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A B S T R A C T   

Traditionally, aerospace components are treated as monolithic structures during lifing analyses, wherein distinct 
microstructural information at individual locations is not necessarily considered. In components with gradient 
microstructures, the resulting material allowables are conservative and associated with large uncertainty bounds. 
To improve precision in the life estimates, a location-specific lifing framework is developed, which tracks 
manufacturing processes and retrieves microstructural information at distinct locations for use within a crystal 
plasticity fatigue life prediction model. A use case for the lifing of a dual microstructure heat treated turbine disk 
component is demonstrated near the bore (fine grains) and rim (coarse grains) regions. We employ the frame
work to access (a) the grain size statistics and (b) the macroscopic strain fields to inform precise boundary 
conditions for the crystal plasticity analysis. The proposed location-specific lifing framework presents new op
portunities for simultaneously designing the component and tailoring the microstructures to meet the targeted 
performance.   

1. Introduction 

The performance of a component and its underlying material is 
governed by process-structure–property relationships [1]. The 
manufacturing process controls the underlying microstructure in the 
material, which in turn governs the mechanical properties and the ul
timate performance. Hence, by controlling the processing conditions, we 
could potentially tailor the material’s microstructure to meet the tar
geted performance requirements and develop next-generation compo
nents. A dual-microstructure heat treated (DMHT) turbine disk [2–4] is 
an example of a component produced with distinct microstructures at 
individual locations to meet the desired location-specific performance 
requirements. To maximize fatigue resistance in the bore region of the 
Ni-based superalloy disk, fine grain microstructures are produced by 
exposing the bore region to a sub-solvus (below the γ′ solvus tempera
ture) heat treatment process. On the other hand, for achieving improved 
resistance to creep and dwell fatigue at higher temperatures, coarse 
grain microstructures are produced in the rim region of the disk via a 
super-solvus heat treatment. For such gradient microstructures, new 
methodologies are needed for location-specific lifing approaches. In this 
work, we present a holistic framework, including capturing the design 
and manufacturing information throughout the product lifecycle, to 

efficiently assess the fatigue life of components with tailored and/or 
gradient microstructures by utilizing a microstructure-sensitive 
computational approach. 

Traditionally, while lifing a component, the minimum allowable 
fatigue life in the material is identified through fatigue testing using 
specimens, which are representative of the component. While following 
this approach, the entire component is treated as a monolithic structure 
(i.e. assuming all the locations having similar microstructures and me
chanical properties), and the fatigue test data, regardless of the origins 
of the excised test specimens relative to the component location, is 
combined for statistical analysis as a single population, often-times 
resulting in large uncertainty bounds [5]. The minimum allowable life 
to crack initiation is classically identified as either (i) the −3 standard 
deviations from the mean value of the material’s low cycle fatigue life or 
(ii) the lower bound life corresponding to a probability of failure of 1/ 
1000 (i.e. the B0.1 life), which could lead to overly conservative esti
mates [6,7]. However, to life microstructure-tailored components with 
gradient microstructures across the volume of the component, oppor
tunities exist to employ a location-specific fatigue life analysis approach 
by treating separate datasets, corresponding to the distinct microstruc
tures, in individual regions/locations of the component [5]. The 
location-specific lifing approach presents the potential to (i) reduce the 
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uncertainties in fatigue life predictions originating from the traditional 
lifing approach and (ii) identify life-limiting locations in the component 
requiring attention during inspection or additional considerations for 
design modifications [5,8]. 

Microstructure-sensitive fatigue life prediction frameworks via 
crystal plasticity finite-element (CPFE) simulations present opportu
nities to use a physics-based approach to evaluate location-specific fa
tigue life in a component. Within crystal plasticity [9,10], 
microstructural grain-level information is used and the elastic and 
plastic anisotropies are incorporated while evaluating distributions of 
strain accumulation and stresses. Energy-based fatigue indicative met
rics [11–15] have been proposed to predict the fatigue crack initiation 
by combining the contributions of both the plastic strain (which cap
tures dislocation motion) and shear stress (the resistance to the dislo
cation motion). Bandyopadhyay et al. [13] presented a single energy- 
based fatigue metric (critical value of the accumulated plastic strain 
energy density or Wp

critical referred to as a material property), applicable 
for predicting fatigue crack initiation across multiple loading [13] and 
temperature conditions [14]. However, to effectively use this type of 
modeling approach for conducting location-specific fatigue life analysis 
of components within a workflow, the results of the manufacturing 
process, including precise microstructural descriptors, are required to 
instantiate the crystal plasticity models. In this work, we create con
nectivity between the component’s geometric definitions and its 
location-specific microstructural information for use within the crystal- 
plasticity analysis. 

The vision of a digital twin [16,17] aligns well with our current goal, 
which is to create a digital replica of a serialized component, including 
geometric and non-geometric definitions, and use the current available 
knowledge to evaluate the future performance of the component. A 
digital twin can be created before the physical production of the 
component (i.e. during the design stages), and the information appli
cable to the component can be updated during its product lifecycle [18]. 
In our previous work [19], we introduced a digital twin framework for 
storing, tracking, and retrieving externally stored metadata applicable 
to either a serialized or set of components, as well as individual locations 
via a computer-aided design (CAD) model. In this work, we use the 
earlier developed location-specific data linking methods to dynamically 

track and retrieve precise microstructural definitions within a compo
nent for use within crystal plasticity models, as shown in Fig. 1. 

The individual locations in the component are exposed to varying 
stresses and strains during service, which is a function of the component 
geometry, applied loading conditions, and the gradient material 
microstructural features. These stress/strain states at distinct locations 
are crucial inputs to inform precise boundary and loading conditions for 
the sub-scale CPFE analysis. Component-scale finite-element (FE) sim
ulations with in-service loading conditions can be used to obtain the 
stress/strain distributions. In our prior work [19], we developed a pro
grammatic integration between the design definitions, manufacturing 
data, and stress/strain fields obtained from FE analysis tools. In this 
work, we extend the framework to inform loading states for sub-scale 
CPFE simulations (Fig. 1) by utilizing earlier developed methods to 
extract precise stress/strain fields from locations of interest within the 
component. This framework provides a new paradigm for the 
microstructure-sensitive, location-specific lifing of components. 

The remainder of the paper is divided into the following sections. 
Firstly, we introduce the framework for enabling the digital twin 
(namely model-based feature information network or MFIN) and the 
location-specific data linking mechanism in Section 2. With the aim of 
utilizing the framework to demonstrate location-specific fatigue life 
analysis, we present a use-case of lifing DMHT turbine disk. The 
component geometry, manufacturing processing, and material’s 
microstructural description are described in Section 3. The crystal 
plasticity-based fatigue life prediction framework is described in Section 
4. A component-level FE analysis to simulate in-service stress/strain 
states is detailed in Section 5. Finally, we present the predictions of 
material allowable fatigue life, the location-specific fatigue life of the 
component, and considerations for the utilization of this overarching 
framework in Section 6, followed by the conclusion of the work in 
Section 7. 

Fig. 1. Overarching digital twin framework for conducting location-specific fatigue life analysis of components with direct connectivity to design and manufacturing 
data workflows and in-service loading states via microstructure-sensitive crystal plasticity-based life predictions. 
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2. Model-based feature information network (MFIN) for creating 
digital twin(s) of components 

2.1. File format and data linking approach 

The model-based feature information network (MFIN) framework 
was originally developed [19,20] to integrate geometric and non- 
geometric data applicable to a component and its individual features, 
thereby facilitating the tracking and retrieval of useful information for 
assessing components during the product lifecycle. The MFIN frame
work is an extension of the Quality Information Framework (QIF) [21], 
which is recognized as a standard by the International Organization for 
Standardization for storing and communicating lifecycle metadata. The 
framework relies on a software-independent text file format in exten
sible markup language (XML), with a “.qif” file extension. This XML file 
format will be denoted as MFIN XML throughout the paper. The process 
of generating the MFIN XML file format originates from the computer- 
aided design (CAD) model of the component. Firstly, the geometric 
definitions of the component and its features, along with any additional 
metadata in the form of notes within the CAD model, are translated into 
equivalent XML definitions using a software tool, namely MBDVidia 
[22]. In this work, we have used the Siemens NX 12.0 CAD [23] tool, 
while the overall framework is software agnostic to translate XML de
rivatives from any commercial CAD tools. Once the baseline MFIN XML 
file is generated from the CAD model, additional datasets from external 
databases or network drives are integrated, through a dynamic linking 
mechanism [19], with the component and its geometric features within 
the MFIN XML. 

