03 N L AW~

A DN BN D DN S P P W W W W W W W W W WDN DN DN DD DNDDNDDNDDNDDNDDND P = e = e e e e
~N N R WD R, OO0 0NN R WD = O V0 0NN R WD RO VO 0NN R WD~ OO

Title
Dense reinforcement learning for safety validation of autonomous vehicles

Authors

Shuo Feng!?*, Haowei Sun', Xintao Yan'!, Haojie Zhu', Zhengxia Zou'®, Shengyin Shen?, Henry X. Liu®%3"
Affiliations

"Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, USA
*University of Michigan Transportation Research Institute, Ann Arbor, MI, USA

3Mcity, University of Michigan, Ann Arbor, MI, USA

“Present address: Department of Automation, Tsinghua University, Beijing, China

SPresent address: School of Astronautics, Beihang University, Beijing, China

*Corresponding Author, henryliu@umich.edu

Abstract

One critical bottleneck that impedes autonomous vehicle (AV) development and deployment is the
prohibitively high economic and time costs required to validate its safety in a naturalistic driving environment,
due to the rarity of safety-critical events'. Here we develop an intelligent testing environment in that artificial
intelligence-based background agents are trained to test AVs in an accelerated mode, without loss of
unbiasedness. From naturalistic driving data, the background agents learn when to execute what adversarial
maneuver through a newly developed dense deep reinforcement learning (D2RL) approach, in which Markov
decision processes are edited by removing non-safety-critical states and reconnecting critical ones so that the
information in the training data is densified. D2RL enables neural networks to learn from densified
information with safety-critical events and achieves tasks that are intractable for the traditional deep
reinforcement learning approach. We demonstrate the effectiveness of our approach by testing a highly
automated vehicle in both highway and urban test tracks with an augmented reality environment, combining
simulated background vehicles with physical road infrastructure and a real AV under test. Our results show
that the D2RL-trained agents can accelerate the evaluation process by multiple orders of magnitude (103 to
10° times faster). D2RL also opens the door for accelerated testing and training with other safety-critical
autonomous systems.

Introduction

Driven by the rapid development of autonomous vehicle (AV) technologies, we are on the cusp of a new
revolution in transportation on a scale not seen since the introduction of automobiles a century ago. AV
technologies have the potential to significantly improve transportation safety, mobility, and sustainability,
thus attracting worldwide attention from industries, government agencies, professional organizations, and
academic institutions. Over the past 20 years, significant progress has been made on the development of AVs,
particularly with the emergence of deep learning®. By 2015, several companies had announced that they would
be mass producing AVs before 2020, So far, the reality has not lived up to these expectations, and no level
4 (ref.®) AVs are commercially available. The reasons for this are numerous. But above all, the safety
performance of AVs is still significantly below that of human drivers. For average drivers in the United States,
the occurrence probability of a crash is around 1.9 X 107° per mile in the naturalistic driving environment
(NDE)'. In contrast, the disengagement rate for the state-of-the-art AV is around 2.0 X 10™5 per mile,
according to the 2021 Disengagement Report from California’. Although the disengagement rate is criticized
for its potential biasedness, it has been widely used to track the trend of AV safety performance®’, as it is
arguably the only statistics where the results of different AVs are available to the public.

Page 1 of 19


mailto:henryliu@umich.edu

48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

92

One critical bottleneck to improving AV safety performance is the severe inefficiency of safety validation.
Prevailing approaches usually test AVs in the NDE through a combination of software simulation, closed test
track, and on-road testing. However, to validate the safety performance of AVs at the level of human drivers,
it is well-known that hundreds of millions of miles and sometimes hundreds of billions of miles would be
required to test in the NDE'. Due to this severe inefficiency, AV developers must pay significant economic
and time costs to evaluate each new development, which has severely hindered the progress of AV deployment.
To improve the testing efficiency, many approaches test AVs in purposely generated scenarios that are more
safety critical'®!!. Yet, existing scenario-based approaches'?!” can mainly be applied to short scenario
segments with limited background road users (see Supplementary Materials for more discussions).

Validating the safety performance of AVs in NDE is in essence a rare-event estimation problem in a high-
dimensional space. The main challenge is caused by the compounding effects of the “curse of rarity” in
addition to the “curse of dimensionality” (Fig. 1a). By “curse of dimensionality,” we mean that driving
environments could be spatiotemporally complex, and the variables needed to define such environments are
high dimensional. As the volume of the variable space grows exponentially with dimensionality, the
computational complexity also grows exponentially'®. By “curse of rarity,” we mean that the occurrence
probability for safety-critical events is rare, i.e., most points of the variable space are non-safety-critical, which
provide no or noisy information for training. Under this circumstance, it is hard for a deep learning model to
learn even given a large amount of data, as the precious information (e.g., policy gradient) of safety-critical
events could be buried under the large amount of non-safety-critical data. The past decades have witnessed
rapid progress in the ability of artificial intelligence (AI) systems to solve problems with the “curse of
dimensionality”!?, for example, the board game Go has a state space of 103¢° (ref.?°) and the semiconductor
chip design may have a state space on the order of 10%°°° (ref.?!). Prior to this work, however, solving the
“curse of dimensionality” and the “curse of rarity” simultaneously has remained an open question, which has
impeded the applicability of Al techniques in safety-critical systems, such as AVs, medical robots, and
aerospace systems>?.

