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High-quality source code comments are valuable for software development and maintenance, however, code
often contains low-quality comments or lacks them altogether. We name such source code comments as sub-
optimal comments. Such suboptimal comments create challenges in code comprehension and maintenance.
Despite substantial research on low-quality source code comments, empirical knowledge about commenting
practices that produce suboptimal comments and reasons that lead to suboptimal comments are lacking. We
help bridge this knowledge gap by investigating (1) independent comment changes (ICCs)—comment changes
committed independently of code changes—which likely address suboptimal comments, (2) commenting
guidelines, and (3) comment-checking tools and comment-generating tools, which are often employed to
help commenting practice—especially to prevent suboptimal comments.

We collect 24M+ comment changes from 4,392 open-source GitHub Java repositories and find that ICCs
widely exist. The ICC ratio—proportion of ICCs among all comment changes—is ~15.5%, with 98.7% of the
repositories having ICC. Our thematic analysis of 3,533 randomly sampled ICCs provides a three-dimensional
taxonomy for what is changed (four comment categories and 13 subcategories), how it changed (six comment-
ing activity categories), and what factors are associated with the change (three factors). We investigate 600
repositories to understand the prevalence, content, impact, and violations of commenting guidelines. We find
that only 15.5% of the 600 sampled repositories have any commenting guidelines. We provide the first tax-
onomy for elements in commenting guidelines: where and what to comment are particularly important. The
repositories without such guidelines have a statistically significantly higher ICC ratio, indicating the nega-
tive impact of the lack of commenting guidelines. However, commenting guidelines are not strictly followed:
85.5% of checked repositories have violations. We also systematically study how developers use two kinds of
tools, comment-checking tools and comment-generating tools, in the 4,392 repositories. We find that the use
of Javadoc tool is negatively correlated with the ICC ratio, while the use of Checkstyle has no statistically
significant correlation; the use of comment-generating tools leads to a higher ICC ratio.
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To conclude, we reveal issues and challenges in current commenting practice, which help understand
how suboptimal comments are introduced. We propose potential research directions on comment location
prediction, comment generation, and comment quality assessment; suggest how developers can formulate
commenting guidelines and enforce rules with tools; and recommend how to enhance current comment-
checking and comment-generating tools.
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1 INTRODUCTION

Software developers frequently write comments' along with source code. Comments are consid-
ered an essential form of documentation [35], are present in almost all software systems [4, 52],
provide valuable information for program comprehension [4, 52], and are known to especially help
developers to understand code written by others [76]. For example, Google’s coding style guide
states “comments are absolutely vital to keep our code readable” [60].

However, comments do not directly impact software functionality, thus many comments may
not have sufficient quality, may not be properly maintained, or may be missing altogether. We
use the term suboptimal comments to refer to all such cases of comments with insufficient qual-
ity (inconsistent, obsolete, useless, missing important information, etc.) or even missing (where
comments would be desirable but are not present). Such suboptimal comments create challenges
in code maintenance and reuse [102, 109], but are still prevalent in practice. For example, simple
searches with “missing Javadoc” and “outdated comment” of GitHub (in August 2021) return 24K+
and 47K+ issues, respectively.

Despite substantial research on low-quality comments [10, 56, 58, 66, 69, 75, 81, 82, 86, 91, 98,
99, 102-104, 119], with the majority of prior work focused on developing automated tools for find-
ing low-quality comments, empirical knowledge remains sparse about commenting practices that
produce suboptimal comments and reasons that lead to suboptimal comments (i.e., how subopti-
mal comments are introduced). Bridging this knowledge gap can help researchers to focus their
efforts and help practitioners to improve comment quality, follow best practices for commenting,
and build better tools to help commenting.

We therefore study independent comment changes (ICCs)—comment changes committed inde-
pendently of code changes—which likely address suboptimal comments, to attain this knowledge.
We propose to study ICCs because directly identifying suboptimal comments is still challenging
despite recent research progress: there is no unified metric for comment quality [97], and matching
code and comments is difficult in general [11, 80, 112], especially for non-Javadoc comments. In
contrast, ICCs can be automatically identified, and likely address suboptimal comments, by adding
new comments, deleting poor comments, or updating existing comments. ICCs do not cover all sub-
optimal comments, but they are much more likely to indicate a suboptimal comment than non-ICCs
that modify both comment and code together. We ask the following research question to explore

IThroughout this paper, the word “comments” refers to source code comments, not other types of comments, e.g., comments
in an issue report.
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whether ICCs can be a proxy for studying suboptimal comments: RQ1: Do ICCs target subop-
timal comments; how prevalent are ICCs? We then study ICCs to investigate what, how, and
why suboptimal comments are produced: RQ2: What comments are changed independently
and how? What factors are associated with the changes?

On the other hand, a variety of mechanisms are employed to help commenting practices
and prevent suboptimal comments. Commenting guidelines, comment-checking tools, and
comment-generating tools are such mechanisms that have been commonly adopted in software
projects [62, 87, 108]. Commenting guidelines intuitively play an essential role in guiding
consistent practices in a project [87], especially when developers come from diverse backgrounds
with different opinions such as in an open-source software project [106]. Comment-checking
and comment-generating tools are naturally used by developers to reduce the commenting
work. However, to what extent they are used, whether they are effective, and whether they are
introducing instead of preventing suboptimal comments have not been studied. We therefore ask
the following research questions: RQ3: How prevalent are commenting guidelines? What
guidelines are specified; are they violated? RQ4: How prevalent is the use of tools to assist
commenting practice? Are the tools effective?

To answer the questions, we collect 24M+ comment changes (12M+ Javadoc, 12M+ non-Javadoc)
from commits of 4,392 GitHub open-source Java repositories. We apply heuristics to identify ICCs
from collected comment changes, which are shown to be effective with high precision (96.4%) and
recall (90.0%). Our manual inspection of randomly sampled 3,600 ICCs confirms that almost all
comment changes retrieved with our method (98.14%, 3,533/3,600) are indeed ICCs, and the vast
majority (92.87%, 3,281/3,533) of the ICCs target suboptimal comments. We find that ICCs exist
widely: 98.7% (4,334/4,392) of the repositories have some ICC, and ~15.5% of all 2dM+ comment
changes are ICCs. To evaluate the quality of commenting practice, we introduce a metric: ICC
ratio, i.e., the proportion of ICCs among a set of comment changes. A higher ICC ratio is likely to
indicate lower quality of the certain aspect of commenting practice, i.e., developers do not modify
comments timely. We find that the ICC ratio tends to slightly decrease as repositories mature.

We conduct a thematic analysis of above sampled 3,533 ICCs. For each ICC, we identify what is
changed and how; for 400 ICCs that have sufficient information in the commit message, we also
identify associated factors that explain the changes. We create a three-dimensional taxonomy that
explains what (with four comment categories, thirteen subcategories), how (with six commenting
activity categories), and associated factors (with three high-level factors). The three factors are: Di-
vergence (including all ICCs that change comments to follow a specific convention), Tool (including
all ICCs with commit messages that explicitly mention the use of tools), and Procrastination (in-
cluding ICCs with outdated or duplicate comments that should have been managed earlier).

We randomly sample 600 repositories to check whether they have commenting guidelines and
which elements are in those guidelines. We find that commenting guidelines are not prevalent in
repositories: only 15.5% (93/600) of repositories have any commenting guidelines. We establish
the first taxonomy for elements in commenting guidelines, finding that they often address where
comments should (not) be written and what should (not) be written in the comments. We find that
repositories with such guidelines have a statistically significantly lower ICC ratio, indicating that
these elements in the guidelines may improve commenting practice. However, repositories with
guidelines still have violations: we find violations in 66.7% (8/12) of automatically testable subcat-
egories and in 85.5% (59/69) repositories. We open GitHub issues for all 24 actively maintained
repositories out of 59 repositories with violations. Most respondents (11/13) confirm their desire
to correct the violations.

We systematically study the use of comment-checking and comment-generating tools via their
configurations, related ICCs, and a survey of active developers. For comment-checking tools, we
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find that 59% (2,599/4,392) of projects incorporate Javadoc? in their build files and 28% (1,253/4,392)
incorporate Checkstyle, but the use of the tools is imperfect: developers often overlook warnings
raised by these tools and tend to fix warnings in batch, which is validated by our survey. The
paired one-tailed t-test suggests that repositories have a significantly lower ICC ratio after the
use of Javadoc, but not after the use of Checkstyle. For comment-generating tools, we find that
current comment-generating tools generate only templates or uninformative comments, which are
often updated manually according to the survey. Many Javadoc skeletons are deleted (19.1% of all
201,518 deleted Javadoc ICCs) but exist for a long time (median 431 days) before being deleted. A
considerable number of skeletons remain in code, accounting for ~2.5% of all Javadocs. Our survey
respondents demonstrate a negative attitude toward current comment-generating tools.
In summary, this paper makes the following contributions:

e New Method: We propose ICCs, and an automatic technique to identify ICCs, as a novel
proxy to study suboptimal comments.

e Taxonomy: We provide a three-dimensional taxonomy for ICCs: what is changed, how it
changed, and what factor is associated with the change. We also provide the first taxon-
omy for elements of commenting guidelines: where and what to comment are particularly
important.

e Commenting Practice Findings: We obtain several findings related to the prevalence,

practice, and impact (on ICC ratio) of commenting guidelines and comment-checking tools,

which inspire recommendations for research, practices, and tools.

Dataset: We provide a dataset of comment changes and ICCs from 4,392 open-source Java

repositories, our code books and taxonomies for inspected ICCs and commenting guidelines,

and scripts to identify comment-checking tools [100].

2 SELECTION OF REPOSITORIES

We select repositories from GitHub, considering several criteria. Following prior studies [41, 42,
112], we only target Java projects because of Java’s maturity and popularity [46, 47]. We select
repositories with mature practices (with considerable stars, forks, and contributors), and rich de-
velopment history (even if the repositories meanwhile became inactive), so that we can observe
representative and sufficient commenting practice, and obtain lessons that could broadly general-
ize to even more than these open-source projects.

