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1 Abstract

A valuable metric in understanding local infectious disease dynamics is the local time-

varying reproduction number, i.e. the expected number of secondary local cases caused

by each infected individual. Accurate estimation of this quantity requires distinguishing

cases arising from local transmission from those imported from elsewhere. Realistically,

we can expect identification of cases as local or imported to be imperfect. We study

the propagation of such errors in estimation of the local time-varying reproduction

number. In addition, we propose a Bayesian framework for estimation of the true local

time-varying reproduction number when identification errors exist. And we illustrate the

practical performance of our estimator through simulation studies and with outbreaks of

COVID-19 in Hong Kong and Victoria, Australia.

2 Introduction

Epidemic modeling, while not at all new, has taken on renewed importance due to the

COVID-19 pandemic. The local time-varying reproduction number is an important
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quantity to monitor the infectiousness and transmissibility of diseases and, therefore, to

design and adjust public health responses during an outbreak. Recent examples include

monitoring transmission of the COVID-19 pandemic and demonstrating the efficacy of

non-pharmaceutical interventions in more than 100 countries [1–4]. The value of the

local time-varying reproduction number, Rlocal
∗ (t), represents the expected number of

secondary local cases arising from a primary case infected at time t. Different formal

definitions of Rlocal
∗ (t) have been proposed, and a number of methods are available to

estimate this quantity. The widely used EpiEstim estimator is an estimator of the

instantaneous reproductive number that is defined as the ratio of the expected number

of incident locally infected cases at time t to the expected total infectiousness of infected

individuals at time t [5, 6]. In implementing this estimator, we typically smooth cases

over a sliding window. This can have the result of making the estimator less timely

but with the benefit of smoothing out much of the noise due to day of week effects in

reporting and other random fluctuations to get a clearer trend.

Distinguishing local cases from imported cases is essential to estimation of the local

time-varying reproduction number [5]. However, surveillance data generally is available

only up to some level of error. For example, if we are unable to identify the correct

source of infection from contact tracing or genetic information, imported cases might be

misclassified as local cases, and vice versa. Such misclassification error is recognized as

one limitation of estimating Rlocal
∗ (t) in the COVID-19 outbreak [7,8]. We investigate

how identification error impacts on the estimation of the instantaneous reproduction

number and, thus, on our understanding of diseases transmission dynamics.

Extensive work regarding improving inference of time-varying reproduction numbers

has been done. For instance, there have been efforts to estimate the serial interval that

is used to compute the total infectiousness for Rlocal
∗ (t) estimation, including Bayesian

parametric estimation using data augmentation Markov Chain Monte Carlo [5, 9], and

a cure model for limited follow-up data [10]. Many studies have explored the effects

of imperfect detection and estimated the true infection prevalence [8, 11–13]. But, to

our best knowledge, there has been little attention to date given towards accounting for

identification errors of local and imported cases.

Our contribution in this paper is to quantify how such errors propagate to the local

time-varying reproduction number, and to provide estimators for Rlocal
∗ (t) when contact
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tracing survey information is available. Adopting the definition of Rlocal
∗ (t) proposed

by [5], we characterize the impact of identification errors on the bias of noisy local

time-varying reproduction numbers. Our work shows that, in general, the bias can be

expected to be nontrivial. Accordingly, we propose a Bayesian framework to estimate

the true local time-varying reproduction number. Numerical simulation suggests that

high accuracy is possible for estimating local time-varying reproduction numbers in

outbreaks of even modest size. We illustrate the practical use of our estimators in the

context of COVID-19 pandemic in Hong Kong and Victoria, Australia.

The organization of this paper is as follows. In Section 3 we show the bias of the noisy

local time-varying reproduction number, and propose a Bayesian hierarchical framework

to estimate the true local time-varying reproduction number with imperfect knowledge.

Section 4 reports the practical performance of our estimators through simulation studies

and with SARS-CoV-2 infections in Hong Kong and Australia. Finally, we conclude in

Section 5 with a discussion of future directions for this work.

3 Methods

In this section, we first quantify the bias of the noisy local time-varying reproduction

number when misidentification occurs in the surveillance data. We then build a Bayesian

hierarchical framework to estimate true local time-varying reproduction numbers. We

also propose a method to estimate misidentification rates based on contact tracing survey

data, which informs the prior distribution in the model.

