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Abstract 15 

One critical bottleneck that impedes autonomous vehicle (AV) development and deployment is the 16 

prohibitively high economic and time costs required to validate its safety in a naturalistic driving environment, 17 

due to the rarity of safety-critical events1. Here we develop an intelligent testing environment in that artificial 18 

intelligence-based background agents are trained to test AVs in an accelerated mode, without loss of 19 

unbiasedness. From naturalistic driving data, the background agents learn when to execute what adversarial 20 

maneuver through a newly developed dense deep reinforcement learning (D2RL) approach, in which Markov 21 

decision processes are edited by removing non-safety-critical states and reconnecting critical ones so that the 22 

information in the training data is densified. D2RL enables neural networks to learn from densified 23 

information with safety-critical events and achieves tasks that are intractable for the traditional deep 24 

reinforcement learning approach. We demonstrate the effectiveness of our approach by testing a highly 25 

automated vehicle in both highway and urban test tracks with an augmented reality environment, combining 26 

simulated background vehicles with physical road infrastructure and a real AV under test. Our results show 27 

that the D2RL-trained agents can accelerate the evaluation process by multiple orders of magnitude (103 to 28 

105 times faster). D2RL also opens the door for accelerated testing and training with other safety-critical 29 

autonomous systems. 30 

 31 

 32 

Introduction 33 

Driven by the rapid development of autonomous vehicle (AV) technologies, we are on the cusp of a new 34 

revolution in transportation on a scale not seen since the introduction of automobiles a century ago. AV 35 

technologies have the potential to significantly improve transportation safety, mobility, and sustainability, 36 

thus attracting worldwide attention from industries, government agencies, professional organizations, and 37 

academic institutions. Over the past 20 years, significant progress has been made on the development of AVs, 38 

particularly with the emergence of deep learning2. By 2015, several companies had announced that they would 39 

be mass producing AVs before 20203-5. So far, the reality has not lived up to these expectations, and no level 40 

4 (ref.6) AVs are commercially available. The reasons for this are numerous. But above all, the safety 41 

performance of AVs is still significantly below that of human drivers. For average drivers in the United States, 42 

the occurrence probability of a crash is around 1.9 × 10−6 per mile in the naturalistic driving environment 43 

(NDE)1. In contrast, the disengagement rate for the state-of-the-art AV is around 2.0 × 10−5  per mile, 44 

according to the 2021 Disengagement Report from California7. Although the disengagement rate is criticized 45 

for its potential biasedness, it has been widely used to track the trend of AV safety performance8,9, as it is 46 

arguably the only statistics where the results of different AVs are available to the public. 47 
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One critical bottleneck to improving AV safety performance is the severe inefficiency of safety validation. 48 

Prevailing approaches usually test AVs in the NDE through a combination of software simulation, closed test 49 

track, and on-road testing. However, to validate the safety performance of AVs at the level of human drivers, 50 

it is well-known that hundreds of millions of miles and sometimes hundreds of billions of miles would be 51 

required to test in the NDE1. Due to this severe inefficiency, AV developers must pay significant economic 52 

and time costs to evaluate each new development, which has severely hindered the progress of AV deployment. 53 

To improve the testing efficiency, many approaches test AVs in purposely generated scenarios that are more 54 

safety critical10,11. Yet, existing scenario-based approaches12-17 can mainly be applied to short scenario 55 

segments with limited background road users (see Supplementary Materials for more discussions).  56 

Validating the safety performance of AVs in NDE is in essence a rare-event estimation problem in a high-57 

dimensional space. The main challenge is caused by the compounding effects of the “curse of rarity” in 58 

addition to the “curse of dimensionality” (Fig. 1a). By “curse of dimensionality,” we mean that driving 59 

environments could be spatiotemporally complex, and the variables needed to define such environments are 60 

high dimensional. As the volume of the variable space grows exponentially with dimensionality, the 61 

computational complexity also grows exponentially18. By “curse of rarity,” we mean that the occurrence 62 

probability for safety-critical events is rare, i.e., most points of the variable space are non-safety-critical, which 63 

provide no or noisy information for training. Under this circumstance, it is hard for a deep learning model to 64 

learn even given a large amount of data, as the precious information (e.g., policy gradient) of safety-critical 65 

events could be buried under the large amount of non-safety-critical data. The past decades have witnessed 66 

rapid progress in the ability of artificial intelligence (AI) systems to solve problems with the “curse of 67 

dimensionality”19, for example, the board game Go has a state space of 10360 (ref.20) and the semiconductor 68 

chip design may have a state space on the order of 102500 (ref.21). Prior to this work, however, solving the 69 

“curse of dimensionality” and the “curse of rarity” simultaneously has remained an open question, which has 70 

impeded the applicability of AI techniques in safety-critical systems, such as AVs, medical robots, and 71 

aerospace systems22. 72 

We address this challenge by developing the dense deep reinforcement learning (D2RL) approach. The basic 73 

idea is to identify and remove the non-safety-critical data and train neural networks utilizing only the safety-74 

critical data. As only a very small portion of data is safety-critical, the information of the remaining data will 75 

be significantly densified. Essentially, the D2RL approach edits the Markov decision process by removing 76 

the uncritical states and reconnecting the critical states, and then trains neural networks only for the edited 77 

Markov process (Fig. 1b). Therefore, for any training episode, the reward from the end state is backpropagated 78 

along the edited Markov Chain with critical states only (Fig. 1c).  The D2RL approach can dramatically reduce 79 

the variance of the policy gradient estimation with multiple orders of magnitude without loss of unbiasedness, 80 

compared with the DRL approach, as proved in Theorem 1 in Methods. Such significant variance reduction 81 

can enable neural networks to learn and achieve tasks that are intractable for the DRL approach. For AV 82 

testing, we leverage the D2RL approach and train the background vehicles (BVs) through a neural network 83 

to learn when to execute what adversarial maneuver, which aims to improve the testing efficiency and ensure 84 

evaluation unbiasedness. This results in an AI-based adversarial testing environment that can reduce the 85 

required testing miles of AVs by multiple orders of magnitude while ensuring the testing unbiasedness. Our 86 

approach can be applied to complex driving environments including multiple highways, intersections, and 87 

roundabouts, which cannot be achieved by prior scenario-based approaches. The proposed approach 88 

empowers the testing agents in the environment with intelligence to create an intelligent testing environment, 89 

i.e., using AI to validate AI. This is a paradigm shift and it opens the door for accelerated testing and training 90 

with other safety-critical systems. 91 

  92 



                                               Page 3 of 19 

 

To demonstrate the effectiveness of our AI-based testing approach, we trained the BVs with large-scale 93 

naturalistic driving datasets and conducted simulation experiments as well as field experiments in physical 94 

test tracks. Specifically, we tested a level 4 AV with an open-source automated driving system, Autoware23, 95 

in the physical 4-km-long highway test track at the American Center for Mobility (ACM) and the urban test 96 

track at Mcity. To test the AV with the D2RL-trained testing environment safely and precisely, we developed 97 

an augmented reality testing platform24, which combines the physical test track and a microscopic traffic 98 

simulator, SUMO25. As shown in Fig. 1d, by synchronizing the movements of the real AV and virtual BVs, 99 

the real AV in the physical test track can interact with the virtual BVs as if it is in a realistic traffic 100 

environment, where the BVs are directed to interact with the real AV. For both simulation and field 101 

experiments, we evaluated not only crash rates, but also crash types and crash severities. Our simulation and 102 

field-testing results show that the D2RL approach can effectively learn the intelligent testing environment, 103 

which can significantly accelerate the evaluation process of AVs by multiple orders of magnitude (103 to 105 104 

times faster) unbiasedly, compared with the results from testing AVs directly in NDE.  105 

