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Abstract

At the outset of an emergent viral respiratory pandemic, sequence data is among the first
molecular information available. As viral attachment machinery is a key target for therapeu-
tic and prophylactic interventions, rapid identification of viral “spike” proteins from sequence
can significantly accelerate the development of medical countermeasures. For six families
of respiratory viruses, covering the vast majority of airborne and droplet-transmitted dis-
eases, host cell entry is mediated by the binding of viral surface glycoproteins that interact
with a host cell receptor. In this report it is shown that sequence data for an unknown virus
belonging to one of the six families above provides sufficient information to identify the pro-
tein(s) responsible for viral attachment. Random forest models that take as input a set of
respiratory viral sequences can classify the protein as “spike” vs. non-spike based on pre-
dicted secondary structure elements alone (with 97.3% correctly classified) or in combina-
tion with N-glycosylation related features (with 97.0% correctly classified). Models were
validated through 10-fold cross-validation, bootstrapping on a class-balanced set, and an
out-of-sample extra-familial validation set. Surprisingly, we showed that secondary struc-
tural elements and N-glycosylation features were sufficient for model generation. The ability
to rapidly identify viral attachment machinery directly from sequence data holds the potential
to accelerate the design of medical countermeasures for future pandemics. Furthermore,
this approach may be extendable for the identification of other potential viral targets and for
viral sequence annotation in general in the future.

Introduction

The COVID-19 pandemic has underscored the importance of an effective response for emerg-
ing viral pathogens that is focused on the rapid deployment of molecular testing and medical
countermeasures. Our experiences with the current pandemic have highlighted the vulnerabil-
ity of the global healthcare infrastructure to respiratory pathogens that, like SARS-CoV-2, are
capable of long-range airborne spread via acrosolized particles [1]. In contrast to other patho-
gens, the window for effective intervention to avert a pandemic resulting from a newly

1/16



Identification of viral attachment machinery from sequence

emergent respiratory virus may be very short. Thus, the speed with which molecular diagnos-
tics, therapeutics, and vaccines can be deployed are critical determinants of our ability to con-
tain an outbreak.

The viral attachment machinery (the set of proteins responsible for host cell attachment
and cell entry) has served as a historically important focus for the development of molecular
tests (for example for influenza [2] and SARS-CoV-2 [3, 4]) as well as medical countermea-
sures such as vaccines [5—7]. Thus, the accurate and efficient identification of the viral attach-
ment machinery is a critical first step in the design and deployment of biomedical
countermeasures. It had been observed for coronaviruses in 2012 (pre-COVID-19) that the
tertiary structure of the spike protein is not conserved but that the secondary structure topol-
ogy is conserved [8]. It was subsequently also noted that the pattern of N-linked glycosylation
is highly conserved and may play a role in immune evasion [9].

The identification of viral attachment machinery from sequence can be thought of as a spe-
cial case of the larger problem of automated function prediction (AFP) of novel proteins,
which is a mature field (see [10—13] for reviews). A number of groups have used approaches
for AFP that leverage structure-based homology, focusing either on the full three-dimensional
(3D) protein structure, or on the identification of 3D structural motifs (see, for example,
[14—17]). However, 3D structure alone is often insufficient for functional annotation, as pro-
teins possessing similar global structures can perform very different biological functions (for
example, [ 18]). Computational structural alignment methods, although first pioneered in the
1960s, typically have accuracies on the order of ~90% [19] but at least in the case of coronavi-
ruses as described above the 3D structure is not conserved. Furthermore, 3D structural motifs
for viral attachment proteins are often optimized specifically for enzymes and are not readily
able to identify viral attachment machinery. As an alternative, AFP from DNA sequences relies
on sequence homology [20—22], or the identification of sequence motifs [23, 24]. A potential
weakness of this approach is that novel viruses with low sequence homology to pre-existing
pathogens may prove less tractable to homology-based approaches. As a further consideration,
during the early days of an emerging pandemic, steps such as multiple sequence alignment,
phylogeny reconstruction and 3D structure prediction can add weeks to the timeline for
response. An accurate ML model may be able to pinpoint the target within seconds.