For capturing product lifecycle datasets other than the data origi
nating from CAD models, we have defined new data elements within the 
MFIN XML. The organization of data entries within each element in the 
MFIN XML file is defined using the MFIN XML schema documents (XSDs) 
[19]. Primarily, there are two groups of MFIN schemas, namely the li
brary schemas and the application schemas. The library schemas 
describe the organization of the data elements for describing the prod
uct’s geometry, topology, and features. The application schemas define 
the layout of the data elements to capture the product lifecycle datasets 

applicable either to the component level or feature level (including 
specific locations). In our prior work [19], we created new application 
schemas to define data linkages to externally stored (i) material datasets 
and (ii) datasets pertinent to finite-element (FE) analysis of the 
component. In this work, we expand the schemas to include information 
relevant to sub-scale crystal plasticity finite element (CPFE) analysis for 
connectivity to specific locations within the component. All the data 
elements (including geometric and non-geometric datasets), generated 
by following the MFIN schemas, are concatenated within the main 
element in the MFIN XML, namely the “QIFDocument” (dictated by the 
“QIFDocument.xsd” schema file). 

Programmatic methods have been created for appending new data 
elements within the MFIN XML and retrieving existing datasets out of 
MFIN XML through application program interfaces (APIs) or MFIN APIs 
[19]. Corresponding to every data element within the MFIN schemas, 
Python API functions have been generated using a source code binding 
process [24], and all the API functions are grouped within a Python 
module (“QIFDocument.py”). In this work, we have used the MFIN APIs 
to create wrapper code(s) for linking and retrieving processing history, 
material microstructure descriptors, material properties, component- 
level FE analysis datasets, and information relevant to crystal plas
ticity finite element analysis (explained in Section 2.2). 

The framework has been developed to dynamically store, track, 
update, and retrieve information at both the component-level as well as 
individual locations (i.e., capturing location-specific information), 
which has been achieved by the data linking mechanism. As opposed to 
storing metadata directly within the MFIN XML, the framework relies on 
capturing data linkages to externally stored datasets (either in the 
database(s) or network drives) [19]. Hence, the externally stored met
adata can be continually updated, and the data linkages can be used to 
dynamically retrieve the most recent version of the dataset. Addition
ally, each data element within MFIN XML can be tracked using a unique 
identifier. The overall MFIN XML document is tracked using a univer
sally unique identifier (UUID), composed of a 128-bit number following 
the RFC 4122 standard [25]. The UUID enables tracking of the MFIN 
XML corresponding to each serialized component (Fig. 2). The sub- 
elements within the MFIN XML have local identifiers, which aid in 

Fig. 2. Information captured within the digital twins of serialized components and their individual locations.  
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classifying and tracking individual features. To define specific locations 
within the component’s volume, datum points are used. Each datum 
point (also referred to as a point feature) is described using its location 
coordinate and acts as a pointer to a location within the component 
(Fig. 2). Following the structure of the MFIN XML, these datum points 
also have an associated local identifier. Hence, for creating associations 
between the component’s geometry and metadata, the unique identifiers 
are grouped together with the data linkages (either file paths or 
database-specific identifiers [19]). The use of data linkages and the 
dynamic data retrieval via the MFIN framework is crucial in the context 
of the digital twin to continually update and utilize precise material state 
information tied to the component for analysis across the design, 
manufacturing, and service stages in the product lifecycle. The MFIN 
framework [19] has been integrated with several commercial materials 
databases, including Ansys GRANTA [26] and MSC MaterialCenter [27], 
wherein the material pedigree information and material datasets were 
housed and linked to individual features within the MFIN XML instance 
of a component. 

As shown in Fig. 2, we can use the MFIN framework to integrate 
information at both the component and location-specific levels. At the 
component level, we can capture the as-designed geometric definitions 
of the component and its features (from nominal CAD model), process
ing history, loading conditions during service, and deviations in the part 
geometry post-manufacturing (from as-built CAD models) [19,28]. At 
the location-specific level, schemas are developed to integrate micro
structural attributes, mechanical properties, stress/strain fields from 
component-scale FE analysis, and information pertinent to sub-scale 
CPFE analysis. The data linkages to retrieve microstructural defini
tions from individual locations are used within the CPFE analysis. 
Additionally, wrapper code(s) are developed to retrieve stress/strain 
fields from component level FE analysis and hierarchically inform 
boundary conditions within the CPFE simulations (explained in Section 
2.2). 

2.2. Hierarchical exchange of information from component-level FE 
analysis to sub-scale CPFE analysis 

Previously [19], we created an integration between the MFIN XML 
and a FE analysis tool for (i) utilizing up-to-date model geometry and 
material properties, as well as (ii) mapping the FE analysis results 
(stress/strain fields) to individual locations in the design definition of 
the component. This was accomplished by developing a schema file, 
namely “MFINAnalysis.xsd” [19], to categorically store the data linkages 
of the input and output data. The data elements in the MFIN XML, 
relevant to FE analysis, include linkages to the model geometry using a 
STEP AP214 [29] file format, the analysis input files (“.inp” files), and 
the analysis output files (“.odb” files). Note that we utilize an interme
diate STEP file derived from the native CAD model to exchange model 
geometry from MFIN XML to the analysis tool since the analysis tool 
(ABAQUS) is incompatible with directly importing XML geometric def
initions [19]. Due to the dynamic updating and tracking capabilities 
within the MFIN XML, the geometry of the component used for the FE 
analysis is not limited to nominal geometries. The deviations encoun
tered in the geometric features of the component from manufacturing or 
in-service incidents can be recorded and tracked via the MFIN, and a 
revised CAD model (and the associated STEP file) can be used to inform 
the updated component geometry within the analysis tool [28]. Addi
tionally, an analysis results file (in a “.csv” file format), comprising the 
coordinates of elemental centroids and associated field variables (e.g., 
stresses, strains) of interest, can be programmatically generated and 
linked within the MFIN XML. Hence, corresponding to the elemental 
centroids in the FE analysis, point features are created within the com
ponent’s geometric description within the MFIN XML, thereby mapping 
the analysis results to individual locations within the component. In this 
work, we use the MFIN framework to inform material properties for 
component-level FE analysis (to simulate in-service conditions) and 

subsequently integrate the stresses and strains from FE analysis with the 
component volume. 

The MFIN framework was expanded to extract strain fields from the 
component-level FE analysis for locations of interest to use as the 
boundary conditions in sub-scale CPFE analysis. For this purpose, firstly, 
we expanded the MFIN framework to integrate information pertinent to 
the CPFE analysis at distinct locations (shown in Fig. 2). Hence, we have 
created a new MFIN application schema (“MFINCPFEAnalysis.xsd”). The 
“MFINCPFEAnalysis” element within the MFIN XML is linked to specific 
locations via point features (using their corresponding local identifier). 
The sub-elements within the “MFINCPFEAnalysis” element have pro
visions to capture linkages to (i) the virtual discretized (fully meshed) 
microstructure (in “.inp” file format), (ii) grain-level information (i.e., 
files with grain identifiers, including grain orientations or Type II re
sidual stresses), (iii) user-defined material sub-routine or UMAT file (“.f” 
file format) applicable for the CPFE analysis, (iv) boundary conditions to 
be enforced for the CPFE simulation, and (v) the resulting micro
mechanical field variables extracted from the CPFE analysis. A pro
grammatic process has been developed to inform location-specific 
boundary conditions within the CPFE analysis. Based on the location of 
interest (given by its position coordinates) within the component, the 
wrapper code extracts stresses/strain fields from the “MFINAnalysis” 
element and updates the sub-element capturing the corresponding CPFE 
boundary condition within the “MFINCPFEAnalysis” element. Hence, the 
MFIN framework enables a hierarchical exchange of location-specific FE 
analysis results for conducting location-specific CPFE analysis, which 
has been demonstrated for fatigue life assessment of a DMHT turbine 
disk component. 

3. Dual-microstructure heat treated (DMHT) disk: Component, 
material and methods 

To demonstrate location-specific fatigue life analysis of microstruc
ture tailored components via the MFIN framework, we present a use case 
for lifing a dual microstructure heat treated turbine disk. In this section, 
firstly, the manufacturing process of the disk and characterization con
ducted in [2] are summarized. Next, the CAD model (and corresponding 
MFIN XML instance) of the component and the microstructure defini
tions across the disk are established. Finally, we create virtual micro
structures for conducting location-specific CPFE analysis. 

3.1. Processing route and material characterization 

The DMHT disk was manufactured via a powder metallurgy pro
cessing route followed by a specialized heat-treatment process 
[2,3,30,31] to produce fine grains in and surrounding the bore regions of 
the disk and coarse grains in and surrounding the rim regions. The disk 
component used for the present study was developed by NASA, and the 
production of the disk was conducted at PCC Wyman-Gordon Forgings 
(initial forging and machining) and Ladish Company Inc. (specialized 
heat treatment) [2,3]. Initially, the LSHR powder of particle sizes less 
than 55 μm was hot compacted and extruded into billets. The billets 
were isothermally forged, followed by machining, to obtain the disk 
with an outer diameter of approximately 30 cm, a maximum bore 
thickness of 5 cm, and a maximum rim thickness of 3.8 cm [2,3]. An 
initial sub-solvus heat treatment was conducted at 1135 ◦C for 2 h, 
followed by air cooling to produce uniform grains across the disk with 
sizes ranging between 5 − 10 μm [2,3]. Next, the dual microstructure 
heat treatment was performed, wherein a temperature gradient was 
maintained between the bore and the rim region by means of placing a 
heat sink [2,3] in the bore region. This resulted in the bore region with 
fine grain microstructures (5 − 10 μm) and the rim region with coarse 
grain microstructures (30 − 80 μm) [2,3]. 