We use Libraries.io [73] to obtain the GitHub repository metadata. To exclude personal or toy
repositories, we only keep repositories with at least ten stars, ten forks, and five contributors, as in
a prior study [53, 112]. We also exclude forked repositories and obtain 8,252 repositories after this
step. We further select repositories with more than 500 commits (following prior studies [51, 112])
to obtain sufficient history that exhibits comment evolution. We obtain 4,465 repositories after
this step. We then exclude repositories that may not be real software projects, matching keywords
“guide”, “tutorial”, “pattern”, “note”, “code”, or “interview”. We also exclude repositories that we
cannot clone because they are removed or turned into private (e.g., gncloud/fastcatsearch was
removed from GitHub), and finally obtain 4,392 repositories.

3 RAQ1: DO ICCS TARGET SUBOPTIMAL COMMENTS; HOW PREVALENT ARE ICCS?
3.1 Methodology

Automatically Identifying Likely ICCs. To identify ICCs, we first collect hunks with
comment-line changes. After cloning the 4,392 repositories, we use git to retrieve all commits

2We use different fonts to distinguish whether the word “Javadoc” indicates the Javadoc tool or Javadoc comments.
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Table 1. Statistics of Comment Changes in Selected Repositories

#Repositories 4,392
#Commits 28,020,418
#Hunks with a comment-line change 25,971,427
#Hunks with only comment-line changes | 9,642,818 (37.1%)

in each repository. Each commit may have one or several file changes, and we retrieve all changes
of Java files. Each file change was split into one or more hunks by Git with some complex heuristic
algorithms to make sure that long context would be folded and nearby related changed lines would
be in the same hunk; e.g., to measure the “badness” of splitting, the “split_score” is calculated with
heuristics based on relevant characteristics such as the number of blank lines [21]. Each hunk may
contain multiple added or deleted lines. For each such changed line, we determine whether it is a
comment-line—i.e., it contains a comment (fragment) or is a part of a comment—using three sim-
ple but accurate heuristics. We first use one regular expression to match an entire hunk to see if it
contains a multi-line comment; if so, we label all the lines that match the regex as comment-lines.
We then use a regex to match each changed line to see if it contains a non-Javadoc comment. Next,
if some changed lines start with a star, we use a regex to see if an incomplete Javadoc exists and
label related lines. Table 1 shows some statistics of our dataset.

We next decide which hunks are ICCs. Deciding whether a comment change has a corresponding
code change in the same commit is an open challenge with no general solution [112]. We employ
two simple strategies for the two types of comments, Javadoc and non-Javadoc comments. For
Javadoc, we consider only comments for non-abstract methods and classes (including interfaces
and abstract classes) because we can precisely find their corresponding code. The corresponding
code of a Javadoc is source code in the method or class it describes. For each changed Javadoc
comment, we analyze the entire file and check if any code line in the corresponding method or class
changed. If not, we consider this comment change as a Javadoc ICC. For non-Javadoc comments,
we first exclude license headers. Based on the finding that about 90% of comments are about nearby
code [50], we assume that code changes in the same hunk correspond to non-Javadoc comments,
as git applies complex heuristics to ensure one hunk contains all nearby changes [45]. Thus, for
non-Javadoc comments, we determine whether all changed lines in a hunk are comment-lines or
not. If yes, we consider the entire hunk as one non-Javadoc ICC, even if multiple comment-lines
were changed. In general, it would be hard to count semantically separate comments that were
changed when a hunk has multiple comment-lines changed.

To evaluate the effectiveness of our heuristics, we randomly sample 400 comment changes from
all 24M+ collected comment changes, ensuring a confidence level of 95% and a confidence interval
of 5%, following prior work [43, 51, 84, 105, 117]. Two authors manually read through the whole
commit (including the commit message and all code changes) and discuss together to determine if
the sampled comment change is ICC, i.e., if the comment is changed without corresponding code
changes. All conflicts are resolved by a non-author arbitrator with more than six years of Java
experience. We then introduce random guessing classification algorithm [68] as baseline to verify
the effect of our heuristic approach. We apply our heuristics and random guessing on sampled
comment changes. For each comment change, it has a 22.5% probability of being classified as ICC by
random guessing, matching the ratio of ICCs we manually identified within 400 sampled comment
changes. To avoid errors caused by the randomness, we conduct ten repetitions of the experiment
for the random guess and calculate the average for each metric.

Inspecting Identified Likely ICCs. Our key insight is that studying ICCs is a novel way to
learn about suboptimal comments, and we therefore inspect two points: (1) whether the comment

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 2, Article 45. Pub. date: March 2023.



45:6 C. Wang et al.

changes that our strategies identify as ICCs are indeed independent of code changes in the same
commit; and (2) whether the ICCs target suboptimal comments. We sample 3,600 ICCs and con-
duct manual inspections. We distinguish six types of ICCs, i.e., added/deleted/updated for Javadoc/
non-Javadoc ICCs, and randomly sample 600 ICCs of each type (95% confidence level, 4% confi-
dence interval [101]).2

For the first point, we inspect the whole commit to check whether the comment change is trig-
gered by any other code change in the same commit. If not, we consider it independent. The manual
inspection is conducted and discussed by two authors together. All conflicts are resolved by the
non-author arbitrator mentioned above. Two authors read through the whole commit (including
the commit message and all code changes) and determine if the comment change is associated
with other changes, e.g., the comment is changed due to the rename of methods in other files.

For the second point, following the same procedure explained above, we manually inspect the
whole commit to check whether the comment change makes improvement in any way. Based on
the documentation quality attributes proposed by Zhi et al. [118] that are applicable to comments,
we merge attributes with similar meaning and obtain three criteria used in the inspection.

e Information—-whether changed comment is more informative, corresponding to the Com-
pleteness [118].

e Accuracy-whether changed comment is accurate in describing related code, corresponding
to the Accuracy and Correctness [118].

e Readability-whether changed comment is easier to understand via reformatting, fixing ty-
pos, translation, or adopting consistent terms, corresponding to the Consistency, Format,
Readability, and Spelling and grammar [118].

If an ICC satisfies any of the above criteria, we consider it indeed targets a suboptimal comment.

3.2 Results

Table 2 presents the performance of our heuristics and the random guessing on the sampled 400
comment changes, indicating that our heuristics can effectively identify ICCs. The precision
of our heuristics is 96.4%; the false positive ICCs are associated with faraway code changes. The
recall of our heuristics is 90.0%; we may miss ICCs with nearby irrelevant code changes.

We find that the ICCs we automatically retrieved are generally independent of code
changes in the same commit. According to our manual inspection on sampled 3,600 ICCs, 399
(11.1%) of ICCs are in commits that only change comments, so these ICCs are definitely indepen-
dent as the commits have no code change at all, while others are in commits that have some code
changes. We find that only 1.8% (66/3,600) of ICCs are not independent (due to renaming refac-
torings, changes in other files, and completed TODOs). For example, as shown in Figure 1, the
comment is changed due to the renaming of involved API, where the comment is in sync with the
code both before and after the commit. We also find one false positive with no comment change.
In the follow-up analysis, we exclude these 66+1 cases and focus on 3,533 real ICCs.

We investigate whether the 3,533 ICCs target suboptimal comments and aim to improve overall
comment quality (although they may or may not succeed in improving quality). We find that al-
most all ICCs indeed aim to improve the information, accuracy, and readability of com-
ments. Some ICCs add extra content and references to make comments more informative. For
example, as shown in Figure 2(a), one ICC from the commit 9a8435f9 [20] in apache/commons-math

3An added comment change refers to a change that only contains new added line(s), a deleted comment change refers to a
change that only contains deleted line(s), and an updated comment change refers to a change that contains both added and
deleted line(s).
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Table 2. The Performance of Our Heuristics and Random Guessing
on 400 Sampled Comment Changes

Precision Recall Accuracy F1

Our heuristics 96.4% 90.0% 97.0% 93.1%
Random guessing 22.1% 20.4% 65.7%  21.2%

y bound, th r or equal to the current getRemainingElements() value.

368+ * If the pointer w eady bound, the valid bytes must be 1

r equal to the current getValidElements() value.
370 370 public Pointer<T> validelements(long elementCount) {

(a) The comment change

535 - public long getRemainingElements() {
536 - long bytes = getRemainingBytes();
535 4+ public long getValidElements() {
536 + long bytes = getValidBytes();

(b) Corresponding code change in the same commit

Fig. 1. An example of comment changes that are not independent (Commit 4cbff58c in nativelibs4java/
JavacCL).

203 2
312 configured clientID al

313 3 connect();

314

315 - T0DO: the result of the ClientID value,

316 should h; thrown the correct error)

(b) Commit eeb59e84 in apache/qpid-jms

ic String decode7bitGsm(byte[] data, int offset, int numFields)

odingException

7-bit aligned boundry after

7-bit aligned boundary after of

962 int offsets offset * §;

963 int offsetSeptets = (offsetBits + 6) / 7;

(c) Commit bcd57322 in aosp-mirror/platform_frameworks_base

Fig. 2. Example ICCs from three open-source projects.

extends Javadoc to specify which methods modify instance data. Some ICCs fix or remove outdated
comments to make comments more precise on explaining related code, or remove redundant com-
ments to make information more effectively captured by readers. For example, as shown in Fig-
ure 2(b), one ICC from the commit eeb59e84 [27] in apache/qpid-jms removes the TODO comment
that has been addressed to reduce confusion it may bring to maintainers. Some ICCs improve the
format or wording to make comments easier to understand. For example, as shown in Figure 2(c),
one ICC from the commit bcd57322 [17] in aosp-mirror/platform_frameworks_base fixes the typo
to eliminate potential confusion. We find 252 ICCs irrelevant to improving comment quality—132
ICCs change comments that only serve tools (e.g., comments that disable code analysis in IDE), 118
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Table 3. Statistics of ICCs Among All Comment Changes for Both Types
of Comments and Various Changes

Change Comment Type All Independent
Types
Added #Javadoc 6,639,986 1,074,784 (16.2%)
#non-Javadoc 5,434,176 435,339 (8.0%)
# 4,181,4 201,51 4.8%
Deleted Javadoc ,181,405 01,518 (4.8%)
#non-Javadoc 3,134,774 466,527 (14.9%)
#Javadoc 1,856,746 668,834 (36.0%)
Updated #non-Javadoc 3,504,505 981,915 (28.0%)
All #Javadoc 12,678,137 1,945,136 (15.3%)
#non-Javadoc 12,073,455 1,883,781 (15.6%)
0.8 0.6
0.7 05
0.6
05 0.4
0.4 0.3
0.3 . )
T LEIT
e = = N e N
Added Deleted Updated  All Added Deleted Updated  All
(a) Javadoc ICCs (b) non-Javadoc ICCs

Fig. 3. Distributions of ICC ratios in 4,392 repositories.