With respect to preparedness for potential future pandemics, tools that can aid in the rapid
deployment of therapeutic and vaccine countermeasures are clearly needed. Specifically, for
viral pathogens originating from the most prevalent respiratory virus families, which are key
pathogens of concern, intervening at the localized emergence stage may prevent the transition
to a full-blown pandemic. Based on the earlier cited observations, we hypothesized it may be
possible to develop a machine learning (ML) model based on predicted secondary structure
elements and N-glycosylation features alone capable of identifying viral attachment machinery
(the “spike” protein or its equivalent) from an unknown respiratory virus sequence. More gen-
erally, we also sought to gain a further understanding of the structural features that may distin-
guish viral attachment machinery proteins with a view toward elucidation of key structure-
function relationships.

Methods
Virus families, viral sequences, and “spike” proteins

Across all sets (feature selection, training, extra-familial validation), six families of respiratory
viruses were included in this study: Coronaviridae, Paramyxoviridae, Pneumoviridae, Adeno-
viridae, Orthomyxoviridae, and Herpesviridae. Each of the viruses within these families has a
protein responsible for viral attachment and host cell entry, which will be referred to herein as
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the “spike” protein (see Fig 1 A). For Coronaviruses, it is the Spike S Glycoprotein which is
aptly named because it projects from the surface of the virion (Fig 1B) as do the other “spike”
proteins. Note that for Influenza Virus A within the Orthomyxoviridae family, we selected
Hemagglutinin as the equivalent of the “spike” over Neuraminidase as the latter primarily pre-
vents virion aggregation and as such serves more as a helper protein to the role of the former
in determining cell entry [25].

A total of 50 viral sequences (ranging from 4 to 12 for each virus family) encoding 360 pro-
teins were utilized (see Table 1 for a list of sequences). Specifically, in the feature selection set
we included 7 Coronaviridae sequences representing 7 viruses; in the training set, we included
7 different Coronaviridae sequences representing 7 viruses, 4 Paramyxoviridae sequences rep-
resenting 4 viruses, 12 Pneumoviridae sequences representing 2 viruses, 8 Adenoviridae
sequences representing 1 virus, and 8 Orthomyxoviridae sequences representing 1 virus.
Finally, for the extra-familial validation set, we included 4 Herpesviridae sequences represent-
ing 4 viruses. See Table 2 for the number of “spike” vs. non-spike proteins for each virus
family.

Prediction of secondary structural elements

The Jpred4 [42] secondary structure prediction server was used to predict structural elements
for each viral sequence in the dataset. Jpred4 is a server that hosts Jnet, a neural network sec-
ondary structure prediction algorithm trained with different representations of multiple
sequence alignment profiles for the same sequences [43]. Each residue in a protein sequence is
designated as H (helical), E (extended sheet), or other. Since Jpred4 predicts secondary struc-
ture on protein sequences up to 800 amino acids in length, a fully automated script (S1 Fig)
was written to break protein sequences into 800 residue segments and subsequently
concatenated the results. For each protein, the script calculates the protein length, the percent-
age of residues in the protein predicted to be helical (%helix), and the percentage predicted in
an extended sheet (%osheet). It then identifies the longest contiguous stretch of helix and
extended sheet in the protein and calculates %longest helix, and %longest sheet, where %lon-
gest helix (sheet) is the length of the longest helical (extended sheet) stretch in the protein
divided by the length of the protein. Finally, %helix, %sheet, %longest helix, and %longest
sheet is output.

Prediction of N-glycosylation sites

For the sequences described above, N-glycosylation sites were predicted for each protein using
NetNGlyc [44, 45]. The NetNGlyc method uses artificial neural networks to predicts N-Glyco-
sylation sites in proteins through analysis of the sequence context of Asn-Xaa-Ser/Thr
sequons. FASTA format protein sequences were entered on the NetNGlyc 1.0 Server (https://
services.healthtech.dtu.dk). Asparagines with overall positive score, denoted by “+°, “++’, “+++’
and ‘“++++’ (each counted in their respective category), where ‘++++’ indicates a prediction
with highest confidence based on a combination of overall potential score and jury agreement
amongst the nine neural networks utilized, were predicted to be glycosylated. The total num-
ber of glycosylation sites per protein (total N-sites) was the sum of the number of residues
scored ‘+’ or higher. The density was the total sites divided by the number of residues in the
protein (as reported by NetNGlyc).