3.1 Notation

Both the seminal Fraser article [14] and the Thompson et al. article [5] we are working

from use what seems a tendency in the epidemiology literature of conflating empirical

processes and their means. From the perspective of designing the simulation study

and including other Bayesian aspects, we necessarily distinguish between processes and

means more precisely in this paper. Specifically, we use letter I to denote the empirical

processes and letter µ to denote their means. The (local) time-varying reproduction

number involves µ only. The plug-in estimator of the time-varying reproduction number

in [14] involves I only. The estimator of the local time-varying reproduction number
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proposed by [5] involves both µ and I. One of the reasons that [5] used both empirical

values and population values might be this estimator is easier to work with. We note

that we use the sum notation for empirical processes and the integral notation for their

means.

To clarify the terminology, we provide the technical differences among the terms

error, bias and accuracy we used in the paper. If the surveillance data we have is not

the same as the underlying truth, we say that the surveillance data is with some error.

Here error implies the differences between the surveillance data and the truth. The bias

of an estimator is the difference between this estimator’s expected value and the true

value of the parameter being estimated. We say an estimator is of high accuracy if the

bias and variance of the estimator are relatively small.

The number of newly infected cases at time t, I∗(t) , is the sum of the numbers of

local (I local∗ (t)) and imported (I imported
∗ (t)) cases. If one assumes independence between

calendar time and the generation interval, g(s), then the local time-varying reproduction

number is defined as [5]

Rlocal
∗ (t) =

µlocal
∗ (t)∫∞

0
g(s)µ∗(t− s)ds

, (1)

where µlocal
∗ (t) = E[I local∗ (t)] and µ∗(t) = E[I∗(t)]. Note that from the perspective

of simulation, the distinction between empirical values and population values seems

potentially important, for the reason that “the expectation of a ratio is not the ratio of

expectations”. Specifically, to calculate a true local time-varying reproduction number

from simulation, we have expectations in the numerator and denominator, each of which

can be approximated over a large number of trials through sample averages.

In reality, we only know the serial interval and the number of diagnosed cases. Let

I(t), I local(t) and I imported(t) be the numbers of total diagnosed cases, local diagnosed

cases, and imported diagnosed cases at time t, respectively. Then, we define a realistic

local time-varying reproduction number as

Rlocal(t) =
µlocal(t)∫∞

0
w(s)µ(t− s)ds

, (2)

where w(s) is the serial interval, µlocal(t) = E[I local(t)] and µ(t) = E[I(t)]. Note that the
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serial interval corresponds to date of symptom onset. One can estimate symptom onset

dates by back calculation of report dates [15].

Realistically, we can expect identification of cases as local or imported to be imperfect.

Let Ĩ
local

(t) and Ĩ
imported

(t) be the number of new local and imported cases reported at

time t, with identification error. Thus, we define a noisy local time-varying reproduction

number as

R̃
local

(t) =
µ̃local(t)∫∞

0
w(s)µ(t− s)ds

, (3)

where µ̃local(t) = E[Ĩ
local

(t)]. The definition of R̃
local

(t) in (3) comes from an argument

that mimics the original argument using Poisson arrivals in [14]. Specifically, we suppose

that we observe a Poisson stream (also known as a Poisson process, i.e., a sequence of

statistically independent and memoryless arrival times, the counts of which are Poisson

distributed random variables) Ĩ
local

(t) that is a function of calendar time t in terms of

the transmissibility, denoted β̃local(t, s), an arbitrary function of calendar time t and

time since infection s. Then, µ̃local(t) follows the so-called renewal equation

µ̃local(t) =

∫ ∞

0

β̃local(t, s)µ(t− s)ds. (4)

Following [14], we have

β̃local(t, s) = R̃
local

(t)w(s). (5)

Inserting (5) into (4) yields the definition of R̃
local

(t) in (3).

Our interest is in characterizing the manner in which the uncertainty in Ĩ
local

(t) and

Ĩ
imported

(t) propagates to the local time-varying reproduction number, and providing

estimators of Rlocal(t) to account for identification errors.

3.2 Bias of the noisy local time-varying reproduction number

We quantify the bias of the noisy local time-varying reproduction number in (3) when

misidentification occurs. We begin by defining a model for Ĩ
local

(t) and Ĩ
imported

(t). Let

α0 denote the probability that an imported case is misidentified as local, and α1 the

5

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 28, 2022. ; https://doi.org/10.1101/2021.04.23.21255958doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.23.21255958
http://creativecommons.org/licenses/by/4.0/


probability that a local case is misidentified as imported. Then, a simple model is

Ĩ
local

(t)|I local(t), I imported(t), α0, α1 ∼ Bin(I local(t), 1− α1) + Bin(I imported(t), α0),

Ĩ
imported

(t) = I local(t) + I imported(t)− Ĩ
local

(t).