Results  106 

Dense deep reinforcement learning (D2RL) 107 

To leverage AI techniques, we formulate the AV testing problem as a sequential Markov decision process 108 

(MDP), where maneuvers of BVs are decided based on the current state information. We aim to train a policy 109 

(a DRL agent) modeled by a neural network, which can control the maneuvers of BVs to interact with the 110 

AV, to maximize the evaluation efficiency and ensure unbiasedness. However, as mentioned earlier, it is 111 

hard—or even empirically infeasible—to learn an effective policy if directly applying DRL approaches 112 

because of the “curse of dimensionality” and the “curse of rarity.”  113 

We address this challenge by developing the D2RL approach. Due to the rarity of safety-critical events, most 114 

states are uncritical and cannot provide information for safety-critical events, so the key concept of D2RL is 115 

to remove the data of these uncritical states and only utilize the informative data for training the neural network 116 

(Fig. 1b and 1c). For AV testing problems, many safety metrics26 can be utilized to identify the critical states 117 

with different efficiency and effectiveness. In this study, we utilize the criticality measure12,13, which is an 118 

outer approximation of the AV crash rate within a specific time horizon (e.g., one second) from the current 119 

state. Theoretical analysis for more generic problems can be found in Methods and Supplementary Materials 120 

(Section 2a).  We then edit the Markov process, discard the data of uncritical states, and use the remaining 121 

data for the policy gradient estimation and bootstrapping of the DRL training. We discover that dense learning 122 

can dramatically reduce the variance of the policy gradient estimation with multiple orders of magnitude 123 

without loss of estimation unbiasedness, as proved in Theorem 1 in Methods. The dense learning can also 124 

reduce the bootstrapping variance, as it can be regarded as a state-dependent temporal-difference learning27, 125 

where only critical states are utilized and others are skipped.  126 

To demonstrate the effectiveness of dense learning, we compared D2RLwith the DRL approach for a corner 127 

case generation problem28,29, which can be formulated as a well-defined reinforcement learning problem. A 128 

neural network was trained to maximize the AV’s crash rate by controlling the closest eight BVs’ actions 129 

(Fig. 2a). We used proximal policy optimization (PPO)30 to update the parameters of the policy network, given 130 

the reward for each testing episode, i.e., +20 for an AV crash and 0 for others. For a fair comparison, the only 131 

difference between DRL and D2RL is that DRL utilized all the data for training the neural network, while 132 

D2RL only utilized the data of critical states. As shown in Fig. 2b, D2RL removed the data of 80.5% complete 133 

episodes and 99.3% steps from uncritical states, compared with DRL. According to Theorem 1, this indicates 134 

that D2RL can reduce around 99.3% of the policy gradient estimation variance, which enables the neural 135 

network to learn effectively. Specifically, the D2RL can maximize the reward during the training process, 136 

while the DRL was stuck from the beginning of the training process (Fig. 2c). The policy learned by D2RL 137 
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can effectively increase the crash rate of the AV, while DRL failed to do so (Fig. 2d). Figure 2e-g illustrate 138 

three generated corner cases.  139 

   140 

Learning the intelligent testing environment 141 

Learning the intelligent testing environment for unbiased and efficient AV evaluation is much more complex 142 

than corner case generation. According to the importance sampling theory31, the goal is essentially to learn 143 

new sampling distributions, i.e., importance function, of BVs’ maneuvers to replace their naturalistic ones, 144 

with the aim of minimizing the estimation variance of AV testing. Intuitively, the BVs are trained to learn 145 

when to execute what adversarial maneuver, in that all BVs follow naturalistic behaviors, only selected 146 

vehicles at selected moments execute specifically designed adversarial moves with a learned probability. To 147 

achieve this goal, without using any heuristics or handcrafted functions, we derive the reward function from 148 

the estimation variance as 149 

𝑟(𝒙) = −𝕀𝐴(𝒙) ∙ 𝑊𝑞𝜋
(𝒙) ∙ 𝑊𝑞𝜋𝑏

(𝒙),     (1) 150 

where 𝒙 denotes the variables of each testing episode, 𝕀𝐴(𝒙) is an indicator function of the AV crash, and 151 

𝑊𝑞𝜋
(𝒙) = 𝑃(𝒙) 𝑞𝜋(𝒙)⁄  and 𝑊𝑞𝜋𝑏

(𝒙) = 𝑃(𝒙) 𝑞𝜋𝑏
(𝒙)⁄  are weights (or likelihoods) produced by importance 152 

sampling. Here, 𝑃(𝒙) denotes the naturalistic distribution, 𝑞𝜋(𝒙) denotes the importance function with the 153 

target policy 𝜋, and 𝑞𝜋𝑏
(𝒙) denotes the importance function with the behavior policy 𝜋𝑏 . As there is no 154 

heuristic or handcrafted immediate reward function, the reward function in Eq. (1) is highly consistent with 155 

the testing performance, i.e., a higher reward indicates a more efficient testing environment. Such reward 156 

design is generic and applicable to other rare event estimation problems with high-dimensional variables.  157 

To determine the learning mechanism, we further investigate the relationship between the behavior policy 𝜋𝑏 158 

and target policy 𝜋. As proved in Theorem 2 in Methods, we discover that the optimal behavior policy 𝜋𝑏
∗  that 159 

collects data during the training process is nearly inversely proportional to the target policy. It indicates that, 160 

if using on-policy learning mechanisms (𝑞𝜋𝑏
= 𝑞𝜋), the behavior policy would be far from optimality, which 161 

could mislead the training process and eventually cause the underestimation issues. To address this issue, we 162 

design an off-policy learning mechanism, where a generic behavior policy is designed and kept unchanged 163 

during the training process. Although this off-policy mechanism is not the optimal behavior policy as in 164 

Theorem 2 (which is usually unavailable in practice), it can balance the exploration and exploitation and is 165 

empirically effective for all experiment settings in this study. With the reward function and off-policy learning 166 

mechanism, we can learn the intelligent testing environment by the D2RL approach (see Methods for training 167 

details).  168 

AV testing in simulation  169 

We evaluated the effectiveness of D2RL-based intelligent testing environment regarding accuracy, efficiency, 170 

scalability, and generalizability by systematic simulation analysis. To measure the safety performance of AVs, 171 

crash rates of different crash types and severities in NDE are utilized as the benchmark. As NDE is generated 172 

completely based on naturalistic driving data, testing results in NDE can represent the safety performance of 173 

AVs in the real world. For each test episode, we simulated AV driving in traffic for a fixed distance, and then 174 

the test results were recorded and analyzed. To investigate the scalability and generalizability, we conducted 175 

simulation experiments with different road geometries, different driving distances, and two different types of 176 