Amino acid composition

Protein sequences were obtained from nucleic acid sequences with Bioinformatics Toolbox in
MATLAB version 2019b (MathWorks, 2021, Natick, MA, USA), and a letter frequency
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A
1. Coronaviridae: 2. Paramyxoviridae:
Spike Glycoprotein Hemagglutinin
(S2) Neuraminidase
Glycoprotein (HN)

3. Pneumoyiridae: @. Adenoviridae:
Fusion Penton Protein
Glycoprotein F2 €L2)

)

5. Ortho- 6. Herpesviridae:
myxoviridae: Enyclope
Hemagglutinin Glycoprotein B
Glycoprotein
(HA)

[PDB identifier: Organism

1. 7KJ4: SARS-CoV-2

2. 1V3E: Human parainfluenza virus 3

3. 60US: Human respiratory syncytial virus A2

#. 3IZO: Human adenovirus 5

5. 2WRG: Influenza virus A

6. 4BOM: Herpes Simplex Virus 1

Fig 1. Five families of respiratory viruses and their “spike” proteins. In (A) the identity and representative structure
of the “spike” protein (gene name given in parentheses) is shown for each of the virus families studied. PDB identifiers
for structures 1-6 are also listed with the corresponding virus indicated. Shown in (B) is a schematic of the coronavirus
SARS-CoV-2 structure indicating the prominence of the spike.

https://doi.org/10.1371/journal.pone.0281642.9g001
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Table 1. NCBI reference respiratory virus sequences used in model development.

Feature Selection Set Seq

uences

Virus Family Virus® Strain Sequence Identifier®
Coronaviridae SARS-CoV-2 [26] Wuhan-Hu-1 NC_045512.2
Coronaviridae SARS-CoV-1 [27] Tor2 NC_004718.3
Coronaviridae MERS [28] HCoV-EMC/2012 NC_019843.3
Coronaviridae hCoV-0C43 [29] ATCC VR-759 NC_006213.1
Coronaviridae hCoV-HKUTI [30] HKU1 NC_006577.2
Coronaviridae hCoV-NL63 [30] Amsterdam [ NC_005831.2
Coronaviridae hCoV-229E [30] 299E NC _002645.1
Training Set Sequences
Virus Family Virusa Strain Sequence Identifierb
Coronaviridae Bat Coronavirus 1A NC_010437.1
Coronaviridae Turkey Coronavirus MG10 NC _010800.1
Coronaviridae Bulbul Coronavirus HKU11-934 NC 011547.1
Coronaviridae Betacoronavirus HKU24 HKU24 NC 026011.1
Coronaviridae Bat Coronavirus CMR704-P12 NC _048212.1
Coronaviridae Canada Goose Coronavirus Cambridge Bay 2017 NC_046965.1
Coronaviridae Thrush Coronavirus HKU12-600 NC_011549.1
Paramyxoviridae HPIV 1 [31] Washington 1964 NC_003461.1
Paramyxoviridae HPIV 2 [31] VIROAF10 KM190939.1
Paramyxoviridae HPIV 3 [31] GP NC_001796.2
Paramyxoviridae HPIV 4a [31] M-25 NC_021928.1
Pneumoviridae HRSV [32] Subgroup A NC_038235.1
Pneumoviridae HRSV CA-17 LC385004.1
Pneumoviridae HRSV CA-15 LC385003.1
Pneumoviridae HRSV KW-15 LC385002.1
Pneumoviridae HMPV [33] PER/FPP00726/2011/A KJ627437.1
Pneumoviridae HMPV Isolate 00-1 NC 039199.1
Pneumoviridae HMPV PER/IPE00957/2012/A KJ627433.1
Pneumoviridae HMPV Seattle/USA/SC0380/2019 MN306028.1
Pneumoviridae HMPV 01/KEN/2015 MK588634.1
Pneumoviridae HMPV USA/NMO013/2016 KY474543.1
Pneumoviridae HMPV BuenosAires/ARG/001/2016 MG773272.1
Pneumoviridae HMPV AUS/183219938/2004/B KF530178.1
Adenoviridae HAAV [34] Type 2 J01917.1
Adenoviridae HAAV [35] Type 3 DQO086466.1
Adenoviridae HAdV [36] Type 4 KF006344.1
Adenoviridae HAA4V [37] Type 5 AC_000008.1
Adenoviridae HAdV [35] Type 7 AC_000018.1
Adenoviridae HAdV [38] Type 14 AY803294.1
Adenoviridae HAdV [34] Type 35 AC_000019.1
Adenoviridae HAdV [39] Type 55 MG905110.1
Orthomyxoviridae Influenza Virus A [40] A/chicken/Morocco/SF5/2016 (HIN2) LT598501.1
LT598506.1
LT598511.1 LT598516.1
LT598521.1
LT598526.1
LT598531.1
LT598536.1