Grain size distribution and texture for LSHR at different regions of 
the disk were characterized using the electron backscattered diffraction 
(EBSD) technique by Gabb et al. [2]. The characterization was 
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conducted at multiple locations within the transition zone in the DMHT 
disk, which is a region spanning between the bore and the rim region as 
we move radially outward, wherein the microstructure changes from 
fine grains to coarse grains. The average grain size for the transition zone 
near the bore region was 5.8 μm, with as-large-as (ALA) grain size of 
22 μm [2]. The average grain size for the transition zone near the rim 
region was quantified to be 55 μm, with ALA grain size of 413 μm [2]. 
The characterized grain sizes in the near-bore region were reported to be 
similar to the bore region, and likewise, for the near-rim region to the 
exterior rim region [2]. Hence, in this work, we have consistently used 
an average grain size of 5.8 μm at the bore and the near-bore region and 
an average grain size of 55 μm across the rim and the near-rim region. 
The grain sizes followed lognormal distributions for both the bore and 
the rim region [2]. Additionally, in the central portion of the transition 
region, an average grain size of 38 μm was characterized, with ALA 
grain size of 410 μm [2]. Throughout the disk, we have defined a 
random texture, based on the characterization of LSHR reported in 
[2,32]. Within the MFIN XML, data linkages are created between these 
three regions and the associate grain size attributes, which are used for 
the crystal plasticity-based fatigue life predictions. However, we would 
like to emphasize that the framework allows for defining an unlimited 
number of regions; hence, more refined gradient structures can be 
realized. Moreover, the approach can be extended to incorporate other 
microstructure artifacts, such as grain boundary structure, precipitate 
distributions, and the likelihood of pores or inclusions, obtained via 
characterization [4] or modeling [33]. 

3.2. Creation of CAD model of the turbine disk 

For the geometric definition of the component, a CAD model of the 
DMHT turbine disk was created. We used the approximate geometric 

dimensions reported in [2] and also summarized in Section 3.1 to create 
a 2D axisymmetric section of the disk (shown in Fig. 3(a)). The 
axisymmetric section was revolved about the Z-axis to generate the 3D 
CAD model of the DMHT disk, as shown in Fig. 3(b) and (c). The 
microstructural features are defined in the three regions (bore/near- 
bore, transition, and rim/near-rim) using semantic notes in the CAD 
model tagged to datum points within these regions, as shown in Fig. 3 
(a). The CAD model and the associated notes were translated into the 
MFIN XML file using the process described in Section 2.1. For this study, 
we have chosen two distinct locations, Location A (fine grain micro
structure) in the bore region and Location B (coarse grain microstruc
ture) in the rim region, as shown in Fig. 3(a) and (b), respectively, with 
their associated microstructures - to conduct crystal plasticity-based 
fatigue life predictions. The locations were selected where the highest 
stress during service is expected (also verified later in Section 5 via 
component-level FE analysis) since there is a sharp change in the cross- 
section of the disk. 

3.3. Generation of location-specific discretized virtual microstructures 

We used the grain size statistics reported by Gabb et al. [2] and 
summarized in Section 3.1 to create 3D synthetic virtual microstructures 
for both Locations A and B. The detailed process for utilizing micro
structure descriptors (grain size, texture, twin area fraction) and 
creating virtual microstructures, followed by mesh generation via a 
DREAM.3D pipeline, is explained in [34]. The lognormal mean and 
standard deviations were used to instantiate the virtual microstructures. 
A random texture was assigned to these microstructures. The Taylor 
factor was used as a measure to quantify the texture. After instantiating 
multiple virtual microstructures per location, statistical equivalency 
with respect to grain sizes, twin area fraction, and texture was verified. 

Fig. 3. Dual-microstructure heat treated (DMHT) turbine disk component: (a) 2D axisymmetric cross-section of the disk shown with average grain size information 
varying from fine grains (average grain size = 5.8 μm) in the bore region to coarse grains (average grain size = 55 μm) in the rim region, (b) CAD model of the disk 
with a 270◦ trimetric view, (c) top view of the entire CAD model of the disk, and (d) discretized virtual microstructures corresponding to Locations A and B. 
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The statistical equivalency is defined based on achieving less than 5 % 
difference in average grain size, 5 % difference in twin area fraction, and 
2 % difference in the Taylor factor [35]. For materials with random 
texture and high density of annealing twins, the grain misorientation 
distribution follows a Mackenzie distribution with an additional peak at 
60◦ misorientation demonstrating the presence of twins; here the virtual 
microstructures also exhibit the same profile for the grain misorienta
tion distribution based on the use of the twin insertion code. These 
virtual microstructures are referred to as statistically equivalent mi
crostructures (SEMs). For Location A, 8 SEMs were generated with an 
average grain size of 5.8 μm, and the SEM domain size was 35 μm × 35 
μm × 35 μm. The grain sizes ranged from 1 μm to 24 μm. For Location B, 
8 SEMs were generated with the SEM domain size of 325 μm × 325 μm ×
325 μm. The grain sizes ranged from 9 μm to 220 μm. In this study, we 
use an explicit approach, wherein we phenomenologically include grain 
size effects by choosing different SEM domain sizes corresponding to the 
lognormal mean and standard deviation in the grain size distributions of 
the microstructure, while ensuring there are sufficient number of grains 
included in the sampling volume to capture the macroscopic mechanical 
response. Each SEM consists of approximately 200 to 230 grains, as 
identified based on a sensitivity study for reliable fatigue life predictions 
in the HCF loading regime [15]. In [15], the authors have demonstrated 
8–9 SEMs to capture the scatter in the fatigue life data reasonably well. 
Hence, for our demonstration, we have made a choice of 8 SEMs per 
location. Linear tetrahedral (C3D4) mesh elements were used to 

discretize the SEMs, and the element sizes were chosen based on a mesh 
sensitivity analysis conducted in [36], wherein a suitable choice of 
refined mesh satisfied the following criteria, average element size

average grain size ≤
3 μm
48 μm =

0.063. In our case, an average element size of 0.33 μm was chosen for 
Location A and an average element size of 2.99 μm was chosen for 
Location B, which is in accordance with the criteria. The SEMs were 
linked to individual locations in the component via MFIN XML and used 
for conducting CPFE simulations. 

4. Crystal plasticity-based fatigue life prediction framework 

Calibration of the model is necessary to conduct fatigue life pre
dictions at two levels: (i) the crystal plasticity (CP) model parameters 
and (ii) the critical value of the fatigue metric, known as the critical 
accumulated plastic strain energy density (Wp

critical). In Section 4.1, we 
introduce the crystal plasticity model used in this work, boundary 
conditions for CPFE, and the model calibration. Next, we summarize the 
fatigue life prediction model using Wp

critical in Section 4.2. Finally, we 
present the calibration of Wp

critical parameter using experimental life 
datasets via a Bayesian inference approach in Section 4.3. 

4.1. Crystal plasticity constitutive model and parameter calibration 

The crystal plasticity model used in this work is based on the con
tinuum mechanics description of slip via dislocation glide. The total 

Fig. 4. Boundary conditions for the crystal plasticity finite element simulations of the discretized microstructures: (a) uniaxial displacement boundary condition to 
simulate experimental loading conditions and (b) multiaxial displacement boundary conditions to simulate the applied strain state at individual locations in 
the component. 
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deformation gradient (F) at a material point can be described using a 
multiplicative decomposition into an elastic part (Fe) (which captures 
the elastic stretching and rotations) and a plastic part (Fp) (which cap
tures the plastic deformation via crystallographic slip) as shown in Eq. 
(1). 

F = Fe⋅Fp (1) 

The velocity gradient (Lp) associated with the plastic part of the 
deformation is related to Fp using Eq. (2). 

Lp = Ḟp⋅(Fp)
−1 (2) 

Further, Lp can be described using shear strain rate (γ̇j), slip direction 
sj and slip plane normal nj associated with the jth slip system and sum
med over all the active slip systems using Eq. (3). 

Lp =
∑12

j=1
γ̇j(sj⨂nj) (3) 

The shear strain rate (γ̇j) can be related to resolved shear stress (τj) on 
the jth slip system using the Hutchinson flow rule [37] and has a power- 
law relationship as shown in Eq. (4). 