ICCs add commented code, and two ICCs we could not understand—all other 92.9% (3,281/3,533)
of ICCs do aim to improve overall comment quality.

Finding 1: ICCs are likely to indicate the change of suboptimal comments: 92.9% of sampled
ICCs do aim to improve overall comment quality, demonstrating the feasibility of investigat-
ing suboptimal comments via ICCs.

We find that 15.5% of all comment changes are ICCs. Table 3 summarizes the results of
our analysis of 4,392 repositories. This high ratio of ICCs suggests that a considerable number of
comment changes are committed independently, where comments were likely suboptimal before
the changes. The overall ICC ratios for Javadoc/non-Javadoc changes are similar (15.3% and 15.6%).
For both Javadoc and non-Javadoc comments, comment updates are more likely to be ICCs, but
Javadoc comments are more likely to be independently added than independently deleted, while
non-Javadoc comments are more likely to be independently deleted than independently added.

We find that ICCs exist widely in almost all repositories. Figure 3 shows the distribution of
the ratio of ICCs in each repository. Across all 4,392 repositories, the median ratios are about
12.7%/6.8%, 1.8%/11.0%, and 27.8%/19.4% for Javadoc/non-Javadoc ICCs that are added, deleted,
and updated, respectively. Moreover, the ratios of Javadoc/non-Javadoc ICCs among all comment
changes range from 7.0%/7.5% (lower quartile) to 21.7%/15.4% (upper quartile). Only 234 (5.33%)/
86 (1.96%) of 4,392 repositories have 0% Javadoc/non-Javadoc ICCs, while only 58 (1.3%) reposito-
ries have no ICCs of either type.

We also study the evolution of ICC ratios. Figure 4 shows the ICC ratio by repository age, where
each observation is the ICC ratio of all comment changes within a year in the repository. We
observe a negative correlation between the ICC ratio and repository age (for Javadoc, Spearman
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(a) Javadoc ICCs (b) non-Javadoc ICCs

Fig. 4. ICC ratios by repository age in years.

p = —0.100, p < 0.001; for non-Javadoc p = —0.098, p < 0.001), which suggests a lower ICC ratio
as repositories mature.

Finding 2: ICCs exist widely across observed repositories: 98.7% (4,334/4,392) of the reposi-
tories have some ICC; ~15.5% of 24M+ comment changes are ICCs, suggesting a considerable
number of suboptimal comments behind the ICCs. Javadoc comments are more likely to be in-
dependently added, while non-Javadoc comments are more likely to be independently deleted,
suggesting that Javadocs are more likely to be missing or incomplete, while non-Javadoc com-
ments are more likely to be redundant or outdated. The ICC ratio is negatively correlated with
the repository age, suggesting a lower ICC ratio as repositories mature.

4 RQ2: WHAT COMMENTS ARE CHANGED INDEPENDENTLY AND HOW? WHAT
FACTORS ARE ASSOCIATED WITH THE CHANGES?

4.1 Methodology

Construction of Taxonomy. We conduct a thematic analysis [34] of 3,533 sampled ICCs from
Section 3.1. First, two authors conduct inductive open coding separately on randomly selected
30% of the ICCs. We then compare the list of codes and themes to develop a coding guide with
definitions and examples for each identified theme. The process is as follows:

e Generate initial codes. For each selected ICC, carefully read the changed comment and its
commit (diff and message), to generate the initial codes for three dimensions: (1) what is
changed (comment); (2) how it changed (commenting activity); and (3) when possible, what
factor is associated with the change (factor). Only a fraction of ICCs have additional infor-
mation in their commit messages that allow us to identify factors explaining the change, e.g.,
the commit message in commit 4ab47¢63 [24] says “[jJavaDoc cleanup: useless @see clauses,
broken links, non-existent @inhericDoc tags” which indicates that Javadocs are removed be-
cause of outdated or redundant component.

e Group initial codes that have similar key information. Organize all initial codes into themes,
suggesting the nature of changed comments, activities of the changes, and factors associated
with the changes.

e Define the final themes. Consider each theme (i.e., comment category, commenting activity
category, and factor), whether it contains sub-themes, and how these sub-themes interact
and relate to the main theme.

Then, three authors (including the former two) use the coding guide to independently analyze
the complete set of data. Each ICC is labeled by two authors. ICCs that cannot be classified into
any category are put in a new category, named Pending. For “what” and “how”, we label all 3,533
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sampled ICCs. However, most commits have uninformative (e.g., “Fix javadoc” [29]), irrelevant (e.g.,
“add a test which proves the problem” [33]), or even empty commit messages, so we can label only
400 ICCs, and label each ICC with only one factor. The inter-rater reliability during independent
labeling is 0.91 (Cohen’s kappa). For conflicted labels, we discuss, and the final judgment is made
by a non-author arbitrator who has more than six years of Java experience and conducted similar
qualitative analyses before. For ICCs in Pending, the arbitrator helps further label the ICCs and
determines whether new categories need to be added.

4.2 Results

We derive a three-dimensional taxonomy of ICCs, including categories of comments, categories of
commenting activities, and associated factors with changes, as shown in Table 4. The table rows
show four categories (with 13 subcategories) of comments that are changed, and the table columns
show six categories of commenting activities for the changes. Note that “na” stands for “not appli-
cable”. Each cell has two lines. The first line contains the number of ICCs for the combination of
the corresponding comment category and commenting activity category. The second line shows
the numbers of ICCs that can be labeled by the three factors—Divergence, Tool, and Procrastina-
tion—respectively. The third column shows the distribution of comment subcategories in a related
study [84], and the forth column shows the distribution in our work (Formatting and Others (FaO)
are excluded in the calculation). For each cell, the number before °/’ is for Javadoc and after for
non-Javadoc. All the numbers add up to 3,763, greater than the number of inspected ICCs (3,533)
because one change may involve multiple comment categories, e.g., a newly added Javadoc may
contain both Functionality Summary and Usage.

The first two dimensions of our taxonomy—what is changed and how it changed—are
inspired from two earlier studies: taxonomy of source code comments [84] and taxonomy of
comment-related changes [112]. We make revisions to their taxonomies based on our context and
systematically compare with them in Section 9.1.

The four categories of comments are the following:

e Code Logic: Comments that describe the code behavior.
- Functionality Summary (FS): Comments that summarize the code functionality, includ-
ing the functionality of certain code fragments and the explanation for variables.
- Expand: Comments that provide the context information of how code works, e.g., the
condition under which the code enters a particular branch.
— Usage: Comments that describe how to use certain APIs, e.g., information related to
method parameters, return value, and exceptions in Javadoc.
— Purpose: Comments that explain why the corresponding code fragment is used or why a
certain algorithm is applied.
— Code File Structure (CFS): Comments that describe the structure of the code file and
split different parts in a file.
e Under Development: Comments that mark work under development or help developers

in maintenance.

- TODO: Comments that document unfinished work or unfixed bugs.

— Commented Code (CC): Commented source code, including code that was used for test-
ing/debugging and code examples in Javadoc.

— Incomplete: Comments that provide no useful information, e.g., @aram tags in Javadoc
without explanation of the parameter.

e Tool Related: Comments that are related to corresponding tools.
— Auto-Generated (AG): Comments generated by tools or IDE plugins.
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Table 4. Three-Dimensional Taxonomy of ICCs
Commenting Activity Category
Comment Comment ~Freq.| ~Freq. ANC DOC ASI FI CD FaO
Category Subcategory |in[84]|in our
work
S 405% | 24.2% 327/ 115 109/ 27| 44/ 16 12/ 31 57/ 24| Translation
3+18+2/ 14040 | 22+0+412/ 3+0+0 | 140+1/0+0+0 | 0+0+0/0+0+1 | 0+0+0/1+0+0 12/ 12
Expand 15%| 87% 33/ 70 11/ 26| 24/ 25 6/ 55 7/ 16 8+?+0/.8+0+0
0+0+1/  6+0+1 3+0+2/  0+0+1 | 0+0+1/0+0+0 | 0+0+0/1+0+2 | 0+0+0/0+0+0 | Adjusting
Cod? Usage 23.9% | 12.5% 204/ na 83/ mna| 54/ na| 24/ na| 27/ na|Linesand
Logic 4+14+0/ na| 12+2+10/ na|1+3+0/ na|0+1+2/ na|0+0+0/ na|Spaces
4 2 2 4
Rationale 1.9%| 229 9/ 6 / 3 0/ 0/ 1/ 3| 279/ 178
0+0+0/  4+0+0 0+0+0/  0+0+0 | 0+0+0/0+0+0 | 0+0+0/0+0+0 | 0+0+0/0+0+0 | 4+26+0/ 1+4+0
CFS 04%| 21% na/ 32 na/ 29| na/ na 5/ na 1/ Updating Mark
na/ 0+4+0 na/ 2+0+0 na/0+0+0 na/0+0+1 na/0+0+0 0/ 6
TODO 14%| 997 9/ 142 9/ 123 1/ 34 1/ 1 0/ 20 (?+(?+0/ 0+0+0
0+0+0/  0+0+2 1+0+0/ 2+3+11 | 0+0+0/4+0+1 | 0+0+0/0+0+0 | 0+0+0/1+0+0 | Fixing Typo
Und
nder cc 95%| 145% 27/ 118 7/ 284 1/ 0 18 2| na/ 34/ 93
Development 04040/ 0+0+0 0+0+1/  0+0+9 | 040+1/0+0+0 | 040+0/0+0+0 |  na/ ma| 0+0+0/ 0+0+0 ‘
Incomplete 07%| 48% 28/ 3 106/ 10| na/ 2 0/ na / Moving
0+6+2/ 0+0+0 |  0+6+26/ 0+0+0 na/  na| 0+0+0/0+0+0 na/  na| Comment ‘
AG 16%] 212 21/ 2 34/ 7 1/ 0 0/ 1| na/ 0/ 5
0+14+0/  0+0+0 0+4+1/  0+4+0 | 0+0+0/0+0+0 | 0+0+0/0+0+0 na/  na| 0+0+0/ 0+0+0 ‘
Tool 14/ na 19/ na| na/ na| na/ Noise
D ti 04%| 1.1%
Related eprecation 0+2+3/ na 0+0+0/ na na/ na na/ na na/ na 0/ 2
Directive 78%| 4.2% 11/ 55 40/ 26| na/ na 0/ 1| mna/ mnaj| 0+0+0/ 0+0+0
0+0+0/  0+5+0 0+0+0/  0+0+0 na/  na| 0+0+0/0+0+0 na/ na
30, 7 85 16 1 0 9, 4
Log 43%| 48% / / / / na/
Metadata 6+1+0/  0+0+0 15+0+2/ 1+1+3 | 0+1+0/0+0+0 | 0+0+1/0+0+0 na/ na
1 1 91 4 12
Link 131% | 8.9% 61/ 3 / 3 3/ 0| 55/ na/
241340/ 0+1+0 | 54+2+2/ 104140 | 040+0/0+0+0 | 0+3+4/0+0+3 | 0+0+0/0+0+0
Sum 100%| 100% 774/ 603 596/ 594 | 129/ 47| 127/116| 92/ 64| 325/ 296
15+68+8/11+10+3 | 107+14+56/18+9+24 | 2+4+3/4+0+1 | 0+4+7/140+7 | 040+0/2+0+0 | 12+26+0/ 9+4+0