AV models (i.e., the AV-I and AV-II models; see Section 3d in Supplementary Materials).  177 
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Figure 3 shows the results of the 2-lane highway environment with the 400m driving distance for the AV-I 178 

model, which is a basic experiment to validate our approach. As shown in Fig. 3a, during the training process 179 

the estimation variance of the intelligent testing environment decreases with the increase of reward function, 180 

which demonstrates the effectiveness of the reward function in Eq. (1). To justify the off-policy mechanism, 181 

we investigated the performance of the on-policy mechanism, where the target policy was utilized as the 182 

behavior policy. As shown in Fig. 3b, during the training process, the crash rate for the on-policy experiments 183 

significantly increases, while the crash rate for the off-policy experiments is unchanged because the behavior 184 

policy is unchanged. However, as the on-policy mechanism breaks the consistency between the reward 185 

function and estimation variance, this increase of the crash rate would be misleading. As shown in Fig. 3c, 186 

the testing environment obtained by the on-policy mechanism underestimates the crash rate. In contrast, our 187 

off-policy approach can obtain the same crash rate as the NDE approach, but more efficiently (Fig. 3d, e). To 188 

measure the efficiency, we calculated the minimum number of tests for reaching a predetermined precision 189 

threshold (the relative half-width12,17 is 0.3). To reduce the randomness of the results for a fair comparison, 190 

we repeated the testing of our approach by bootstrap sampling and obtained the frequency and average of the 191 

required number of tests (Fig. 3f). Compared with the NDE approach that required 1.9 × 108 number of tests, 192 

our approach required an average of 9.1 × 104  number of tests, which is 2.1 × 103  times faster. To 193 

investigate the generalizability, we further tested the AV-II model using the same intelligent testing 194 

environment without any refinement, which can also obtain an accurate estimation with about 103 times faster 195 

(see Section 4d in Supplementary Materials). 196 

To validate the unbiasedness about crash types, crash severities, and near-miss events, we analyzed the crash 197 

rates of different crash types, distribution of the speed difference at the crash moment, and distributions of the 198 

time-to-collision (TTC), bumper-to-bumper distance, and post encroachment time (PET) of near-miss events, 199 

respectively. Throughout the paper our use of the term unbiasedness refers to the fact that estimations from 200 

our approach have the same mathematical expectations as those from NDE. In our experiments, we collected 201 

about 2.34 × 108 episodes of tests in NDE and 3.15 × 106 (about two orders of magnitude less) episodes of 202 

tests in the intelligent testing environment. As the intelligent testing environment is more adversarial than 203 

NDE, the total crash rate in our approach is 3.21 × 10−3  (Fig. 3g), which is much higher than that 204 

(1.58 × 10−7) in NDE. As required by the importance sampling theory, each crash event should be weighted 205 

by the likelihood ratio to keep the unbiasedness. Therefore, the weighted crash rates for all crash types are 206 

compared with the results in NDE (Fig. 3h), which demonstrates the unbiasedness of our approach within the 207 

evaluation precision. Similarly, Figures 3.i-l demonstrate that our approach can also unbiasedly evaluate the 208 

AV’s safety performance regarding crash severities and near-miss events within the evaluation precision. As 209 

near-miss events are critical for the development of AVs, the generated near-miss events without loss of 210 

unbiasedness open the door for accelerating the AV training. We leave that for future study.  211 

To further investigate the scalability and generalizability, we conducted the experiments with different 212 

numbers of lanes (2 and 3 lanes) and driving distances (400m, 2km, 4km, and 25km) for the AV-I model. 213 

Here we studied the 25km case to demonstrate the effectiveness of our approach over full-length trips, because 214 

the average commuter travels approximately 25km one way in United States. As shown in Table 1, because 215 

of the skipped episodes and steps that significantly reduce the training variance, our approach can effectively 216 

learn the intelligent testing environment for all the experiments.  217 

Furthermore, to demonstrate the advance of our approach in realistic urban scenarios, we extended our 218 

simulation experiments at a real-world four-armed roundabout32 in Germany with a high traffic volume and 219 

complex interactions. Compared with the NDE testing approach that requires about 8.91 × 106 number of 220 

tests to reach the 30% relative half-width, our approach only requires 3.76 × 103 number of tests, which is 221 

2.37 × 103 times faster. See Supplementary Video 2 and Supplementary Materials (Section 4b) for more 222 

details. 223 
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AV testing in test tracks 224 

Finally, we tested a Lincoln MKZ hybrid equipped with the open-source automated driving system, 225 

Autoware23 (Fig. 4a), driving continuously in the physical multi-lane 4-km highway test track at ACM (Fig. 226 

4b) and the physical urban test track at Mcity (Fig. 4c), respectively. We developed an augmented reality 227 

testing platform24, which combines the physical test track and a simulation environment, SUMO25. As shown 228 

in Fig. 1d, by synchronizing the movements of the real AV and virtual BVs, the real AV in the physical test 229 

track can interact with the virtual BVs as if it is in a real traffic environment, where the BVs are controlled 230 

according to the intelligent testing environment. Figure 4d illustrates the real-time visualization of the testing 231 

process. We trained the intelligent testing environment in the digital twins of the ACM highway section and 232 

the Mcity urban section using the similar training settings as in the simulation studies (see Methods for 233 

details). As shown in Fig. 4e-h, the crash rate estimations in both ACM and Mcity converge and reach the 234 

30% relative half-width after about 156 tests at ACM and 117 tests at Mcity, which are on the order of 105 235 

times faster than those (2.5 × 107 at ACM and 2.1 × 107 at Mcity) of the NDE testing approach. We also 236 

evaluated the AV’s safety performance for different crash types and severities (Fig. 4i, j).  237 

 Discussion 238 

Our results present evidence of using D2RL techniques to validate AVs’ safety performance regarding their 239 

behavioral competency33. D2RL can accelerate the testing process and can be used for both simulation testing 240 

and test-track methods. It can significantly enhance existing testing approaches (falsification methods, 241 

scenario-based methods, and NDE methods) to overcome their limitations in real-world applications. D2RL 242 

also opens the door for leveraging AI techniques to validate machine intelligence of other safety-critical 243 

autonomous systems, such as medical robots and aerospace systems. 244 

Ideally, the testing environment should consider all operating conditions of AVs and their associated rare 245 

events. For example, a six-layer model34 has been developed to structure the parameters of scenarios, 246 

including road geometry, road furniture and rules, temporal modifications and events, moving objects, 247 

environmental conditions, and digital information. In this study, we mainly focus on two layers: moving 248 

objects and road geometry, i.e., multiple surrounding vehicles undertaking maneuvers on roads of varying 249 

geometry, which are critical for the testing environment. Our approach could be extended to include 250 

parameters from other layers, such as weather conditions, by collecting large-scale naturalistic data and 251 

utilizing domain knowledge of those fields.  252 

We note that increasing attention has also been paid to formal methods to address the new challenges raised 253 

by AI systems (see ref.35,36 and references therein). Formal methods provide mathematical framework for 254 

rigorous system specification, design, and verification37, which are critical for trustworthy AI. However, as 255 

discussed in ref.36, multiple major challenges need to be addressed to fully realize their full potential. D2RL 256 

can potentially be integrated with formal methods. For example, reachability-based methods38 could be 257 

incorporated into the calculation of criticality measure to identify the critical states, particularly for generic 258 

safety-critical autonomous systems. How to further integrate D2RLwith formal methods deserves further 259 

investigation. 260 

 261 

  262 
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Fig. 1 Validating safety-critical AI with the dense learning approach. a, The “curse of rarity” hinders 346 

the applicability of deep learning techniques for safety-critical systems, as the gradient estimation of neural 347 

networks would suffer from the large variance due to the rareness of informative data. By training the neural 348 

