hb, while for discovery, the

pseudodata is generated assuming that both signal and

background are present, H1 ¼ Hsþb.

A common way to project an expected result is to set the

number of events n equal to the median expected value under

the hypothesis H1. However, due to the discrete nature of

Poisson statistics events, the median expected outcome has

the striking flaw that it can predict smaller significances if an

experiment takes more data or reduces its background. This

counterintuitive feature of the median expected significance

was pointed out and studied in detail in Refs. [64,65], and

in [50] where it was referred to as the “sawtooth problem”. It

occurs for the median expected CLs and CLdisc as well. The

sawtooth behavior of the median expected CLs and CLdisc as

a function of the background mean b, for various values of
signal mean s, is evident from Fig. 6. For comparison, Fig. 6

also show the significances obtained from the exact Asimov

expected CLs and CLdisc (dashed lines), detailed below, that

are smooth and sensible.

Therefore, in Ref. [50], we proposed instead to use

an exact Asimov approach for projecting sensitivities of

planned experiments, where the observed number of events

n is replaced by its mean expected value hnexcli ¼ b
for exclusion and hndisci ¼ sþ b for discovery. From

Eqs. (2.9) and (2.11) we thus obtain for the expected

exclusion in the case of a single-channel counting experi-

ment with signal and background means s and b:

pA
excl ¼

Γðbþ 1; sþ bÞ
Γðbþ 1Þ ; ð2:18Þ

CLA
s ¼ CLA

excl ¼
Γðbþ 1; sþ bÞ
Γðbþ 1; bÞ ; ð2:19Þ

Similarly, for the expected discovery significance, we

obtain from Eqs. (2.8) and (2.15):

pA
disc ¼

γðsþ b; bÞ
Γðsþ bÞ ; ð2:20Þ

CLA
disc ¼

es

ð1þ s=bÞsþb
: ð2:21Þ

Figure 7 compares the exact Asimov expected significances

obtained from frequentist (dashed lines) and modified

frequentist CLs=Bayesian CLdisc (solid lines) confidence

levels, for both exclusion (left panel) and discovery (right

panel) cases. This illustrates the more general fact that CLs

and CLdisc are more conservative than pexcl and pdisc,

respectively.

In order to project expected exclusions based on the pexcl

or CLs approaches, we set Eq. (2.18) or (2.19) equal to the

desired α ¼ 0.10 or 0.05, and then solve for s. We also

consider projections based on the FC method, in two

different ways. One is the Feldman-Cousins experimental

sensitivity, advocated within Ref. [62], that is defined as the

arithmetic mean of the upper limits obtained by the FC

method at a chosen confidence level
5
sULFC ðn; bÞ in a large

FIG. 6. Median (solid lines) and exact Asimov (dashed lines) expected significances obtained using Eq. (2.1) from CLs ¼ CLexcl

[from Eqs. (2.11) and (2.19)] for exclusion (left panel) and CLdisc [from Eqs. (2.15) and (2.21)] for discovery (right panel), as a function

of the background mean b for various values of signal mean s, for a single-channel Poisson counting experiment. Due to the discrete

nature of Poisson statistics, the median expected significances suffer from a sawtooth behavior. On the other hand, the exact Asimov

expected significances behave sensibly as they decrease monotonically with b.

5
These upper limits on signal are defined in Ref. [62], and are

shown as a function of background b for n ¼ 0, 1, 2 with solid
black lines in Fig. 3.
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number of pseudoexperiments with data generated under

background-only hypothesis
6
:

FC sensitivity ¼
X

∞

n¼0

PðnjbÞsULFC ðn; bÞ: ð2:22Þ

The other way is to simply compute the upper limit on

signal given by the FCmethod with the observed number of

events taken to be the nearest integer to the expected

background mean n ¼ roundðbÞ.7 We consider the latter

for future reference, as it was alluded to in Ref. [67]

while projecting exclusion sensitivity for proton decay in

p → ν̄Kþ channel at DUNE.

In Fig. 8, we compare the expected 90% C.L. (left

panels) and 95% C.L. (right panels) upper limits on the

signal mean s, obtained using the exact Asimov CLs (blue

lines) and pexcl (red lines), FC experimental sensitivity
8

(green lines), and FC upper limit with n ¼ roundðbÞ (black
lines). We note the following from the figure. First, unlike

the case with the observed upper limits (i.e., fixed n), the
pexcl method gives sensible positive expected upper limits

with the exact Asimov approach for all b, but still is less
conservative than the CLs and FC sensitivity results.

Second, the upper limit given by the FC method with

n ¼ roundðbÞ suffers from a sawtooth problem and is

therefore counterintuitive and flawed as a method of

comparing experimental prospects for different scenarios,

as it implies that an experiment could become more

sensitive if it had larger background. Finally, the FC

sensitivity and the upper limits given by exact Asimov

CLs are both sensible as they increase monotonically

with b, and are also comparable at small backgrounds.

At large backgrounds, however, the FC sensitivity is

slightly more conservative. We also note that CLs upper

limits are much easier to evaluate than the FC upper limits.

We now turn to the issue of prospects for discovery,

using the exact Asimov criterion. The signal mean needed

for an expected discovery at a significance Z is given by the

solution for s in setting Eq. (2.20) for pdisc, or (2.21)

for CLdisc, equal to
1

2
erfcð Z

ffiffi

2
p Þ for the desired Z. Figure 9

compares the signals s needed for an expected Z ¼ 3

evidence or Z ¼ 5 discovery, as a function of background

mean b, based on pA
disc and CL

A
disc. We note that as expected

the results from CLA
disc are more conservative than those

obtained from pA
disc.

For very small b, note that for Z ¼ 3 the s needed in

Fig. 9 is actually less than 1. Here, it is important to note

FIG. 7. The exact Asimov expected significances obtained from frequentist p-values (dashed lines) and modified frequentist

CLs=Bayesian CLdisc confidence levels (solid lines), converted to significances Z using Eq. (2.1), for a single-channel Poisson counting

experiment. Results are presented as functions of the background mean b for various values of signal mean s. The term “exact Asimov”

means that we set the number of events equal to the mean expected according to the hypothesis H1, so n ¼ b for exclusion and

n ¼ sþ b for discovery. The left panel compares pA
excl to CL

A
s for exclusion, from Eqs. (2.18) and (2.19). The right panel compares pA

disc

to CLA
disc for discovery, from Eqs. (2.20) and (2.21).

6
An implementation of the Feldman-Cousins method to

evaluate the upper limits and the experimental sensitivity,
advocated within Ref. [62], is made available with the Zstats
v2.0 package [66].

7
When rounding half-integral values of b¼0.5;1.5;2.5;3.5;…,

we follow the IEEE 754 standard of taking the nearest even integer
such that roundðbÞ ¼ 0; 2; 2; 4;….

8
In evaluating the FC sensitivity, we used the upper limits

obtained by the Feldman-Cousins method for a fixed n before
requiring them to be nonincreasing as a function of background
mean. This does not make much difference as the FC upper limit
differs from its nonincreasing (with b) version only when the
number of observed events are few compared to the expected
background mean b, for which the probability of occurrence is
small and will rapidly fall off for even smaller n.
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that the discovery statistics pdisc and CLdisc are not well

defined in the strict background-free limit b → 0.

Specifically,

pdiscðn; 0Þ ¼
�

0 if n ≠ 0

1 if n ¼ 0;
ð2:23Þ

CLdiscðn; 0; sÞ ¼
�

0 if n ≠ 0; s ≠ 0

1 otherwise:
ð2:24Þ

Since hndisci ¼ s for b ¼ 0, the above implies that the exact

Asimov expected discovery significances are both infinite,

ZðpA
discÞ ¼ ZðCLA

discÞ ¼ ∞, for any nonzero s (however

small). However, as a practical matter, it is clearly unrea-

sonable to suggest an expectation of a discovery if the mean

expected number of signal events is much less than 1.

Therefore, in order to be conservative, in cases with an

extremely small background we can impose an additional

requirement that Pðn ≥ 1Þ should be greater than some

fixed value in order to claim an expected discovery.

FIG. 8. The expected 90% C.L. (left panels) and 95% C.L. (right panels) upper limit on signal as a function of the background mean,

using the exact Asimov modified frequentist CLs [blue lines, from Eq. (2.19)] and standard frequentist p-value [red lines, from

Eq. (2.18)], the Feldman-Cousins experimental sensitivity [green lines, from Ref. [62] and Eq. (2.22)], and the Feldman-Cousins method

from Ref. [62] with n ¼ roundðbÞ [black lines]. The top and bottom panels show the same information but with logarithmic and linear

scales, respectively, for b.
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Figure 10 shows the probability of observing at least

one event,

Pðn ≥ 1Þ ¼
X

∞

n¼1

PðnjsÞ ¼ 1 − e−s; ð2:25Þ

as a function of signal mean s. For example, if we require

Pðn ≥ 1Þ > ð50%; 63.2%; 95%Þ then the signal mean has

to be s > ð0.693; 1.0; 2.996Þ respectively. Requiring

s > ln 2 ≈ 0.693 guarantees the median number of events

is at least 1, and s > 1 guarantees the expected mean

number of events hndisci > 1.