For each cell, the number before ‘/’ is for Javadoc and after for non-Javadoc. The three numbers in the second line refer
to Divergence, Tool, and Procrastination, respectively.

— Deprecation: Deprecation information in Javadoc, i.e., @eprecated tag, the reason why
the API is deprecated and the alternative.
- Directive: Comments used by tools, e.g., marker for a static analysis tool to ignore some

code.

e Metadata: Comments that reveal code metadata.
— Log: Comments that document the author, e.g., @author, and version information, e.g.,
@since and @version.

- Link: Links in comments, including @see and @link tags in Javadoc and URL links.

The six categories of commenting activities are the following:

o Adding New Comment (ANC): Introducing a new comment.

e Deleting Obsolete Comment (DOC): Deleting an old comment.

e Adding Supplementary Info (ASI): Adding more information to an existing comment.

e Fixing Inconsistency (FI): Fixing an inconsistency between code and comment, including
deleting inconsistent comments and revising the outdated part, without adding new infor-

mation.

e Clarifying Description (CD): Updating a comment to restate the expression without in-
troducing or deleting any information.
e Formatting and Others (FaO): Changing the format of a comment or performing other
minor activities.
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(a) The distribution of ICCs among combinations (b) The distribution of ICCs among factors

Fig. 5. Distributions of ICCs. Each label on the x-axis contains two abbreviations separated with a dash. The
first refers to categories of commenting activities and factors in (a) and (b), respectively. The second refers
to comment types, where ] refers to Javadoc, and N refers to non-Javadoc.

We call a pair of a comment (sub)category and a commenting activity category a combination.
Figure 5(a) shows the distribution of ICCs among combinations, and some combinations are more
frequent than others. Some are more frequent simply because their comments are more frequent
among all comments, e.g., Functionality Summary and Usage (40.5% and 23.9% in [84]). However,
some other combinations are also relatively frequent among labeled ICCs, although their com-
ments are infrequent among all comments that reported by Pascarella et al. [84]:

e Some comment categories have a much higher frequency of Deleting Obsolete Comment
than Adding New Comment, e.g.,, Commented Code, Incomplete, and Log. The combina-
tions of Deleting Obsolete Comment with Commented Code and Incomplete are mostly
Procrastination; we find that these comments are removed because they are considered old
and useless. The combinations of Deleting Obsolete Comment and Log are mostly Diver-
gence; we find that @author and @since are forbidden in some repositories and removed as
further explained in Section 5.2.

e Some categories have a relatively higher frequency of Fixing Inconsistency, e.g., Link and
Usage in Javadoc, and Expand in non-Javadoc. These combinations are mostly Procrastina-
tionand changed due to outdated comments, suggesting that these comments may easily
become inconsistent with the code but developers do not update them promptly.

e Expand and Usage have a much lower frequency than Functionality Summary in code
files [84] and for Adding New Comment in Table 4, while they have a similar frequency
as Functionality Summary for Adding Supplementary Info. The comparison may suggest
that developers often overlook Expand and Usage when they add new comments, making
Expand and Usage more likely to be missing or insufficient.

Finding 3: We create a three-dimensional taxonomy for ICCs, with four comment cate-
gories (13 subcategories), six commenting activity categories, and three associated factors
with changes. Some combinations of the comment and activity have a relative higher fre-
quency, where the categories of comments tend to be easily overlooked, outdated, or redun-
dant, e.g., Link and Expand.
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The third dimension of our taxonomy is completely novel, showing factors associated
with comment changes. We derive these factors by inspecting 400 ICCs with informative commit
messages in detail (each ICC is labeled with one factor), as explained in Section 4.1.

Divergence is derived from all ICCs that change comments to follow a specific convention.
Developers with diverse backgrounds may hold diverse opinions on commenting, which leads
to ICCs. According to our manual inspection, the diverse opinions on commenting, without
a specific convention on commenting, may lead to suboptimal comments that are insufficient,
redundant, or inconsistent on formatting and wording. In particular, developers have divergences
on several aspects:

e What should or should not be written in comments, e.g., specific API-related information and
author tags. Developers may not realize that certain specific information is needed when
writing the comment. E.g., Commit d526bc3b [26] says “clarify sync/async for API's” that
adds synchronous information in the comment. Developers may not realize that some com-
ponents should not be written in comments. E.g., commit 566d851e [32] says “removes author
tags since they add no value and can be inferred from the git history.” Developers may not re-
alize that some added comments are redundant. E.g., commit c3514caf [22] says “removed
some more unnecessary javadoc inherits.”

e Where to comment. Developer may not realize which code is not self-explanatory and re-
quires comment. E.g., Commit ba8@a5ab adds Javadocs for where the Javadoc is missing in
the module with saying “[e]nsure that the krad-data module is fully javadoc’d.”

e Comment format. Developers may write comments in inconsistent format and later unify
the format to follow specific conventions to address the inconsistency. E.g., commit
c7c155a8 [28] says “reformatted to follow JBoss Community conventions.”

e Use of language. Developers may leave comments in other language and translate them to
English later, such as commit f9715c83 [25] saying “[t[ranslated comments to English.”

e Commenting maintenance, i.e., using TODO comments or the issue tracker to mark unfin-
ished tasks. E.g., Commit 3094bdea [19] says “[rJemoving "TODO" comments (made them issues
in issue tracker).”

Tool is derived from all ICCs with commit messages that explicitly mention the use of tools. Two
kinds of tools are witnessed in ICCs:

o Comment-checking tools. Developers use tools to detect or reformat suboptimal com-
ments, e.g., Commit 0283f7ff [31] says “[f]ix a pile of Javadoc warnings.” Specific subopti-
mal comments can be detected by comment-checking tools, such as wrong parameter tags,
missing Javadoc, and disorganized format. However, such suboptimal comments may still
be introduced due to the absence or ineffective use of comment-checking tools.

o Comment-generating tools. Some developers use tools to generate comments automati-
cally, while generated comments are often considered useless and eventually removed, e.g.,
Commit 06fe9f13 [15] says “remove auto-generated useless comments” and removes gener-
ated comments in 203 files. Using comment-generating tools at current appears to lead to
suboptimal comments.

Procrastination is derived from all ICCs with outdated or duplicate comments. The tendency for
developers to delay necessary work can lead to suboptimal comments. We identify several typical
scenarios in labeled ICCs:

o Developers fix or remove outdated references and broken links after related code changes,
e.g., commit 4ab47c63 [24] says “[jlavaDoc cleanup: useless @see clauses, broken links, non-
existent @inhericDoc tags.”
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e Developers remove duplicate comments from packages or from copied code, e.g., commit
1508784d [23] says “[r]lemove duplicated comments from the packages.”

e Developers fix or remove incorrect comments where corresponding code was already
changed, e.g., commit c52b1bad [30] fixes dozens of wrong parameter tags.

e Developers prepare or complete Javadoc skeleton, or remove empty Javadocs, e.g., commit
118c7940 [18] says “[p]repare the project for javadocs.”

e Developers remove TODO comments that are already resolved or abandoned, e.g., commit
eeb59e84 [27] says ‘remove stale TODO that has already been taken care of.”

e Developers remove obsolete commented code, e.g., commit b980b1b2 [16] says “[c]leaned up
old unused code” and removes 584 lines of commented code.

We label 165 ICCs as Divergence, 134 as Tool, and 101 as Procrastination. Each combination (of
comment category and commenting activity category) may have a different distribution of these
labels. For example, for Deleting Obsolete Comment and Expand, Javadoc has three ICCs with
Divergence, zero ICCs with Tool, and two ICCs with Procrastination (while six ICCs could not
be labeled). The distribution of labels in each combination is shown in the second line of each
cell in Table 4. Three numbers are the number of Divergence, Tool, and Procrastination labels,
respectively.