networks with the informative data only, our dense learning approach significantly reduces the gradient 349 

estimation variance, enabling deep learning applications in safety-critical systems. b, The D2RL approach 350 

edits the Markov process by removing the uncritical states and reconnecting the critical states, and then 351 

trains the neural networks (NN) only for the edited Markov process. c, For any D2RL training episode, the 352 

reward from the end state is backpropagated along the edited Markov Chain with critical states only. Three 353 

examples are provided. For the left example, the episode is completely removed from training data as it does 354 

not contain any critical state. For the middle and right examples, the uncritical states are skipped and critical 355 

states are reconnected to densify the training data. The end state for the middle example is from a non-crash 356 

episode, while the right example is from a crash episode.  d, The augmented reality testing platform can 357 

augment the real world with virtual background traffic, resulting in a safer, more controllable, and more 358 

efficient testing environment for AVs. Our approach learns to decide when to control which background 359 

vehicles to execute what adversarial maneuver with what probability.  360 

 361 

Fig. 2 Comparison of D2RL with DRL using the corner case generation examples. a, The neural network 362 

controls the closest eight vehicles’ maneuvers within 120 m, where each BV has 33 discrete actions at every 363 

0.1 second: left lane change, 31 discrete longitudinal accelerations ([-4, 2] with 0.2 m s-2 discrete resolution), 364 

and right lane change. b, Proportions of the removed data by D2RL regarding the episodes (left) and steps 365 

(right). c, Comparison of training rewards between DRL and D2RL, where the solid line represents the moving 366 

averages of rewards and the light shadow represents the standard deviations. d, Comparison of crash rates 367 

between the policies learned by DRL and D2RL. e, The AV (blue vehicle) made an evasive lane change to 368 

avoid a cut-in vehicle but collided with an adjacent vehicle. f, The right front vehicle made a cut-in, the left 369 

behind vehicle made a right lane change, while the right behind vehicle accelerated. These three vehicles 370 

cooperatively encircled the AV and caused a crash. g, The right front vehicle made a cut-in to enforce the AV 371 

for braking, which created the opportunity for the right behind vehicle to make a lane change after 2.8 seconds 372 

(i.e., 28 uncritical steps), leading to a crash. Additional explanations are provided in Supplementary Video 1. 373 

    374 

Fig. 3. Performance evaluation of the D2RL-based intelligent testing environment. a, Comparison of the 375 

reward between the DRL and D2RL approaches, along with the estimation variance (dashed line) of the D2RL 376 

approach that represents the testing efficiency. The solid line represents the moving average and the light 377 

shadow represents the standard deviation. b, Comparison of crash rates of the on-policy and off-policy D2RL 378 

approaches, during the training process. c, Comparison of estimated crash rates of the on-policy and off-policy 379 

D2RL approaches, during the testing process. The light shadow represents the 90% confidence level. Crash 380 

rate estimations (d) and relative half-width (e) of the AV-I model by the NDE and the D2RL-based intelligent 381 

testing environment, respectively. The bottom x-axis denotes the number of tests for NDE, and the top x-axis 382 

denotes the number of tests for the intelligent testing environment. f, Frequency of the required number of 383 

tests for repeated testing experiments for the AV-I model. Unweighted crash rate (g) and weighted crash rate 384 

(h) of each crash type in the D2RL-trained testing environment. Weighted distributions of the speed difference 385 

at the crash moment (i), TTC (j), bumper-to-bumper distance (k), and post-encroachment time (l) of the near-386 

miss events. 387 

 388 

Fig. 4. Testing experiments for a real-world autonomous vehicle at physical test tracks. a, Illustration of 389 

the AV under test, equipped with Autoware. RTK, real-time kinematic positioning; IMU, inertial 390 

measurement unit; DSRC, dedicated short-range communications; OBU, on-board unit. b, Illustration of the 391 

ACM highway testing environment. The red line denotes the AV driving route. c, Illustration of the Mcity 392 
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urban testing environment including highways, roundabouts, intersections, etc. The explosion icons denote 393 

the locations of crash events happened during the tests. d, Illustration of the real-time visualization of the 394 

testing process: the leftmost figure illustrates the simulation view, where the virtual BVs (green vehicles) are 395 

generated and controlled by the intelligent testing environment to interact with the AV (red vehicle); the 396 

middle figure illustrates the real-world AV view visualized by Autoware, where the black vehicle is the AV 397 

under test and blue vehicles are augmented BVs; the rightmost figures illustrate the original image view (top) 398 

and augmented image view (bottom) from the AV’s front camera. e-h, Crash rate estimation and the relative 399 

half-width of the real AV at the ACM test track (e and f) and Mcity test track (g and h) with the augmented 400 

reality testing platform. The black dashed line (e and g) represents the final estimation of the crash rate, the 401 

light dashed line (f and h) represents the 0.3 relative half-width threshold, and the light shadow represents the 402 

90% confidence level. i, Crash rates of different crash types of the AV at the Mcity test track. j, Distribution 403 

of the speed difference at the crash moment for crash severity analysis of the AV at the Mcity test track. 404 

Additional explanations regarding the field experiments are provided in Supplementary Videos 3-8. 405 

Table 1. Performance evaluation with different highway simulation environments. The numbers of tests 406 

of the D2RL approach were the average values of multiple testing experiments, similar to Fig. 3f, and the 407 

numbers of tests for the NDE approach were obtained according to the Monte Carlo method1. 408 

 
400 m 2 km 4 km 

25 

km 

2 Lanes 3 Lanes 2 Lanes 3 Lanes 2 Lanes 3 Lanes 
3 

Lanes 

NDE No. of tests 
1.9
× 108 

1.0
× 108 

4.8
× 107 

2.5
× 107 

2.9
× 107 

9.4
× 106 

1.7
× 106 

D2RL 

Episodes 

skipped 
95.70% 91.73% 77.54% 79.85% 61.42% 58.92% 8.83% 

Steps skipped 99.78% 99.70% 99.82% 99.81% 99.79% 99.74% 
99.76

% 

No. of tests 
9.1
× 104 

4.4
× 104 

2.4
× 104 

1.7
× 104 

1.3
× 104 

4.5
× 103 

1.8
× 103 

Acceleration 

ratio 

2.1
× 103 

2.3
× 103 

2.0
× 103 

1.5
× 103 

2.2
× 103 

2.1
× 103 

9.4
× 102 

 409 

 410 

  411 
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 412 

Methods 413 

Description of the AV safety validation problem 414 

This section describes the problem formulation of AV safety performance evaluation. Denote the variables of 415 

the driving environment as 𝒙 = [𝒔(0), 𝒖(0), 𝒖(1), ⋯ , 𝒖(𝑇)], where 𝒔(𝑘) denotes the states (position and 416 

speed) of the AV and BVs at the 𝑘-th time step, 𝒖(𝑘) denotes the maneuvers of BVs at the 𝑘-th time step, 417 

and 𝑇 denotes the total time steps of this testing episode. With Markovian assumptions of BVs’ maneuvers, 418 

the probability of each testing episode in the naturalistic driving environment (NDE) can be calculated as 419 

𝑃(𝒙) = 𝑃(𝒔(0)) × ∏ 𝑃(𝒖(𝑘)|𝒔(𝑘))𝑇
𝑘=0 , and then the AV crash rate can be measured by the Monte Carlo 420 

method31 as 421 

𝑃(𝐴) = 𝔼𝒙∼𝑃(𝒙)[𝑃(𝐴|𝒙)] ≈
1

𝑛
∑ 𝑃(𝐴|𝒙𝑖)