C. Exclusion for multichannel counting experiments

Consider a counting experiment with N independent

channels. For each channel i ¼ 1;…; N, the background

and possible signal are assumed to be governed by Poisson

distributions with means bi and si. For future convenience,
we define

s ¼
X

N

i¼1

si; ð2:26Þ

ri ¼ si=s; ð2:27Þ

so that s is the total mean expected signal in all channels,

and the ri are the expected fractions of the total signal

events for each channel.

Given an observation fnig, the p-value for exclusion is
9

pexclðn⃗; b⃗; s⃗Þ ¼
X

fkig

Y

N

i¼1

Pðkijsi þ biÞ; ð2:28Þ

where the sums over non-negative integer numbers of

events fkig are restricted according to the condition that

Qðk⃗Þ ≤ Qðn⃗Þ; ð2:29Þ

FIG. 9. The signal needed for an expected Z ¼ 3 evidence (lower curves) or Z ¼ 5 discovery (higher curves), as a function of

background mean b, using the exact Asimov pdisc [red lines, from Eq. (2.20)] and CLdisc [blue lines, from Eq. (2.21)].

FIG. 10. Probability of observing at least one event obtained

from Eq. (2.25), as a function of the signal mean s, in the case

with no background b ¼ 0.

9
In the following we use n⃗ as the argument of a function to

denote the dependence on the full set fnig. This applies similarly

for b⃗ and s⃗ to represent the dependences on fbig and fsig.
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where Q is an appropriately chosen test-statistic with the

property that larger Q is more signal-like.

We can also compute:

pexclðn⃗; b⃗; 0Þ ¼
X

fkig

Y

N

i¼1

PðkijbiÞ; ð2:30Þ

with the same restrictions on ki as in Eq. (2.29). Then

we have

CLsðn⃗; b⃗; s⃗Þ ¼
pexclðn⃗; b⃗; s⃗Þ
pexclðn⃗; b⃗; 0Þ

; ð2:31Þ

which is interpreted as the confidence level in the hypoth-

esis that the signal is present.

For the single channel case, the obvious choice for Q is

the observed number of events, but in the multichannel case

one can consider different choices for Q. A simple and

good choice
10

of test-statistic Q is the likelihood ratio,

qðn⃗; b⃗; s⃗Þ ¼
Y

N

i¼1

Pðnijsi þ biÞ
PðnijbiÞ

; ð2:32Þ

which simplifies to

q ¼
Y

N

i¼1

e−si

�

1þ si

bi

�

ni
: ð2:33Þ

It is more convenient to use instead

Q ¼ lnðqÞ ¼ −sþ
X

N

i¼1

ni lnð1þ si=biÞ; ð2:34Þ

which gives exactly the same results for pexcl and CLs as

Q ¼ q, since lnðqÞ increases monotonically with q. The
contribution −s is an irrelevant constant (independent of

the data fnig), so the use of Q ¼ lnðqÞ amounts to taking

the sum of the individual ni’s, but weighting each of the

channels by the factor wi ¼ lnð1þ si=biÞ. This means that,

using Eq. (2.34) in Eq. (2.29), the restriction on the fkig
appearing in the sums in Eqs. (2.28) and (2.30) becomes:

X

N

i¼1

ðni − kiÞ lnð1þ si=biÞ ≥ 0: ð2:35Þ

In contrast, the Bayesian way is to define, as a gener-

alization of Eq. (2.14):

CLexclðn⃗; b⃗; s⃗Þ ¼
R

∞
s ds0

Q

N
i¼1

Pðnijris0 þ biÞ
R

∞
0
ds0

Q

N
i¼1

Pðnijris0 þ biÞ
: ð2:36Þ

Unlike in the special case of a single channel, CLexclðn⃗; b⃗; s⃗Þ
defined in thisway is not exactly equal toCLsðn⃗; b⃗; s⃗Þ defined
by Eq. (2.31). Therefore, we will now study some simple test

cases to illustrate the differences.

First, let us consider what happens when there are

two channels, one of which (the “bad,” or noninformative

channel) has a much lower signal and higher background

than the other (the “good channel”). As a specific numerical

case, suppose:

b1¼2; s1¼7; n1¼2; ðgood channelÞ; ð2:37Þ

b2 ¼ 10; s2 ¼ 0.01; n2 ¼ varying; ðbad channelÞ:
ð2:38Þ

In this case, because the bad channel 2 has a tiny expected

signal s2 and a large background b2, one intuitively expects
it to provide essentially no information about the correct-

ness of the signal hypothesis, no matter what n2 is

observed. Considering only the good channel 1, we obtain

pexcl ¼ 0.006232; Zexcl ¼ 2.4987 ðchannel1aloneÞ;
ð2:39Þ

CLs ¼ CLexcl ¼ 0.009210;

Zexcl ¼ 2.3571; ðchannel 1 aloneÞ: ð2:40Þ

However, combining both channels using the formu-

las (2.28), (2.31), and (2.36) above, we have the results

shown in the left panel of Fig. 11. Counterintuitively,

adding another channel with a larger background and

almost no expected signal has increased our confidence

in the exclusion as measured by either the frequentist pexcl

or the modified frequentist CLs measures, when n2 is small.

In contrast, CLexcl behaves as intuitively expected; the

result obtained including both channels is numerically

almost independent of n2 and almost identical to the result

obtained only from channel 1.

To understand the origin of this counterintuitive effect

for pexcl and CLs, let us consider which integers k1, k2
contribute to the sums in Eqs. (2.28) and (2.30). In general,

k1 ¼ 0 and 1 each contribute for a very large range of k2, so
that very nearly we have a factor

P

∞
k2¼0

Pðk2js2 þ b2Þ ≈ 1

for channel 2 in Eq. (2.28). However, for k1 ¼ n1 ¼ 2, we

only get a factor of
Pn2

k2¼0
Pðk2js2 þ b2Þ < 1 contributing

to the p-values. The problem boils down to this fact: for the

contributions with k1 ¼ n1, only a subset of the k2 values
contribute, even though any result for k2 should give us

essentially no information about the presence of the (tiny)

signal. This explains why the counterintuitive problem

10
There are other choices, including the profile likelihood

ratio, but these are more complicated and end up giving very
similar (and often identical) results.
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disappears for reasonably large n2, where we see from the

left panel of Fig. 11 that CLexcl ≈ CLs and pexcl agree with

their counterparts from channel 1 only.

To show another facet of this disturbing effect, in the

right panel of Fig. 11 we use the same data except that

n2 ¼ 0 is fixed and b2 is varying. Again, we see that despite
channel 2 containing essentially no information about

the signal, the modified frequentist CLs including both

channels depends on b2, while CLexcl is almost exactly flat,

conforming to intuitive expectation.

Another study case is shown in the first panel of Fig. 12,

with:

n1 ¼ 1; b1 ¼ 1; s1 ¼ 4; ð2:41Þ

n2 ¼ 1; b2 ¼ 1; s2 ¼ varying: ð2:42Þ

The variation of exclusion significances as a function of s2 is
shown in the first panel of Fig. 12. For s2 ¼ s1 ¼ 4 exactly,

the results satisfy CLs ¼ CLexcl and agree precisely with the

result that would be obtained for a single combined channel

with n ¼ 2, b ¼ 2, s ¼ 8. However, the Z value for CLs has

a small discontinuity at exactly s2 ¼ 4, such that for all other

values of s2, CLs has a higher exclusion significance Z than

CLexcl. Numerically:

CLs¼0.004093; ðZ¼2.644Þ; ðfor s2¼4Þ ð2:43Þ

CLs¼0.003616; ðZ¼2.686Þ; ðfor s2¼4�ϵÞ; ð2:44Þ

for ϵ arbitrarily small but nonzero. This discontinuity can

be traced to the fact that for s2 ¼ 4 exactly, the weights

satisfy w1 ¼ w2 exactly for the two channels, which affects

which integers are summed over due to Eq. (2.35). There

are also discontinuities in CLs at s2 ¼
ffiffiffi

5
p

− 1 ≈ 1.23607,

where w1 ¼ 2w2, and at s2 ¼ 51=3 − 1 ≈ 0.709976, where

w1 ¼ 3w2, etc.

For another case study, consider:

n1 ¼ 2; b1 ¼ 2.4; s1 ¼ 8.5; ð2:45Þ

n2 ¼ 4; b2 ¼ 2.3; s2 ¼ varying: ð2:46Þ

The results are depicted in the second panel of Fig. 12, and

show more pronounced discontinuities in both frequentist

pexcl and the modified frequentist CLs. In contrast, the

Bayesian result CLexcl is smooth as we vary s2, and gives

more conservative exclusion significances.