We address this challenge by developing the dense deep reinforcement learning (D2RL) approach. The basic
idea is to i1dentify and remove the non-safety-critical data and train neural networks utilizing only the safety-
critical data. As only a very small portion of data is safety-critical, the information of the remaining data will
be significantly densified. Essentially, the D2RL approach edits the Markov decision process by removing
the uncritical states and reconnecting the critical states, and then trains neural networks only for the edited
Markov process (Fig. 1b). Therefore, for any training episode, the reward from the end state is backpropagated
along the edited Markov Chain with critical states only (Fig. 1¢). The D2RL approach can dramatically reduce
the variance of the policy gradient estimation with multiple orders of magnitude without loss of unbiasedness,
compared with the DRL approach, as proved in Theorem 1 in Methods. Such significant variance reduction
can enable neural networks to learn and achieve tasks that are intractable for the DRL approach. For AV
testing, we leverage the D2RL approach and train the background vehicles (BVs) through a neural network
to learn when to execute what adversarial maneuver, which aims to improve the testing efficiency and ensure
evaluation unbiasedness. This results in an Al-based adversarial testing environment that can reduce the
required testing miles of AVs by multiple orders of magnitude while ensuring the testing unbiasedness. Our
approach can be applied to complex driving environments including multiple highways, intersections, and
roundabouts, which cannot be achieved by prior scenario-based approaches. The proposed approach
empowers the testing agents in the environment with intelligence to create an intelligent testing environment,
1.e., using Al to validate Al. This is a paradigm shift and it opens the door for accelerated testing and training
with other safety-critical systems.
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To demonstrate the effectiveness of our Al-based testing approach, we trained the BVs with large-scale
naturalistic driving datasets and conducted simulation experiments as well as field experiments in physical
test tracks. Specifically, we tested a level 4 AV with an open-source automated driving system, Autoware*’,
in the physical 4-km-long highway test track at the American Center for Mobility (ACM) and the urban test
track at Mcity. To test the AV with the D2RL-trained testing environment safely and precisely, we developed
an augmented reality testing platform?*, which combines the physical test track and a microscopic traffic
simulator, SUMO?’. As shown in Fig. 1d, by synchronizing the movements of the real AV and virtual BVs,
the real AV in the physical test track can interact with the virtual BVs as if it is in a realistic traffic
environment, where the BVs are directed to interact with the real AV. For both simulation and field
experiments, we evaluated not only crash rates, but also crash types and crash severities. Our simulation and
field-testing results show that the D2RL approach can effectively learn the intelligent testing environment,
which can significantly accelerate the evaluation process of AVs by multiple orders of magnitude (103 to 10°
times faster) unbiasedly, compared with the results from testing AVs directly in NDE.

Results

Dense deep reinforcement learning (D2RL)

To leverage Al techniques, we formulate the AV testing problem as a sequential Markov decision process
(MDP), where maneuvers of BVs are decided based on the current state information. We aim to train a policy
(a DRL agent) modeled by a neural network, which can control the maneuvers of BVs to interact with the
AV, to maximize the evaluation efficiency and ensure unbiasedness. However, as mentioned earlier, it is
hard—or even empirically infeasible—to learn an effective policy if directly applying DRL approaches
because of the “curse of dimensionality” and the “curse of rarity.”

We address this challenge by developing the D2RL approach. Due to the rarity of safety-critical events, most
states are uncritical and cannot provide information for safety-critical events, so the key concept of D2RL is
to remove the data of these uncritical states and only utilize the informative data for training the neural network
(Fig. 1b and 1c). For AV testing problems, many safety metrics*® can be utilized to identify the critical states
with different efficiency and effectiveness. In this study, we utilize the criticality measure'*'*, which is an
outer approximation of the AV crash rate within a specific time horizon (e.g., one second) from the current
state. Theoretical analysis for more generic problems can be found in Methods and Supplementary Materials
(Section 2a). We then edit the Markov process, discard the data of uncritical states, and use the remaining
data for the policy gradient estimation and bootstrapping of the DRL training. We discover that dense learning
can dramatically reduce the variance of the policy gradient estimation with multiple orders of magnitude
without loss of estimation unbiasedness, as proved in Theorem 1 in Methods. The dense learning can also
reduce the bootstrapping variance, as it can be regarded as a state-dependent temporal-difference learning®’,
where only critical states are utilized and others are skipped.

To demonstrate the effectiveness of dense learning, we compared D2RLwith the DRL approach for a corner
case generation problem®®%, which can be formulated as a well-defined reinforcement learning problem. A
neural network was trained to maximize the AV’s crash rate by controlling the closest eight BVs’ actions
(Fig. 2a). We used proximal policy optimization (PPO)*’ to update the parameters of the policy network, given
the reward for each testing episode, i.e., +20 for an AV crash and 0 for others. For a fair comparison, the only
difference between DRL and D2RL is that DRL utilized all the data for training the neural network, while
D2RL only utilized the data of critical states. As shown in Fig. 2b, D2RL removed the data of 80.5% complete
episodes and 99.3% steps from uncritical states, compared with DRL. According to Theorem 1, this indicates
that D2RL can reduce around 99.3% of the policy gradient estimation variance, which enables the neural
network to learn effectively. Specifically, the D2RL can maximize the reward during the training process,
while the DRL was stuck from the beginning of the training process (Fig. 2c). The policy learned by D2RL
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can effectively increase the crash rate of the AV, while DRL failed to do so (Fig. 2d). Figure 2e-g illustrate
three generated corner cases.

Learning the intelligent testing environment

Learning the intelligent testing environment for unbiased and efficient AV evaluation is much more complex
than corner case generation. According to the importance sampling theory’!, the goal is essentially to learn
new sampling distributions, i.e., importance function, of BVs’ maneuvers to replace their naturalistic ones,
with the aim of minimizing the estimation variance of AV testing. Intuitively, the BVs are trained to learn
when to execute what adversarial maneuver, in that all BVs follow naturalistic behaviors, only selected
vehicles at selected moments execute specifically designed adversarial moves with a learned probability. To
achieve this goal, without using any heuristics or handcrafted functions, we derive the reward function from
the estimation variance as

r(x) = —1y(x) - W, (%) - W, (x), (1)

where x denotes the variables of each testing episode, I4(x) is an indicator function of the AV crash, and
W, (x) = P(x)/qr(x) and anb (x) = P(x)/qx,(x) are weights (or likelihoods) produced by importance

sampling. Here, P(x) denotes the naturalistic distribution, q,(x) denotes the importance function with the
target policy 7, and g, (x) denotes the importance function with the behavior policy 7;,. As there is no
heuristic or handcrafted immediate reward function, the reward function in Eq. (1) is highly consistent with
the testing performance, i.e., a higher reward indicates a more efficient testing environment. Such reward
design is generic and applicable to other rare event estimation problems with high-dimensional variables.