𝑛
𝑖=1 , 𝒙𝑖 ∼ 𝑃(𝒙),    (2) 422 

where 𝐴 denotes the crash event, 𝑛 denotes the total number of testing episodes, and 𝒙𝑖 ∼ 𝑃(𝒙) indicates that 423 

the variables are sampled from the distribution 𝑃(𝒙). Here a crash is defined as a contact that the subject 424 

vehicle (e.g., AV) has with an object, either moving or fixed, at any speed resulting in fatality, injury, or 425 

property damage39. As 𝐴 is a rare event, obtaining a statistically reliable estimation requires a large number 426 

of tests (𝑛), which leads to the severe inefficiency issue of the NDE testing approach, as pointed out in ref.1.  427 

To address this inefficiency issue, the key is to generate an intelligent driving environment, where 428 

BVs can be controlled purposely to test the AV unbiasedly and efficiently. In essence, testing an AV in the 429 

intelligent driving environment is to estimate 𝑃(𝐴) in Eq. (2) by the importance sampling method31 as 430 

𝑃(𝐴) = 𝔼𝒙∼𝑞(𝒙)[𝑃(𝐴|𝒙) × 𝑊𝑞(𝒙)] ≈
1

𝑛
∑ 𝑃(𝐴|𝒙𝑖)

𝑛
𝑖=1 × 𝑊𝑞(𝒙𝒊), 𝒙𝑖 ∼ 𝑞(𝒙),   (3) 431 

where 𝑞(𝒙) denotes the underlying distribution of BVs’ maneuvers in the intelligent testing environment, and 432 

𝑊𝑞(𝒙) is the likelihood of each testing episode as  433 

𝑊𝑞(𝒙) =
𝑃(𝒙)

𝑞(𝒙)
= ∏ [

𝑃(𝒖(𝑘)|𝒔(𝑘))

𝑞(𝒖(𝑘)|𝒔(𝑘))
]𝑇

𝑘=0 .      (4) 434 

According to the importance sampling theory31, the unbiasedness of the estimation in Eq. (3) can be 435 

guaranteed if 𝑞(𝒙) > 0  for any 𝒙  that 𝑃(𝐴|𝒙)𝑃(𝒙) > 0 . To optimize the estimation efficiency, the 436 

importance function 𝑞(𝒙) needs to minimize the estimation variance  437 

𝜎𝑞
2 = 𝔼𝑞(𝑃2(𝐴|𝒙) × 𝑊𝑞

2(𝒙)) − 𝑃2(𝐴).      (5)  438 

Therefore, the generation of the intelligent testing environment is formulated as a sequential Markov 439 

decision process (MDP) problem of BVs’ maneuvers (i.e., determine 𝑞(𝒖(𝑘)|𝒔(𝑘)) ) to minimize the 440 

estimation variance 𝜎𝑞
2 in Eq. (5). However, how to solve such a sequential MDP problem associated with 441 

rare events and high-dimensional variables remains a highly challenging problem, and most existing 442 

importance sampling-based methods suffer from the “curse of dimensionality”40, where the estimation 443 

variance would increase exponentially with the dimensionality. In our previous study14, we discovered that 444 

the “curse of dimensionality” issue could be addressed theoretically by sparse adversarial control to the 445 

naturalistic distribution. However, only a model-based method with handcrafted heuristics was utilized for 446 

conducting the sparse adversarial control, which suffers from significant spatiotemporal limitations, and how 447 

to leverage AI techniques to train the BVs for truly learning the testing intelligence remains unsolved, which 448 

is the focus of this paper. More details of related work can be found in Supplementary Materials (Section 1).  449 

Formulation as a deep reinforcement learning problem 450 

This section describes how to generate the intelligent testing environment as a DRL problem. As mentioned 451 

above, the goal is to minimize the estimation variance in Eq. (5) by training a policy 𝜋 modeled by a neural 452 

network 𝜃 that can control BVs’ maneuvers with the underlying distribution 𝑞𝜋(𝒖|𝒔). To keep the notation 453 
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simple, we leave it implicit in all cases that 𝜋 is a function of 𝜃. An MDP usually consists of four key 454 

elements: state, action, state transition, and reward. In this study, states encode information (position and 455 

speed) about the AV and surrounding BVs, actions include 31 discrete longitudinal accelerations ([-4, 2] with 456 

0.2 m s-2 discrete resolution), left lane change, and right lane change, and state transitions define the 457 

probability distribution over next states that are also dependent on the AV maneuver. Here we assumed that 458 

a lane change maneuver of BVs would be initiated from its current position and completed in one second if a 459 

lane change action was decided. Our framework is also applicable to more realistic and complex action 460 

settings. 461 

For the corner case generation case study, we studied a three-lane highway driving environment, where 462 

eight critical BVs (i.e., principal other vehicles or POVs) are controlled to interact with the AV for a certain 463 

distance (400m) and each BV has the 33 discrete actions at every 0.1 second. For the intelligent testing 464 

environment generation case study, to keep the runtime of the DRL small, we simplified the output of the 465 

neural network as the adversarial maneuver probability (𝜀𝜋 ∈ (0,1)) of the most critical POV, while POV’s 466 

other maneuvers are normalized by 1 − 𝜀𝜋 according to the naturalistic distribution and other BVs’ maneuvers 467 

keep following the naturalistic distribution. The adversarial maneuver and POV are determined by the 468 

criticality measure. We note that the generalization of this work to multiple POVs is straightforward.  469 

The reward function design is critical for the DRL problem41. As the goal of the intelligent testing 470 

environment is to minimize the estimation variance in Eq. (5), we derived the objective function of the DRL 471 

problem as 472 

min
𝑞

𝜎𝑞
2 = max

𝜋
{−𝔼𝑞𝜋𝑏

(𝕀𝐴(𝒙) × 𝑊𝑞𝜋
(𝒙) × 𝑊𝑞𝜋𝑏

(𝒙))},   (6) 473 

where 𝕀𝐴 is the indicator function of the crash event and 𝜋𝑏 denotes the behavior policy of the DRL. During 474 

the training process, the training data is collected by the behavior policy, which is a Monte Carlo estimation 475 

of the expectation in Eq. (6), so we can obtain the reward function as 476 

𝑟(𝒙) = −𝕀𝐴(𝒙) ∙ 𝑊𝑞𝜋
(𝒙) ∙ 𝑊𝑞𝜋𝑏

(𝒙),     (7) 477 

which is theoretically consistent with the objective function. As it is mainly based on the importance sampling 478 

theory, the reward function is also applicable to other rare event estimation problems with high-dimensional 479 

variables. To limit the scale of the error derivatives42, we rescaled and clipped the function, resulting in the 480 

reward function that belongs to [−100,100], where the scaling constants could be automatically determined 481 

during the learning process.  482 

 483 

With the state, action, state transition, and reward function, the intelligent testing generation problem 484 

becomes a DRL problem. However, as the gradient estimation of neural networks would suffer from the large 485 

variance due to the rareness of informative data, applying learning-based techniques for safety-critical systems 486 

is highly challenging because of the “curse of rarity”. It is hard—or even empirically infeasible—to learn an 487 

effective policy if directly applying DRL approaches. 488 

Dense Deep Reinforcement Learning (D2RL) 489 

To address this challenge, we propose the D2RL approach in this paper. Specifically, according to the policy 490 

gradient theorem27, the policy gradient of the objective function for DRL approaches can be estimated as 491 