(Continued)
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Table 1. (Continued)

Feature Selection Set Sequences

Orthomyxoviridae

Influenza Virus A

A/California/07/2009 (HINI)

YP_009118626.1
YP_009118628.1
CY121687.1
KU933483.1
CY121682.1
CY121684
KU933488.1
CY121683.1

Orthomyxoviridae

Influenza Virus A

A/Berlin/3/1964 (H2N2)

ACDS85187.1
ACDS85195.1
ACDS85197.1
ACDS85194.1
ACD85190.1
ACD85192.1
ACDS85188.1
ACDB85191.1

Orthomyxoviridae

Influenza Virus A

A/Shanghai/02/2013 (H7N9)

NC_026425.1
NC_026423.1
NC_026422.1
NC_026424.1
NC_026429.1
NC_026428.1
NC_026427.1
NC_026426.1

Orthomyxoviridae

Influenza Virus A

A/ruddy turnstone/Delaware Bay/262/2006 (H7N3)

ACO095657.1
ACO95665.1
ACO095667.1
ACO95664.1
ACO095660.1
ACO95662.1
ACO095658.1
ACO95661.1

Orthomyxoviridae

Influenza Virus A

A/Chicken/Hong Kong/715.5/01 (H5N1)

AF509025.1
AF509178.2
AF509152.2
AF509204.2
AF509100.2
AF509075.1
AF509049.1
AF509126.2

Orthomyxoviridae

Influenza Virus A

A/swine/France/IlleetVilaine-0346/2011 (HIN2)

KC894804.1
KR701484.1
KR701483.1
KR701485.1
KC894807.1
KR701488.1
KR701487.1
KR701486.1

Orthomyxoviridae

Influenza Virus A

A/swine/Texas/4199-2/1998(H3N2))

AEK70342.1
AADS51248.1
AEK70339.1
AEK70341.1
AEK70343.1
AEK70344.1
AEK70345.1
AEK70347.1

Extra-Familial Set Sequences

Virus Family

Virusa

Strain

Sequence Identifierb

Herpesviridae

Herpes Simplex Virus 1 [41]

NC_001806.2

(Continued)
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Table 1. (Continued)

Feature Selection Set Sequences

Herpesviridae Herpes Simplex Virus 2 HG52 NC_001798.2
Herpesviridae Porcine Cytomegalovirus BJ09 NC_022233.1
Herpesviridae Cynomolgus Macaque Cytomegalovirus Ottawa NC 016154.1

* MERS = Middle East Respiratory Syndrome, HPIV = human parainfluenza virus, HRSV = human respiratory syncytial virus, HMPV = human metapneumovirus,

HAdV = human adenovirus; references indicate that the virus is responsible for respiratory disease.

https://doi.org/10.1371/joumnal.pone.0281642.t001

counter code was used to obtain the occurrence of each amino acid (AA) for each protein. The
individual occurrences were divided by the corresponding protein amino acid length and mul-
tiplied by 100, giving %AA composition.