(6)

Under independence, the first relationship in (6) is directly obtained by the definition of

α0 and α1. And the second equation in (6) is due to the fact that the total number of

cases reported at time t is not affected by the misidentification.

By (6), the relationship between µ̃local(t) and µlocal(t) is

µ̃local(t) = (1− α1)µ
local(t) + α0µ

imported(t), (7)

where µimported(t) = E(I imported(t)). Direct computation yields

R̃
local

(t) =
(
1− α1 + α0

µimported(t)

µlocal(t)

)
Rlocal(t) (8)

when µlocal(t) ̸= 0. From (8), we can see that the bias of R̃
local

(t) depends on α0, α1

and the ratio of µimported(t) and µlocal(t). We will overestimate Rlocal(t) if α1/α0 <

µimported(t)/µlocal(t) and underestimate Rlocal(t) if α1/α0 > µimported(t)/µlocal(t). The

ratio of R̃
local

(t) to Rlocal(t) is shown below.

R̃
local

(t)

Rlocal(t)
= 1− α1 + α0

µimported(t)

µlocal(t)
. (9)

We can see that the ratio increases when α0 and µimported(t)/µlocal(t) increase, and

decreases when α1 increases. The absolute difference of R̃
local

(t) and Rlocal(t) is as

follows.

|R̃local
(t)−Rlocal(t)| =

∣∣∣− α1 + α0
µimported(t)

µlocal(t)

∣∣∣Rlocal(t). (10)

This absolute difference is proportional to Rlocal(t) and the absolute difference of α1 and

α0µ
imported(t)/µlocal(t).
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3.3 Bayesian hierarchical modeling to account for misidentifica-

tion

We propose a Bayesian framework to estimate Rlocal(t) using noisy surveillance data.

Figure 1 summarises the general idea.

Fig 1. Schematic of our method to account for misidentification. Note that we do not
back-calculate I local∗ (t) and I imported

∗ (t) from estimated I local(t) and I imported(t) in this
paper.

The model for the data Ĩ
local

(t) and Ĩ
imported

(t) is defined in (6). Following [5, 6, 14],

we specify

I local(t)|Rlocal(t), n(t− 1), w(s) ∼ Pois(Rlocal(t) · Λ(t)), for t > 0, (11)

where Λ(t) =
∑t

s=1 w(s)I(t−s) is the total infectiousness of infected individuals at time t,

and n(t−1) represent the historical data up to time t−1 (i.e., I local(0), I imported(0), · · · , I local(t−

1), I imported(t− 1)). Note that Λ(t) is undefined for t = 0. So, we assume that

I local(0)|µlocal(0) ∼ Pois(µlocal(0)). (12)

And we assume the imported case counts follow a Poisson distribution:

I imported(t)|µimported(t) ∼ Pois(µimported(t)). (13)

Next, we define relevant prior distributions. We assume a distribution for Rlocal(t) of
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the form

Rlocal(t)|n(t− 1), w(s) ∼ Gamma(alocalt|t−1, b
local
t|t−1), for t > 0. (14)

This choice is similar to that in [5], but differs in that we specify gamma conditioned

on the history, rather than marginally. The conditioning reflects the expectation that

the evolution of Rlocal(t) is likely to depend on the course of infection in the population

and intervention measures that may result. One can set alocalt|t−1 and blocalt|t−1 based on the

historical surveillance data, e.g., alocalt|t−1 = Ĩ
local

(t− 1) and blocalt|t−1 = Λ(t− 1). Analogously,

we also assume gamma distributed priors for µimported(t) and µlocal(0), that is,

µimported(t) ∼ Gamma(aimported
t , bimported

t ),

µlocal(0) ∼ Gamma(alocal0 , blocal0 ).

(15)

In addition, we assign the beta distributed priors to the misidentification rates:

α0 ∼ Beta(ζα0 , ξα0),

α1 ∼ Beta(ζα1 , ξα1).