To determine the learning mechanism, we further investigate the relationship between the behavior policy
and target policy 7. As proved in Theorem 2 in Methods, we discover that the optimal behavior policy mj, that
collects data during the training process is nearly inversely proportional to the target policy. It indicates that,
if using on-policy learning mechanisms (q,, = qy), the behavior policy would be far from optimality, which
could mislead the training process and eventually cause the underestimation issues. To address this issue, we
design an off-policy learning mechanism, where a generic behavior policy is designed and kept unchanged
during the training process. Although this off-policy mechanism is not the optimal behavior policy as in
Theorem 2 (which is usually unavailable in practice), it can balance the exploration and exploitation and is
empirically effective for all experiment settings in this study. With the reward function and off-policy learning
mechanism, we can learn the intelligent testing environment by the D2RL approach (see Methods for training
details).

AV testing in simulation

We evaluated the effectiveness of D2RL-based intelligent testing environment regarding accuracy, efficiency,
scalability, and generalizability by systematic simulation analysis. To measure the safety performance of AVs,
crash rates of different crash types and severities in NDE are utilized as the benchmark. As NDE is generated
completely based on naturalistic driving data, testing results in NDE can represent the safety performance of
AVs in the real world. For each test episode, we simulated AV driving in traffic for a fixed distance, and then
the test results were recorded and analyzed. To investigate the scalability and generalizability, we conducted
simulation experiments with different road geometries, different driving distances, and two different types of
AV models (i.e., the AV-I and AV-II models; see Section 3d in Supplementary Materials).
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Figure 3 shows the results of the 2-lane highway environment with the 400m driving distance for the AV-I
model, which is a basic experiment to validate our approach. As shown in Fig. 3a, during the training process
the estimation variance of the intelligent testing environment decreases with the increase of reward function,
which demonstrates the effectiveness of the reward function in Eq. (1). To justify the off-policy mechanism,
we investigated the performance of the on-policy mechanism, where the target policy was utilized as the
behavior policy. As shown in Fig. 3b, during the training process, the crash rate for the on-policy experiments
significantly increases, while the crash rate for the off-policy experiments is unchanged because the behavior
policy is unchanged. However, as the on-policy mechanism breaks the consistency between the reward
function and estimation variance, this increase of the crash rate would be misleading. As shown in Fig. 3c,
the testing environment obtained by the on-policy mechanism underestimates the crash rate. In contrast, our
off-policy approach can obtain the same crash rate as the NDE approach, but more efficiently (Fig. 3d, e). To
measure the efficiency, we calculated the minimum number of tests for reaching a predetermined precision
threshold (the relative half-width'>!7 is 0.3). To reduce the randomness of the results for a fair comparison,
we repeated the testing of our approach by bootstrap sampling and obtained the frequency and average of the
required number of tests (Fig. 3f). Compared with the NDE approach that required 1.9 x 10® number of tests,
our approach required an average of 9.1 X 10* number of tests, which is 2.1 X 103 times faster. To
investigate the generalizability, we further tested the AV-II model using the same intelligent testing
environment without any refinement, which can also obtain an accurate estimation with about 103 times faster
(see Section 4d in Supplementary Materials).

To validate the unbiasedness about crash types, crash severities, and near-miss events, we analyzed the crash
rates of different crash types, distribution of the speed difference at the crash moment, and distributions of the
time-to-collision (TTC), bumper-to-bumper distance, and post encroachment time (PET) of near-miss events,
respectively. Throughout the paper our use of the term unbiasedness refers to the fact that estimations from
our approach have the same mathematical expectations as those from NDE. In our experiments, we collected
about 2.34 x 108 episodes of tests in NDE and 3.15 x 10° (about two orders of magnitude less) episodes of
tests in the intelligent testing environment. As the intelligent testing environment is more adversarial than
NDE, the total crash rate in our approach is 3.21 x 10~3 (Fig. 3g), which is much higher than that
(1.58 x 1077) in NDE. As required by the importance sampling theory, each crash event should be weighted
by the likelihood ratio to keep the unbiasedness. Therefore, the weighted crash rates for all crash types are
compared with the results in NDE (Fig. 3h), which demonstrates the unbiasedness of our approach within the
evaluation precision. Similarly, Figures 3.i-1 demonstrate that our approach can also unbiasedly evaluate the
AV’s safety performance regarding crash severities and near-miss events within the evaluation precision. As
near-miss events are critical for the development of AVs, the generated near-miss events without loss of
unbiasedness open the door for accelerating the AV training. We leave that for future study.

To further investigate the scalability and generalizability, we conducted the experiments with different
numbers of lanes (2 and 3 lanes) and driving distances (400m, 2km, 4km, and 25km) for the AV-I model.
Here we studied the 25km case to demonstrate the effectiveness of our approach over full-length trips, because
the average commuter travels approximately 25km one way in United States. As shown in Table 1, because
of the skipped episodes and steps that significantly reduce the training variance, our approach can effectively
learn the intelligent testing environment for all the experiments.

Furthermore, to demonstrate the advance of our approach in realistic urban scenarios, we extended our
simulation experiments at a real-world four-armed roundabout®? in Germany with a high traffic volume and
complex interactions. Compared with the NDE testing approach that requires about 8.91 X 10® number of
tests to reach the 30% relative half-width, our approach only requires 3.76 X 103 number of tests, which is
2.37 x 103 times faster. See Supplementary Video 2 and Supplementary Materials (Section 4b) for more
details.
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AV testing in test tracks

Finally, we tested a Lincoln MKZ hybrid equipped with the open-source automated driving system,
Autoware?® (Fig. 4a), driving continuously in the physical multi-lane 4-km highway test track at ACM (Fig.
4b) and the physical urban test track at Mcity (Fig. 4c), respectively. We developed an augmented reality
testing platform?*, which combines the physical test track and a simulation environment, SUMO?. As shown
in Fig. 1d, by synchronizing the movements of the real AV and virtual BVs, the real AV in the physical test
track can interact with the virtual BVs as if it is in a real traffic environment, where the BVs are controlled
according to the intelligent testing environment. Figure 4d illustrates the real-time visualization of the testing
process. We trained the intelligent testing environment in the digital twins of the ACM highway section and
the Mcity urban section using the similar training settings as in the simulation studies (see Methods for
details). As shown in Fig. 4e-h, the crash rate estimations in both ACM and Mcity converge and reach the
30% relative half-width after about 156 tests at ACM and 117 tests at Mcity, which are on the order of 10°
times faster than those (2.5 X 107 at ACM and 2.1 x 107 at Mcity) of the NDE testing approach. We also
evaluated the AV’s safety performance for different crash types and severities (Fig. 4i, j).