∇𝐽(𝜃)̂ = 𝑞̂𝜋(𝑆𝑡, 𝐴𝑡)
∇𝜋(𝐴𝑡|𝑆𝑡, 𝜃)

𝜋(𝐴𝑡|𝑆𝑡, 𝜃)
,     (8) 492 

where 𝜃 denotes the parameters of the policy, 𝑞𝜋(𝑆𝑡, 𝐴𝑡) denotes the state-action value, 𝑆𝑡 and 𝐴𝑡 are samples 493 

of the state and action under the policy, 𝑞̂𝜋(𝑆𝑡, 𝐴𝑡)  is an unbiased estimation of 𝑞𝜋(𝑆𝑡, 𝐴𝑡) , i.e., 494 

𝔼𝜋[𝑞̂𝜋(𝑆𝑡, 𝐴𝑡)] = 𝑞𝜋(𝑆𝑡, 𝐴𝑡). Differently, for the D2RL approach, we propose to estimate the policy gradient 495 

as  496 

∇𝑑𝑒𝑛𝑠𝑒𝐽(𝜃)̂ = 𝑞̂𝜋(𝑆𝑡, 𝐴𝑡)
∇𝜋(𝐴𝑡|𝑆𝑡, 𝜃)

𝜋(𝐴𝑡|𝑆𝑡, 𝜃)
𝕀𝑆𝑡∈𝕊𝑐

,    (9) 497 
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where 𝕊𝑐 denotes the set of critical states and 𝕀𝑆𝑡∈𝕊𝑐
 denotes the indicator function.  498 

Here, a state is defined as an uncritical state if 𝑣𝜋(𝑠) = 𝑞𝜋(𝑠, 𝑎), ∀𝑎, where 𝑣𝜋(𝑠) ≝ 𝔼𝜋(𝑞𝜋(𝑠, 𝑎)) 499 

denotes the state value, so the set of critical states can be defined as 𝕊𝑐 ≝ {𝑠|𝑣𝜋(𝑠) ≠ 𝑞𝜋(𝑠, 𝑎), ∃𝑎}. It 500 

indicates that a state is defined as uncritical if any action (e.g., BVs’ maneuvers) from the current state will 501 

not affect the expected value of the state (e.g., AV’s crash probability within a specific time horizon from the 502 

current state). We note that this definition is primarily for the theoretical analysis to be clean and is not strictly 503 

required to run the algorithm in practice. For example, a state can be practically identified as uncritical if the 504 

current action will not significantly affect the expected value of the state. For specific applications, the critical 505 

states can be approximately identified based on domain-specific models or physics. For example, the 506 

criticality measure12,13, which is an outer approximation of the AV crash rate within a specific time horizon 507 

(e.g., 1 second), is utilized in this study to demonstrate the approach for the AV testing problem. We note that 508 

many other safety metrics26 could also be applicable, such as the model predictive instantaneous safety 509 

metric43 developed by the National Highway Traffic Administration in the United States and the criticality 510 

metric44 developed by the PEGASUS project in Germany, as long as the identified set of states covers the 511 

critical states. More theoretical analysis for a more general sense can be found in Supplementary Materials 512 

(Section 2a).  513 

Then, we have the following theorem, and the proof can be found in the Supplementary Materials: 514 

 515 

Theorem 1: 516 

The policy gradient estimator of D2RL has the following properties: 517 

(1) 𝔼𝜋[∇𝑑𝑒𝑛𝑠𝑒𝐽(𝜃)̂ ] = 𝔼𝜋[∇𝐽(𝜃)̂]; 518 

(2) 𝑉𝑎𝑟𝜋[∇𝑑𝑒𝑛𝑠𝑒𝐽(𝜃)̂ ] ≤ 𝑉𝑎𝑟𝜋[∇𝐽(𝜃)̂]; and 519 

(3) 𝑉𝑎𝑟𝜋[∇𝑑𝑒𝑛𝑠𝑒𝐽(𝜃)̂ ] ≤ 𝜌𝜋𝑉𝑎𝑟𝜋[∇𝐽(𝜃)̂], with the assumption  520 

𝔼𝜋[𝜎𝜋
2(𝑆𝑡, 𝐴𝑡) ∙ 𝕀𝑆𝑡∈𝕊𝑐

] = 𝔼𝜋[𝜎𝜋
2(𝑆𝑡, 𝐴𝑡)] ∙ 𝔼𝜋[𝕀𝑆𝑡∈𝕊𝑐

],   (10) 521 

where 𝜌𝜋 ≝ 𝔼𝜋(𝕀𝑆𝑡∈𝕊𝑐
) ∈ [0,1] is the proportion of critical states in all states under the policy 𝜋 (e.g., 1 − 𝜌𝜋 522 

denotes the proportion of steps skipped in Fig. 2b and Table 1), and 𝜎𝜋
2(𝑆𝑡, 𝐴𝑡) = (𝑞̂𝜋(𝑆𝑡, 𝐴𝑡)

∇𝜋(𝐴𝑡|𝑆𝑡, 𝜃)

𝜋(𝐴𝑡|𝑆𝑡, 𝜃)
)

2

. 523 

 524 

Theorem 1 proves that the D2RL approach has an unbiased and efficient estimation of the policy 525 

gradient compared with the DRL approach. To quantify the variance reduction of dense learning, we introduce 526 

the assumption in Eq. (10), which assumes that 𝜎𝜋
2(𝑆𝑡, 𝐴𝑡) is independent on the indicator function 𝕀𝑆𝑡∈𝕊𝑐

. As 527 

both the policy and the state-action values are randomly initialized, the values of 𝜎𝜋
2(𝑆𝑡, 𝐴𝑡) are quite similar 528 

for all different states, so the assumption is valid at the early stage of the training process. Such significant 529 

variance reduction will enable the D2RL approach to optimize the neural network, while the DRL approach 530 

would be stuck at the beginning of the training process.  531 

We then consider the influence of dense learning on estimating 𝑞̂𝜋(𝑆𝑡, 𝐴𝑡) with bootstrapping, which 532 

can guide the information propagation in the state-action space. For example, the fixed-length advantage 533 

estimator (𝐴̂𝑡) is commonly used for the PPO algorithm30 as  534 

𝐴̂𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 + ⋯ + (𝛾𝜆)𝐿−𝑡+1𝛿𝐿−1,     (11) 535 

where 𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡), 𝑉(𝑠𝑡) is the state-value function, and 𝐿 denotes the fixed length. For 536 

safety-critical applications, the immediate reward is usually zero (i.e., 𝑟𝑡 = 0), and most state-value functions 537 

are determined by initial random values without any valuable information because of the rarity of events. 538 

Bootstrapping with such noisy state-value functions will not be effective in the learning process. By editing 539 

the Markov chain, only the critical states will be considered. Then, the advantage estimator will be essentially 540 

modified as  541 
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𝐴̄𝑡 = 𝛿𝑧(𝑡,0) + (𝛾𝜆)𝛿𝑧(𝑡,1) + ⋯ + (𝛾𝜆)𝐿−𝑡+1𝛿𝑧(𝑡,𝐿−1),   (12) 542 

where 𝛿𝑧(𝑡,𝑗) = 𝑟𝑧(𝑡,𝑗) + 𝛾𝑉(𝑠𝑧(𝑡,𝑗+1)) − 𝑉(𝑠𝑧(𝑡,𝑗)) , 𝑧(𝑡, 0) = 𝑡,  and 𝑧(𝑡, 𝑗) = 𝑚𝑖𝑛
𝑖