(16)

By using Markov chain Monte Carlo (MCMC) simulation, we can get both estimates

of Rlocal(t) and its uncertainty. We implement MCMC using the R package, NIMBLE

[16–18] with the default assignment of sampler algorithms. The samplers assigned to

the variables are as follows: Gibbs samplers are assigned to µlocal(0) and µimported(t),

t ≥ 0, which have conjugate relationships between their prior distribution and the

distributions of their stochastic dependents; slice samplers [19] are used for I local(t) and

I imported(t), t ≥ 0; Metropolis-Hastings adaptive random-walk samplers are set to α0,

α1 and Rlocal(t), t > 0.

3.4 Setting hyperparameters and initial values in MCMC

Without any information on the misidentification rates, it is difficult to get an accurate

estimator of Rlocal(t). However, contact tracing data could provide adequate information

to estimate the misidentification rates. Here we use contact tracing data to set informative

priors on α0 and α1, and initial values of I local(t) and I imported(t).
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Let pi be the probability that we think individual i is a local case based on the survey.

Then, pi can be modeled as a mixture of α0 and 1− α1. Note that α1 ∼ Beta(ζα1
, ξα1

)

implies 1 − α1 ∼ Beta(ξα1 , ζα1). See the appendix for the proof of this property of

the beta distribution. We thus model the distribution of pi as a mixture of two beta

distributions:

pi ∼ π0Beta(ζα0
, ξα0

) + (1− π0)Beta(ξα1
, ζα1

), (17)

where π0 can be interpreted as the fraction of the diagnosed cases that are imported.

By using an expectation–maximization (EM) algorithm, we can obtain estimators

ζ̂α0 , ξ̂α0 , ζ̂α1 and ξ̂α1 . We set α0 ∼ Beta(ζ̂α0 , ξ̂α0) and α1 ∼ Beta(ζ̂α1 , ξ̂α1) in the MCMC

simulation.

Note that, if 1− ζα0
/(ζα0

+ ξα0
)− ζα1

/(ζα1
+ ξα1

) ̸= 0, we obtain unbiased estimators

of I local(t) and I imported(t)

Î local(t) =
(1− µα0

)Ĩ
local

(t)− µα0
Ĩ
imported

(t)

1− µα0
− µα1

,

Î imported(t) =
(1− µα1)Ĩ

imported
(t)− µα1 Ĩ

local
(t)

1− µα0
− µα1

,

(18)

where µα0
= ζα0

/(ζα0
+ ξα0

) and µα1
= ζα1

/(ζα1
+ ξα1

). Thus, we set initial values of

I local(t) and I imported(t) in the MCMC based on (18) and estimators ζ̂α0
, ξ̂α0

, ζ̂α1
and

ξ̂α1 . To be specific, the initial values of I local(t) and I imported(t) are given by

I localinitial(t) = max

(
0,min

(
I(t),

[
(1− µ̂α0

)Ĩ
local

(t)− µ̂α0
Ĩ
imported

(t)

1− µ̂α0
− µ̂α1

]))
,

I imported
initial (t) = I(t)− I localinitial(t),

(19)

where µ̂α0 = ζ̂α0/(ζ̂α0 + ξ̂α0), µ̂α1 = ζ̂α1/(ζ̂α1 + ξ̂α1), and [·] denotes the nearest integer.

And we choose priors (alocalt|t−1, b
local
t|t−1) = (1, 1) for Rlocal(t), µimported(t) ∼ Gamma(1, 1)

and µlocal(0) ∼ Gamma(1, 1), which are fairly uninformative.

4 Results

In this section, we conducted some simulations to illustrate the performance of the

proposed estimation methods. And we applied our method to two real data sets. One

9
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is surveillance data of COVID-19 cases in Hong Kong that includes contact tracing

information, including travel history data [20]. They collected information on 1,038 SARS-

CoV-2 cases confirmed between 23 January and 28 April 2020. And they identified 355

local cases and 683 imported cases. The other data set is from the COVID-19 pandemic

in Victoria, Australia, studied in [21]. There they had 1,333 laboratory-confirmed cases

of COVID-19 between 6 January and 14 April 2020. After excluding duplicate patients

from cases, they identified 345 local cases and 558 imported cases.

We considered two settings, a simulation setting and an application setting. In the

simulation setting, we first used surveillance data from Hong Kong and Victoria to

create realistic simulated data. Then, we added identification errors to the ‘true’ local

and imported cases derived from the simulated epidemics. Finally, we estimated the

local time-varying reproduction number using the noisy local and imported cases counts.