Discussion

Our results present evidence of using D2RL techniques to validate AVs’ safety performance regarding their
behavioral competency™®. D2RL can accelerate the testing process and can be used for both simulation testing
and test-track methods. It can significantly enhance existing testing approaches (falsification methods,
scenario-based methods, and NDE methods) to overcome their limitations in real-world applications. D2RL
also opens the door for leveraging Al techniques to validate machine intelligence of other safety-critical
autonomous systems, such as medical robots and aerospace systems.

Ideally, the testing environment should consider all operating conditions of AVs and their associated rare
events. For example, a six-layer model** has been developed to structure the parameters of scenarios,
including road geometry, road furniture and rules, temporal modifications and events, moving objects,
environmental conditions, and digital information. In this study, we mainly focus on two layers: moving
objects and road geometry, i.e., multiple surrounding vehicles undertaking maneuvers on roads of varying
geometry, which are critical for the testing environment. Our approach could be extended to include
parameters from other layers, such as weather conditions, by collecting large-scale naturalistic data and
utilizing domain knowledge of those fields.

We note that increasing attention has also been paid to formal methods to address the new challenges raised
by AI systems (see ref.>>® and references therein). Formal methods provide mathematical framework for
rigorous system specification, design, and verification®’, which are critical for trustworthy Al. However, as
discussed in ref.*, multiple major challenges need to be addressed to fully realize their full potential. D2RL
can potentially be integrated with formal methods. For example, reachability-based methods*® could be
incorporated into the calculation of criticality measure to identify the critical states, particularly for generic
safety-critical autonomous systems. How to further integrate D2RLwith formal methods deserves further
investigation.
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Fig. 1 Validating safety-critical AI with the dense learning approach. a, The “curse of rarity” hinders
the applicability of deep learning techniques for safety-critical systems, as the gradient estimation of neural
networks would suffer from the large variance due to the rareness of informative data. By training the neural
networks with the informative data only, our dense learning approach significantly reduces the gradient
estimation variance, enabling deep learning applications in safety-critical systems. b, The D2RL approach
edits the Markov process by removing the uncritical states and reconnecting the critical states, and then
trains the neural networks (NN) only for the edited Markov process. ¢, For any D2RL training episode, the
reward from the end state is backpropagated along the edited Markov Chain with critical states only. Three
examples are provided. For the left example, the episode is completely removed from training data as it does
not contain any critical state. For the middle and right examples, the uncritical states are skipped and critical
states are reconnected to densify the training data. The end state for the middle example is from a non-crash
episode, while the right example is from a crash episode. d, The augmented reality testing platform can
augment the real world with virtual background traffic, resulting in a safer, more controllable, and more
efficient testing environment for AVs. Our approach learns to decide when to control which background
vehicles to execute what adversarial maneuver with what probability.

Fig. 2 Comparison of D2RL with DRL using the corner case generation examples. a, The neural network
controls the closest eight vehicles’ maneuvers within 120 m, where each BV has 33 discrete actions at every
0.1 second: left lane change, 31 discrete longitudinal accelerations ([-4, 2] with 0.2 m s discrete resolution),
and right lane change. b, Proportions of the removed data by D2RL regarding the episodes (left) and steps
(right). ¢, Comparison of training rewards between DRL and D2RL, where the solid line represents the moving
averages of rewards and the light shadow represents the standard deviations. d, Comparison of crash rates
between the policies learned by DRL and D2RL. e, The AV (blue vehicle) made an evasive lane change to
avoid a cut-in vehicle but collided with an adjacent vehicle. f, The right front vehicle made a cut-in, the left
behind vehicle made a right lane change, while the right behind vehicle accelerated. These three vehicles
cooperatively encircled the AV and caused a crash. g, The right front vehicle made a cut-in to enforce the AV
for braking, which created the opportunity for the right behind vehicle to make a lane change after 2.8 seconds
(i.e., 28 uncritical steps), leading to a crash. Additional explanations are provided in Supplementary Video 1.

Fig. 3. Performance evaluation of the D2RL-based intelligent testing environment. a, Comparison of the
reward between the DRL and D2RL approaches, along with the estimation variance (dashed line) of the D2RL
approach that represents the testing efficiency. The solid line represents the moving average and the light
shadow represents the standard deviation. b, Comparison of crash rates of the on-policy and off-policy D2RL
approaches, during the training process. ¢, Comparison of estimated crash rates of the on-policy and off-policy
D2RL approaches, during the testing process. The light shadow represents the 90% confidence level. Crash
rate estimations (d) and relative half-width (e) of the AV-1 model by the NDE and the D2RL-based intelligent
testing environment, respectively. The bottom x-axis denotes the number of tests for NDE, and the top x-axis
denotes the number of tests for the intelligent testing environment. f, Frequency of the required number of
tests for repeated testing experiments for the AV-I model. Unweighted crash rate (g) and weighted crash rate
(h) of each crash type in the D2RL-trained testing environment. Weighted distributions of the speed difference
at the crash moment (i), TTC (j), bumper-to-bumper distance (k), and post-encroachment time (I) of the near-
miss events.

Fig. 4. Testing experiments for a real-world autonomous vehicle at physical test tracks. a, [llustration of
the AV under test, equipped with Autoware. RTK, real-time kinematic positioning; IMU, inertial
measurement unit; DSRC, dedicated short-range communications; OBU, on-board unit. b, Illustration of the
ACM highway testing environment. The red line denotes the AV driving route. ¢, [llustration of the Mcity
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urban testing environment including highways, roundabouts, intersections, etc. The explosion icons denote
the locations of crash events happened during the tests. d, Illustration of the real-time visualization of the
testing process: the leftmost figure illustrates the simulation view, where the virtual BVs (green vehicles) are
generated and controlled by the intelligent testing environment to interact with the AV (red vehicle); the
middle figure illustrates the real-world AV view visualized by Autoware, where the black vehicle is the AV
under test and blue vehicles are augmented BVs; the rightmost figures illustrate the original image view (top)
and augmented image view (bottom) from the AV’s front camera. e-h, Crash rate estimation and the relative
half-width of the real AV at the ACM test track (e and f) and Mcity test track (g and h) with the augmented
reality testing platform. The black dashed line (e and g) represents the final estimation of the crash rate, the
light dashed line (f and h) represents the 0.3 relative half-width threshold, and the light shadow represents the
90% confidence level. i, Crash rates of different crash types of the AV at the Mcity test track. j, Distribution
of the speed difference at the crash moment for crash severity analysis of the AV at the Mcity test track.
Additional explanations regarding the field experiments are provided in Supplementary Videos 3-8.