Let us now consider the question of projecting expected

exclusion significances for future experiments. In the

multichannel case, one can define Asimov results for

pexcl and CLs by replacing each ni in Eqs. (2.28) and

(2.31) by the mean expected result bi in the restriction

Eq. (2.35). However, in the multichannel case, the resulting

sets of fkig that contribute to the sums will depend

discontinuously on the fsig and fbig, leading to the same

sort of sawtooth problems that occurs in the median

expected significance. In particular, an increase in the

backgrounds often leads, counterintuitively, to a larger

FIG. 11. Comparison of exclusion significances Z in the case of a counting experiment with a good channel and a bad

channel. The solid lines are the modified frequentist CLs [solid red line, from Eqs. (2.28)–(2.31) and (2.35)] and CLexcl [solid

blue line, from Eq. (2.36)]. In this example, CLexcl is visually indistinguishable from the result obtained from channel 1 only,

conforming with the fact that channel 2 contains essentially no information about the signal. Also shown are the results for pexcl

obtained from considering channel 1 only [dashed blue line, from Eq. (2.9)] and from both channels [dashed red line, from

Eqs. (2.28) and (2.35)].
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expected significance. (This problem did not occur in the

single-channel case, because the sum
P

n
k¼0

was evalu-

ated in closed form in terms of incomplete Γ functions,

after which the argument n could be interpreted as a

continuous real number rather than an integer.) In con-

trast, if one uses CLexclðn⃗; b⃗; s⃗Þ, then the exact Asimov

method is perfectly straightforward and continuous, since

it does not involve sums over integers subject to restric-

tions. Thus one can simply replace ni by bi in Eq. (2.36)

to obtain the exact Asimov result. The Asimov results for

pexcl, CLs, and CLexcl are compared in Fig. 13 for two test

cases, showing the sawtooth behavior of the first two and

FIG. 12. Comparison of exclusion significances Z obtained from CLs [red line, from Eqs. (2.28)–(2.31) and (2.35)] and CLexcl [blue

line, from Eq. (2.36)] and pexcl [green line, from Eqs. (2.28) and (2.35)], for the test cases of Eqs. (2.41) and (2.42) [left panel] and (2.45)

and (2.46) [right panel]. The results for pexcl and CLs exhibit discontinuities as s2 is varied, due to abrupt changes in which outcomes k1
and k2 are summed over. The Bayesian version CLexcl does not have such discontinuities.

FIG. 13. Comparison of the Asimov expected exclusion significances Z obtained from pexcl [red lines, from Eq. (2.28)], CLs [blue

lines, from Eq. (2.31)], and CLexcl [black lines, from Eq. (2.36)], for two test cases with two independent channels, as labeled.

The Asimov results are obtained by setting ni ¼ bi for each channel. Due to the noncontinuous effect of the restriction of Eq. (2.35), the
Asimov pexcl and CLs have a counterintuitive nonmonotonic behavior as the first channel background mean b1 is varied, while the

Asimov CLexcl is monotonic in the expected way.
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the smooth, monotonic (and more conservative) behavior

of the latter.

In view of the preceding discussion, we propose CLexcl

in Eq. (2.36) as the preferred statistic for exclusion for

multichannel counting experiments. Unlike pexcl and CLs

(with which it coincides in the single-channel case), it does

not suffer from the problem of being affected significantly

by the presence of a bad channel, and does not have

discontinuities when signal and background means are

changed infinitesimally. The exact Asimov result is

straightforward to obtain and behaves continuously and

monotonically in the expected way with respect to changes

in the background. Furthermore, the introduction of back-

ground uncertainties and probability distributions for nui-

sance parameters is more straightforward, avoiding

discontinuities in the integrand, as we will see below.

D. Discovery for multichannel counting experiments

For the discovery case, the frequentist p-value is

defined by

pdiscðn⃗; b⃗; s⃗Þ ¼
X

fkig

Y

N

i¼1

PðkijbiÞ: ð2:47Þ

The sum over fkig is restricted by the condition that the

test-statistic lnðqÞ defined by Eq. (2.34) is not smaller

for fkig than for the observed data fnig, so:

X

N

i¼1

ðni − kiÞ lnð1þ si=biÞ ≤ 0: ð2:48Þ

Unlike the single-channel special case, pdisc depends on

the signal strengths si when there is more than one

channel because of this restriction. Note that the inequal-

ity has the opposite sense compared to the exclusion

case, Eq. (2.35).

A more conservative, and simpler, alternative to

pdiscðn⃗; b⃗; s⃗Þ is the generalization of Eq. (2.15),

CLdiscðn⃗; b⃗; s⃗Þ ¼
Y

N

i¼1

PðnijbiÞ
Pðnijsi þ biÞ

: ð2:49Þ

In order to compare these criteria for discovery, we first

consider a case with one good channel and one bad

channel, starting from the following values:

b1¼2; s1¼9.5; n1¼10; ðgood channelÞ; ð2:50Þ

b2¼10; s2¼0.01; n2¼10; ðbad channelÞ: ð2:51Þ

In Fig. 14, we show the results for the discovery signifi-

cance Z obtained from pdisc and CLdisc, considering

variations in both n2 and b2 as the other quantities are

held fixed, and compare to the same results using only

channel 1. As in the exclusion case, we note that pdisc is

affected in a nontrivial way by the presence of the bad

channel, contrary to intuitive expectations. The step func-

tion discontinuities in pdisc are not a numerical artifact, but

occur at values of b2 such that the ratio of weights w1=w2 ¼
lnð1þ s1=b1Þ= lnð1þ s2=b2Þ is a rational number, so that

FIG. 14. Comparison of discovery significance Z in the case of a counting experiment with a good channel and a bad channel. The

solid lines are obtained from pdisc [red lines, from Eqs. (2.47) and (2.48)] and CLdisc [blue lines, from Eq. (2.49)]. The dashed lines are

obtained in the same way, but considering only the data from channel 1. In this example, CLdisc is more resistant to the effects of the

noninformative channel, except in the case that b2 is very small. The step function discontinuities in pdisc in the right panel are not

numerical artifacts, but occur at values of b2 such that the ratio of weights w1=w2 ¼ lnð1þ s1=b1Þ= lnð1þ s2=b2Þ is rational.
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the integer number of terms appearing in the
P

fkig in

Eq. (2.47) changes discontinuously.

In contrast, CLdisc is seen to be much less affected by the

presence of the bad channel. The reason for this is that

for any channel i with very small si, the numerator and

denominator factors for that channel will cancel in the limit

si=bi → 0 in Eq. (2.49). The exception (in the right panel of

Fig. 14) occurs in the case that b2 is also small, in which

case n2 ¼ 10 is a surprising outcome for both the back-

ground-only and backgroundþ signal hypotheses.

Further comparisons between the significances obtained

from pdisc and CLdisc for two test cases are shown in

Fig. 15. The results obtained from pdisc have numerous

discontinuities, which are small numerically but have the

disturbing property of being nonmonotonic as the back-

ground b2 is varied. The results from CLdisc are reliably

FIG. 15. Comparison of significances Z for discovery, obtained using pdisc [red lines, from Eqs. (2.47) and (2.48)] and CLdisc [blue

lines, from Eq. (2.49)], for two 2-channel test cases with data as labeled.

FIG. 16. Comparison of the Asimov expected discovery significances Z obtained from pdisc [red lines, from Eqs. (2.47) and (2.48)]

and CLdisc [blue lines, from Eq. (2.49)], for two test cases with two independent channels, as labeled. The Asimov results are obtained by

setting ni ¼ bi þ si for each channel. Due to the noncontinuous effect of the restriction of Eq. (2.48), the Asimov pdisc has a

counterintuitive nonmonotonic behavior as the first channel background mean b1 is varied, while the Asimov CLdisc is monotonic in the

expected way, and more conservative.
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more conservative, as we have already noted, and do not

suffer discontinuities because there is no restricted sum

over integers in its definition.

For the purpose of projecting discovery prospects in

future experiments, one can again define the Asimov values

of pdisc and CLdisc by replacing ni with bi þ si in

Eqs. (2.47) and (2.49) respectively. These are compared

for two test cases in Fig. 16. In the case of pdisc, the

constraint put on the sum by Eq. (2.48) leads to a

nonmonotonic sawtooth behavior, although much less

pronounced than in the exclusion case in Fig. 13.

For the reasons just discussed, and because of the ease of

generalization to the case of background uncertainties as

discussed in the next section, we propose to use CLdisc

as the figure of merit for the significance of a possible

discovery, and for projecting the discovery reach of future

experiments.

E. Background uncertainty

and other nuisance parameters

In the real world, the background level is never perfectly

known. Furthermore, the background and signal may depend

on other nuisance parameter(s), to be called ν below. These

can be dealt with in a Bayesian approach by assuming

probability densities fðbÞ and gðνÞ, subject to the normali-

zation conditions
R

∞
0

dbfðbÞ ¼ 1 and
R

dνgðνÞ ¼ 1.

For example, following [50], we can model the back-

ground uncertainty in terms of an on-off problem [68–73],

where m is the number of Poisson events in a signal-off

(background-only) region, and the ratio of background

means in the signal-off and signal-on regions is called τ. In

terms ofm and τ, the point estimate for the background and

its variance are

b̂ ¼ m=τ; Δb ¼
ffiffiffiffi

m
p

=τ; ð2:52Þ

or equivalently

τ ¼ b̂=Δ2

b; m ¼ b̂2=Δ2

b; ð2:53Þ

so that the probability density of b is

fðbÞ ¼ fðbjb̂;ΔbÞ ¼ τmþ1bme−τb=m!; ð2:54Þ

the posterior probability distribution for b obtained by

using Bayes’ theorem with Poisson likelihood for back-

ground in the signal-off region PðmjτbÞ and flat prior for b.
Note that this probability distribution can be used as a

model even in situations where the estimates of the back-

ground and its uncertainty come partly or completely from

theory rather than some signal-off region data.