γ̇j = γ̇j
0

⃒
⃒
⃒
⃒
τj

gj

⃒
⃒
⃒
⃒

n

sgn(τj) (4) 

γ̇j
0 and n are the initial shearing rate and the inverse strain rate 

sensitivity exponent, respectively. The reference stress (gj) or the resis
tance to shearing offered by the slip system, which also evolves with 
plastic deformation, is described using a Taylor-type hardening law as 
shown in Eq. (5). g0 is the initial slip resistance and ρj is the total 
dislocation density. The terms μ, b, and hn represent the shear modulus, 
the Burgers vector, and a kinetics-based scaling parameter, respectively. 

gj = g0 + bμ
̅̅̅̅̅̅̅̅
hnρj

√
(5) 

The evolution of ρj is captured via a Kocks-Mecking [38,39] rela
tionship (Eq. (6)), which constitutes a dislocation storage term, k1, and a 
dislocation annihilation term, k2(ε̇, T). 

ρ̇j
=

⃒
⃒γ̇j⃒⃒

(
k1

̅̅̅̅
ρj

√
− k2(ε̇, T)ρj) (6) 

Finally, the constants k1 and k2(ε̇, T) are related using Eq. (7) [40] 
with the temperature T and the applied strain rate ε̇. This relationship is 
applicable for dislocation glide mediated plasticity, wherein 
10−5s−1 ≤ ε̇ ≤ 103 s−1. Here, Γact is the activation energy term, k is the 
Boltzmann constant, ε̇0 is the reference strain rate, and D is a scaling 
constant. 

k2(ε̇, T)

k1
=

hnb
Γact

[1 −
kT
Db3 ln

⎛

⎝ ε̇
ε̇0

⎞

⎠

⎤

⎦ (7) 

Hence, in the CP model, there are eleven parameters, which are to be 
calibrated using the experimental data. These include plasticity terms γ̇0, 
n, g(0), ρ(0), k1, Γact, D, and hn and the anisotropic elastic constants C11, 
C12, C44. 

Prior to calibration of the CP model parameters, we introduce two 
different types of boundary conditions (shown in Fig. 4) for the CPFE 
analyses in this study. Firstly, for calibration of the CP model parameters 
and critical value of the fatigue metric, we use symmetric boundary 
conditions for simulating the uniaxial experimental test conditions in an 
average sense, as shown in Fig. 4(a). The normal displacements are 
constrained in three mutually orthogonal faces of the SEMs, corre
sponding to X  = 0, Y = 0, and Z = 0, respectively. A non-zero normal 
displacement is specified along the Y direction. The remaining two 
surfaces of the SEMs are unconstrained and act as free surfaces in the 
simulation. Next, for location-specific fatigue life predictions of the 
DMHT disk component, the CPFE simulations are informed hierar
chically via component-level analysis and multiaxial displacement 
boundary conditions are applied, as shown in Fig. 4(b). Non-zero dis
placements are applied on three mutually orthogonal surfaces (Fig. 4 
(b)) along the X, Y, and Z directions. The choice of displacements is 
determined via component-level FE analysis by simulating the in-service 
loading conditions and retrieving location-specific strain states in the 
component (explained in Section 5). 

Linear tetrahedral (C3D4) elements are used to mesh the SEMs, 
which provides a conformal mesh but offers drawbacks. The values of 
the micromechanical field variables from the CPFE analysis are prone to 
spurious numerical oscillations arising from (i) volumetric locking [41], 
(ii) lack of mesh refinement near the grain boundaries resulting in steep 
gradients in field variables across grains, or (iii) poor quality of tetra
hedral elements near grain boundaries and twin boundaries. To 
compensate for these aspects, a slip-system-based regularization 
scheme, namely non-local averaging, is employed [15]. At each of the 
integration points of the finite elements, we consider three mutually 
orthogonal directions corresponding to the slip direction, slip plane 
normal, and a transverse direction for the jth slip system, which bound a 
cuboidal volume about a center coinciding with the integration point. 
The micromechanical field variables are averaged over all the elements 
whose centroids lie within the bounding volume. Since we are dealing 
with a FCC material, we have 12 active slip systems (i.e., j = 1 to 12) and 
hence twelve such bounding volumes are considered for each integra
tion point for averaging. Finally, after computing average values 

Fig. 5. Comparison of experimental and simulated macroscopic stress–strain curves from an SEM using calibrated crystal plasticity parameters for LSHR at 593 ◦C for 
(a) fine grain microstructure and (b) coarse grain microstructure. 
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corresponding to each of the twelve bounding volumes, the maximum 
value amongst the averages is assigned as the slip-system averaged 
quantity of the micromechanical variable at the integration point of 
interest. In our current analysis, we have used an averaging volume of 
5–3−3 elements along the slip direction - plane normal - transverse di
rection, which was determined via a sensitivity study in [14]. The 
averaging volumes are truncated to ensure the non-local average is 
contained within a single grain, e.g., does not cross a grain boundary. 
Additionally, the micromechanical field values are prone to spurious 
values in the elements near the surfaces of the SEM wherein boundary 
conditions (including applied displacement constraints and tractions) 
are imposed. Hence, for all the CPFE analyses in this study, the micro
mechanical field values near the surfaces with applied boundary con
ditions (approximately 5-element thickness from the bounding surfaces 
of the SEMs) are discarded. 

The fatigue analyses in this study are focused on a single isothermal 
temperature, 427◦ C, and due to the availability of data, the CP model 
parameters are calibrated at 593◦ C with appropriate scaling laws to 
account for temperature dependencies. For each of the fine grain and 
coarse grain microstructures, the CP model parameters (γ̇0, n, g(0), ρ(0), 
k1, Γact, D, and hn) were separately calibrated using uniaxial monotonic 
stress–strain data (Fig. 5). The elastic constants (C11, C12, C44) of LSHR 
are based on reported values in [42]. The starting point for the cali
bration of g(0), ρ(0), k1 for each of the fine grain and coarse grain mi
crostructures are based on a Kocks-Mecking approach (details included 
in Appendix). Additionally, the values of Γact, D, hn, γ̇0, and n are 
considered independent of grain size and hence constant for both mi
crostructures. The model parameters were iteratively adjusted until a 

match between the experimental stress–strain curves and the crystal 
plasticity model was achieved (as shown in Fig. 5(a) and (b)). The 
elastic constants, C11, C12, C44, are temperature-dependent, and hence, 
the values obtained at 593◦ C were scaled up by 5.05 % based on [32] to 
obtain applicable values at 427◦ C. The yield stress was reported to be 
insensitive between 427◦ C and 593◦ C; hence the values of g(0) cali
brated at 593◦ C were used at 427◦C. Lastly, the parameter hn is also 
temperature-dependent; however, we have assumed it to be insensitive 
to temperature changes between 427◦ C and 593◦ C. The final calibrated 
values of the model parameters for LSHR applicable at 427◦ C are sum
marized in Table 1, which were subsequently stored in a CSV file and 
linked to locations A and B in the DMHT disk via the MFIN XML. 

4.2. Fatigue life prediction model using the critical value of plastic strain 
energy density (Wp

critical) 

A single critical value of an energy-based fatigue metric is used to 
predict fatigue life. From historical origins [43], the work done by 
external forces during fatigue loading contributes to an elastic portion of 
energy (which is recoverable during unloading) and an internal plastic 
work (non-recoverable upon unloading). A portion of the internal plastic 
work is stored within the material, and this contributes to the formation 
of dislocation structures and sub-structures. Here at the meso-scale, we 
use the stored portion of the internal plastic work, described as the 
accumulated plastic strain energy density [13], for predicting fatigue life 
relative to microstructural features, which has been experimentally 
validated previously, c.f. Ref. [14,44,45]. From the CPFE analysis, the 
plastic strain energy density at a material point (x) within an SEM is 
computed by accounting for contributions from individual slip systems. 
For the yth loading cycle, the incremental plastic strain energy density 
(Δwp

y(x)) is computed using Eq. (8). 

Δwp
y(x) =

∮ (
∑12

j=1

⃒
⃒τj(x, t) γ̇j(x, t)

⃒
⃒

)

dt (8) 

The accumulated plastic strain energy density, wp
y(x), over the yth 

loading cycles is computed by summing over the accumulated cycles, 
Δwp

y(x), as shown in Eq. (9). 

wp
y(x) =

∑y

i=1
Δwp

i (x) (9) 

A reduced number of cycles (Ns) is explicitly simulated, which is 
sufficient for the dislocation configurations in the material and the 
macroscopic hysteresis loop to stabilize and corresponds to a saturation 
in the values of Δwp

y(x). To identify a reasonable choice for Ns, an SEM 
corresponding to the coarse grain microstructure was simulated for 20 
cycles. After the simulation was completed, Δwp

y(x) were extracted, 
followed by regularizing the fields via a non-local averaging scheme 
described in Section 4.1. Finally, we extract and plot Δwp

y values at a 
critical location x = x* (Fig. 6), which corresponds to the location with 
the maximum accumulated plastic strain energy density value. Hence, 
the results from the crystal plasticity model are used to identify the 
location of x*, which represents the weak link in the microstructure prone 
to failure. Past work by the authors has used the location of x* to identify 
competing failure modes in materials [14]. The values of Δwp

y(x*)

saturate after a few loading cycles. A similar analysis was repeated for 
the fine grain microstructure as well. Based on this analysis, all the CPFE 
simulations in the remainder of the work were performed for 14 cycles 
(Ns = 14 cycles) and the values of wp

Ns
(x*) and Δwp

Ns
(x*) were extracted 

and used for life predictions. After Ns loading cycles, the increment in 
plastic strain energy density Δwp

y(x*) is constant, with the values equal to 
Δwp

Ns
(x*). The extracted CPFE values associated with each SEM are 

linked to the corresponding location within the DMHT disk via the MFIN 
framework. 