The factors vary between comment and commenting activity categories of ICCs. The distribu-
tion of ICCs among factors is shown in Figure 5(b). For comment categories, Commented Code
is mostly Procrastination and Auto-Generated is mostly Tool; and for commenting activity cat-
egories, Adding New Comment is mostly Tool and Divergence, Deleting Obsolete Comment is
mostly Divergence, and Fixing Inconsistency is mostly Procrastination. The factors also vary be-
tween Javadoc and non-Javadoc comments. For example, in the combination of Adding New Com-
ment and Code Logic, Javadoc is mostly Tool while non-Javadoc is mostly Divergence because
tools provide support to detect where necessary Javadoc is missing, while non-Javadoc has no
similar practical tools (but has some research prototypes [56, 58, 69]).

Finding 4: The three factors associated with changes explain that ICCs are caused by (1) di-
verse opinions on commenting (Divergence), (2) the use of tools (Tool), and (3) tendency to
delay work (Procrastination). The factors vary between Javadoc and non-Javadoc because
only Javadoc benefits from tools.

5 RQ3: HOW PREVALENT ARE COMMENTING GUIDELINES? WHAT GUIDELINES
ARE SPECIFIED; ARE THEY VIOLATED?

5.1 Methodology

We randomly sample 600 (of 4,392) repositories to ensure a confidence level of 95% and a con-
fidence interval of 5%, following previous work [51, 84, 105, 117], and try to locate any project-
specific guidelines for writing comments. For each repository, two authors independently collect
all sentences concerning commenting practice in guidelines via manually reading through the
README files, CONTRIBUTING files, wiki pages, and project websites (if provided by the repository on
GitHub or mentioned in the README file). Then they merge the collected sentences and discuss to-
gether to decide if each sentence is indeed a guideline on commenting. All conflicts are resolved
by the non-author arbitrator. After merging the results from each author, we find commenting-
related sentences for 93 repositories. Following the same procedure described in Section 4.1, we
conduct a thematic analysis on all retrieved commenting-related sentences for the 93 repositories,
and construct a taxonomy of commenting guidelines. Each repository is labeled with all involved
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Fig. 6. The sources of identified commenting guidelines.

categories of commenting guidelines. The inter-rater reliability during independent labeling is
0.89 (Cohen’s kappa). The conflicts are resolved through discussion, and judged by the non-author
arbitrator as in Section 4.1.

To investigate if repositories have violations on commenting guidelines, two authors discuss and
select twelve guideline subcategories with clear and consistent definitions that can be checked au-
tomatically. We write scripts to check for violations of the guidelines in these subcategories, and
run scripts on the repositories with the corresponding guidelines. For each actively maintained
repository with violations, we open a GitHub issue to obtain developers’ feedback about the rea-
sons for violations and the plan for addressing them. We follow the recommendations proposed
by Feitelson [40], except for mentioning the purpose. When reporting the issues, we present the
violated commenting guidelines with links, explain violations with concrete examples, and ask if
developers plan to fix them.

5.2 Results

Prevalence of Commenting Guidelines. We find that 53.7% (322/600) of repositories provide
some (coding or commenting) guidelines for developers, but only 15.5% (93/600) provide some
guidelines for code comments. We find commenting guidelines of 93 repositories from five sources,
including 122 files or web pages. Figure 6 shows the distribution of sources, indicating that com-
menting guidelines are often documented on contributing files of GitHub or project websites. Even
those repositories having commenting guidelines, may still have some violations. One explanation
for such a behavior can be developers’ diverse opinions on writing comments, which cause subop-
timal comments.

Taxonomy of Commenting Guidelines. We explore which elements are included in the
commenting guidelines, and provide a taxonomy shown in Figure 7. We discover three categories
of elements, such as,where to write comments, what to write in comments, and other commenting
guidelines. We find that only 10.0% (60/600) of repositories specify guidelines on where to
comment, 10.5% (63/600) specify what to comment, and 14.5% (87/600) specify either of them. We
also find 5.0% (30/600) of repositories have other commenting guidelines, i.e., on the readability
and maintenance.

We find that guidelines vary across repositories. Different repositories even have conflicting
guidelines, e.g., nine guidelines ask developers to leave author tags in comments, while 14 guide-
lines forbid author tags. As explained in documentations, guidelines forbid author tags for three
main reasons: author tags are hard to maintain [64]; author tags promote code ownership, which
is considered bad [64]; and author information can be acquired in other ways, e.g., from version-
control systems [2].
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Fig. 7. Our taxonomy of commenting guidelines. The numbers are repositories with specific guidelines.
Twelve subcategories with gray background are checked if violations exist, and the numbers in green and
red are the numbers of repositories without and with any violations, respectively.

The most common rules that hold across repositories are “where comments are required”, and
“required components”. Guidelines in “where comments are required” specify which code enti-
ties should have comments, e.g., all public methods and classes. Guidelines in “required com-
ponents” specify what should be documented in comments, e.g., the functionality summary
and usage information in Javadocs for methods, TODO comments should include related is-
sue link or due date, code token in Javadoc should be wrapped by @code. Correspondingly,
there are also guidelines to forbid where to comment and what to comment. Overriding meth-
ods and test cases are considered unnecessary to comment in seven repositories, and com-
mented code, TODO comments, author tag, and since tags are forbidden in 24 repositories.
There are also two project-specific rules that are associated with the purpose of repositories,
i.e., all Android Annotation in androidannotations/androidannotations and assertion methods in
joel-costigliola/assertj-core should have comments. Detailed explanations for each category
in Figure 7 can be found in the code book in our supplementary material [100].

Some repositories have imprecise rules, e.g., 27 repositories state that “complex code” and “non-
trivial methods” should have comments. However, these guidelines can be hard to follow as differ-
ent developers may interpret “complex” and “nontrivial” differently.

Finding 5: Commenting guidelines are missing in most repositories. We establish a hierar-
chical taxonomy of commenting guidelines with 31 subcategories. Only 14.5% of repositories
have commenting guidelines on “where” or “what” to comment.
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Fig. 8. The ICC ratio among repositories (a) with or without commenting guidelines; and (b) before and after
the use of tool Javadoc.

Impact of Commenting Guidelines. Figure 8 shows the distribution of the ICC ratio of repos-
itories with and without commenting guidelines. To check if “where” or “what” guidelines can al-
leviate the problem of ICCs, we run the Welch one-tailed two-sample t-test. The results show that
the ICC ratios of the repositories with “where” or “what” guidelines are statistically significantly
(at @ = 0.05) lower than those of the repositories without commenting guidelines (+ = —2.009,
p = 0.034). The results indicate that the lack of “where” and “what” guidelines may aggravate the
problem of ICCs. We also find that when including “others” guidelines in the same test, the result
is no longer significant (p = 0.370), suggesting “others” guidelines are not effective enough.

Finding 6: The presence of commenting guidelines on “where” or “what” to comment is
statistically associated with a lower ICC ratio, suggesting that the lack of such commenting
guidelines has a negative impact on the commenting practice, i.e., developers tend to submit
more ICCs without guidelines.

Violations of Commenting Guidelines. Figure 7 shows with grey background the twelve
subcategories for which we check violations, and the numbers in green and red are the numbers
of repositories without and with any violations, respectively. We find that 67.7% (8/12) of above
subcategories have violations, and 85.5% (59/69) of repositories with such commenting guideline
subcategories have violations. To understand the developers’ attitude to these violations, we open
issues for all 24 (of 59) actively maintained repositories with an issue tracker. In these issues, we
list the repository’s commenting guidelines and the violations. We have received responses from
developers for 13 issues. According to the responses, most (11/13) intend to change (some of) the
code to correct the violations, one response indicates that the commenting guidelines should be
revised, and one response indicates that both code and guidelines should be changed. To justify
why some violations are present, or why some violations can be ignored, developers provide two
main reasons: one is that commenting guidelines are relatively new to some repositories, while
parts of the code are old and predate the commenting guidelines; and the other is that some com-
menting guidelines are idealized, e.g., requiring 100 percent Javadoc coverage on public methods,
while some simple methods are self-explanatory and not worth commenting.

Finding 7: 85.5% of the studied repositories that have commenting guidelines have some vi-
olations. Comments predating guidelines or idealized guidelines tend to cause the violations.
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6 RQ4: HOW PREVALENT IS THE USE OF TOOLS TO ASSIST COMMENTING
PRACTICE? ARE THE TOOLS EFFECTIVE?

6.1 Methodology

We explore two kinds of tools: comment-checking tools and comment-generating tools. We in-
vestigate the tools’ configurations and related ICCs, and conduct a survey of active developers to
answer the question.

6.1.1 Investigation of Tool Configuration and Related ICCs. For comment-checking tools, we
study the use of Javadoc and Checkstyle because (1) these two tools are the most popular to gener-
ate API documentation and check coding style (including commenting style), respectively; (2) they
are often mentioned in commit messages; and (3) the use of these tools can be automatically de-
tected (unlike the use of IDE plugins or comment-generating tools).

To investigate the prevalence of Javadoc and Checkstyle, we check if each of 4,392 reposito-
ries has a build file (pom.xml or build.gradle) that includes these tools, or a configuration file for
Checkstyle (xcheckstyle.xml). We further collect all checks from all Checkstyle configuration files
so we can analyze to what extent they have comment checks. If a repository has more than one
configuration file, we would take the concatenation of all configuration files.

To understand if comment-checking tools are effective in assisting commenting practice, we
seek patterns on how developers use these tools, and if the introduction of certain tools have an im-
pact on commenting practice. On the one hand, we manually inspect all commits containing sam-
pled ICCs that use comment-checking tools, and try to figure out if these commits follow certain
patterns. We also check what kind of suboptimal comments can be detected by comment-checking
tools, and how developers address them. On the other hand, we compute the ICC ratios among
comment changes before and after introducing the tool to investigate if the introduction of tools
can help commenting practice. For each repository that we find using considered tools, we compute
when it first started using the tool by finding the earliest commit related to the relevant file. We
excluded repositories with fewer than ten comment changes before or after the introduction. We
then conduct a paired one-tailed t-test on the ICC ratios before and after the introduction of tools.