In the case of Eq. (2.54), the probability for observing n
events in the signal-on region is obtained by averaging

over b [71–75] to obtain

ΔPðn; b̂;Δb; sÞ ¼
Z

∞

0

db fðbjb̂;ΔbÞPðnjsþ bÞ; ð2:55Þ

We can then extend the definitions of frequentist

p-values and to the uncertain background case by simply

replacing the Poisson probability Pðnjsþ bÞ with

ΔPðn; b̂;Δb; sÞ [51]:

pexclðn; b̂;Δb; sÞ ¼
X

n

k¼0

ΔPðk; b̂;Δb; sÞ: ð2:56Þ

pdiscðn; b̂;ΔbÞ ¼
X

∞

k¼n

ΔPðk; b̂;Δb; 0Þ; ð2:57Þ

Explicit formulas for ΔPðn; b̂;Δb; sÞ, pexclðn; b̂;Δb; sÞ,
and pdiscðn; b̂;ΔbÞ can be found in Eqs. (12)–(15) of

Ref. [50]. Besides these, we note the simple formula:

pexclðn; b̂;Δb; 0Þ ¼
Bð1=ð1þ Δ

2

b=b̂Þ; mþ 1; nþ 1Þ
Bðmþ 1; nþ 1Þ :

ð2:58Þ

Similarly, the confidence levels discussed in the previous

sections can be obtained in the uncertain background

case as

CLsðn; b̂;Δb; sÞ ¼
pexclðn; b̂;Δb; sÞ
pexclðn; b̂;Δb; 0Þ

; ð2:59Þ

CLexclðn; b̂;Δb; sÞ ¼
R

∞
s ds0ΔPðn; b̂;Δb; s

0Þ
R

∞
0

ds0ΔPðn; b̂;Δb; s
0Þ

¼ pexclðn; b̂;Δb; sÞ
pexclðn; b̂;Δb; 0Þ

; ð2:60Þ

CLdiscðn; b̂;Δb; sÞ ¼
ΔPðn; b̂;Δb; 0Þ
ΔPðn; b̂;Δb; sÞ

: ð2:61Þ

Note that we retain the property CLexcl ¼ CLs in the single-

channel case with nonzero background uncertainty.

The exact Asimov expectations for pexcl, CLs ¼
CLexcl, and pdisc, CLdisc in the uncertain background case

are obtained by replacing n in the preceding equations by

its expected mean in each case:

hnexcli ¼
X

∞

n¼0

nΔPðn; b̂;Δb; 0Þ ¼ b̂þ Δ
2

b=b̂; ð2:62Þ

hndisci ¼
X

∞

n¼0

nΔPðn; b̂;Δb; sÞ ¼ sþ b̂þ Δ
2

b=b̂; ð2:63Þ

for exclusion and discovery, respectively.
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More generally, for any probability distributions fðb⃗Þ
and gðνÞ for the background and other nuisance parameters,

one can marginalize (integrate) over bi and ν. In the case of
exclusion, Eq. (2.28) generalizes to

pexcl¼
Z

dνgðνÞ
Z

db⃗fðb⃗Þ
X

fkig

Y

N

i¼1

PðkijsiþbiÞ; ð2:64Þ

and similarly for Eq. (2.30), which then gives CLs. However,

note that the sum
P

fkig is subject to the restriction

Eq. (2.35), so that even the numbers of terms in the sum

depends in a discontinuous way on ν and bi as we integrate
over them in the multichannel case. Reference [76] contains

a discussion of various ways to account for the uncertainties

in the background and nuisance parameters in the frequentist

methods. As argued above, we prefer instead to generalize

Eq. (2.36), resulting in:

CLexcl ¼
1

D

Z

dν gðνÞ
Z

db⃗ fðb⃗Þ

×

Z

∞

s

ds0
Y

N

i¼1

Pðnijris0 þ biÞ: ð2:65Þ

Here we have used a shorthand notation to be used several

times below, such that the normalization factorD is equal to

the expression that follows it with s ¼ 0.

Similarly, in the case of discovery in the presence of

background uncertainties and nuisance parameters, we can

generalize Eq. (2.47) to obtain

pdisc ¼
Z

dν gðνÞ
Z

db⃗ fðb⃗Þ
X

fkig

Y

N

i¼1

PðkijbiÞ; ð2:66Þ

this time subject to the constraint Eq. (2.48) on the terms in

the sum. However, as argued above, we prefer to use the

more conservative

CLdisc ¼
R

dν gðνÞ
R

db⃗ fðb⃗Þ
Q

N
i¼1

PðnijbiÞ
R

dν gðνÞ
R

db⃗ fðb⃗Þ
Q

N
i¼1

Pðnijsi þ biÞ
: ð2:67Þ

To obtain the Asimov results, one can substitute in the

mean expected values for ni, namely

hni;excli ¼
Z

dν gðνÞ
Z

∞

0

db⃗ fðb⃗Þ
X

∞

ni¼0

niPðnijbiÞ; ð2:68Þ

hni;disci ¼
Z

dν gðνÞ
Z

∞

0

db⃗ fðb⃗Þ
X

∞

ni¼0

niPðnijsi þ biÞ:

ð2:69Þ

III. APPLICATION TO PROTON DECAY

In this section, we will first consider the application

of the Bayesian statistic CLexcl to estimate the current

lower limits on proton partial lifetimes in p → ν̄Kþ and

p → eþπ0 modes, based on Super-Kamiokande’s data, at

various confidence levels generalizing the 90% C.L. pub-

lished limits. We will then consider the prospects for

exclusion or discovery of these proton decay modes for

several planned future neutrino experiments: DUNE [46],

JUNO [47], Hyper-Kamiokande [48], and THEIA [49]. We

do this by applying the Bayesian approach of using CLexcl

and CLdisc with the exact Asimov criterion of replacing the

observed counts by their respective expected means.

As discussed above, the Bayesian approaches CLexcl for

exclusion and CLdisc for discovery are ideal methods to

obtain these limits and projections, as they: (1) guard against

claiming exclusion (or discovery) when an experiment is

actually not sensitive to the signal model, and therefore are

more conservative than the frequentist pexcl and pdisc; (2) are

well-behaved in multichannel counting experiments in the

sense that, unlike the (modified) frequentist approach, CLexcl

and CLdisc are not overly affected by the presence of

noninformative channels and do not have any discontinuities

as the signal and background means are varied; and (3) are

easily able to include uncertainties in the backgrounds and

the signal selection efficiencies, especially for multichannel

counting experiments.

The estimates for the backgrounds and the signal selection

efficiencies in a specific proton decay mode have been

obtained by the DUNE, JUNO, and THEIA collaborations

by modeling the experiments as single-channel counting

experiments, whereas Hyper-Kamiokande searches for pro-

ton decay are modeled as multichannel counting experiments

based on the signal regions and search strategies used at

Super-Kamiokande. Before we present our results, we first

review the methods we employ to obtain the limits/

projections for proton partial lifetimes at single-channel

and multichannel counting experiments, based on the

methods elucidated in Sec. II.

The number of decays in a specific decay channel at

an experiment with N0 initial number of protons for a

runtime of Δt is given by

ΔN ¼ N0ΓΔt; ð3:1Þ

where the proton partial width Γ is extremely small. [More

generally, ΔN ¼ N0ð1 − e−ΓΔtÞ.] Therefore the signal can

be computed as

s ¼ ϵðΔNÞ ¼ ϵN0ΓΔt; ð3:2Þ

where 0 ≤ ϵ ≤ 1 is the signal selection efficiency. In

terms of the number of protons per kiloton of detector

material Np and the exposure λ (¼ runtime × number of
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kilotons of detector material) of the experiment in units of

kiloton-years, we can reexpress Eq. (3.2) as

s ¼ ΓNpϵλ: ð3:3Þ

The present exclusion limit at confidence level 1 − α for the

proton partial lifetime is then provided by [77]

τp ¼ 1=Γ ¼ Npϵλ=s; ð3:4Þ

where s is the number of signal events that gives CLexcl

equal to α. For a future experiment, the exclusion reach for

the proton partial lifetime at confidence level 1 − α is given

by the same formula Eq. (3.4), where s is now the signal

that makes the exact Asimov CLA
excl equal to α. The

discovery reach for a given significance Z is likewise

obtained from Eq. (3.4) using the s that provides for

CLA
disc ¼ 1

2
erfcðZ=

ffiffiffi

2
p

Þ.
Equation (3.4) holds for an experiment with a single

search channel with known background b and signal

selection efficiency ϵ. For the more general case of an

experiment with one or more independent search channels

with possibly uncertain backgrounds and signal efficien-

cies, we employ a Bayesian approach to obtain the limit/

reach for proton partial lifetime, as discussed above. First,

for the exclusion case, given the number of observed events

ni in each search channel labeled i, the upper limit on

proton partial width at a confidence level 1 − α is obtained

by solving for Γ in (see Eq. (2.65), and Ref. [78]):

α¼ 1

D

Z

∞

Γ

dΓ0
Y

N

i¼1

Z

1

0

dϵi gðϵiÞ
Z

∞

0

dbi fðbiÞPðnijs0i þ biÞ:

ð3:5Þ

Here, D is a normalization factor, defined to equal the

expression that follows it evaluated at Γ ¼ 0, and in each

search channel labeled by i, the signal rate is

s0i ¼ NpϵiλiΓ
0; ð3:6Þ

and gðϵiÞ and fðbiÞ are the probability distributions for the

signal efficiency ϵi and the background bi. These distri-

butions can take different forms to parameterize our lack of

perfect knowledge of the efficiency and background, such

that
R

1

0
dϵigðϵiÞ ¼ 1 and

R

∞
0
dbifðbiÞ ¼ 1. For example,

the probability distribution of true signal selection effi-

ciency ϵi might be taken to be a truncated Gaussian

distribution with central value ϵ̂i and variance Δϵi
, as in

the Super-Kamiokande search analyses in Refs. [44,45]:

gðϵijϵ̂i;Δϵi
Þ ¼

ffiffiffi

2

π

r

exp
h

−
ðϵi−ϵ̂iÞ2
2Δ

2
ϵi

i

Δϵi

�

erf
�

1−ϵ̂i
ffiffi

2
p

Δϵi

�

þ erf
�

ϵ̂i
ffiffi

2
p

Δϵi

�� :

ð3:7Þ

The probability distribution of true background bi in the ith

search channel fðbijb̂i;Δbi
Þ can be taken to be given by

Eq. (2.54) as in the on-off problem, in terms of quantities

mi and τi, related to the central value b̂i and varianceΔbi
by

Eq. (2.52). Equation (3.5) assumes that the search channels

are independent.

If the background and the signal selection efficiencies

are perfectly known, i.e., fðbijb̂i;Δbi
Þ ¼ δðbi − b̂iÞ and

gðϵijϵ̂i;Δϵi
Þ ¼ δðϵi − ϵ̂iÞ, then we get

α ¼ 1

D

Z

∞

Γ

dΓ0
Y

i

Pðnijs0i þ biÞ; ð3:8Þ

with s0i ¼ NpϵiλiΓ
0 after identifying b̂i ¼ bi and ϵ̂i ¼ ϵi.

This corresponds to Eq. (2.36). Specializing further to a

single search channel (dropping the subscript i), this

reduces to Eq. (2.14) with s0 ¼ NpϵλΓ
0.

For projecting the exclusion reach for partial lifetime at

future experiments, we make use of the exact Asimov

method by replacing the number of events ni in each search
channel by their respective expected means,

hbii ¼
Z

∞

0

dbi fðbiÞbi; ð3:9Þ

for example hbii ¼ ðmi þ 1Þ=τi ¼ b̂i þ Δ
2

bi
=bi if the on-

off problem treatment is used for the background. The

expected confidence level 1 − α upper limit on partial width

Γ is then solved from Eq. (3.5) with ni replaced by hbii:

α ¼ 1

D

Z

∞

Γ

dΓ0
Y

i

Z

1

0

dϵi gðϵiÞ

×

Z

∞

0

dbi fðbiÞPðhbiijs0i þ biÞ: ð3:10Þ

Equation (3.10) gives the Asimov expected lower limit on

the partial lifetime via τp ¼ 1=Γ.

For the expected discovery reach for proton partial

widths at future experiments, we use a method based on

the exact Asimov evaluation of the statistic CLdisc. In

particular, we solve for Γ from [see Eq. (2.67)]

1

2
erfc

�

Z
ffiffiffi

2
p

�

¼
Q

i

R

∞
0
dbi fðbiÞPðhniijbiÞ

Q

i

R

1

0
dϵigðϵiÞ

R

∞
0
dbi fðbiÞPðhniijsiþbiÞ

;

ð3:11Þ

where si ¼ NpλiϵiΓ and hnii ¼ hsii þ hbii, with hbii as

given in Eq. (3.9), and

hsii ¼ ΓNpλi

Z

1

0

dϵi gðϵiÞϵi: ð3:12Þ
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This gives the expected discovery reach for partial lifetime

using τp ¼ 1=Γ corresponding to a chosen significance Z.

Based on Super-Kamiokande’s data, taken from

Refs. [44,45], which we quote for completeness in

Table I, we now compute the upper limit on proton partial

widths in the p → ν̄Kþ and p → eþπ0 decay modes that

are excluded at various confidence levels (e.g., 95%, 90%,

68%, 50% C.L.) using Eq. (3.5), which can then be

translated into corresponding lower limits on the

proton partial lifetime. Super-Kamiokande uses a water

Cerenkov detector with a fiducial mass of 22.5 ktons, and

the analysis for p → eþπ0 in Ref. [45] also includes data

from an enlarged fiducial mass of 27.2 ktons. While Super-

Kamiokande can probe for proton decay in both p → ν̄Kþ

and p → eþπ0 decay modes, it is less sensitive to the former

decay mode, because theKþ is produced below its Cerenkov

threshold in water and is only identified from its decay

constituents. Figure 17 shows our own computed estimates

of the current confidence levels for the exclusion of proton

decay at Super-Kamiokande in p → ν̄Kþ (left panel) and

p → eþπ0 (right panel) channels as a function of proton

partial lifetime in the respective decay channels. This general-

izes the results presented by the Super-Kamiokande collabo-

ration, which gave results only for 90% C.L. exclusions.

From the data in Table I, we estimated the current lower limits

on proton partial lifetimes to be

τp=Brðp → ν̄KþÞ >

8

>

>

>

<

>

>

>

:

5.1 × 1033 years at 95%C:L:;

6.6 × 1033 years at 90%C:L:;

1.3 × 1034 years at 68%C:L:;

2.2 × 1034 years at 50%C:L:;

ð3:13Þ

and

τp=Brðp → eþπ0Þ >

8

>

>

>

<

>

>

>

:

1.9 × 1034 years at 95%C:L:;

2.4 × 1034 years at 90%C:L:;

4.9 × 1034 years at 68%C:L:;

8.1 × 1034 years at 50%C:L::

ð3:14Þ

In comparison, the published 90% C.L. exclusion limit on

proton partial lifetimes from the Super-Kamiokande collabo-

ration are

TABLE I. Super-Kamiokande’s data for p → ν̄Kþ and p → eþπ0 decay modes, taken from Refs. [44,45],

respectively. In each decay mode, the exposures λi in kton-years, total backgrounds b̂i � Δbi
, signal efficiencies

ϵ̂i � Δϵi
, and the observed number of counts ni are listed. hs90C:L:i i are the expected signal events, defined in Eq. (3.12),

for proton partial lifetime set equal to its 90% C.L. lower limit. The last column gives a brief description of each of the

channels referring to the detector period (SK I-IV) and the name of the search method used in Refs. [44,45].

Decay mode λi b̂i � Δbi
ϵ̂i � Δϵi

[%] ni hs90C:L:i i Comment

p → ν̄Kþ 91.7 0.08� 0.02 7.9� 0.1 0 0.37 SK-I, prompt γ

0.18� 0.04 7.8� 0.1 0 0.36 SK-I, πþπ0

193.21� 3.58 33.9� 0.3 177 1.57 SK-I, pμ spectrum

49.2 0.14� 0.03 6.3� 0.1 0 0.16 SK-II, prompt γ

0.17� 0.03 6.7� 0.1 0 0.17 SK-II, πþπ0

94.27� 1.72 30.6� 0.3 78 0.76 SK-II, pμ spectrum

31.9 0.03� 0.01 7.7� 0.1 0 0.12 SK-III, prompt γ

0.09� 0.01 7.9� 0.1 0 0.13 SK-III, πþπ0

69.00� 1.28 32.6� 0.3 85 0.53 SK-III, pμ spectrum

87.3 0.13� 0.03 9.1� 0.1 0 0.4 SK-IV, prompt γ

0.18� 0.03 10.0� 0.1 0 0.44 SK-IV, πþπ0

223.14� 4.10 37.6� 0.3 226 1.66 SK-IV, pμ spec.

p → eþπ0 111.4 0.01� 0.01 18.3� 1.7 0 0.28 SK-I, lower

0.15� 0.06 20.0� 3.3 0 0.3 SK-I, upper

59.4 0.01� 0.01 16.6� 1.7 0 0.13 SK-II, lower

0.11� 0.04 19.4� 3.0 0 0.16 SK-II, upper

38.6 0.01 18.7� 1.7 0 0.1 SK-III, lower

0.07� 0.03 20.3� 3.3 0 0.11 SK-III, upper

241.3 0.01 18.2� 1.5 0 0.6 SK-IV, lower

0.25� 0.11 19.2� 3.1 0 0.63 SK-IV, upper
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τp=Brðp → ν̄KþÞ
> 5.9 × 1033 years at 90%C:L: ; ð3:15Þ

τp=Brðp → eþπ0Þ
> 2.4 × 1034 years at 90%C:L: ð3:16Þ

shown as the shaded red regions in Fig. 17. We see

that in the case of p → ν̄Kþ, our
11

estimate for the

90% C.L. limit is slightly stronger (6.6 × 1033 years rather

than 5.9 × 1033 years) than the journal published limit in

Ref. [44]. In this paper, we only consider the limits from data

published in journal articles. In the case ofp → ν̄Kþ, there is
more data from the continuation of run SK-IV, which was not

used for the published limit in Ref. [44]. It is therefore quite

possible that a future limit, based on data already taken, will

be stronger. In the case of p → eþπ0, our estimate for the

90% C.L. limit agrees perfectly with the Super-Kamiokande

published limit in Ref. [45].