Table 1. Performance evaluation with different highway simulation environments. The numbers of tests
of the D2RL approach were the average values of multiple testing experiments, similar to Fig. 3f, and the
numbers of tests for the NDE approach were obtained according to the Monte Carlo method'.

400 m 2 km 4 km 25
km
2 Lanes 3 Lanes 2 Lanes 3 Lanes 2 Lanes 3 Lanes 3
Lanes
1.9 1.0 4.8 2.5 2.9 9.4 1.7

NDE  No. of tests x108  x10°  x107  x107  x107  x10%  x10°

Episodes 95.70%  91.73%  77.54%  79.85%  61.42%  58.92% 8.83%
skipped
Steps skipped ~ 99.78%  99.70%  99.82%  99.81%  99.79%  99.74% 990)76
0
D2RL No. of fest 9.1 4.4 2.4 1.7 1.3 45 1.8
0. OT {ests x 10* x 10% x 10% x 10% x 10% x 103  x 103
Acceleration 2.1 2.3 2.0 1.5 2.2 2.1 9.4
ratio x 103 x 103 x 103 x 103 x 103 x 103  x 10?
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Methods
Description of the AV safety validation problem

This section describes the problem formulation of AV safety performance evaluation. Denote the variables of
the driving environment as x = [s(0),u(0), u(1),---,u(T)], where s(k) denotes the states (position and
speed) of the AV and BVs at the k-th time step, u(k) denotes the maneuvers of BVs at the k-th time step,
and T denotes the total time steps of this testing episode. With Markovian assumptions of BVs’ maneuvers,
the probability of each testing episode in the naturalistic driving environment (NDE) can be calculated as
P(x) = P(S(O)) x [1%=o P(u(k)|s(k)), and then the AV crash rate can be measured by the Monte Carlo
method®! as

P(A) = Expo[P(AID)] = =X, P(Alx;), x; ~ P(x), 2)

where A denotes the crash event, n denotes the total number of testing episodes, and x; ~ P(x) indicates that
the variables are sampled from the distribution P(x). Here a crash is defined as a contact that the subject
vehicle (e.g., AV) has with an object, either moving or fixed, at any speed resulting in fatality, injury, or
property damage®®. As A is a rare event, obtaining a statistically reliable estimation requires a large number
of tests (n), which leads to the severe inefficiency issue of the NDE testing approach, as pointed out in ref.'.

To address this inefficiency issue, the key is to generate an intelligent driving environment, where
BVs can be controlled purposely to test the AV unbiasedly and efficiently. In essence, testing an AV in the
intelligent driving environment is to estimate P(A) in Eq. (2) by the importance sampling method?! as

1

P(A) = Ex-qn|PAIX) x W (0] & X1 P(Alx) X Wy (x), x; ~ q(x), A3)
where g (x) denotes the underlying distribution of BVs’ maneuvers in the intelligent testing environment, and
W, (x) is the likelihood of each testing episode as

_ P _
W,(x) = pret Hi:o[

P(u(k)|s(k)) @
o(u@s)|
According to the importance sampling theory’!, the unbiasedness of the estimation in Eq. (3) can be
guaranteed if q(x) > 0 for any x that P(A|x)P(x) > 0. To optimize the estimation efficiency, the
importance function q(x) needs to minimize the estimation variance

02 = E,(P%(A|x) X W2(x)) — P2(A). )

Therefore, the generation of the intelligent testing environment is formulated as a sequential Markov
decision process (MDP) problem of BVs’ maneuvers (i.e., determine q(u(k)|s(k))) to minimize the
estimation variance aqz in Eq. (5). However, how to solve such a sequential MDP problem associated with
rare events and high-dimensional variables remains a highly challenging problem, and most existing
importance sampling-based methods suffer from the “curse of dimensionality”*’, where the estimation
variance would increase exponentially with the dimensionality. In our previous study'*, we discovered that
the “curse of dimensionality” issue could be addressed theoretically by sparse adversarial control to the
naturalistic distribution. However, only a model-based method with handcrafted heuristics was utilized for
conducting the sparse adversarial control, which suffers from significant spatiotemporal limitations, and how
to leverage Al techniques to train the BVs for truly learning the testing intelligence remains unsolved, which
is the focus of this paper. More details of related work can be found in Supplementary Materials (Section 1).

Formulation as a deep reinforcement learning problem

This section describes how to generate the intelligent testing environment as a DRL problem. As mentioned
above, the goal is to minimize the estimation variance in Eq. (5) by training a policy = modeled by a neural
network 6 that can control BVs’ maneuvers with the underlying distribution q,(u|s). To keep the notation
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simple, we leave it implicit in all cases that it is a function of 8. An MDP usually consists of four key
elements: state, action, state transition, and reward. In this study, states encode information (position and
speed) about the AV and surrounding BVs, actions include 31 discrete longitudinal accelerations ([-4, 2] with
0.2 m s? discrete resolution), left lane change, and right lane change, and state transitions define the
probability distribution over next states that are also dependent on the AV maneuver. Here we assumed that
a lane change maneuver of BVs would be initiated from its current position and completed in one second if a
lane change action was decided. Our framework is also applicable to more realistic and complex action
settings.

For the corner case generation case study, we studied a three-lane highway driving environment, where
eight critical BVs (i.e., principal other vehicles or POVs) are controlled to interact with the AV for a certain
distance (400m) and each BV has the 33 discrete actions at every 0.1 second. For the intelligent testing
environment generation case study, to keep the runtime of the DRL small, we simplified the output of the
neural network as the adversarial maneuver probability (¢, € (0,1)) of the most critical POV, while POV’s
other maneuvers are normalized by 1 — &, according to the naturalistic distribution and other BVs’ maneuvers
keep following the naturalistic distribution. The adversarial maneuver and POV are determined by the
criticality measure. We note that the generalization of this work to multiple POVs is straightforward.