Statistical test of association

Two-tailed t-tests for independent samples were performed using XLSTAT v22.2.3 (Addinsoft,
2020 New York, USA) to assess the association of various features with spike vs. non-spike
protein status. Features that showed a statistically significant association (p-value r0.05)
between spike and non-spike groups and thereby rejected the null hypothesis were considered
for inclusion in the ML models.

Input vectors for ML models

Feature vectors were generated for each of the 360 protein sequences and allocated to their
appropriate dataset (described above and see Table 1). For each protein, the following features
were calculated as described above: total N-sites, density, %M, %N, %S, %sheet, %helix, %lon-
gest sheet, and %longest helix. The designation of spike or non-spike was also included.

Random forest model development

Weka, an open-source software workbench for ML and data analysis [46], was utilized to
develop Random Forest classifiers derived from the dataset described above. Random Forest
was utilized because is a supervised ensemble learning method that generates a set of uncorre-
lated decision trees maximizing the separation of the classes that are sought to be discrimi-
nated, leading to models robust to overfitting [47, 48]. Data were converted into ARFF format
(uploaded as Supporting Information) for input to the Weka Explorer version 3.8.4 to generate
specific Random Forest models (see S1 Table). For each Random Forest model, a class-bal-
anced score was also generated. The statistical significance of each model result relative to the
class-balanced score was assessed by performing a two-sided Fisher’s exact test with an alpha
cutoff of 0.05 [49]. For all Random Forest models, default hyperparameters were used—100

Table 2. Summary of respiratory virus families representation in model datasets.

Viral Family Viral Species Represented Labeled Spike Proteins Labeled Non-spike Proteins
Coronaviridae 14 14 51

Paramyxoviridae 4 4 27

Pneumoviridae 2 12 101

Adenoviridae 1 8 55

Orthomyxovride 1 8 56

Herpesviridae 4 4 20

https://doi.org/10.1371/joumnal.pone.0281642.t002
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trees using 2 predictors with an unlimited tree depth. Furthermore, for all models, assessment
was performed with stratified 10-fold cross validation while an additional extra-familial valida-
tion set was used to assess cross-family models. Model performance was evaluated by %cor-
rectly classified and AUC metrics were generated from the Receiver Operating Characteristic
(ROC) curve to indicate model performance across classification thresholds. A 95% confi-
dence interval for the AUC was calculated using the Real Statistics package for Excel to esti-
mate the true AUC performance.

Bootstrapping

One thousand 50-50 balanced bootstrapping datasets were generated from the training set
using the Weka resample filter biased towards a uniform class as depicted in Fig 2. Specifically,
50% of the dataset, 168 proteins, was for proteins designated as spike, and the other 50% were
for those designated as non-spike, while retaining the same number of total instances.

Results

To examine the feasibility of using a machine learning model trained on viral sequences to pre-
dict “spike” vs. non-spike, a data set was assembled consisting of, in total, 360 protein
sequences for 50 respiratory viruses from six virus families, with each protein labeled as
“spike” (viral attachment machinery) or non-spike. and then allocated to the appropriate

50-50 Bootstrapped Model

Bootstrapped
datasets B 1000
Random forest, 10-fold Cross-validation
%C l
(correctly %C
classified) S

Distribution of
bootstrapped %C

—
frequency
\ l

%C

Fig 2. Schematic of bootstrapping process for cross validation of selected models. In this case, each of the 1000
bootstrapped datasets contains feature vectors for 337 protein sequences.

https://doi.org/10.1371/journal.pone.0281642.g002
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Feature Selection

Gather Data Separate into Sets
P by T-tests
Obtain sequences of For feature selection, training, Identify motifs with JPred4
respiratory viruses and extra-familial validation and NetNGlyc

10-fold Cross Calculate Feature
i Generate Models
Validation Vectors
Performance assessed Random forest Generate datasets for
by Fisher’s Exact test input to WEKA