In the application setting, we assumed that identified local and imported cases in the

real data sets were with some error. The former results allow us to understand what

properties can be expected of our estimators, while the latter are reflective of what

would be observed in practice with such data.

4.1 Simulation study

In this simulation study, we used Covasim [22], a stochastic individual-based model for

transmission of SARS-CoV-2, calibrated to the epidemics in Hong Kong and Victoria. In

Covasim, a susceptible-exposed-infectious-removed (SEIR) model dictates the progression

of disease for individuals, and contact networks determine interactions between individu-

als that can cause infection. Covasim supports an extensive set of interventions, including

both non-pharmaceutical interventions and pharmaceutical interventions. In the calibra-

tion, we set network connectivity and intervention strategies such that the simulated data

are close to the epidemics in Hong Kong and Victoria. The details of parameter values

we used are available at https://github.com/KolaczykResearch/EstimLocalRt.

Figure 2 shows the average daily local and imported diagnosed counts over 1,000

trials. The noisy Ĩ
local

(t) and Ĩ
imported

(t) were generated according to (6). We set

α0 ∼ 0.1 (beta distributed with mean 0.1), and α1 ∼ 0.3, 0.4 or 0.5 to see the effect of

small α0 and large α1. This might happen if the definition of imported cases relies on

10
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travel history collected in the case investigation and some people are infected locally,

even though they have a travel history within 14 days prior to symptom onset. We also

considered α1 ∼ 0.1, and α0 ∼ 0.3, 0.4, or 0.5 (corresponding to small α1 and large α0,

which might occur if cases are defined as local when we are not sure about their source

of infection.) We assumed that both α0 and α1 are unknown.
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Fig 2. The means of daily local and imported diagnosed counts in 1,000 simulation
trials for epidemics in Hong Kong and Victoria.

We evaluated the estimate for Rlocal(t) in terms of a corresponding posterior, and

95% credible intervals. Figures 3 and 4 show the simulation results, in which we ran

MCMC chains of 10,000 samples for each of 1,000 simulated epidemic trials. The number

of burn-in samples is 1,000. And we used the trace and autocorrelation plots to evaluate

the samples. In each trial, we compute the posterior mean and 95% credible intervals of

estimated local time-varying reproduction numbers at each time point. Then we take

the average over 1,000 trials and obtain the curves and error bands in Figures 3 and 4.

Figure 3 assumes that we are more likely to misclassify local cases as imported cases and

Figure 4 assumes that we are more likely to misclassify imported cases as local cases. The

reason for not showing estimates for Rlocal(t) in the left part of the right panel is that

there are few diagnosed counts and the data are not sufficiently informative. The red

curve represents the results obtained from our Bayesian model. For comparison purposes,

we computed Rlocal
∗ (t) (corresponds to the blue curve) and Rlocal(t) (corresponds to the

purple curve) defined in (1) and (2) by approximating µlocal
∗ (t), µ∗(t), g(s), µ

local(t),

µ(t), w(s) using 1,000 simulation trials. And we calculated the widely used estimator

of R̃local(t) (corresponds to the green curve) defined in (3), which is implemented in
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the R package, EpiEstim [23]. We chose the weekly sliding window (default setting in

EpiEstim) so the green curve has a thinner credible interval compared to the red curve.

We view it as a representative estimator that does not account for misidentification, i.e.,

it treats the noisy local and imported cases as true. Note that the blue curve (Rlocal
∗ (t))

is temporally accurate. However, we used the lagged case observations and the serial

interval in our Bayesian framework and EpiEstim. Thus, Rlocal(t) (corresponds to the

purple curve) is what we could estimate accurately using our Bayesian model.

Recall that the mean of unlagged infection counts was used in the blue curve (Rlocal
∗ (t))

and the mean of lagged diagnosed cases counts was used in the purple curve (Rlocal(t)).

When the intervention strategy like shutting down is adopted (e.g., the middle of March

in the simulated epidemic in Hong Kong), the infection counts will decrease sharply at

the same time, but the diagnosed case counts will decrease smoothly with some time

lag if we don’t test all people everyday. This is why we see sharp decreases in the blue

curve and smooth decreases in the purple curve.