The reward function design is critical for the DRL problem®*!. As the goal of the intelligent testing
environment is to minimize the estimation variance in Eq. (5), we derived the objective function of the DRL
problem as

mqin oF = mgx{—[Eqnb (]IA(x) X Wy, () X W, (x))}, (6)

where [ is the indicator function of the crash event and m;, denotes the behavior policy of the DRL. During
the training process, the training data is collected by the behavior policy, which is a Monte Carlo estimation
of the expectation in Eq. (6), so we can obtain the reward function as

r(x) = —L(x) - W, () - Wy, (1), ()
which is theoretically consistent with the objective function. As it is mainly based on the importance sampling
theory, the reward function is also applicable to other rare event estimation problems with high-dimensional
variables. To limit the scale of the error derivatives*?, we rescaled and clipped the function, resulting in the
reward function that belongs to [—100,100], where the scaling constants could be automatically determined
during the learning process.

With the state, action, state transition, and reward function, the intelligent testing generation problem
becomes a DRL problem. However, as the gradient estimation of neural networks would suffer from the large
variance due to the rareness of informative data, applying learning-based techniques for safety-critical systems
is highly challenging because of the “curse of rarity”. It is hard—or even empirically infeasible—to learn an
effective policy if directly applying DRL approaches.

Dense Deep Reinforcement Learning (D2RL)

To address this challenge, we propose the D2RL approach in this paper. Specifically, according to the policy
gradient theorem?’, the policy gradient of the objective function for DRL approaches can be estimated as
TN — A vr(A¢|St, 0)

V/(6) = 4 (S, Ar) (415, 0" (8)
where 6 denotes the parameters of the policy, q,(S;, A;) denotes the state-action value, S; and A; are samples
of the state and action under the policy, §,(S; A;) is an unbiased estimation of q,(S;A;), ie.,
E;[G.(Se, Ar)] = g (St Ap). Differently, for the D2RL approach, we propose to estimate the policy gradient

as
— N vr(A¢|S,, O
Vaonsel (6) = (S A0) T et s, ©)
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where S denotes the set of critical states and I, es, denotes the indicator function.

Here, a state is defined as an uncritical state if v, (s) = q,(s,a), Va, where v, (s) & IEn(qn(s, a))
denotes the state value, so the set of critical states can be defined as S, & {s|v,(s) # q.(s,a),3a}. It
indicates that a state is defined as uncritical if any action (e.g., BVs’ maneuvers) from the current state will
not affect the expected value of the state (e.g., AV’s crash probability within a specific time horizon from the
current state). We note that this definition is primarily for the theoretical analysis to be clean and is not strictly
required to run the algorithm in practice. For example, a state can be practically identified as uncritical if the
current action will not significantly affect the expected value of the state. For specific applications, the critical
states can be approximately identified based on domain-specific models or physics. For example, the
criticality measure'>!®, which is an outer approximation of the AV crash rate within a specific time horizon
(e.g., 1 second), is utilized in this study to demonstrate the approach for the AV testing problem. We note that
many other safety metrics®® could also be applicable, such as the model predictive instantaneous safety
metric* developed by the National Highway Traffic Administration in the United States and the criticality
metric** developed by the PEGASUS project in Germany, as long as the identified set of states covers the
critical states. More theoretical analysis for a more general sense can be found in Supplementary Materials
(Section 2a).

Then, we have the following theorem, and the proof can be found in the Supplementary Materials:

Theorem 1:
The policy gradient estimator of D2RL has the following properties:

(1) Ex[Vaense ()] = E-[V/(O)];
(2) Vary|Vaense] (0)] < Var[V] (8)]; and
(3) Var, [Vde;s—(j(H)] < pVary [W)], with the assumption

Ex[07 (St A - Is,es,] = Exl07(Se, AD] - ErIs,es, |, (10)

where p,; & EH(HStESC) € [0,1] is the proportion of critical states in all states under the policy 7 (e.g., 1 — p;

. o " A¢lSe, 0)\*

denotes the proportion of steps skipped in Fig. 2b and Table 1), and 62 (S;, A;) = (qn (S, Ap) %Etg))) )

tivt,

Theorem 1 proves that the D2RL approach has an unbiased and efficient estimation of the policy

gradient compared with the DRL approach. To quantify the variance reduction of dense learning, we introduce

the assumption in Eq. (10), which assumes that ¢;2(S;, A,) is independent on the indicator function Ises,. As

both the policy and the state-action values are randomly initialized, the values of 2(S;, A;) are quite similar

for all different states, so the assumption is valid at the early stage of the training process. Such significant

variance reduction will enable the D2RL approach to optimize the neural network, while the DRL approach
would be stuck at the beginning of the training process.

We then consider the influence of dense learning on estimating §,(S;, A;) with bootstrapping, which
can guide the information propagation in the state-action space. For example, the fixed-length advantage
estimator (A,) is commonly used for the PPO algorithm® as

Ap = 6+ (YD)8ppy + -+ DSy, (11)
where 6; = 1 + YV (St+1) — V(st), V(s;) is the state-value function, and L denotes the fixed length. For
safety-critical applications, the immediate reward is usually zero (i.e., 7 = 0), and most state-value functions
are determined by initial random values without any valuable information because of the rarity of events.
Bootstrapping with such noisy state-value functions will not be effective in the learning process. By editing
the Markov chain, only the critical states will be considered. Then, the advantage estimator will be essentially
modified as
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Ar = 800 + YD sy + -+ D 85001, (12)
where  8,¢jy = Tz, j) + YV Szt j+1) — V(Szejy) » 2(t,0) =¢t, and z(t,j) = miin{si €S.|i>z(t,j—

1)},j > 0. In essence, it is a state-dependent temporal-difference (TD) learning, where only the values of
critical states are utilized for bootstrapping. As the critical states have much higher probabilities leading to
safety-critical events, the reward information can be propagated to these critical state values more easily.
Utilizing the values of these critical states, the bootstrapping can guide the information from the safety-critical
events to the state-action space more efficiently. This mechanism can help avoid the interference of the large
number of noisy data and focus the policy on learning the sparse but valuable information. Because of the
abovementioned variance reductions regarding the policy gradient estimation and bootstrapping, the D2RL
approach significantly improves the learning effectiveness compared with the DRL approach, enabling the
neural network to learn from the safety-critical events.