Evaluate on Further Validate

Extra-Familial Set on Balanced Set

Assess model accuracy Bootstrapping on 50-50
using validation set balanced set

Fig 3. Overall model development workflow. The procedure for the development of ML models to differentiate Spike from
non-Spike in a sequence.

https://doi.org/10.1371/jounal.pone.0281642.g003

subset—feature selection, training, or extra-familial validation (Table 1). Next, using the fea-
ture selection set, the associations between various features and the classification of “spike” vs.
non-spike for coronaviruses were examined to look for signals indicating that certain feature
types may help to differentiate “spike” vs. non-spike. The overall workflow for model develop-
ment is outlined in Fig 3.

For the coronavirus sequences in the feature selection set, two-tailed t-tests were performed
looking at the association of %helix, %sheet, %longest sheet, %longest helix, respectively, with
spike vs. non-spike status (see Table 3 for p-values, which have not been corrected for multiple
comparisons). A statistically significant association was observed for %sheet, whereas none
was for %helix, Y%longest helix, and %longest sheet. The %longest helix was examined because
when predicted secondary structure topology was examined across the SARS-CoV-2 sequence
(NC_045512.2) the spike region appeared to have more longer helical segments than the other
regions of the sequence; %longest sheet was added for completeness.

Also, for the feature selection coronavirus sequences, t-tests were performed examining the
correlation of total N-sites and density, respectively, for spike vs. non-spike (Table 3). A signif-
icant statistical difference was found for the total N-sites and density. The %AA was also exam-
ined over the coronaviruses dataset to determine if there were significant differences in amino
acid composition for spike vs. non-spike. Of the 20%AAs, a significant difference was observed
for %N, %S, and %M (refer to Table 3).

Based on these preliminary findings, we developed Random Forest machine learning classi-
fiers with a feature vector that consisted of glycosylation, amino acid composition, and second-
ary structure element related features (see Fig 4). To place these results in context, we
compared classifier accuracy in each case to the class-balanced score for the same dataset. The
class-balanced score is equivalent to the performance of a classifier which simply predicts the
majority class, non-spike in this context, providing a benchmark for classification perfor-
mance. We also performed a test of association between the class-balanced score and model
accuracy using a two-tailed Fisher’s exact test.
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Table 3. Results of t-test for spike and non-spike distributions of features used.

Features P-value
%sheet 0.001
Y%helix 0.087
%Ilongest sheet 0.208
%longest helix 0.083
Total N-sites <0.0001
N-sites Density 0.010
%M 0.032
%N 0.008
%S 0.030

https://doi.org/10.1371/joumnal.pone.0281642.t003

Our first set of Random Forest models were developed based on the coronavirus sequences
in the training set and validated using 10-fold cross validation (see S1 Table). All models classi-
fied the proteins correctly 98.6% of the time with a class-balanced score of 86.4% and a p-value
0f 0.028 (two-tailed Fisher’s Exact Test). A comparison of these five models suggests that only
total N-sites, N-site density, and secondary structure features may contribute significantly to
the models. Next, the secondary structure feature vector of model A.1 —%sheet, %helix, %lon-
gest sheet, %longest helix—was used to develop a model separately for each of the other four
virus families. For each of these models the %correctly classified ranged from 96.2% to 100%
with a sensitivity ranging from 0.86 to 1.0, and a specificity ranging from 0.98 to 1.0. To place
these results in context, the class-balanced scores for these datasets ranged from 86.8% to
88.5%. For three of the four classifiers, there was a statistically significant difference between
class-balanced scores and model accuracy, with p-values ranging from 0.004 to 0.039; the
exception being the Paramyxoviridae classifier which gave a p-value of 0.056.(two-tailed Fish-
er’s Exact Test) (see S1 Table). Models based on combining total N-sites, density, %sheet, %
helix, and %longest helix were also generated for each virus family (as for B.1), respectively; in
this case, the % correctly classified ranged from 93.5% to 100% (compared with class-balanced

N-linked Glycosylation data

Potential  Jury N-Glyc
agreement result
0.7821 (9/9)  +++
0.7724 (9/9)  +++ n
0.7640  (9/9) 4+ Wekn