We now discuss projections for exclusion and discovery

of proton decay at possible future neutrino detectors

DUNE, JUNO, Hyper-Kamiokande, and THEIA. Both

DUNE and JUNO will be primarily searching for proton

decay in p → ν̄Kþ decay mode. For these searches, DUNE

uses its far detector with a total of 40 kiloton (kton) fiducial

mass of liquid argon [46] and can track and reconstruct

charged kaons with high efficiency, and JUNO uses its

central detector with a 20 kton fiducial mass of a liquid

scintillator [47]. On the other hand, Hyper-Kamiokande

[48] uses a water Cerenkov detector with 186 ktons

of fiducial mass and is sensitive to both p → ν̄Kþ and

p → eþπ0 decay modes among others. As was the case

with Super-Kamiokande, Hyper-Kamiokande will be more

sensitive to the p → eþπ0 mode, compared to the p → ν̄Kþ

mode, due to much better reconstruction of the Cerenkov

rings of the positron and the electromagnetic showers

emanating from π0 → γγ. THEIA is a new detector concept

with water-based liquid scintillator (10% liquid scintillator

and 90% water) that will be able to detect and distinguish

between the Cerenkov and the scintillation light [49]. Here,

we project sensitivities for both THEIA-25 and THEIA-100

with fiducial masses 17 and 80 ktons, respectively, that

were considered in Ref. [49]. Due to the ability to detect

scintillation signals from charged particles such as Kþ

produced below its Cerenkov threshold, and Cerenkov

signals, the THEIA detector aims to have enhanced

sensitivity to the p → ν̄Kþ mode [49] while also being

able to probe the p → eþπ0 mode [79]. The numbers of

protons per kiloton of detector material are

FIG. 17. The current confidence level for the exclusion of proton decay in p → ν̄Kþ (left panel) and p → eþπ0 (right panel) channels,
as a function of the respective proton partial lifetimes. Our confidence level estimates (solid black lines) are obtained using Eq. (3.5)

based on Super-Kamiokande’s data through 2014 [44] (left panel) and 2020 [45] (right panel), summarized in Table I. The red shaded

regions correspond to Super-Kamiokande’s published exclusions on proton partial lifetimes at 90% C.L., from [44] and [45].

11
Besides using the probability distribution for true back-

ground as in the on-off problem [Eq. (2.54)], we have considered
various other distributions such as a Gaussian, and a convolution
of Gaussian and Poisson (only for search channels with extremely
low backgrounds) as done in Refs. [44,45], but there was no
noticeable change in our results. In Super-Kamiokande’s analysis
for p → ν̄Kþ decay mode in Ref. [44], the search channels with
large backgrounds that are referred to as “pμ spectrum" in Table I

were further divided into subchannels, but due to insufficient data
made available, we are not able to include that subdivision.
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Np ¼

8

>

>

>

<

>

>

>

:

2.71 × 1032 ðDUNEÞ;
3.38 × 1032 ðJUNOÞ;
3.34 × 1032 ðHyper-KamiokandeÞ;
3.35 × 1032 ðTHEIAÞ:

ð3:17Þ

For the purposes of projecting sensitivities for THEIA

and JUNO, we took the liquid scintillator in both

detectors to have 6.75 × 1033 protons per 20 kilotons based

on Ref. [47].

Figure 18 shows the runtimes at DUNE that are required

for an expected 90% C.L. exclusion (first panel) and Z ¼ 3

evidence (second panel), in the p → ν̄Kþ decay mode, as a

function of the background rate per megaton-year of

exposure. The colored lines and bands correspond to

various choices of proton partial lifetimes. For the purposes

of illustration, we chose a signal selection efficiency ϵ ¼
40� 10% that is plausible, based on various signal selection

efficiencies that are considered in Refs. [67,80–84]. The

solid lines in the figure assume ϵ ¼ 40%, and the shaded

bands surrounding them vary ϵ by �10%. The required

runtimes Δt in the figure are obtained using Eq. (3.4),

which gives

Δt ¼ sτp

NpNktonϵ
; ð3:18Þ

where Nkton is the number of kilotons of detector

material, and s is the upper limit on signal for

90% C.L. exclusion obtained from setting CLA
excl [as in

Eq. (2.19)] equal to 0.1, or the signal needed for Z ¼ 3

evidence obtained from setting CLA
disc [as in Eq. (2.21)]

equal to 0.00135.As discussed at the end of Sec. II B, the zero

background limit for the discovery case is not well defined, in

a sense that at b ¼ 0, any nonzero signal, albeit arbitrarily

small, would yield an infinite significance. Therefore, to be

conservative, we require that the mean expected number of

signal events s is at least 1 in order to have an expected

discovery. The dashed lines for very small b/Mton-year in the

lower left corner of the bottom panel (for discovery case)

of Fig. 18 correspond to this additional requirement that

s ≥ 1. It is clear from the figure that if the estimated

background per megaton-year of exposure at DUNE

increases, the required runtime increases more steeply for

discovery than for exclusion.

In Fig. 19, we show the expected 90% C.L. exclusion

reach (first panel) and the expected Z ¼ 3 evidence reach

(second panel) for proton partial lifetime in p → ν̄Kþ

decay channel at DUNE as a function of the runtime in

years. The three colored lines/bands correspond to various

assumed background rates per megaton-year of exposure

taken from Refs. [46,67,80–84]. The signal selection

efficiency is again taken to be ϵ ¼ 40% (solid colored

lines) �10% (shaded bands). The signals computed from

setting Eq. (2.19) equal to 0.1, and Eq. (2.21) equal to

0.00135, are plugged into Eq. (3.4) to obtain the expected

90% C.L. exclusion, and Z ¼ 3 evidence, reaches for

proton partial lifetime, respectively. The black dashed

curves correspond to a very optimistic scenario with

b ¼ 0 and ϵ ¼ 46% [67], and using the requirement s ¼ 1

in the discovery case (bottom panel). Also shown in Fig. 19

and other figures below are horizontal lines at our pre-

viously mentioned estimates of the current 95%, 90%,

68%, and 50% C.L. exclusion limit based on Super-

Kamiokande’s data from 2014 [44].

The usual standard for discovery in particle physics is a

significance of Z ¼ 5. Therefore, we show in Fig. 20 the

FIG. 18. The required runtimes at DUNE (with 40 kiloton

fiducial mass of liquid argon) for an expected 90% C.L. exclusion

(top panel) and Z ¼ 3 evidence (bottom panel) as a function

of background rate per megaton-year of exposure, for various

proton partial lifetimes in the p → ν̄Kþ channel, as labeled. The

runtimes are computed using Eq. (3.18) where the signal needed

for 90% C.L. exclusion (Z ¼ 3 evidence) is obtained from setting

Eq. (2.19) [Eq. (2.21)] equal to 0.1 (0.00135). We also require

s ≥ 1 in the bottom panel, which yields the horizontal dashed

lines for very small b in the lower left corner. The solid lines (and

dashed lines in the bottom panel) assume the signal selection

efficiency ϵ to be 40%, and the shaded bands encompassing them

correspond to varying ϵ by �10%.
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expected reach for Z ¼ 5 in the p → ν̄Kþ channel at

40 kton DUNE, as a function of the runtime. We note

that even after 25 years, the discovery reach in this channel

with nominal background rates remains below the value of

τpðp → ν̄KþÞ that we estimate to be excluded at 50% C.L.

by the Super-Kamiokande data already published in 2014.

Of course, a 50% C.L. exclusion is far from definitive,

but this indicates the challenge being faced. This could

change if the background can be reduced to near 0,

as indicated by the dashed line, while maintaining a high

efficiency for the signal.

As noted above in Sec. II B, if the mean expected number

of signal events is s ¼ 1, and one makes the optimistic

assumption that the background is completely negligible

(b ¼ 0), then the probability of obtaining at least one

event is about 63.2%. Figure 21 shows the value of

τ=Brðp → ν̄KþÞ, as a function of the runtime, that would

give various other probabilities of obtaining at least one

event, again with the very optimistic assumption of

absolutely no background b ¼ 0 and ϵ ¼ 46% [67].

Each of these choices for Pðn ≥ 1Þ is equivalent to a

requirement on the signal s, as labeled in the figure.

FIG. 19. Proton partial lifetimes in p → ν̄Kþ channel that are

expected to be excluded at 90% C.L. [top panel, from Eqs. (2.19)

and (3.4)] or discovered at Z ¼ 3 significance [bottom panel,

from Eqs. (2.1), (2.21), and (3.4)] at 40 kton DUNE, as a function

of runtime for various background rates per megaton-year of

exposure, as labeled. The signal selection efficiency ϵ is taken to

be 40% (solid lines) �10% (shaded bands). The long dashed

black line in each panel shows the idealized optimistic case of no

background and ϵ ¼ 46% [67], with the expected mean number

of events required to be s ¼ 1 in the second panel. Our estimates

of the current 95%, 90%, 68%, and 50% C.L. exclusion limit on

proton partial lifetime, based on Super-Kamiokande’s data from

2014 [44], are shown as horizontal dashed lines.