{𝑠𝑖 ∈ 𝕊𝑐|𝑖 > 𝑧(𝑡, 𝑗 −543 

1)}, 𝑗 > 0. In essence, it is a state-dependent temporal-difference (TD) learning, where only the values of 544 

critical states are utilized for bootstrapping. As the critical states have much higher probabilities leading to 545 

safety-critical events, the reward information can be propagated to these critical state values more easily. 546 

Utilizing the values of these critical states, the bootstrapping can guide the information from the safety-critical 547 

events to the state-action space more efficiently. This mechanism can help avoid the interference of the large 548 

number of noisy data and focus the policy on learning the sparse but valuable information. Because of the 549 

abovementioned variance reductions regarding the policy gradient estimation and bootstrapping, the D2RL 550 

approach significantly improves the learning effectiveness compared with the DRL approach, enabling the 551 

neural network to learn from the safety-critical events.  552 

Densifying the information is a natural way to overcome the challenges caused by the rarity of events. 553 

In the field of deep neural networks, connecting different layers of neural networks more densely has been 554 

demonstrated to produce better training efficiency and efficacy, i.e., DenseNet45. Instead of connecting layers 555 

of neural networks, our approach densifies the information by connecting states more densely with safety-556 

critical states, besides the natural connections provided by the state transitions. As safety-critical states have 557 

more connections with rare events, they contain more valuable information with less variance. By densifying 558 

the connections between safety-critical states with other states, we can better propagate the valuable 559 

information to the entire state space, which can significantly facilitate the learning process. This study 560 

proposed and demonstrated one specific realization of the dense learning approach by approximately 561 

identifying uncritical states and connecting the remaining states directly. This can be further improved by 562 

more flexible and dense connections among safety-critical states and uncritical states. The connections can 563 

even be added in the form of curriculum learning46, which can guide the information propagation gradually. 564 

The measures for identifying critical states can also be further improved by involving more advanced 565 

modeling techniques.    566 

 567 

Off-policy learning mechanism 568 

We justify the off-policy learning mechanism in this section. The goal of the behavior policy 𝜋𝑏 is to collect 569 

training data for improving the target policy 𝜋 that can maximize the objective function in Eq. (6). To achieve 570 

this goal, it is critical to estimate the objective function accurately using the reward function in Eq. (7), which 571 

determines the calculation of the policy gradient. However, only episodes with crashes have nonzero rewards, 572 

so the objective function estimation suffers from a large variance, because of the rarity of crashes. Without an 573 

accurate estimation of the objective function, the training could be misled. According to the importance 574 

sampling theory, we have the following theorem, and the proof can be found in the Supplementary Materials: 575 

 576 

Theorem 2: 577 

The optimal behavior policy 𝜋𝑏
∗  that can minimize the estimation variance of the objective function has the 578 

following property: 579 

𝑞𝜋𝑏
∗ (𝒙) ∝

𝑞𝜋∗
2 (𝒙)

𝑞𝜋(𝒙)
,      (14) 580 

where 𝑞𝜋∗(𝒙) denotes the optimal importance sampling function that is unchanged during the training process, 581 

and the symbol ∝ means “proportional to”.  582 

 583 

Theorem 2 finds that the optimal behavior policy is nearly inversely proportional to the target policy, 584 

particularly at the beginning of the training process when 𝑞𝜋  is far from 𝑞𝜋∗ . If using on-policy learning 585 

mechanisms (𝑞𝜋𝑏
= 𝑞𝜋), the behavior policy would be far from optimality, which could mislead the training 586 
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process and eventually cause the underestimation issues. For example, if a target policy misses an action that 587 

could lead to a likely crash, an on-policy learning mechanism will never find this missing crash. More 588 

importantly, the on-policy mechanism could mislead the policy for purposely hiding the crashes that are 589 

difficult to evaluate, leading to the severe underestimation issue of the safety performance evaluation.  590 

We design an off-policy learning mechanism to address this issue, where a generic behavior policy is 591 

designed and kept unchanged during the training process. Specifically, we determined a constant probability 592 

of the adversarial maneuver of the POV (i.e., 𝜀𝜋𝑏
= 0.01) and conducted other maneuvers with the total 593 

probability of 0.99 that were normalized according to the naturalistic distribution. This policy explores the 594 

state-action space using the naturalistic distribution most of the time and exploits the information of the model-595 

based criticality measure that helps identify the POV and adversarial maneuver. We note that although the 596 

optimal behavior policy needs to be adaptively determined based on the target policy, as indicated in Theorem 597 

2, an off-policy learning mechanism can provide a sufficiently good foundation for effective learning in this 598 

study. The behavior policy is also not sensitive to the constant of 𝜀𝜋𝑏
, and generally, a small value (e.g., 0.1, 599 

0.05, 0.01, etc.) that balances the exploration and exploitation would be effective in this study. Further 600 

improvement can be investigated in the future.   601 

Simulation settings 602 

Naturalistic driving environment simulator. To simulate naturalistic driving environment, we developed a 603 

simulation platform based on an open-source traffic simulator SUMO. The scheme of the platform can be 604 

found in Supplementary Materials. We utilized both the C++ and TRACI interfaces to refine the SUMO 605 

simulator so that high-fidelity driving environments can be integrated. Specifically, we rewrote and 606 

recompiled the C++ codes of SUMO to integrate the high-fidelity driving environments, including car-607 

following and lane-changing behavior models. Then, we utilized the TRACI interface to implement the 608 

intelligent testing environment, where at selected moments, selected vehicles would execute specific 609 

adversarial maneuvers with a learned probability, following the policy obtained by the D2RL approach. We 610 

also synchronized the modified SUMO with the physical test tracks related to the information of BVs, 611 

autonomous vehicles, traffic signals, high-definition maps, etc., through the TRACI interface. To provide a 612 

training environment for intelligent testing environments, we constructed a multi-lane highway driving 613 

environment and an urban driving environment, where all vehicles were controlled at 100 millisecond 614 

intervals. 615 

Driving behavior models in the naturalistic driving environment simulator. The default driving behavior 616 

models of SUMO, which are simple and deterministic, cannot be utilized for safety testing and training of 617 

AVs because they are designed to be crash-free models. To address this issue, in this study, we constructed 618 

NDE models47 to provide naturalistic behaviors of BVs according to the large-scale naturalistic driving 619 

datasets (NDD) from the Safety Pilot Model Deployment program48 and the Integrated Vehicle-Based Safety 620 

System program49 at the University of Michigan, Ann Arbor. At each step of simulation, the NDE models can 621 

provide distributions of each BV’s maneuvers, which are consistent with NDD. Then, by sampling maneuvers 622 

from the distributions, a testing environment that can evaluate the real-world safety performance can be 623 

generated. For the field testing at ACM and Mcity, although the intelligent testing environment can accelerate 624 

the AV testing from about 107 loops of testing to only around 104 loops (see Table 1), this still represents a 625 

significant level of effort for an academic research group. To demonstrate our approach in a more efficient 626 

way, we simplified the NDE models to demonstrate our method more conveniently. Specifically, we modified 627 

the intelligent driving model (IDM)50 and the MOBIL (Minimizing Overall Braking Induced by Lane change) 628 

model51 as stochastic models to construct the simplified NDE models. More details of the NDE models can 629 

be found in the Supplementary Materials.  630 

D2RL architecture, implementation, and training. The D2RL algorithm can be easily plugged into existing 631 