Densifying the information is a natural way to overcome the challenges caused by the rarity of events.
In the field of deep neural networks, connecting different layers of neural networks more densely has been
demonstrated to produce better training efficiency and efficacy, i.e., DenseNet®. Instead of connecting layers
of neural networks, our approach densifies the information by connecting states more densely with safety-
critical states, besides the natural connections provided by the state transitions. As safety-critical states have
more connections with rare events, they contain more valuable information with less variance. By densifying
the connections between safety-critical states with other states, we can better propagate the valuable
information to the entire state space, which can significantly facilitate the learning process. This study
proposed and demonstrated one specific realization of the dense learning approach by approximately
identifying uncritical states and connecting the remaining states directly. This can be further improved by
more flexible and dense connections among safety-critical states and uncritical states. The connections can
even be added in the form of curriculum learning*®, which can guide the information propagation gradually.
The measures for identifying critical states can also be further improved by involving more advanced
modeling techniques.

Off-policy learning mechanism

We justify the off-policy learning mechanism in this section. The goal of the behavior policy m}, is to collect
training data for improving the target policy 7 that can maximize the objective function in Eq. (6). To achieve
this goal, it is critical to estimate the objective function accurately using the reward function in Eq. (7), which
determines the calculation of the policy gradient. However, only episodes with crashes have nonzero rewards,
so the objective function estimation suffers from a large variance, because of the rarity of crashes. Without an
accurate estimation of the objective function, the training could be misled. According to the importance
sampling theory, we have the following theorem, and the proof can be found in the Supplementary Materials:

Theorem 2:

The optimal behavior policy 7;, that can minimize the estimation variance of the objective function has the
following property:

g (x)
where g+ (x) denotes the optimal importance sampling function that is unchanged during the training process,
and the symbol « means “proportional to”.

Theorem 2 finds that the optimal behavior policy is nearly inversely proportional to the target policy,
particularly at the beginning of the training process when q is far from q,+. If using on-policy learning
mechanisms (g, = qr), the behavior policy would be far from optimality, which could mislead the training

Page 14 of 19



587
588
589
590

591
592
593

594
595
596
597
598
599

600
601

602

603
604
605
606
607
608
609
610
611
612
613
614
615

616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

631
632

process and eventually cause the underestimation issues. For example, if a target policy misses an action that
could lead to a likely crash, an on-policy learning mechanism will never find this missing crash. More
importantly, the on-policy mechanism could mislead the policy for purposely hiding the crashes that are
difficult to evaluate, leading to the severe underestimation issue of the safety performance evaluation.

We design an off-policy learning mechanism to address this issue, where a generic behavior policy is
designed and kept unchanged during the training process. Specifically, we determined a constant probability
of the adversarial maneuver of the POV (i.e., &, = 0.01) and conducted other maneuvers with the total

probability of 0.99 that were normalized according to the naturalistic distribution. This policy explores the
state-action space using the naturalistic distribution most of the time and exploits the information of the model-
based criticality measure that helps identify the POV and adversarial maneuver. We note that although the
optimal behavior policy needs to be adaptively determined based on the target policy, as indicated in Theorem
2, an off-policy learning mechanism can provide a sufficiently good foundation for effective learning in this
study. The behavior policy is also not sensitive to the constant of €, , and generally, a small value (e.g., 0.1,

0.05, 0.01, etc.) that balances the exploration and exploitation would be effective in this study. Further
improvement can be investigated in the future.

Simulation settings

Naturalistic driving environment simulator. To simulate naturalistic driving environment, we developed a
simulation platform based on an open-source traffic simulator SUMO. The scheme of the platform can be
found in Supplementary Materials. We utilized both the C++ and TRACI interfaces to refine the SUMO
simulator so that high-fidelity driving environments can be integrated. Specifically, we rewrote and
recompiled the C++ codes of SUMO to integrate the high-fidelity driving environments, including car-
following and lane-changing behavior models. Then, we utilized the TRACI interface to implement the
intelligent testing environment, where at selected moments, selected vehicles would execute specific
adversarial maneuvers with a learned probability, following the policy obtained by the D2RL approach. We
also synchronized the modified SUMO with the physical test tracks related to the information of BVs,
autonomous vehicles, traffic signals, high-definition maps, etc., through the TRACI interface. To provide a
training environment for intelligent testing environments, we constructed a multi-lane highway driving
environment and an urban driving environment, where all vehicles were controlled at 100 millisecond
intervals.

Driving behavior models in the naturalistic driving environment simulator. The default driving behavior
models of SUMO, which are simple and deterministic, cannot be utilized for safety testing and training of
AVs because they are designed to be crash-free models. To address this issue, in this study, we constructed
NDE models*’ to provide naturalistic behaviors of BVs according to the large-scale naturalistic driving
datasets (NDD) from the Safety Pilot Model Deployment program*® and the Integrated Vehicle-Based Safety
System program* at the University of Michigan, Ann Arbor. At each step of simulation, the NDE models can
provide distributions of each BV’s maneuvers, which are consistent with NDD. Then, by sampling maneuvers
from the distributions, a testing environment that can evaluate the real-world safety performance can be
generated. For the field testing at ACM and Mcity, although the intelligent testing environment can accelerate
the AV testing from about 107 loops of testing to only around 10* loops (see Table 1), this still represents a
significant level of effort for an academic research group. To demonstrate our approach in a more efficient
way, we simplified the NDE models to demonstrate our method more conveniently. Specifically, we modified
the intelligent driving model (IDM)*° and the MOBIL (Minimizing Overall Braking Induced by Lane change)
model’! as stochastic models to construct the simplified NDE models. More details of the NDE models can
be found in the Supplementary Materials.