Table 1 
Calibrated values of CP model parameters for LSHR at 427 ◦C corresponding to 
the fine grain and coarse grain microstructures.  

Parameter Fine grain microstructure Coarse grain microstructure 

C11 (GPa) 257.9 228.0 
C12 (GPa) 103.4 91.4 
C44 (GPa) 77.3 68.2 
γ̇0 0.0001 0.0001 
n 40 40 
g(0) (MPa) 460 386 
ρ(0) (1/mm2) 106 106 

k1 (1/mm) 7 X 105 4.5 X 105 

hn 0.09 0.09 
Γact 2.88 X 10−3 2.88 X 10−3 

D (MPa) 53,280 53,280  

Fig. 6. Saturation of plastic strain energy density per cycle evaluated at the 
critical location x* (shown for an SEM corresponding to the location with coarse 
grain microstructure). 
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The critical value of the accumulated plastic strain energy density, 
Wp

critical , corresponding to a predicted fatigue life, Nf , is based on linear 
extrapolation using Δwp

Ns
(x*) from Ns to the experimentally reported 

fatigue life distributions (Nexp
f ) [2] as shown in Eq. (10). 

Wp
critical = wp

Ns
(x*) + (Nexp

f − Ns)Δwp
Ns

(x*) (10) 

The Wp
critical value, which is postulated to be a material property, is 

calibrated based on experimental results using a Bayesian inference 
approach. 

4.3. Calibration of the accumulated plastic strain energy density 
(Wp

critical) using a Bayesian inference approach 

There is inherent scatter associated with fatigue life, which has been 
attributed to variability in the microstructure features [46]. In the cur
rent framework, the statistical variability in the microstructural features 
is captured by creating various instantiations of virtual microstructures, 
SEMs. Each SEM will provide the evolution of wp

y(x) and an associated 
predicted lifetime to crack initiation, which can be compared to a series 
of results from experimental test specimens. We calibrate the value of 
Wp

critical using a Bayesian inference approach (please refer [13] for full 
details), based on matching the simulation results from a set of SEMs 
with the distribution of the experimentally determined cycles to failure. 
To calibrate Wp

critical for each of the coarse grain and fine grain micro
structures, CPFE simulations were performed under uniaxial cyclic 
loading conditions (Fig. 4(a)). The experimental fatigue tests were 
conducted at an applied strain range Δε = 0.6 %, fatigue load ratio R =
0, and at 427 ◦C. For each of the two types of microstructures, tests were 
conducted on six specimens, and the fatigue life data was reported in 
[2]. Hence, for calibrating Wp

critical, we use six fatigue life data points and 
eight SEMs, per microstructure. 

By rearranging Eq. (10) and replacing Nexp
f with the predicted life 

Npredict
f , we can describe Npredict

f as a function of Wp
critical, as shown in Eq. 

(11). This equation depicts the fatigue life prediction model used in this 
work. The values of wp

Ns
(x*) and Δwp

Ns
(x*) are obtained from CPFE 

simulations for each SEM, and Wp
critical is the parameter in Eq. (11) which 

is to be calibrated. 

Npredict
f =

Wp
critical − wp

Ns
(x*)

Δwp
Ns

(x*)
+ Ns (11) 

The predicted fatigue life and experimental life can be related using 

Eq. (12), wherein the term δ accounts for the errors originating from 
experiments and the limitations in the crystal plasticity model to capture 
the underlying physics. The term δ can be described using a normal 
distribution with zero mean and a standard deviation (s) [13]. Hence, 
the parameter set for the Bayesian calibration process is described as α =
{Wp

critical, s}. 

Nexp
f = Npredict

f + δ (12) 

The inputs required for Bayesian calibration include experimental 
observation (i.e., the fatigue life data) and prior distributions for α. The 
output of the Bayesian calibration process is the posterior distributions 
for α. The calibration process is separately conducted for coarse grain 
and fine grain microstructures. Finally, the expected values of Wp

critical is 
extracted from the posterior distributions and used for fatigue life 
prediction. 

Initially, we assume uniform prior distributions (π0(α)), which are 
systematically updated based on a Bayesian inference method using 
experimental observations (D) and likelihood function π(D|α). The 
posterior distribution π(α|D) can be evaluated using Bayes’ theorem as 
shown in Eq. (13). 

π(α|D) =
π(D|α)π0(α)

π(D)
=

π(D|α)π0(α)
∫

π(D|α)π0(α)dα (13) 

The likelihood term π(D|α) in Eq. (13) can be expressed using Eq. 
(14) [13]. The term t is the product of the number of SEMs (n1) times the 
number of experimental data points (n2). 

π(D|α) =
1

(2πs2)
t
2
exp(−

SSE(α)

2s2 ) (14) 

SSE(α) is the sum of square errors for the parameter set α, which is 
described using Eq. (15). In the present work, for both the coarse grain 
and fine grain microstructures, we have 8 SEMs (i.e., n1 = 8) and 6 
experimentally reported [2] fatigue life data points (i.e., n2 = 6). 

SSE(α) =
∑n1

i=1

∑n2

j=1

(
Nexp

i − Npredict
j (α)

)2
(15) 

However, while evaluating the posterior distributions of α using Eq. 
(13), computation of the integral term in the denominator term can be 
challenging. To overcome this challenge, a Markov chain Monte-Carlo 
(MCMC) sampling approach is used. Please see [13] for the descrip
tion of the MCMC approach. The posterior distributions of Wp

critical, ob
tained using the Bayesian calibration, are presented in Fig. 7 and follow 
a normal distribution. These results correspond to converged MCMC 

Fig. 7. Posterior distributions of accumulated plastic strain energy density (Wp
critical) parameter for (a) fine grain microstructure and (b) coarse grain microstructure.  
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solutions, wherein the value of the convergence metric Rα [13] was 
closest to 1. For the fine grain microstructure (average grain size of 
5.8 μm), we obtained mean value of Wp

critical = 11, 984.8 MJ/m3 and 
standard deviation of Wp

critical = 1,264.6 MJ/m3. Whereas, for the coarse 
grain microstructure (average grain size of 55 μm), we obtained the 
mean value of Wp

critical = 488.6 MJ/m3 and standard deviation of Wp
critical 

= 69.4 MJ/m3. The value of Wp
critical is higher for the fine grain micro

structure compared to the coarse grain microstructure. As discussed in 
[47–49], the cycles to fatigue crack initiation are higher for fine grain 
material compared to coarse grains, under low plastic strain amplitudes 
and ambient temperatures, since coarser grains are more prone to the 
formation of persistent slip bands (PSBs) [49,50] which leads to strain 
localization. The metric Wp

critical is postulated as a material property, 
which is analogous to the energy for crack initiation via the formation of 

stable dislocation structures and sub-structures, including PSBs. Hence, 
the observed trend in Wp

critical with average grain size is consistent. Future 
work can explore the exact relationship between Wp

critical and average 
grain sizes. 

A probability of failure plot versus the number of cycles to failure is 
shown for the simulations compared to the experimental results from [2] 
in Fig. 8. The simulation-based predicted life and experimental datasets 
compare well in terms of range and slope, and both follow a lognormal 
distribution (see Fig. 8). 

5. Component-level FE analysis 

The micromechanical fields of the DMHT turbine disk were modeled 
for in-service conditions, from rest to an overspeed state, at an operating 
temperature of 427 ◦C. A static analysis has been performed on an 

Fig. 8. Probability of failure plot comparing experimental fatigue life data (at Δε = 0.6 %, R = 0, 427 ◦C) from [2] and predicted fatigue life data (each data point 
corresponds to an SEM) using the calibrated values of Wp

critical for fine grain and coarse grain microstructures. 