DRL algorithms by defining a specific environment with the dense learning approach. Specifically, for 632 
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existing DRL algorithms, the environment receives the decision from the DRL agent, executes the decision, 633 

and then collects observations and rewards at each time step, while for the D2RL algorithm, the environment 634 

only collects the observations and rewards for the critical states, as illustrated in Supplementary Materials 635 

(Section 3e). In this way, we can quickly implement the D2RL algorithm utilizing existing DRL platforms. 636 

In this study, we utilized the PPO algorithm implemented at the RLLib 1.2.0 platform52, which was parallelly 637 

trained on 500 CPU cores and 3500 GB memory high-performance computation cluster at the University of 638 

Michigan, Ann Arbor. We designed a 3-layer fully connected neural network with 256 neurons in each layer 639 

and chose the 10−4 learning rate and 1.0 discount factor besides the default parameters. Each CPU collected 640 

120 timesteps of training data for all experiment settings in each training iteration, so a total of 60,000 641 

timesteps were collected in each training iteration. For the corner case generation, the neural network’s output 642 

is the actions of the closest eight BVs, where each BV has the 33 discrete action space: left lane change, 31 643 

discrete longitudinal accelerations ([-4, 2] with 0.2 m s-2 discrete resolution), and right lane change. For the 644 

intelligent testing environment generation, the neural network’s output is the adversarial maneuver probability 645 

(𝜀𝜋) of the POV, where the action space is 𝜀𝜋 ∈ [0.001, 0.999]. To further improve the data efficiency during 646 

the training process, we used the collected data with a resampling mechanism to train the neural network for 647 

multiple steps.  648 

 649 

Field test settings 650 

Augmented reality testing platform. We implemented the augmented reality testing platform at American 651 

Center for Mobility (ACM), one of the world’s premier test tracks for AVs located in Ypsilanti, Michigan, 652 

and the Mcity test track, which is the world’s first purpose-built test track for AV testing. In this study, we 653 

utilized the 4km highway loop featuring two-three lanes and both exit and entrance ramps to create various 654 

merging opportunities, as well as the Mcity urban driving environment, including various types of highways, 655 

roundabouts, urban streets, etc., as shown in Supplementary Materials (Section 3f). We constructed digital 656 

twins of the ACM and Mcity based on the naturalistic driving environment simulator and available high-657 

definition maps. To synchronize the information between the simulation and physical test track, we utilized 658 

the dedicated short-range communications (DSRC) roadside units (RSUs) that were installed in the test tracks. 659 

These DSRC-based devices can communicate with AVs via 802.11p and SAE J2735 protocols through the 660 

immediate forward messaging (IMF) and forwarding functions. Specifically, we utilized the IMF function to 661 

broadcast proxy Basic Safety Message (BSMs) containing virtual BVs’ identifier, latitude, longitude, altitude, 662 

etc., to the physical AV, and the forwarding function to forward incoming BSMs of the AV to the digital 663 

twins. After receiving the BSMs of the AV, we synchronized the AV states in the simulation world, where 664 

BVs were controlled by the intelligent testing environment. More details of the platform can be found in ref.24. 665 

We implemented the system with an average 33ms communication delay, which is acceptable for AV testing 666 

and can be further improved with advanced wireless communication techniques. 667 

Augmented image rendering. We use augmented reality techniques to render and blend virtual objects (e.g., 668 

vehicles) onto the camera view of the ego vehicle. Given a background 3D model with its 6DoF pose/location 669 

in the world coordinate, we perform a two-stage transformation to project the model to the onboard camera 670 

image: 1) from the world coordinate to the ego-vehicle coordinate, and 2) from the ego-vehicle coordinate to 671 

the onboard camera coordinate. In the first transformation, the ego vehicle pose and location are obtained 672 

from the real-time signal of the onboard high-precision RTK. In the second transformation, the projection is 673 

based on the pre-calibrated camera intrinsic and extrinsic. We also perform relighting on the rendered layer 674 

to harmonize the visual quality of the blending result. The augmented view is generated based on a linear 675 

blending with the rendered foreground layer, camera's background layer, and the rendered alpha matte. On 676 

top of the blending result, a weather-control layer is further added to simulate different weather conditions, 677 

e.g., rain, snow, and fog. We implemented the augmented rendering based on pyrender53. An additional 678 

validation of the augmented image rendering can be found in Supplementary Materials (Section 4f).  679 



                                               Page 17 of 19 

 

Autonomous vehicle under test. As the AV under test, we used a retrofitted Lincoln MKZ from the Mcity 680 

Test Facility at the University of Michigan, Ann Arbor. The vehicle was equipped with multiple sensors, 681 

computing resources (2 Nexcom Lumina), and with drive-by-wire capabilities provided by Dataspeed Inc. 682 

Specifically, the sensors include PointGrey camera, Velodyne 32 channel LiDAR, Delphi radars, OTXS 683 

RT3003 RTK GPS, Xsens MTi GPS/IMU, etc. We implemented the vehicle with a ROS-based open-source 684 

software, Autoware.AI23, which provides full-stack software for the highly automated driving functions, 685 

including localization, perception, planning, control, etc. We then integrated the AV with the AR testing 686 

platform to evaluate the AV’s safety performance. An illustration of the system framework can be found in 687 

Supplementary Materials. Specifically, we modified the AV localization component to utilize the high-688 

definition map and high-accuracy RTK for obtaining the current pose and velocity. The surrounding vehicles’ 689 

BSMs were directly obtained from the simulation through wireless communications. To generate the AV’s 690 

future trajectory, we applied the OpenPlanner 1.1354 as the decision module, an advanced planning algorithm 691 

including global and local path planning. We applied the pure pursuit algorithm to convert the planned 692 

trajectory into the velocity and yaw rate and then used a PID controller provided by Dataspeed Inc. to further 693 

convert them into the vehicle by-wire control commands, i.e., steering angle, throttle, and brake percentages.  694 

 695 

Data availability 696 

The raw datasets that we used for modeling the naturalistic driving environment come from the Safety Pilot 

Model Deployment (SPMD) program48 and the Integrated Vehicle Based Safety System (IVBSS)49 at the 

University of Michigan, Ann Arbor. The ShapeNet Dataset that includes the 3D model assets for the image 

augmented reality module can be found in https://github.com/mmatl/pyrender. The police crash reports used 

in Supplementary Video 7 are available at https://www.michigantrafficcrashfacts.org/. The processed data for 

constructing NDE models and the intelligent testing environment and the experiment results that support the 

findings of this study are available at https://github.com/michigan-traffic-lab/Dense-Deep-Reinforcement-

Learning. 

 697 

Code availability 698 

The simulation software SUMO, the automated driving system Autoware, and the RLLib platform with the 

implemented PPO algorithm are publicly available, as described in the text and the relevant references23,25,52. 

The source codes for the naturalistic driving environment simulator, the driving behavior models in the 

simulator, the D2RL-based intelligent testing environment, as well as the simulation setups are available at 

https://github.com/michigan-traffic-lab/Dense-Deep-Reinforcement-Learning.  
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