FIG. 21. Proton partial lifetimes in the p → ν̄Kþ channel that

give different probabilities of observing at least one event from

Eq. (2.25), which in turn correspond to different values of the

expected signal, as labeled. The signal selection efficiency ϵ is

taken to be 46% based on [67]. The horizontal dashed lines

shown are our estimates of the current 95%, 90%, 68%, and

50% C.L. exclusion limit on proton partial lifetime, based on

Super-Kamiokande’s data from 2014 [44].

FIG. 20. Proton partial lifetimes in the p → ν̄Kþ channel that

are expected to be discovered with a significance Z ¼ 5 at

40 kton DUNE, as a function of the runtime, for various

background rates per megaton-year of exposure, as labeled. The

results are obtained from Eqs. (2.1), (2.21), and (3.4). The

horizontal dashed lines shown are our estimates of the current

95%, 90%, 68%, and 50% C.L. exclusion limit on proton partial

lifetime, based on Super-Kamiokande’s data from 2014 [44].
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Reference [82] also provided a preliminary estimate for

the background and signal efficiency for proton decay

search in p → eþπ0 mode at DUNE. Although DUNE is

most sensitive to p → ν̄Kþ mode, for completeness, we

will also show our expected reach estimates for proton

partial lifetime in p → eþπ0 mode at DUNE after 10 years

and 20 years of runtime in our summary plots in Figs. 27

and 28 in the Outlook section below.

We now turn to projections for JUNO with 20 ktons of a

liquid scintillator. We again obtain the upper limit on the

signal using Eq. (2.19) for exclusion reach, and the signal

needed for discovery using Eq. (2.21) for discovery

reach, then applying Eq. (3.4). Figure 22 shows the

proton lifetime in p → ν̄Kþ decay channel that is expected

to be excluded at 90% or 95% C.L. (top panel) or

discovered at Z ¼ 3 or Z ¼ 5 significance (bottom panel)

at JUNO, as a function of the runtime. The two curves

correspond to two different estimates of the background

accumulated per megaton-year of exposure and the signal

selection efficiency as labeled, taken from Ref. [85]

(b=Mton-year ¼ 1.0, ϵ ¼ 36.9%; upper curve) and

Ref. [86]
12
(b=Mton − year ¼ 1.5, ϵ ¼ 26%; lower curve).

For comparison, our estimates of the current 95%, 90%,

68%, and 50% C.L. exclusion limit on proton partial

lifetime, based on Super-Kamiokande’s data from 2014

[44], are shown as horizontal dashed lines.

For projected exclusion sensitivities, both DUNE [67]

and JUNO [47] experiments made use of the Feldman-

Cousins (FC) method [62] to obtain the upper limit on

the signal assuming a fixed number of observed events,

e.g., n ¼ 0. This approach can be problematic for projec-

tions because the FC upper limits at a fixed n decrease with

b (as can be seen from Fig. 3), and for projections it can

imply that the expected sensitivity of the experiment gets

better if the background increases. Also considered in

Ref. [67] is the usage of the FC method with n ¼ b. For
integer values of b, the FC upper limit with n ¼ b sensibly

increases as the background increases. But for noninteger

b, n is still an integer, and the FC upper limit with

n ¼ roundðbÞ does not always increase with b, as shown
above in Fig. 8. As a result, the projected sensitivity does

not always decrease with b. This is why we chose to use the
CLexcl (= CLs for single-channel counting experiments)

upper limit with the exact Asimov approximation given by

Eq. (2.19) for DUNE and JUNO. While the FC sensitivity

of Ref. [62] from Eq. (2.22) also gives sensible projections

for exclusion, we note that it is computationally more

intense to evaluate (and gives only slightly more

conservative results) than the exact Asimov expected

CLexcl upper limits.

We next turn to projections for Hyper-Kamiokande.

Figures 23 and 24 show our estimates for the proton partial

lifetimes in p → ν̄Kþ and p → eþπ0 decay channels,

respectively, that are expected to be excluded at 90% or

95% C.L. (top panels) or discovered at Z ¼ 3 or Z ¼ 5

significance (bottom panels), as a function of runtime at

Hyper-Kamiokande. In order to obtain the exclusion and

discovery reaches for τp, the upper limit on partial width

and the partial width needed for discovery are solved from

Eqs. (3.10) and (3.11), respectively. These equations are

used to combine the independent search channels in each

decay mode, based on the background means and the signal

selection efficiencies, along with their uncertainties, given

in Ref. [48] and summarized in our Table II. Figures 23

and 24 also show our previously discussed estimates of the

FIG. 22. Proton partial lifetime in the p → ν̄Kþ channel that is

expected to be excluded at 90% or 95% C.L. [top panel, from

Eqs. (2.19) and (3.4)] or discovered at Z ¼ 3 or Z ¼ 5 signifi-

cance [bottom panel, from Eqs. (2.1), (2.21), and (3.4)] at 20 kton

JUNO, as a function of runtime, for two different estimated

[85,86] combinations of background rates per year and signal

selection efficiencies (b=year, ϵ), as labeled. Our estimates of

the current 95%, 90%, 68%, and 50% C.L. exclusion limit on

proton partial lifetime, based on Super-Kamiokande’s data from

2014 [44], are shown as horizontal dashed lines.

12
In order to obtain the expected reaches for proton partial

lifetime at JUNO using Eq. (3.4), we redefined the signal
efficiencies by multiplying the signal efficiencies given in
Ref. [86] with the branching ratio of about 84.5% of the Kþ

decays that is included in JUNO’s analysis.
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current exclusion limits at 95%, 90%, 68%, 50% C.L. in

p → ν̄Kþ and p → eþπ0 decay modes based on the data

from Refs. [44] and [45], respectively.

Finally, we turn to projections for THEIA. In Figs. 25

and 26, we show the expected reaches, as a function

of runtime, for proton partial lifetime in p → ν̄Kþ and

p → eþπ0 decay modes, respectively, for 90% or 95% C.L.

exclusion (top panels) and discovery at Z ¼ 3 or Z ¼ 5

significance (bottom panels). The lower (red) lines show

the results for THEIA-25 with 17 ktons of fiducial mass of

water based liquid scintillator, while the upper (blue) lines

are for THEIA-100 with 80 ktons fiducial mass. The

expected reach for proton partial lifetime is computed

using Eq. (3.4), where the expected signal for 90% C.L.

exclusion (Z ¼ 3 evidence) is obtained from setting

Eq. (2.19) [Eq. (2.21)] to 0.1 (0.00135). The estimates

for the background rate per megaton-year of exposure

and the signal selection efficiency for the decays modes

p → ν̄Kþ and p → eþπ0 are taken from Refs. [49] and

[79], respectively. As before, we also show our estimates

for the current lower limits at various confidence levels

based on the data from Super-Kamiokande [44,45].

IV. OUTLOOK

We summarize our projections for future proton decay

searches in the final states eþπ0 and ν̄Kþ at DUNE,

JUNO, and Hyper-Kamiokande in Fig. 27 for exclusion

(assuming the signal is indeed absent), and in Fig. 28 for

discovery (assuming the signal is actually present). And

in Fig. 29 we summarize our projections at THEIA for

95% C.L. exclusion and Z ¼ 5 discovery for various

fiducial masses Nkton ¼ ð10; 25; 50; 100Þ kton. In each

FIG. 23. Proton partial lifetime in the p → ν̄Kþ channel that is

expected to be excluded at 90% or 95% C.L. [top panel; from

Eq. (3.10)] or discovered at Z ¼ 3 or Z ¼ 5 significance [bottom

panel; from Eq. (3.11)] at Hyper-Kamiokande with 186 kilotons of

water, as a function of runtime,with the uncertainties in background

andsignal selectionefficiency listed inTable II, taken fromRef. [48].

Our estimates of the current 95%, 90%, 68%, and 50% C.L.

exclusion limit on proton partial lifetime, based on Super-Kamio-

kande’s data from 2014 [44], are shown as horizontal dashed lines.

FIG. 24. Proton partial lifetime in the p → eþπ0 channel that is
expected to be excluded at 90% or 95% C.L. [top panel; from

Eq. (3.10)] or discovered at Z ¼ 3 or Z ¼ 5 significance [bottom

panel; from Eq. (3.11)] at Hyper-Kamiokande with 186 kilotons

of water, as a function of runtime, with the uncertainties in

background and signal selection efficiency listed in Table II,

taken from Ref. [48]. Our estimates of the current 95%, 90%,

68%, and 50% C.L. exclusion limit on proton partial lifetime,

based on Super-Kamiokande’s data from 2020 [45], are shown as

horizontal dashed lines.
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TABLE II. Estimated backgrounds b̂i � Δbi
per megaton-year of exposure and signal efficiencies ϵ̂i � Δϵi

at

Hyper-Kamiokande, taken from Ref. [48], for p → ν̄Kþ and p → eþπ0 decay modes. The last column gives a brief

description of each of the channels referring to the name of the search method used in Ref. [48]. Exposure in each

channel for a 186 kton Hyper-Kamiokande is given by λi ¼ 0.186 Mton × runtime in years.