Fig. 9. Finite element model of the disk: (a) axisymmetric model geometry with quadrilateral mesh elements, centrifugal load, and boundary conditions, and (b) 
maximum principal stress distribution generated in the disk during service wherein the principal stresses are σI = 1251 MPa, σII = 774 MPa, σIII = 40 MPa, and 
principal strains are εI = 0.0051, εII = 0.0021, εIII = −0.0027 at Location A and σI = 1206 MPa, σII = 939 MPa, σIII = 39 MPa, εI = 0.0053, εII = 0.0033, εIII =

−0.003 at Location B. 
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axisymmetric section of the disk to acquire stresses and strains corre
sponding to the maximum loading condition, while assuming the min
imum applied load to be zero (therefore, the fatigue stress ratio is R = 0). 
A centrifugal load has been applied on the disk, with a spin speed of ω =

37500 rpm. To enforce the constraints on the disk due to the shaft, a 
displacement boundary condition was applied on the inner surface of the 
disk in both the radial and axial directions. The analysis model with the 
mesh, applied loads, and boundary conditions are shown in Fig. 9(a). 
Linear quadrilateral elements are used with an average element size of 
0.3 mm, based on a mesh sensitivity analysis. 

An elastoplastic material model was used for the FE analysis 
following a Johnson-Cook [51] type hardening rule (Eq. (16)), wherein 
the flow stress (σ) is a function of the equivalent plastic strain (ε) and 
applied temperature (T). In Eq. (20), the parameters σYS, B, c1, c2, Tref , 
Tmelt refer to the yield stress, strain hardening coefficient, strain hard
ening exponent, temperature exponent, reference temperature, and 
melting temperature, respectively. 

Table 2 
Material property values of LSHR at 427 ◦C which were used for the FE analysis, 
corresponding to the three regions (as shown in Fig. 3(a)) of the DMHT disk.  

Material Properties Bore region 
(Average 
grain size =
5.8 μm) 

Transition 
region 
(Average 
grain size =
38 μm) 

Rim region 
(Average 
grain size =
55 μm) 

Density (ρ) (kg/m3) 8359 8359 8359 
Young’s Modulus (E) (GPa) 199.6 181.7 176.5 
Poisson’s ratio (ν) 0.286 0.286 0.286 
Yield stress (σYS) (MPa) 1209 1112 1101 
Strain hardening coefficient (B)(MPa) 3641 3078 2697 
Strain hardening exponent (c1) 0.81 0.76 0.73 
Temperature exponent (c2) 1 1 1 
Melting temperature (Tmelt) (◦C) 1297 1297 1297  

Fig. 10. Probability of failure plot versus cycles to failure with B0.1 life values obtained by treating the datasets as individual distributions per location based on the 
underlying microstructure (blue data points correspond to SEMs from coarse grain microstructure and red data points correspond to fine grain microstructure) 
compared to treating the entire dataset as one single distribution (independent of the microstructure). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 11. Probability of failure plot corresponding to Location A (fine grain microstructure) and Location B (coarse grain microstructure) obtained via crystal 
plasticity simulations (each data point in the plot corresponds to an SEM). 
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σ = (σYS + Bεc1 )

[

1 −

(
T − Tref

Tmelt − Tref

)c2
]

(16) 

Additionally, we also use elastic model parameters, Young’s modulus 
(E) and Poisson ratio (ν), as well as physical property, mass density (ρ) 
[32]. The material properties assigned to different regions (bore region, 
transition region, and rim region) of the disk are based on the original 
average grain size definitions within the MFIN XML (Fig. 3(a)). For each 
element in the component FE model, the average grain size is extracted 
from the nearest point feature (Section 3.2). The material properties of 
LSHR were individually calibrated for the bore region (fine grain 
microstructure) and the rim region (coarse grain microstructure) based 
on reference stress–strain data at 593 ◦C (Fig. 5). The material properties 
of LSHR corresponding to different regions of the disk are summarized in 
Table 2. 

Using the calibrated Johnson-Cook plasticity parameters (σYS, B, 
and c1) and Young’s modulus (E) for the bore and rim regions, the 
corresponding parameters for the transition region were determined 
through interpolation, based on the average grain size value of 38 μm. 
The physical, elastic, and plastic parameter values are stored in indi
vidual CSV files and linked to distinct regions of the DMHT disk, using 
the earlier created point features within the MFIN XML. Subsequently, 
the temperature-dependent terms in Eq. (16) were used to conduct the 
FE analysis for the application temperature of 427 ◦C. 

The principal stresses and strains across the component were calcu
lated via the FE analysis and exported within a CSV file along with the 
corresponding element centroid location coordinates. Thereby, point 
features are created within the MFIN XML of the DMHT disk, and the FE 
analysis results are linked to individual locations (Section 2.2). The 
maximum principal (σI) stress distribution across the disk is shown in 
Fig. 9(b). As expected, we observe high stresses in the region of the two 
locations of interest (i.e., the Locations A and B) due to the steep vari
ation in the cross-section of the disk at these locations. Additionally, the 
discrete change in material properties associated with the three distinct 
regions of varying average grain sizes occurs at locations sufficiently far 
from the Locations A and B. The principal strains from Locations A and B 
are used to inform multiaxial displacement boundary conditions for the 
CPFE analysis in a hierarchical fashion via the MFIN framework. The 
CPFE analyses tied to Locations A and B are subsequently used for 
location-specific fatigue life predictions in the DMHT disk. 

6. Results and discussion 

The framework is used to systematically identify, store, and retrieve 

site-specific material microstructure and associated properties across a 
component. The data is seamlessly used for (i) CPFE simulations to 
evaluate material allowables through uniaxial loading conditions, (ii) 
component level FE analysis, and (iii) hierarchical CPFE simulations 
with site-specific boundary conditions from the component FE analysis. 

6.1. Simulation-based uniaxial minimum fatigue life for LSHR 

For establishing the materials allowables by identifying the mini
mum fatigue life, this framework is beneficial to (i) complement 
experimental results with simulated predictions, thereby accounting for 
additional cases of extreme value statistics of microstructural features to 
identify the minimum life (as described in this section) and (ii) connect 
to component lifing analysis (Section 6.2). Here, we present the pre
dicted fatigue life results obtained via CPFE simulations, while applying 
a constant uniaxial loading condition (Δε = 0.6 %, R = 0, 427 ◦C) for all 
the SEMs (akin to fatigue testing using virtual specimens). The proba
bility of failure versus loading cycles plot is shown in Fig. 10. In this plot, 
we have data points corresponding to the fine and coarse grain micro
structures, representing the predicted fatigue life obtained from their 
respective SEMs. In addition, the lognormal fits of these datasets are 
included. The plot in Fig. 10 provides: (i) the predicted life corre
sponding to the fine grain microstructure, (ii) the predicted life corre
sponding to the coarse grain microstructure, and (iii) the predicted life 
for the combined dataset as a single distribution (i.e., similar to the 
traditional approach of assuming uniform microstructure across the 
component). 

The significance of the presented result is twofold. Firstly, the use of 
microstructure-sensitive life predictions presents opportunities to 
reduce the overall number of tests needed to identify the allowable 
material life. Secondly, we observe reduced uncertainties in the reported 
fatigue life by treating datasets corresponding to individual locations as 
separate distributions, which was enabled by the tracking capabilities of 
location-specific microstructures in the MFIN framework. For identi
fying the minimum allowable life of the material using the B0.1 
approach, we used the lognormal fits and extrapolated the value cor
responding to the probability of failure of 1/1000 for each of the three 
cases shown in Fig. 10. The B0.1 life corresponding to the coarse grain 
microstructure was estimated as 3,630 cycles, whereas the B0.1 life 
corresponding to the fine grain microstructure was estimated as 220,000 
cycles. On the other hand, while using the traditional approach of 
treating all the fatigue life datasets from a single loading condition as 
one single distribution (assuming a monolithic component), we obtain a 
significantly lower minimum allowable B0.1 life of 60 cycles. Hence, by 

Fig. 12. Uniaxial tension test data for LSHR at 593◦C corresponding to the fine grain and coarse grain microstructures: (a) stress–strain data and (b) tangent modulus 
(dσ/d∊) scaled by the Young’s modulus (E) versus stress (σ) scaled by the yield stress (σYS). 
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accounting for precise microstructure descriptions of the material (i.e. 
location-specific microstructures), while estimating the minimum 
allowable life of the material, we could potentially reduce uncertainties 
and shift our estimates to a higher minimum life. The analysis demon
strated in this work could be particularly beneficial while estimating the 
material allowable(s) for next-generation components with gradient 
microstructures. 

6.2. Component level: Location-specific fatigue life predictions for the 
DMHT disk 

Next, we describe the location-specific fatigue life predictions con
nected to the component (i.e., component lifing) by using pertinent 
location-specific loading conditions within CPFE simulations in a hier
archical fashion. As explained in Section 5, each of the SEMs, corre
sponding to Location A (fine grain microstructure) were simulated with 
multiaxial displacement boundary conditions, informed through the 
component scale FE analysis, by using the principal strains, εI =

0.0051, εII = 0.0021, εIII = −0.0027 and R = 0. Similarly, the SEMs 
corresponding to Location B (coarse grain microstructure) were simu
lated with εI = 0.0053, εII = 0.0033, εIII = −0.003 and R = 0, based on 
the component-level FE results. Here, the MFIN framework was used to 
track and retrieve the principal strains across the component from in- 
service type loading FE simulation at locations of interest and used to 
inform the multiaxial displacement boundary conditions for the sub- 
scale CPFE analysis (Fig. 4(b)). 