For comment-generating tools, the use of these tools is hard to identify automatically. Thus,
instead of investigating the prevalence and effectiveness of comment-generating tools directly,
we target generated comments. We manually inspect all 66 ICCs that belong to Auto-Generated
(discovered by explicit commit messages or apparent patterns) in our sample, and identify two
tools that developers used to generate comments. Two authors inspect all generated comments
in above ICCs together and iteratively merge comments with similar content. Eventually, they
identify four categories of generated comments, with each assigned description of the content.
They further check the documentation [3, 61] of two identified tools and find that examples of
generated comments within the documentation fit the identified categories. We then investigate
the amount and the life cycle of Javadoc skeletons because they are likely generated by tools and
can be used as a proxy to estimate the prevalence and effectiveness of generated comments.

6.1.2  Survey to Developers. We conduct a survey to further elicit developers’ opinions on
comment-checking and comment-generating tools. We follow the principles of Dillman et al. [37]
to design the survey. Based on the investigation of two kinds of tools, we design a questionnaire
that asks how often do developers use tools, how do they use tools, and if they are satisfied
with current tools. We first conduct a pilot study with four researchers with experiences on code
comments and open-source practices, and three software engineers with more than five years
of programming experience. According to their feedback, we add skip logic (i.e., respondents
that did not use or witness the use of tools will skip corresponding following questions), and
eliminate questions that respondents had difficulty answering. The final questionnaire includes
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Table 5. Questions in the Survey

Questions

Q1 Have you yourself used comment-checking tools or witnessed someone else use
them, e.g., Javadoc and Checkstyle? (Single-answer question)

Q2 How often do you (or other developers in your projects) ignore warnings (or even
errors) reported by comment-checking tools? (Single-answer question)

Q3 Why do you think developers ignore the warnings (or even errors)? (Multiple-answer
question)

Q4 Have you yourself used comment-generating tools or witnessed someone else use
them? (Single-answer question)

Q5 How often do you (or other developers in your projects) update auto-generated com-
ments? (Single-answer question)

Q6 Do you think current comment-generating tools generate good comments? (Single-

answer question)

three background questions for demographic purpose, six choice questions, and an open-ended
question to collect respondents’ additional insights and experience beyond the choices we provide.
Table 5 shows the six choice questions that we asked in the survey.

To find potential participants with recent contributions to open-source communities who are
familiar with current commenting practices, we select developers who have contributed more than
ten commits in the last year. From the repositories we collect, we obtain 6,059 developers and
their email addresses. We randomly sample 1,000 addresses and send them emails containing our
online questionnaire’s link. Out of 1,000 emails, 132 could not be delivered. The survey ran for two
weeks, and we received 80 valid responses eventually. The response rate is 9.2%, comparable to the
response rate (6%-36%) in other surveys in software engineering studies [95, 107, 116].

6.2 Results

6.2.1 Comment-Checking Tools. We find that comment-checking tools are widely used by de-
velopers: 59% of (2,599/4,392) repositories incorporate Javadoc in a build file. We also find 28%
of (1,253/4,392) repositories use Checkstyle, where 1,025 repositories incorporate Checkstyle in a
build file, and 694 repositories have a configuration file. According to the survey, 81.2% of respon-
dents have used or witnessed the use of comment-checking tools, again indicating the wide use of
comment-checking tools.

In the 694 Checkstyle configuration files, our analysis of the Checkstyle configuration rules
identifies 24 comment checks, e.g., JavadocMethod, JavadocStyle, AtclauseOrder, and TodoComment.
60.5% (420/694) of these files have at least one comment check. We find that all top ten frequently
used checks examine Javadoc, including JavadocMethod, JavadocType, and JavadocStyle. Only one
check (TodoComment) can also examine non-Javadoc. Moreover, commenting related checks in
Checkstyle mainly examine the style of comments, or if specific Javadocs or tags exist.

Our investigation on the ICCs labeled with Tool discovers the pattern that suggests that de-
velopers often ignore output from comment-checking tools, leaving comments suboptimal. We
discover that developers tend to fix inconsistencies in Usage and Link in batch, e.g., addressing
warnings and errors from comment-checking tools like Javadoc and Checkstyle, instead of fixing
the inconsistencies timely in the same commit when the code is changed. Of all ICCs labeled with
Tool, 73.1% (98/134) are related to comment-checking tools, which add Javadocs for methods, add
missing @param and @return, fix broken @see and @link, and reformat comments. Of these 98 ICCs,
86.7% (85/98) belong to commits with more than ten files changed, and 58.2% (57/98) belong to com-
mits with more than 100 files changed. (Only 57.0% of sampled 3,533 ICCs belong to commits with
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Fig. 9. Responses to the survey.

more than ten files changed, and 26.2% for 100 files.) The results of the survey provide evidences
that developers tend to overlook warnings from comment-checking tools. As shown in Figure 9,
33.8% of respondents often or always ignore reported warnings, 32.3% report “sometimes”, 20.0%
report “rarely”, and 13.8% report “never”. As for the reason why some warnings are ignored, 71.4%
of respondents think that developers believe most warnings are not critical, and 26.8% of respon-
dents think that developers tend to accumulate minor issues and fix them together, which fits the
pattern we observe in related commits.

The statistical analysis shows a statistically significant effect on the ICC ratio for the introduc-
tion of Javadoc but not for Checkstyle. We obtain the paired ICC ratios of 1,691 repositories using
Javadoc and 897 repositories using Checkstyle. For the Javadoc tool, the results (for Javadoc com-
ments, p = 0.004; for non-Javadoc, p = 0.186) show statistically significant differences of Javadoc
ICC ratio before and after the use of Javadoc, as shown in Figure 8, suggesting that Javadoc is likely
to help commenting practice. For Checkstyle, the results (for Javadoc, p = 0.306; for non-Javadoc,
p = 0.471) are not statistically significant, which may suggest the ineffective use of Checkstyle to
check comments.

Finding 8: Comment-checking tools are widely used: 59% (2,599/4,392) of projects incorpo-
rate Javadoc in their build files and 28% (1,253/4,392) incorporate Checkstyle. However, de-
velopers often overlook warnings raised by these tools and tend to fix the warnings in batch,
therefore leaving suboptimal comments neglected for long periods of time. A statistical anal-
ysis shows a significant effect on the ICC ratio for the introduction of Javadoc but not for
Checkstyle, indicating that Checkstyle by itself may not help the comment quality.
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6.2.2 Comment-Generating Tools. We identify four kinds of comments that can be generated
by comment-generating tools. While constructing our ICC taxonomy, we notice mention of two
tools to generate Javadocs: Apache Maven Javadoc Plugin [3] and JAutodoc [61]. Combining manual
inspection of generated comments in ICCs and checking on the documentation of two tools, gen-
erated comments include these kinds: (1) Type information (generated by Apache Maven Javadoc
Plugin) only lists method parameters, return values, and their types; (2) Literal meaning (gener-
ated by JAutodoc) provides the information as in Templates and also adds a method description that
simply restates the method name; (3) Log information such as author and version information;
and (4) Empty Javadoc or Javadoc skeleton has no descriptive information.

We further analyze the number and the life cycle of empty and skeleton Javadocs, because this
kind of comment can be easily identified. Our analysis on empty and skeleton Javadocs discovers
that developers add them, but rarely complete and often delete them: (1) For the 28 Adding New
Comment/Incomplete Javadoc comments in Table 4, we find only five (17.9%) have been supple-
mented with more information, while 23 (82.1%) still remain uninformative or were deleted un-
completed. (2) Many Javadoc skeletons are deleted uncompleted. We analyze all 201,518 deleted
Javadoc ICCs and identify 11,263 empty Javadocs and 27,172 skeletons with empty Usage tags,
which account for 19.1% of all deleted Javadoc ICCs. Javadoc skeletons existed for a long time be-
fore they were finally deleted. Half of the above ~38k removed Javadoc skeletons existed for more
than one (431 days). (3) Many skeletons still remain. We find 195,525 empty Javadocs and 195,759
skeleton Javadocs with empty Usage tags in the versions of 4,392 Java repositories with a script.
These ~400k empty or skeleton Javadocs account for ~2.5% of all ~16M Javadocs.

Our manual inspection on related ICCs also finds that developers are not satisfied with some
generated comments. Comments generated by these comment-generating tools are often deleted
as useless. In Table 4, 37 Auto-Generated Javadocs and seven non-Javadoc comments are deleted
as useless, based on the commit messages for these changes. For example, the commit message
for 06fe9f13 [15] in AKSW/RDFUnit says “remove auto-generated useless comments”, and the commit
deletes comments in 203 files.

According to the survey, comment-generating tools are widely used by developers. As shown
in Figure 9, 60% of respondents report that they have used or witnessed the use of comment-
generating tools. However, generated comments often require manual improvement. 47% of re-
spondents often or always update generated comments and only 22.9% respondents rarely or never
update them. Only 14.6% of respondents think comment-generating tools can generate good com-
ments, while 58.3% think they cannot, and 27.1% choose to stay neutral. The results indicate that
developers are not satisfied with comments generated by comment-generating tools.

Finding 9: Most comment-generating tools only generate uninformative templates, which
are often left neglected and eventually deleted. The survey shows that only 22.9% respon-
dents rarely or never manually update generated comments and 58.3% of respondents hold a
negative attitude toward current comment-generating tools.

7 IMPLICATIONS
7.1 Research

(1) Comment Prediction: We find that guidelines on where or what to comment significantly
reduce the ICC ratio (Finding 5). However, some repositories only have imprecise guidelines, e.g.,
“complex code” should have comments. These guidelines are hard to enforce due to the divergent
opinions of different developers. We could alleviate this problem if we can predict where comments
could help. Recent work [56, 58, 69] attempted to address this problem using deep learning models
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to predict the position of comments in code files. We recommend more work in this direction
and suggest predicting not only where to comment but also what to comment, e.g., the comment
categories, so developers can better understand why and what to comment.

(2) Comment Generation: Current comment-generating tools only target Javadoc comments
(Finding 9), and research work [7, 13, 54, 55, 65, 72, 96, 111] on comment generation mostly
targeted the method granularity as well, especially Functionality Summary. In contrast, Huang
et al. [57] presented a learning model to generate block comments. Chen et al. [12] found that
state-of-the-art code summarization models perform well for Functionality Summary but not for
Expand and Purpose. We find that Auto-Generated comments in sampled ICCs only contain the
Functionality Summary that restates the method signature, including parameters and return type
(Finding 9). However, our taxonomy of ICCs indicates that other comments, e.g., Usage, are also
often added and supplemented (Finding 3). We encourage researchers to further explore comment
generation at a finer granularity (non-Javadoc comments), and to target more types of comments
(e.g., Usage and Purpose).