Decay

mode b̂i � Δbi
[/Mton-year] ϵ̂i � Δϵi

[%] Comment

p → ν̄Kþ 0.9� 0.2 12.7� 2.4 prompt γ

0.7� 0.2 10.8� 1.1 πþπ0

1916 31 pμ spectrum

p → eþπ0 0.06� 0.02 18.7� 1.2 0 < ptot < 100 MeV/c

0.62� 0.20 19.4� 2.9 100 < ptot < 250 MeV/c

FIG. 25. Expected 90% or 95% C.L. exclusion reaches

[top panel; from Eqs. (2.19) and (3.4)] and Z ¼ 3 or Z ¼ 5

discovery reaches [bottom panel; from Eqs. (2.1), (2.21),

and (3.4)] for proton partial lifetime in p → ν̄Kþ with

THEIA-25 (red lines) and THEIA-100 (blue lines) with 17

and 80 ktons of water based liquid scintillator, respectively, as a

function of runtime. The estimates for the background (per

megaton-year of exposure) and the signal efficiencies are taken

from Ref. [49]. Our estimates of the current 95%, 90%, 68%,

and 50% C.L. exclusion limit on proton partial lifetime, based

on Super-Kamiokande’s data from 2014 [44], are shown as

horizontal dashed lines.

FIG. 26. Expected 90% or 95% C.L. exclusion reaches [top

panel; from Eqs. (2.19) and (3.4)] and Z ¼ 3 or Z ¼ 5 discovery

reaches [bottom panel; from Eqs. (2.1), (2.21), and (3.4)] for

proton partial lifetime in p → eþπ0 with THEIA-25 (red lines)

and THEIA-100 (blue lines) with 17 and 80 ktons of water based

liquid scintillator, respectively, as a function of runtime. The

estimates for the background (per megaton-year of exposure) and

the signal efficiencies are taken from Ref. [79]. Our estimates of

the current 95%, 90%, 68%, and 50% C.L. exclusion limit on

proton partial lifetime, based on Super-Kamiokande’s data from

2020 [45], are shown as horizontal dashed lines.
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case, we show results for 10 years and 20 years of

runtime. The assumed backgrounds and signal efficien-

cies for DUNE,
13

JUNO, and THEIA in each proton

decay mode are labeled in the plots, while the corre-

sponding information for the multichannel Hyper-

Kamiokande searches was given in Table II above,

quoted from Ref. [48]. The vertical dashed lines corre-

spond to our estimate of the current 90% C.L. (Fig. 28,

top panel of Fig. 27, and bottom panel of Fig. 29) or

95% C.L. (bottom panel of Fig. 27 and top panel of

Fig. 29) lower limit on proton partial lifetime in the

respective decay channels, based on the published Super-

Kamiokande data [44,45].

As noted above, our projections here are based on the

exact Asimov evaluation of the Bayesian statistics CLexcl

and CLdisc. Our results are somewhat more conservative

than previous projections appearing in Refs. [48] and the

Snowmass report [79], which we have generalized to

include 90% C.L. exclusion and Z ¼ 3 evidence reach

estimates as a function of runtime (for various estimates of

backgrounds and signal efficiencies, notably for DUNE and

JUNO) as well as estimates for 95% C.L. exclusion and

Z ¼ 5 discovery. In the cases of single-channel searches for

DUNE, JUNO, and THEIA, we have also investigated the

use of the exact Asimov frequentist p-value measures pexcl

and pdisc. These results are not shown in the figures;

we find that they are only slightly less conservative than the

estimates shown.

The two panels of Fig. 27 show the projected exclusion

reaches at 90% and 95% confidence level, while the two

panels of Fig. 28 give the projected reaches for Z ¼ 3

evidence and Z ¼ 5 discovery at DUNE, JUNO, and Hyper-

Kamiokande. And the top (bottom) panel of Fig. 29 shows

the projected 95% C.L. exclusion (Z ¼ 5 discovery) reaches

at THEIA with various fiducial masses of the detector

material. As expected, for each planned experiment the

reaches for exclusion are substantially higher than the

corresponding reaches for a possible discovery. We note

that the prospects for a definitive Z ¼ 5 discovery are

FIG. 27. Expected exclusion reaches at 90% C.L. (top panel) and 95% C.L. (bottom panel) for proton partial lifetime in p → eþπ0

(blue bars) and p → ν̄Kþ (red bars) decay channels at JUNO, DUNE, and Hyper-Kamiokande after 10 years (darker shading) and

20 years (lighter shading) of runtime. The assumed backgrounds and signal efficiencies for JUNO and DUNE are labeled in the plots,

and for Hyper-Kamiokande, the corresponding information is given in Table II, quoted from Ref. [48]. These results are based on

preliminary estimates of the backgrounds and signal efficiencies, which are likely to change as the experiments progress, and therefore

should be viewed with some caution as comparisons. The vertical dashed lines are our estimates of the current 90% C.L. (top panel) and

95% C.L. (bottom panel) lower limits based on Super-Kamiokande’s data from 2014 [44] and 2020 [45].

13
For projections at DUNE in p → ν̄Kþ channel, we are using

the optimistic choices based on Ref. [80]. More pessimistic
choices from Refs. [81–84] will of course lead to lower reach
estimates.
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particularly modest after one takes into account the limits

already obtained by Super-Kamiokande.

The results shown in Figs. 27–29 are preliminary

estimates, as the presently available background and signal

efficiency estimates vary significantly in their reliability,

and more robust estimates will become available only when

the experiments are closer to collecting data. For the same

reason, the results should be viewed with some caution as a

direct comparison of the different experiments, which are at

very different stages of planning and development.

Proton decay experiments prior to Super-Kamiokande

have ruled out the simplest variations of minimal SUð5Þ
GUT [5], and Super-Kamiokande has seemingly ruled out

the minimal supersymmetric SUð5Þ GUT [18–21] with

sfermion masses less than around the TeV scale. However

there are many other well-motivated GUT models that

predict proton partial lifetimes well beyond the current

lower limits (see summary tables in Refs. [77,79] and

references therein).

For example, nonsupersymmetric GUTs such as some

minimally extended SUð5Þ models [7,8] and minimal

SOð10Þ model [14] predict p → eþπ0 to be the dominant

decay mode with partial lifetimes of order 1032–1036 years

and ≲5 × 1035 years, respectively. Supersymmetric SUð5Þ
GUTs predict the proton partial lifetime for the leading mode

p → ν̄Kþ to be 3 × 1034 − 2 × 1035 years in minimal super-

gravity framework (MSUGRA) and 3 × 1034–1036 years in

supergravity models with nonuniversal gaugino masses

(NUSUGRA), as discussed in Ref. [26] in light of the

observed Higgs mass. Reference [22] revisited the minimal

supersymmetric SUð5Þ GUT and obtained τp=Brðp →

ν̄KþÞ ≲ ð2–6Þ × 1034 years assuming universality of the

soft supersymmetry breaking parameters at the GUT scale

with sfermion masses less than around Oð10Þ TeV. There
are also supersymmetric GUTs such as the split SUð5Þ
supersymmetry [31] and flipped SUð5Þ supersymmetric

GUTs [28–30], where the dominant decay mode can be

p → eþπ0 with lifetimes of order 1035–1037 years.

From our estimates of the reaches summarized in

Figs. 27–29, we can see that DUNE, JUNO, Hyper-

Kamiokande, and THEIA can probe a significant fraction

of the parameter space of various presently viable super-

symmetric and nonsupersymmetric GUTs and could even-

tually lead the way to a more complete theory.

FIG. 28. Expected reaches for Z ¼ 3 evidence (top panel) and Z ¼ 5 discovery (bottom panel) for proton partial lifetime in p → eþπ0

(blue bars) and p → ν̄Kþ (red bars) decay channels, at JUNO, DUNE, and Hyper-Kamiokande after 10 years (darker shading) and

20 years (lighter shading) of runtime. The assumed backgrounds and signal efficiencies for JUNO and DUNE are labeled in the plots,

and for Hyper-Kamiokande, the corresponding information is given in Table II, quoted from Ref. [48]. These results are based on

preliminary estimates of the backgrounds and signal efficiencies, which are likely to change as the experiments progress, and therefore

should be viewed with some caution as comparisons. The vertical dashed lines are our estimates of the current 90% C.L. lower limits

based on Super-Kamiokande’s data from 2014 [44] and 2020 [45].
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The existing code repository Zstats [66] is updated with

various statistical measures of significance for counting

experiments with multiple independent search channels as

investigated in this paper. The updates include the signifi-

cances based on our proposed Bayesian-motivated mea-

sures CLdisc and CLexcl, and their application to study the

statistical significances for proton decay at current and

future neutrino detectors. To demonstrate the usage of the

code, the repository also contains some code snippets in a

PYTHON notebook that generate the data in each of the

figures in this paper.
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FIG. 29. Expected reaches at THEIA for 95% C.L. exclusion (top panel) and Z ¼ 5 discovery (bottom panel) for proton partial

lifetime in p → eþπ0 (blue bars) and p → ν̄Kþ (red bars) decay channels with various fiducial masses, as labeled, after 10 years (darker

shading) and 20 years (lighter shading) of runtime. The assumed background rates and signal efficiencies for THEIA are labeled in the

plots. These results are based on preliminary estimates of the backgrounds and signal efficiencies, which are likely to change as the

experiment progresses. The vertical dashed lines are our estimates of the current 95% C.L. (top panel) and 90% C.L. (bottom panel)

lower limits based on Super-Kamiokande’s data from 2014 [44] and 2020 [45].
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