The probability of failure versus loading cycles plot corresponding to 
Locations A (near bore) and B (near the rim) in the component is shown 
in Fig. 11. Each data point in the plot corresponds to the predicted life 
from an SEM. The predicted life for each multiaxially loaded SEM was 
computed using Eq. (11), wherein the corresponding wp

Ns
(x*) and 

Δwp
Ns

(x*) values were obtained from each CPFE simulation. Since Wp
critical 

has been demonstrated to be applicable, independent of loading con
ditions [13], we used the earlier calibrated Wp

critical values, i.e. Wp
critical =

11984.8 MJ/m3 for SEMs corresponding to the fine grain microstructure 
(Location A) and Wp

critical = 488.6 MJ/m3 for SEMs corresponding to the 
coarse grain microstructure (Location B) in Eq. (11). In Fig. 11, a pre
diction range is reported to represent uncertainties corresponding to a 
95 % confidence level. For calculating this prediction range, we incor
porated two sources of variability [14], which include (i) the standard 
deviation of Wp

critical from the posterior distribution obtained via the 
Bayesian calibration process (Section 4.3) and (ii) uncertainties associ
ated with calibration of the CP model parameters propagating to the 
wp

Ns
(x*) values, as described in [35]. The choice of sampling volume and 

the number of grains in the SEMs was based on a sensitivity study, which 
was originally conducted under uniaxial traction boundary conditions 
[15]. In the current demonstration, we have assumed and used the same 
SEMs for CPFE simulations under both uniaxial and multiaxial loading 
conditions. However, separate studies would be required to determine 
the appropriate sampling volume of the SEMs for multiaxial loading 
conditions. 

By identifying and tracking site-specific microstructures in the 
DMHT disk and conducting associated CPFE analysis via the MFIN 
framework, we were able to isolate fatigue life predictions connected to 
individual locations in the component, as shown in Fig. 11. The result 
shown in Fig. 11 is indicative of critical locations in the component from 
the context of fatigue crack initiation, thereby providing insights to the 
designer on when and where a crack initiates first, given the location- 
specific microstructural information and loading conditions. In the 
current demonstration, wherein we have conducted analysis at two 
distinct locations, it is evident that Location B (in the rim region) is 
prone to crack initiation at an earlier cycle count. From the context of 
planning the maintenance and inspection schedules during the service of 
the disk, the site-specific likelihood of failure is useful information. 
Additionally, the predictive analysis approach presents opportunities to 

determine lifecycles, after which inspection and maintenance of a seri
alized component should be scheduled [52]. We would like to empha
size that the modeling framework used in this work focuses on fatigue 
life predictions for crack initiation. However, depending on the local 
microstructure and local geometric constraints at the site of crack 
initiation within the component, the crack growth rates will vary. In the 
near-threshold regime, coarse grain microstructures are typically more 
tolerant to crack growth as opposed to fine grain microstructures [53]. 
However, the presented MFIN framework and its location-specific 
tracking capabilities of local microstructure and loading states can be 
extended for evaluating the location-specific fatigue life via a damage 
tolerance analyses, including the incorporation of residual stress infor
mation [19,54]. 

6.3. Considerations for the microstructure-sensitive location specific life 
predictions 

The transition towards a physics-based, microstructure-sensitive 
approach for lifing components, as demonstrated via the DMHT study, 
presents numerous advantages. By including more physics-based pre
dictive analysis via simulating multiple SEMs, we can improve our un
derstanding of the cause-effect relationships in the material system. We 
can also reduce the number of experiments needed for determining the 
minimum fatigue life, thereby reducing the overall costs incurred in the 
material qualification process. For component lifing, we presented a 
hierarchical approach to use the stress/strain states from the 
component-level FE analysis within the microstructure-sensitive CPFE 
analysis. The approach is computationally tractable, since it does not 
rely on modeling the entire component’s microstructure. In this study, 
we have demonstrated lower length scale analysis in two locations 
experiencing high stress values. However, the determination of the 
critical locations of failure are dependent on additional factors, 
including stress gradients, local pre-existing damage, geometric con
straints on a cracked surface, local microstructure, etc. Based on these 
factors, as well as legacy lifecycle records from prior versions of the 
component, lifing engineers can determine critical locations to perform 
lower length scale CPFE simulations. Moreover, the approach does not 
rely on homogenization; hence we can directly incorporate micro
structural variability at each component location of interest by simu
lating multiple SEMs and therefore account for extreme values of 
microstructural attributes while predicting fatigue life. The CPFE anal
ysis used in this work employed individual sets of model parameters 
corresponding to distinct microstructures. Further work can include 
strain gradient CPFE approaches [55], which can implicitly capture 
grain size effects via a single set of crystal plasticity model parameters 
applicable to multiple locations in the component. Lastly, this modeling 
framework can be extended to include finer discretization in the 
microstructure attributes across the spatial regions or include more rich 
microstructural information, including precipitate distribution, the 
likelihood of porosity/inclusions, residuals stresses, or surface effects. 

The capability of the MFIN framework has been presented for stor
ing, tracking, and updating material microstructural information tied to 
individual locations in the component. The use of the data linking 
approach within the MFIN framework allows dynamically updating the 
material state of the component and its individual locations. Hence, the 
MFIN framework presents opportunities to continually update material 
microstructural description from characterizations conducted at 
different stages of the product lifecycle, such as during the individual 
stages of manufacturing, acceptance of material from various vendors, 
and during periodic inspections of the component accounting for time- 
dependent degradation or damage. By enabling the dynamic updating 
of data and seamless data exchange, the MFIN framework provides the 
use of precise microstructural descriptions within the subsequent 
microstructure-sensitive predictive analysis of a component, thereby 
further reducing uncertainties in the input microstructures and associ
ated predicted life distributions. Additionally, we have demonstrated 
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the use of the as-designed or nominal component geometry within the 
lifing analysis. However, the MFIN framework can be potentially used 
for informing precise as-built geometries of individual components 
within lifing analysis (as shown in Fig. 2). Hence, the MFIN framework 
presents opportunities to create the digital twin of a serialized compo
nent to assist in decision-making during the product lifecycle. 

The use of the MFIN framework for fatigue life assessment of com
ponents via physics-based simulations provides new opportunities to 
design the component and tailor the microstructure simultaneously, 
thus aiding in understanding the fatigue tradeoffs upfront during the 
product design stage. The framework can be extended by developing 
new MFIN schemas and wrapper code(s) to link to process modeling- 
related code(s) for predicting residual stress distributions, precipitates, 
grain sizes, texture evolution as well as property code(s) to compute 
strength by using structure–property linkages. By assessing current 
design strategies and understanding location-specific minimum life, 
engineers can potentially employ a fully model-based approach to iter
atively redesign by modifying the geometry and/or the processing route 
to alter site-specific microstructures to optimize location-specific 
performance. 

7. Conclusion 

In this paper, a paradigm shift in the component analysis is enabled 
by developing a framework for microstructure-sensitive, location-spe
cific lifing of components. The framework, namely the model-based 
feature information network (MFIN), enables tracking and retrieval of 
processing-induced microstructural information and stress/strain states 
resulting from in-service loading conditions at distinct locations in the 
component for use within a crystal plasticity fatigue life prediction 
model. A use case for lifing a dual microstructure heat treated (DMHT) 
LSHR turbine disk component is demonstrated at two locations, near the 
bore (fine grains) and near the rim (coarse grains) regions. From this 
framework, the contribution of this work is threefold:  

1) Identifying material allowable life by utilizing location-specific 
microstructural knowledge in the component: 
● We demonstrated reduced uncertainties in the fatigue life distri

butions of LSHR in the DMHT turbine disk component and the 
associated minimum life (B0.1 life) by treating datasets corre
sponding to individual locations as separate distributions, which 
was enabled by the MFIN framework. The fatigue life predictions 
were obtained via crystal-plasticity finite element (CPFE) anal
ysis, using statistically equivalent microstructures (SEMs) of the 
material, which were simulated under uniaxial loading condi
tions, akin to fatigue testing using virtual specimens. This 
approach presents opportunities to improve precision while 
determining the allowable minimum life by accounting for un
derlying microstructures at distinct locations in the component as 
opposed to the conventional approach of treating the entire 
component as a single monolithic structure with uniform 
microstructure.  

● The use of the microstructure-sensitive predictive analysis 
demonstrated in this study also presents opportunities to (i) 
reduce the overall number of tests needed to identify the mini
mum life, (ii) better understand the process-structure–property- 
performance relationship in the material by simulating multiple 
SEMs, and (iii) reduce time and costs associated with material 
testing during the product development stages.  