(3) Comment Quality Assessment: Based on the identified commenting guidelines in Sec-
tion 5.2 and the documentation quality attributes [118], we can roughly summarize developers’
expectation on comments as below: Coverage (comments should cover all necessary code entities);
Significance (complex and nontrivial code should have comments, while self-explained code not);
Completeness (comments should provide all necessary information); Usefulness (comments that are
not useful and easily outdated should be avoided, e.g., commented code); Consistency (comments
should follow a consistent format and information organization that developers can easily retrieve
the information); and Up-to-date-ness (comments should be updated promptly with relevant code
changes). These dimensions of comment quality illustrate what developers really concern in prac-
tice. However, current studies on comment quality mostly focused on significance [1, 97] and up-
to-date-ness [67, 81]. Thus, we recommend researchers to further explore how to comprehensively
assess comment quality. For example, for Completeness, it might be interesting to investigate if ex-
isting comments already cover all valuable information or which categories of information should
be supplemented, that requires deep understanding on both comment and code semantics.

7.2 Practices of Commenting

(1) Formulating Commenting Guidelines: Our study shows that most open-source commu-
nities lack commenting guidelines, which has a negative impact on maintenance (Finding 7). Only
15.5% of 600 repositories we check have any commenting guideline. We find that guidelines on
where or what to comment decrease the ICC ratio statistically significantly. Therefore, we recom-
mend communities to formulate their own commenting guidelines with both systematic principles
and actionable rules based on their evaluation on comment quality as summarized above. For sys-
tematic principles, we advise project maintainers to suggest where to comment (Coverage), what
should or should not be commented (Completeness and Usefulness), avoiding uninformative com-
ments (Significance), and checking if comments are updated timely in the process of code review
(Up-to-date-ness). Systematic principles are potentially established with repository-specific differ-
ences, e.g., some projects may require detailed Functionality Summary and Usage information for
every public method, and some projects only for API in particular modules. According to the feed-
back on our issues (Finding 7), these principles should be pragmatic, e.g., projects may not ask for
all methods to have Javadoc if some simple self-explanatory methods exist. For actionable rules, we
advise the following: add the due date in TODO (Completeness), do not commit incomplete skele-
tons or @author tags (Usefulness), carefully consider commented code (Usefulness), and provide the
template for Javadoc (Consistency).
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(2) Enforcing Rules with Tools: Formulating commenting guidelines is important, as well as
using tools to enforce rules. We encourage projects to use automatic tools during the code-review
process to reduce suboptimal comments. For example, tools that can identify Javadoc skeleton can
be used in the code-review process to prevent incomplete comments from being introduced. We
identify a set of comment smells that cause maintenance problems and can be detected by the
existing tools (e.g., Javadoc or Checkstyle). In particular, broken links in @see and @link tags, and
inconsistent @param and @return, can be detected by these tools. However, developers often ignore
warnings from these tools (Finding 8). Given that these tools are highly configurable, we advise
developers to configure the tools to specifically check these smells and integrate them into the
CI/CD pipeline. Moreover, according to the feedback on our issues (Finding 7), when formulating
new commenting guidelines, we advise developers to check not only new commits but also old
comments to avoid violations.

7.3 Tools

(1) Improving Comment-Checking Tools: Our taxonomy of commenting guidelines in-
dicates various concerns on comments from developers, while not all rules can be automati-
cally checked by current comment-checking tools. We therefore encourage tools to be improved
for comment-checking. In particular, tools can add checks to detect redundant comments, e.g.,
comments that restate the method name and parameter name such as some generated com-
ments. These comments have a high coherence coefficient with code [97] but provide no addi-
tional information. We find that multiple categories of comments are required by developers, e.g.,
Functionality Summary, Usage, and Purpose are frequently asked for Javadocs, while current tools
do not check whether such semantic information exists. Thus, tools may be improved to classify
comments in a sentence granularity and check if required comments exist. We find that devel-
opers tend to avoid comments like Commented Code and TODO because they are useless and
hard to maintain. Moreover, we identify considerable empty or skeleton Javadocs in the code files
which appear to be useless. Therefore tools may add checks for useless comments like Commented
Code. Our taxonomy shows that Javadocs benefit from tools, while non-Javadoc do not (Finding
4). We also find that only Javadocs have a statistically lower ICC ratio with the use of comment-
checking tools (Finding 8). Thus, tools may add more checks for the presence, quality and semantics
of non-Javadoc. For presence, tools may provide checks for specific complex code, e.g., multiple
nested loops. For quality and semantics, tools may provide checks to detect outdated comments
inconsistent with the code logic, e.g., Nie et al. [75] proposed a tool to detect outdated TODO
comments.

(2) Improving Version-Control System (VCS): Our study finds that many commenting guide-
lines forbid Log information because it is hard to maintain and replaceable by VCS (Finding 7).
However, the most widely used VCS, git, cannot fully replace some tags, e.g., @ince (required by
9 commenting guidelines), despite their potential usefulness. git lacks structural understanding
of code, e.g., git blame only tracks the last modification by line and cannot easily tell when a
code entity (e.g., method) is introduced and by whom—git cannot track such code ownership
and version information precisely. Thus, we encourage tool designers to improve VCS (or de-
velop command level interfaces) to help recover the Log information that is sometimes in com-
ments. Prior studies proposed tools [6, 14, 92] to visualize the evolution of software in differ-
ent ways, e.g., coloring code lines and drawing node-link diagrams, and tools [36, 74] to track
code elements and not just files. Recent work on CodeShovel also shows additional promising re-
sults [49] that provided method-level source code histories via mining Git histories with different
metrics.
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8 THREATS TO VALIDITY

Internal Validity: The ICCs that our technique extracts from hunks may still be related to
some code changes far away from the hunk, even in another code file. Also, we may miss com-
ment changes that are actually ICCs but excluded due to nearby irrelevant code changes. Accurate
matching of comment and code changes is an open problem [11, 112], and no reliable way exists
to detect whether a comment change is related to a distant code change. Therefore, our technique
only considers nearby code, and we adopt matching heuristics that align with current best prac-
tices, e.g. Javadoc of a method concerns the method body. Our heuristics is shown effective with
both high precision (96.4%) and recall (90.0%). The manual inspection of 3,600 automatically re-
trieved ICCs finds only 67 false ICCs, again indicating our technique is highly precise.

The ICC ratio may not accurately reflect the quality of commenting practice. There are many
aspects of commenting practice and many different ways of assessing commenting practice. In this
study we investigate how suboptimal comments are produced using ICC as a proxy, so we refer to
whether developers add/delete/update comments timely with corresponding changes. Meanwhile,
different projects have diverse practices, e.g., some developers may commit the code and corre-
sponding comments separately in a pull request, which has impact on the ICC ratio. To mitigate
the bias, we collect ICCs in a commit granularity based on the best practice recommended by Git
that “[a] commit should be a wrapper for related changes” [9] and comment changes intuitively
should be committed with corresponding code changes. Moreover, our results show that indeed
most ICCs improve comments after the change (92.9% of 3,533 ICCs). We find no other suitable
metrics that can be applied, e.g., comment density [4, 52], length of comments [97], Flesch reading
ease score [39], and textual similarity between source code and source code [71, 97], which only
measure a certain dimension of comments like prevalence and readability. Thus, we consider it
sensible to use the ICC ratio to evaluate the commenting practice considered in this study, i.e., if
developers commit comment changes timely with corresponding code changes.

The definitions of our ICC taxonomy and commenting guideline taxonomy may contain ambi-
guities, and the manual labeling is also prone to errors and conflicts. To mitigate such threats, we
include three authors and one arbitrator in this study. Furthermore, we iteratively discussed and
refined taxonomy definitions and labeling criteria through the analysis with sampled 30% data to
ensure agreement and reproducibility in the final taxonomy and labeling process.

We cannot guarantee completeness for the three identified factors associated with the changes,
because most ICCs (3,133/3,533 in our manual inspection) have no sufficient information in commit
messages for inferring reasons, and some straightforward combinations of ICCs require no reasons.
For example, for Clarifying Description, we can obtain reasons for only two out of 136 ICCs. Also,
127 ICCs fix typos and require no deep insights for reasons behind typos, thus we obtain no reason
for those ICCs. We leave further investigations of this problem for future work.

External Validity: Our study is based on a set of popular open-source Java projects from
GitHub, which may not be representative of all open-source Java projects. To mitigate this threat,
we adopt selection criteria from prior studies [51, 53, 112] to select projects with diverse sizes and
domains. Still, the results of our study may not generalize to proprietary Java projects as they
often adopt different practices compared with open-source projects. Communities for other pro-
gramming languages—such as Python, C, or JavaScript—may have different commenting practices.
However, some of our implications still appear to be generalizable, e.g., the commenting guidelines.

Our study only investigates commenting guidelines specified by projects and ignores standard
guidelines (such as the Google style guide [60] and Oracle style guide [77]). However, our inves-
tigation of standard guidelines shows that commenting guidelines in standard guidelines often
concern syntax and formatting, and all of them can fit in our taxonomy of commenting guidelines.
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Moreover, standard guidelines often provide general guidelines. Thus, even repositories that follow
standard guidelines often specify detailed commenting guidelines (about 40% of repositories that
follow standard guidelines in our dataset specify additional commenting guidelines). To conclude,
we can still guarantee the completeness of our results.

Our study only investigates Javadoc and Checkstyle, that may not represent all the comment-
checking tools. To mitigate this threat, we select the tools that are frequently used by the sampled
repositories—Javadoc and Checkstyle are used by 59% and 28% of the sampled repositories, re-
spectively. Moreover, we complement our results through conducting a survey with experienced
developers, who likely use tools beyond Javadoc and Checkstyle. To conclude, our results can re-
flect the overall situation of tools used for commenting, though we only investigate two tools.