In the simulated epidemics for both Hong Kong and Victoria, if we ignore the

misidentification, we will underestimate Rlocal(t) when the mean of α0 is small and the

mean of α1 is relatively large (Figure 3), and overestimate Rlocal(t) when the mean of

α1 is small and the mean of α0 is relatively large (Figure 4), with the biases increasing

when the means of α0 and α1. The results are consistent with (8) implying that the

biases will lead to inappropriate public health response, i.e., inadequate interventions

or overreaction. We corrected the bias using our Bayesian hierarchical framework. The

biases of our estimators are close to zero in all cases. The 95% credible intervals of our

estimators are wide in the first two months because the number of incident cases are

very low. For the last month or so when the diagnosed counts are relatively high, the

95% credible intervals are narrow.

4.2 Application

We applied our proposed methods to surveillance data of COVID-19 cases in Hong Kong

and Victoria. Figures 5 (a) and (b) show the daily local and imported cases counts

in Hong Kong and Victoria. For Hong Kong data, [20] calculated the serial intervals

using a gamma distribution and estimated shape and rate parameters of 2.23 and 0.37,
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• • • •

• • • •

• • • •

Fig 3. Estimations of local time-varying reproduction numbers in simulated epidemics
for Hong Kong and Victoria under three sets of error misidentification rates: α0 ∼ 0.1,
and α1 ∼ 0.3, 0.4, or 0.5. The error bands are the averages of 95% credible intervals
over 1,000 trials at each time point.

respectively (corresponding to a mean of around 6 days and standard deviation of

around 4 days). There is no specific serial interval that has been calculated for Victoria.

Considering the epidemic curve in Victoria is relatively similar to that in Hong Kong,

we used the same serial interval distribution when we estimate Rlocal(t) in Victoria.

Since we did not have access to the contact tracing survey data mentioned in Section

2 3.4 to infer the misidentification rates, we investigated a range of plausible values.

Figures 5 (c) and (d) show estimates for Rlocal(t) under three assumed scenarios: 1) no

identification error, 2) small α0 and large α1, 3) small α1 and large α0. We ran MCMC

chains of 10,000 samples and the error bands are the 95% credible intervals. We can see
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• • • •
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Fig 4. Estimations of local time-varying reproduction numbers in simulated epidemics
for Hong Kong and Victoria under three sets of error misidentification rates: α1 ∼ 0.1,
and α0 ∼ 0.3, 0.4, or 0.5. The error bands are the averages of 95% credible intervals
over 1,000 trials at each time point.

that the estimated local time-varying reproduction numbers are quite different when the

two identification error rates are about 10% and 30%. If we think we are more likely

to misclassify local cases as imported, then we should trust the curve corresponding to

scenario 2). If imported cases are more likely to be misidentified as local, then the curve

corresponding to scenario 3) is reliable. And if we believe the identification error is close

to zero, we should trust the estimate under scenario 1). For example, in late March, the

estimated local time-varying reproduction numbers and 95% credible intervals are below

one under scenario 1) , but are near or above one under scenario 2). The differences can

lead to different public health policies.
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Ultimately, we see that the ability to account for identification error appropriately in

reporting the local time-varying reproduction number can lead to substantially different

conclusions than use of the original, noisy local time-varying reproduction number. These

differences can then in turn be translated to decision making for public health response.

• • • • • •

Fig 5. Epidemic curves of COVID-19 cases and estimations of local time-varying
reproduction numbers in Hong Kong and Victoria. (a) The epidemic curve of daily
cases of laboratory-confirmed SARS-CoV-2 infection in Hong Kong by symptom onset
date and colored by case category. Asymptomatic cases are included here by date of
confirmation. (b) The epidemic curve of the coronavirus disease cases in Victoria by
sample collection date and colored by case category. (c) and (d) Estimations of local
time-varying reproduction numbers under three assumed scenarios: 1) no identification
error, 2) α0 ∼ 0.1 and α1 ∼ 0.3 (around 10% imported cases are misclassified as local
and around 30% local cases are misclassified as imported), 3) α0 ∼ 0.3 and α1 ∼ 0.1
(around 30% imported cases are misclassified as local and around 10% local cases are
misclassified as imported). The bands are the 95% credible intervals.
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5 Discussion

We have developed a general framework for estimation of the true local time-varying

reproduction numbers in contexts wherein one has identified local and imported case

counts with some error. Simulations demonstrate that substantial inferential accuracy

by our estimators is possible when nontrivial error is present. And our application to

epidemics in Hong Kong and Victoria shows that the gains offered by our approach over

presenting the noisy local instantaneous reproduction number can be pronounced.