2) A physics-based approach to assess the fatigue life of components:  
● A significant advancement in the present work is the extension of 

CPFE simulations to inform component scale life predictions. The 
principal strains from locations of interest in the component, 
calculated from component-level FE analysis, were precisely 
retrieved and used via the MFIN framework to inform multiaxial 
displacement boundary conditions in the sub-scale CPFE analysis. 

The location-specific fatigue life predictions facilitate opportu
nities to determine the critical or life-limiting locations of com
ponents with gradient microstructures.  

● The framework and the lifing approach presented in this work 
provide new opportunities to design the component and tailoring 
site-specific microstructures simultaneously, thereby evaluating 
the fatigue tradeoffs upfront during the product design stage. By 
identifying the location corresponding to minimum life, one could 
potentially explore revisions to the design of the component ge
ometry and/or the site-specific microstructure for optimizing the 
performance of the overall component.  

● The hierarchical modeling approach does not rely on performing 
CPFE simulations for the entire component, thus providing judi
cious use of computational resources. Based on the combination 
of the component geometry, applied loading state, process and 
microstructure information, as well as legacy records tied to prior 
versions of the component, lifing engineers can down select the 
critical locations of components and use the proposed framework 
to perform higher fidelity CPFE simulations. Additionally, the 
framework inherently addresses the microstructural variability 
via simulating multiple SEMs, avoiding microstructure homoge
nization approaches, thus accounting for extreme values of the 
microstructural attributes while lifing components.  

3) Opportunities for performance analysis of components by utilizing a 
digital twin approach:  
● The MFIN framework facilitates storing, tracking, updating, and 

utilizing material microstructural definitions for fatigue life 
assessment. The use of data linkages in the MFIN framework 
creates dynamic connectivity to the current material state infor
mation in the component, which can be retrieved and used for 
future predictions of the component’s performance with 
improved precision. Hence, by using the MFIN framework, we can 
continuously update the manufacturing process history, compo
nent geometry, material state information, and the associated 
stress distributions in each serialized component throughout the 
product lifecycle, thereby enabling a digital twin approach to 
assess the performance of individual components.  

● The MFIN framework is expandable to enable a fully model-based 
approach for assessing components. By creating necessary MFIN 
schemas and wrapper code(s), we can integrate process models 
and associated code(s), including the predictions of residual stress 
fields, grain size distributions, precipitate distributions, poros
ities, inclusions, surface features, in order to use the information 
effectively in subsequent performance analyses of components. 
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Appendix 

Estimating initial CP model parameters via a macroscopic optimization scheme using the Kocks-Mecking formulation 

To obtain initial estimates for the CP model parameters, initial reference stress (g(0)), initial dislocation density (ρ(0)), constant corresponding to 
dislocation storage (k1), and constant corresponding to dislocation annihilation (k2), we adapted the formulation proposed in [38] and conducted an 
optimization process to calibrate these parameters based on the macroscopic stress–strain data. This approach aids in selecting reasonable model 
parameter values as starting points, which can be subsequently refined to calibrate the final CP model parameters (Table 1). Additionally, the pre
sented optimization scheme is computationally less intensive compared to running the CP model and allows us to run multiple iterations for selecting 
reasonable initial estimates of the fine and coarse grain model parameters. 

Let us consider the evolution of total dislocation density (ρ) with incremental plastic strain (εpl) via a Kocks-Mecking type expression [38], 
described using k1 and k2. 

dρ
dεpl

= k1
̅̅̅ρ√

− k2ρ (21) 

Upon integrating Eq. (21), we can obtain an analytical expression of the dislocation density (ρ) as a function of plastic strain (εpl), and the terms k1 

and k2 as shown in Eq. (22). Note that the integration constant was obtained by substitutingρ = ρ(0),while using εpl = 0. 

ρ
(
εpl, k1, k2, ρ(0)

)
=

exp
(

− k2εpl
)
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(
k1 − k2

̅̅̅̅̅̅̅̅̅
ρ(0)

√ )2
√

− k1exp
(

k2εpl
2

) )2

k2
2

(22) 

Next, we substitute the expression ρ(εpl, k1, k2, ρ(0)) within the Taylor hardening description as shown in Eq. (23). The macroscopic flow stress 
evaluated using Eq. (23) is denoted as σmodel. The constant term α1 is referred to as the interaction constant, which is typically of the order of unity and 
is dependent on the strength of dislocation–dislocation interactions [40]. The term σ0 represents initial resistance to yielding and μ is the shear 
modulus. 

σmodel = σ0 + α1μb
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρ(εpl, k1, k2, ρ(0))

√

(23) 

To determine the unknowns σ0, ρ(0), k1, and k2 we set up an optimization scheme. We use the stress–strain data obtained from uniaxial tension 
tests (shown in Fig. 12(a)) for this purpose. The objective is to minimize the error, f

(
εpl, k1, k2, ρ(0)

)
, between σmodel from Eq. (23) and the stress (σexp)

from the uniaxial tension tests, as shown in Eq. (24). 

Minimize : f
(
εpl, k1, k2, ρ(0)

)
= ‖ σexp − σmodel‖2 (24) 

For solving the optimization problem described in Eq. (24), the initial guesses for the unknown parameters were chosen as follows. The values of 
macroscopic yield stress were used as initial guesses for σ0. For fine grain microstructure, an initial guess of σ0 = 1209 MPa was used, whereas for the 
coarse grain microstructure, an initial guess of σ0 = 1074 MPa was used. In Ni-based superalloys, we typically expect ρ(0) on the order of 105 −106 

( 1
mm2). For both the fine grain and coarse grain microstructures, we assume a starting value of 106 ( 1

mm2) in this analysis. Based on [38], a reasonable 
initial estimate for k1 is 1/100α1b, where the Burger vector (b) is 2.54 Ȧ. Since, α1 typically ranges between 0.1 and 1 [40], we assumed a constant 
value of α1 = 0.3. Finally, from previous works [14,56], the value of k2 is on the order of 10; hence, we assume a starting value of k2 = 10, for both the 
microstructures. For accommodating a broader search space, random perturbations were applied to the initial guesses, and 1000 optimization iter
ations were repeated. 

Finally, using the optimization routine, we obtained the following estimates for the unknown quantities σ0, ρ(0), k1, and k2 that minimized the 
error function f(εpl, k1,k2,ρ(0)). For the fine grain microstructure, we determined σ0 = 1183 MPa, ρ(0) = 106 1

mm2, k1 = 2.85 X 106 1
mm, and k2 = 30.38.

For the coarse grain microstructure, the values of σ0 = 1120 MPa, ρ(0) = 106 1
mm2, k1 = 1.68 X 106 1

mm, and k2 = 19.77 were identified. We observe that 
the values of k1 and k2 for the fine grain microstructure is greater than the values obtained for the coarse grain microstructure. Since the LSHR material 
displays random texture, the initial resistance at the slip system level for the CP model parameter g(0) is obtained from σ0 by dividing with the Taylor 
factor for uniaxial loading with random texture, 3.06. Hence, we obtain an initial estimate of g(0) = 387 MPa for the fine grain microstructure and g(0)

= 366 MPa for the coarse grain microstructure. 
Additionally, the constant parameters Γact, D, hn in the expression which relates k1 and k2 (Eq. (7)) were selected. The term hn is related to the 

interaction constant α1, i.e., hn = α1
2, such that hn = 0.09 for the present work. For identifying Γact and D, we use the values of k2

k1 
for both the fine grain 

and coarse grain microstructures and substitute the values within Eq. (7). We obtained k2
k1

= 1.12X10−5 for the fine grain microstructure and k2
k1

=

1.06X10−5 for the coarse grain microstructure. From these ratios, a combination of values for Γact = 2.88 X 10−3 and D = 53280 MPa were determined 
for both microstructures using Eq. (7). It is worth noting that k2

k1 
from our initial estimates were approximately equal in magnitude. This is further 

supported by Fig. 12(b). By using the experimental dataset and plotting the (dσ/d∊)/E (wherein E is the Young’s modulus) versus σ/σYS (wherein σYS 

is the yield stress) for both the microstructures, we can observe that the hardening curves of both materials become equivalent, as pointed out in 
Fig. 12(b). Lastly, as seen in Fig. 12(a), the stress–strain curves for the fine and coarse grain materials reveal a discrepancy in the elastic modulus for 
these materials. The preferred measure of elastic moduli values are not identified from ASTM E21 tensile experiments, and no other information was 
available. The single crystal elastic constants for constant composition, fine and coarse grain material are expected to be consistent, yet differences in 
the precipitate structure can influence these values. For this work, the elastic constants were scaled from values reported in [42] during calibration to 
provide agreement with the available data. For future work, additional experimental test data is recommended to identify the elastic modulus across 
the component and determine the appropriate set of single crystal elastic constants for both the fine and coarse grain material. 
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