D2RL architecture, implementation, and training. The D2RL algorithm can be easily plugged into existing
DRL algorithms by defining a specific environment with the dense learning approach. Specifically, for
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existing DRL algorithms, the environment receives the decision from the DRL agent, executes the decision,
and then collects observations and rewards at each time step, while for the D2RL algorithm, the environment
only collects the observations and rewards for the critical states, as illustrated in Supplementary Materials
(Section 3e). In this way, we can quickly implement the D2RL algorithm utilizing existing DRL platforms.
In this study, we utilized the PPO algorithm implemented at the RLLib 1.2.0 platform®, which was parallelly
trained on 500 CPU cores and 3500 GB memory high-performance computation cluster at the University of
Michigan, Ann Arbor. We designed a 3-layer fully connected neural network with 256 neurons in each layer
and chose the 10™* learning rate and 1.0 discount factor besides the default parameters. Each CPU collected
120 timesteps of training data for all experiment settings in each training iteration, so a total of 60,000
timesteps were collected in each training iteration. For the corner case generation, the neural network’s output
is the actions of the closest eight BVs, where each BV has the 33 discrete action space: left lane change, 31
discrete longitudinal accelerations ([-4, 2] with 0.2 m s discrete resolution), and right lane change. For the
intelligent testing environment generation, the neural network’s output is the adversarial maneuver probability
(¢z) of the POV, where the action space is &; € [0.001,0.999]. To further improve the data efficiency during
the training process, we used the collected data with a resampling mechanism to train the neural network for
multiple steps.

Field test settings

Augmented reality testing platform. We implemented the augmented reality testing platform at American
Center for Mobility (ACM), one of the world’s premier test tracks for AVs located in Ypsilanti, Michigan,
and the Mcity test track, which is the world’s first purpose-built test track for AV testing. In this study, we
utilized the 4km highway loop featuring two-three lanes and both exit and entrance ramps to create various
merging opportunities, as well as the Mcity urban driving environment, including various types of highways,
roundabouts, urban streets, etc., as shown in Supplementary Materials (Section 3f). We constructed digital
twins of the ACM and Mcity based on the naturalistic driving environment simulator and available high-
definition maps. To synchronize the information between the simulation and physical test track, we utilized
the dedicated short-range communications (DSRC) roadside units (RSUs) that were installed in the test tracks.
These DSRC-based devices can communicate with AVs via 802.11p and SAE J2735 protocols through the
immediate forward messaging (IMF) and forwarding functions. Specifically, we utilized the IMF function to
broadcast proxy Basic Safety Message (BSMs) containing virtual BVs’ identifier, latitude, longitude, altitude,
etc., to the physical AV, and the forwarding function to forward incoming BSMs of the AV to the digital
twins. After receiving the BSMs of the AV, we synchronized the AV states in the simulation world, where
BVs were controlled by the intelligent testing environment. More details of the platform can be found in ref.?*.
We implemented the system with an average 33ms communication delay, which is acceptable for AV testing
and can be further improved with advanced wireless communication techniques.

Augmented image rendering. We use augmented reality techniques to render and blend virtual objects (e.g.,
vehicles) onto the camera view of the ego vehicle. Given a background 3D model with its 6DoF pose/location
in the world coordinate, we perform a two-stage transformation to project the model to the onboard camera
image: 1) from the world coordinate to the ego-vehicle coordinate, and 2) from the ego-vehicle coordinate to
the onboard camera coordinate. In the first transformation, the ego vehicle pose and location are obtained
from the real-time signal of the onboard high-precision RTK. In the second transformation, the projection is
based on the pre-calibrated camera intrinsic and extrinsic. We also perform relighting on the rendered layer
to harmonize the visual quality of the blending result. The augmented view is generated based on a linear
blending with the rendered foreground layer, camera's background layer, and the rendered alpha matte. On
top of the blending result, a weather-control layer is further added to simulate different weather conditions,
e.g., rain, snow, and fog. We implemented the augmented rendering based on pyrender’®. An additional
validation of the augmented image rendering can be found in Supplementary Materials (Section 4f).
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Autonomous vehicle under test. As the AV under test, we used a retrofitted Lincoln MKZ from the Mcity
Test Facility at the University of Michigan, Ann Arbor. The vehicle was equipped with multiple sensors,
computing resources (2 Nexcom Lumina), and with drive-by-wire capabilities provided by Dataspeed Inc.
Specifically, the sensors include PointGrey camera, Velodyne 32 channel LiDAR, Delphi radars, OTXS
RT3003 RTK GPS, Xsens MTi GPS/IMU, etc. We implemented the vehicle with a ROS-based open-source
software, Autoware.AI*, which provides full-stack software for the highly automated driving functions,
including localization, perception, planning, control, etc. We then integrated the AV with the AR testing
platform to evaluate the AV’s safety performance. An illustration of the system framework can be found in
Supplementary Materials. Specifically, we modified the AV localization component to utilize the high-
definition map and high-accuracy RTK for obtaining the current pose and velocity. The surrounding vehicles’
BSMs were directly obtained from the simulation through wireless communications. To generate the AV’s
future trajectory, we applied the OpenPlanner 1.13* as the decision module, an advanced planning algorithm
including global and local path planning. We applied the pure pursuit algorithm to convert the planned
trajectory into the velocity and yaw rate and then used a PID controller provided by Dataspeed Inc. to further
convert them into the vehicle by-wire control commands, i.e., steering angle, throttle, and brake percentages.

Data availability

The raw datasets that we used for modeling the naturalistic driving environment come from the Safety Pilot
Model Deployment (SPMD) program® and the Integrated Vehicle Based Safety System (IVBSS)* at the
University of Michigan, Ann Arbor. The ShapeNet Dataset that includes the 3D model assets for the image
augmented reality module can be found in https://github.com/mmatl/pyrender. The police crash reports used
in Supplementary Video 7 are available at https://www.michigantrafficcrashfacts.org/. The processed data for
constructing NDE models and the intelligent testing environment and the experiment results that support the
findings of this study are available at https://github.com/michigan-traffic-lab/Dense-Deep-Reinforcement-

Learning.

Code availability

The simulation software SUMO, the automated driving system Autoware, and the RLLib platform with the
implemented PPO algorithm are publicly available, as described in the text and the relevant references*->>-2,
The source codes for the naturalistic driving environment simulator, the driving behavior models in the
simulator, the D2RL-based intelligent testing environment, as well as the simulation setups are available at
https://github.com/michigan-traffic-lab/Dense-Deep-Reinforcement-L earning.
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