We have shown examples on a state/province level, but our method could be useful

for cities, or more local settings, such as a university trying to determine if there is

substantial local transmission occurring. Our approach requires daily numbers of local

and imported cases, serial interval, and contact tracing data or other data to provide

adequate information to estimate the misidentification rates.

We have pursued a Bayesian approach to the problem of estimating the local instanta-

neous reproduction number. The credible intervals are relatively wide when the number

of cases is low. To improve the performance at low case incidence, Kalman filtering is a

natural approach. Estimating the time-vary reproduction number by Kalman filtering

is an emerging topic. For instance, [24] constructed a recursive Bayesian smoother for

estimating the effective reproduction number from the incidence of an infectious disease

in real time and retrospectively. However, one typically does not distinguish between

local and imported cases in this setting.

The identification errors are informed by contact tracing survey data in our approach.

If the data from the survey is categorical (e.g., we ask people where they were infected

and attach some qualitative measure of our confidence that we think they are local

cases), we can transform them into numerical values. For example, [25] proposed a

method that converts categorical variables to numerical data for a Gaussian distribution.

We could modify the method to convert categorical variables to Beta distributed data.

If the survey data is unavailable, using genomic data is a natural alternative. Genomic

surveillance has been used to detect transmission clusters and to provide information on

the possible source of individual cases [26–31].

We assume the identification errors are constant over time in our model. One future

direction is relaxing this assumption. The identification errors may vary over time as
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the quality of surveillance data may not be the same. And the errors may depend on

the incidence of local and imported cases. If there are few imported cases, an imported

case might be likely to be incorrectly classified as local but a local case will be less likely

to be incorrectly classified as imported.

We have shown the results of retrospective estimation. And it is computationally

feasible to run MCMC on each day to obtain real time estimators; it takes about 5

minutes for the MCMC chain of 10,000 samples.

In the simulation study, we reported the mean of posterior means of estimated local

time-varying reproduction numbers over 1,000 trials. To see if there is much variation

in estimated values between simulations, we have computed the standard derivation

of posterior means from 1,000 simulated epidemic trials at each time point. For the

simulated epidemic in Hong Kong, the average of standard derivations (over time) is

ranging from 0.37 to 0.43 in the six misidentification error scenarios shown in Figures 3

and 4. For the simulated epidemic in Victoria, the average of standard derivations (over

time) is ranging from 0.28 to 0.38 in the six misidentification error scenarios shown in

Figures 3 and 4.

We assume the serial interval for Victoria is the same as that in Hong Kong. There

is variability in the serial interval among countries. [32] summarised 129 estimates of

serial intervals reported for COVID-19, with means or medians ranging from 1.0 to 9.9.

Also, serial interval observations for COVID-19 could be negative [33]. Exploring the

robustness of our model to the serial interval could be a potential future direction.

The use of the lagged case observations and the serial interval can lead to temporal

inaccuracies in the estimation of local time-varying reproduction numbers, which can

hinder inference about the impact of changes in behavior and policies on the local

transmission. The best practice is to back-calculate unlagged infection counts from

lagged case observations [34]. Thus, to improve the accuracy of the estimation of local

time-varying reproduction numbers, we can first back-calculate the unlagged infection

counts using the noisy surveillance data and then run the MCMC with those unlagged

counts.

If contact tracing datasets contain cases with unknown classification as local or

imported, we could use the information from other data (e.g. genomic data) to impute

these cases. If no other information is available, we could randomly classify these cases
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as local or imported.

As shown in the simulation study, ignoring misclassification of local or imported

cases can lead to substantially inaccurate estimation of local time-varying reproduction

numbers. In our data application, the misidentification rates are relatively small and

thus the incorrect classification of local or imported cases does not have a big impact

on the estimation of local time-varying reproduction numbers. However, there may be

other real-world examples where our modeling framework becomes important.

While this paper was awaiting review, we became aware of related work that appeared

by [35]. In that paper, those authors developed a Bayesian framework to estimate the

local time-varying reproductive number, accounting for unlinked local cases and potential

different infectiousness among local and imported cases. One of the main differences

between their work and our work is that they assumed misspecification of the source of

infection for local cases, but perfect classification of cases (i.e. α0 = α1 = 0).

Data Accessibility

No primary data are used in this paper. Secondary data sources are taken from [20,21].

These data and the code necessary to reproduce the results in this paper are available at

https://github.com/KolaczykResearch/EstimLocalRt.
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