9 RELATED WORK

The work most related to ours fits in four groups: comment classification, comment code co-
evolution, contributing guidelines, and automatic static analysis tools.

9.1 Comment Classification

Several studies have explored the nature of some comments and established a taxonomy for the
explored comments. Padioleau et al. [78] proposed a taxonomy for comments in operating system
code to guide development of comment-checking tools. Haouari et al. [50] investigated develop-
ers’ commenting habits in Java and defined a taxonomy of comments based on comment object,
type, style, and quality. Maalej and Robillard [70] defined a taxonomy of knowledge patterns in
API reference documentation by inspecting Javadoc comments sampled from JDK. Steidl et al. [97]
proposed a taxonomy of comments for further qualification, while they classified comments based
on the location (e.g., “Copyright comments” and “Inline comments”) and functionality (e.g., “Task
comments”), and we classified comments based on their content. Zhang et al. [115] proposed a tax-
onomy of Python comments for automatic classification, and our taxonomy expands it with more
categories (e.g., Commented Code and Deprecation) that cannot fit in their taxonomy. Shinyama
et al. [93] proposed a taxonomy of Java comments based on the relationship between the comment
and corresponding code (e.g., “Postcondition” and “Value Description”), which is different from our
taxonomy that is based on the content. Zhai et al. [114] proposed a two-dimensional taxonomy of
comments based on code entity and content, which better facilitates automated classification, prop-
agation, and program analysis, but is too coarse-grained for obtaining empirical understanding.
Geist et al. [44] applied different approaches—heuristics, machine learning, and deep learning—for
comment classification and found that machine learning outperforms the heuristics. Rani et al. [89]
proposed taxonomies of class comments in Java, Smalltalk, and Python, and made comparisons be-
tween different languages. Their taxonomy of Java comments follows the one proposed by Pas-
carella et al. [84], which we make a detailed comparison as follows.

The comment classification studies that are most relevant to us are taxonomies proposed by
Pascarella et al. [83-85] and Wen et al. [112]. Pascarella et al. [83-85] proposed a taxonomy of
Java comments by manually classifying comments sampled from six Java open-source projects,
five open-source Android apps, and eight industrial projects. Wen et al. [112] proposed a taxonomy
of code-comment inconsistencies fixed by developers. The difference between our taxonomy and
their taxonomies is discussed as follows:

e We define comments and commenting activities as two independent dimensions, while Pas-
carella et al. [84] propose a one-dimensional taxonomy focused only on comments (no activ-
ities, derived by inspecting code files), and Wen et al. [112] propose a hierarchical taxonomy
that mixes both comments and activities (derived by inspecting commits that focus on com-
ment changes, as identified by keywords in commit messages).
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e We derive our taxonomy from fine-grain (hunk-level) classification of ICCs; we inspect more
cases (3,533 ICCs vs. 2,000 source code files by Pascarella et al. [84] vs. 362 commits by Wen
et al. [112]), with a dataset more representative of all commits.*

e Compared with the taxonomy proposed by Pascarella et al. [84], we make revisions to com-
ment categories, which include:

- Expanding existing categories, e.g., expanding “Ownership” with “Log” to include version
information like @since and @version, expanding “Pointer” with “Link” to include URL
links, and expanding “Formatter” with “Code File Structure” to include meaningful code
file structure splits.

— Reorganizing categories, e.g., merging their “Exception” with “Usage”.

e Compared with Wen et al. [112]’s hierarchical taxonomy of comment and activity combi-
nations (that labeled each of 362 commits with only one combination, our taxonomy uses
two independent dimensions. We cannot directly map all taxonomy elements, but some of
their root categories are similar to some of our cases, e.g., their “Application Logic” (37.57%,
136/362) to our Code Logic (44.27%, total 1,564/3,533), their “Code Design/Quality” (22.10%,
80/362) to our Under Development (26.78%, total 946/3,533), and their “Formatting and Oth-
ers” (32.87%, (63+56)/362) to our Formatting and Others (17.58%, (325+296)/3,533).

Overall, compared to all prior work, we study ICCs and propose a three-dimensional taxonomy
in which the comment and commenting activity dimensions built on prior work [84, 112], and the
associated factors with changes is a completely novel dimension. Our taxonomy of the comment
dimension differs from previous work in following aspects: (1) our comment taxonomy target all
types of Java comment (both Javadoc and non-Javadoc) [70, 78, 89, 115]; (2) our comment taxon-
omy classifies comments based on the content [50, 93, 97]; and (3) our taxonomy expand existing
taxonomies with more informative categories [83-85, 89, 114, 115].

9.2 Code-Comment Co-Evolution

The research on code-comment co-evolution focuses on three aspects: to what extent comments
evolve with code [41, 42, 59, 63], how to detect outdated or inconsistent comments [66, 75, 80, 91,
98,99, 102-104, 119], and how to update comments automatically [67, 82].

Fluri et al. [41, 42] found (12+ years ago) from seven open-source Java projects that 3-10% of the
comment changes did not occur in the same released version as the associated code changes. Mean-
while, we find that the average ICC ratio, with no associated code changes in the same commit, is
~15.5% in 4,392 open-source Java repositories, indicating the prevalence of suboptimal comments.
Our results better represent the current situation in open-source development.

Tan et al. [102] proposed iComment to extract synchronization-related implicit rules in com-
ments and check if they match the logic of code within the same C function. Follow-up work
on Java includes @tComment [104] that checked whether description of parameters and excep-
tion matches corresponding description in Javadoc comments, Toradocu [48] that focused on
exceptional behaviors, JDoctor [10] that checked more semantic content from the Javadoc, and
upDoc [99] that built code-comment correspondence to ensure that code changes match comment
changes. Liu et al. [67] and Panthaplackel et al. [81] proposed approaches to automatically update
comments or detect inconsistencies based on the corresponding code change and old comment, us-
ing deep learning models learned from a large number of code-comment co-changes. Nie et al. [75]

“In Wen et al’s dataset [112], 54.6% of the commits modify only one file, and 78.0% modify fewer than five files. In com-
parison, the distribution of commits in our dataset (10.7% modify only one file, 26.4% modify fewer than five files) is more
similar to all commits that modify some comments (19.4% modify only one file, 48.0% modify fewer than five files).
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proposed a framework to detect which todo comments, written in a specific format, become obso-
lete when code is completed.

Our study complements empirical knowledge on suboptimal comments, helping to better un-
derstand the reasons for code-comment inconsistencies.

9.3 Contributing Guidelines

A few studies explored the contributing guidelines for open-source projects that often include com-
menting guidelines. Elazhary et al. [38] analyzed CONTRIBUTING.md and README . md files in 72 projects,
finding five categories of contributing guidelines. Related to comments is only their Contribution
Documentation subcategory of Pull Request Acceptance Criteria, reported to exist in 47.2% of
72 projects but provide no further information. Bafatakis et al. [5] and Simmons et al. [94] checked
the compliance of Python code to coding standards, including standards on commenting, and found
the differences on coding standards between projects and common violations of coding standards
in StackOverflow code snippets. Our study complements their work by revealing the distribution of
commenting guidelines in different repositories and confirming the violation in code repositories
instead of StackOverflow code snippets. Rani et al. [88] identified topics that developers discuss
about comments on StackOverflow and Quora, and listed comment conventions extracted from an-
swers. In their following work [87, 90], they investigated conventions of class comments in Java,
Python, and Smalltalk, classified commenting convention in a coarse granularity (e.g., “Formatting”
and “Content”), and manually checked violations in sampled comments. Our study complements
their work with the investigation on more repositories (600 open-source repositories instead of six
projects) and a comprehensive taxonomy of commenting guidelines that explicitly indicates what
rules developer specify for both class comments and inline comments.

We are the first to provide a comprehensive taxonomy of elements in commenting guidelines.
We collect commenting guidelines from all online documents in 600 sampled repositories. We con-
tribute an extensive study of commenting guidelines, including the prevalence of commenting
guidelines, a taxonomy of elements in commenting guidelines, the extent of impact of comment-
ing guidelines on practice, and the enforcement of commenting guidelines in projects (such as
violations and maintainers’ responses to reported violations).

9.4 Automatic Static Analysis Tools

Several studies have explored how automatic static analysis tools (ASATs) are used by devel-
opers in the code review, which include tools like Checkstyle that can be used to check comments.
Beller et al. [8] investigate the prevalence and configuration of ASATs. Their results show that
ASATs were widespread in 2016, but most repositories do not enforce their use strictly, only use
the default configuration, and hardly change the configuration. Panichella et al. [79] investigate
how ASATs are used in the code review, and found that while false-positive warnings might be
raised, the removal of certain warnings before the submission can reduce the amount of effort
in code review. Vassallo et al. [110] further explore this scenario and find that different warning
categories receive different levels of attention depending on the development context. Zampetti
et al. [113] investigate how ASATs are adopted in continuous integration, and find that build fail-
ures are often caused by checks related to code standards and missing licenses, instead of potential
bugs or vulnerabilities. Our study complements knowledge on how ASATs are used in the com-
menting practice and how the use of ASATs affects the ICC ratio.

10 CONCLUSIONS

We investigate independent comment changes, commenting guidelines, and tools, to understand
how suboptimal comments are introduced and addressed. We find ICCs that aim to improve
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suboptimal comments prevalent: ~15.5% of 24M comment changes in 4,392 open-source Java
repositories are committed independently of corresponding code, and the ICC ratio tends to
decrease as repositories mature. We develop a taxonomy with three dimensions—what kind of
comment is changed, how it changed, and what factors are associated with changes—expanding
on prior work and adding the factors behind ICCs. The identified factors explain the fragility of
some comments and the certain commenting tendencies of developers that lead to suboptimal
comments. We conduct the study on commenting guidelines, revealing their prevalence, taxon-
omy, impact (on suboptimal comments), and violations. We also analyze comment checking and
generating tools, and reveal the prevalence and ineffective use of tools. We provide insights for
conducting research, formulating practices, and improving tools to help facilitate future work.
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