10-fold Cross-validation

Tnpiit | meman
= Crrmrr I
Feature vector  Class attribute Output
Total %Sheet wo | {Spike, Prediction
N-sites Non-spike} ﬂ
PS #1 6 34.542 ... | Non-spike Parameter space PS#1 Non-spike
partitioning [:> T
PS#322 | 6 20819 | ... | Spike ¢ PS#322 | Spike
F> B Random Forest
PS = Protein Sequence \ @

Secondary Structure data % Correctly
TRIFFIDNKTSDIQSLNYDNDHS . Classified
- - = = =HHHHHHHH - - - - - Treen
B = Test data

B = Training data

Fig 4. Random forest inputs, cross validation, and outputs. Data was input for 360 protein sequences.

https://doi.org/10.1371/journal.pone.0281642.g004
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Table 4. ML models ability to differentiate spike from non-spike for the five families.

Model Features Class Balance Correctly Classified P-value AUC/CI (95%)
A %sheet, %helix, %longest sheet, %longest helix 87.66% 97.32% 0.000003 0.977%0.014
B total N-sites, density, %sheet, %helix, %longest helix 87.66% 97.03% 0.000007 0.985%0.014

https://doi.org/10.1371/joumnal.pone.0281642.t004

scores from 86.5% to 87.5%), and two-tailed Fisher’s exact test p-values ranging from 0.004 to
0.238.

These two-feature vectors (associated with the A.1 and B.1 models, respectively) were then
used to create cross-respiratory-virus family models which were validated by applying 10-fold
cross validation over the full five-family training set. Models A and B yielded %correctly classi-
fied 0f97.32% and 97.03%, respectively, relative to a class-balanced score of 87.66%, and had
an AUC for the ROC curve of 0.977 and 0.985, respectively (see Table 4).

Further model assessment was performed on the extra-familial validation set, a set consist-
ing of cytomegaloviruses and alpha herpesviruses with known respiratory activity [41] from a
sixth viral family (Herpesviridae) to which the model was naive. For this extra-familial set with
a class-balanced score of 83.33%, model A yielded a %correctly classified of 95.83% with an
AUC of 1, whereas model B yielded a %correctly classified of 83.33% with an AUC of 0.9 (see
Table 5). Cross-virus family models A and B are described in detail in Table 4.

As a further check against class imbalance, a 5050 balanced bootstrapping set was gener-
ated. Model A and B were then trained on this balanced dataset and their performance on the
extra-familial validation set was compared to the corresponding performance of the non-boot-
strapped model on the same set. For both Models A and B, the %correctly classified by the
bootstrapped 50-50 balanced model was identical to that of non-bootstrapped model, with
95.83% for Model A and 83.33% for Model B (see Table 6). Upon visual inspection of the ran-
dom forests of both non-bootstrapped and bootstrapped models, strong similarities in tree
structure and values for decision nodes were observed suggesting that bootstrapping did not
change the signal captured during training, leading to the identical performance on the extra-
familial validation set.

Discussion

It has previously been shown, prior to the emergence of SARS-CoV-2, that across coronavi-
ruses the tertiary structure of the spike protein is not conserved although the connectivity of
secondary structure elements is [8]. As evidenced in Fig 1 A, the tertiary structure of the
“spike” protein is clearly not conserved across different respiratory families. The pattern of N-
linked glycosylation of the spike protein is, however, conserved and may play a role in immune
evasion [9, 50]. Given these insights, we set out to explore whether ML models based on pre-
dicted secondary elements alone or in combination with predicted N-glycosylation sites could
be developed to classify “spike” vs. non-spike from a sequence of an unknown respiratory
virus.

Model A (based on predicted secondary structure elements alone) and model B (based on
that plus predicted N-glycosylation sites) perform well on the five respiratory virus family

Table 5. ML models ability to differentiate spike from non-spike on extra-familial set.

Model Features Class Balance Correctly Classified P-value AUC/CI (95%)
A Y%sheet, %helix, %longest sheet, %longest helix 83.33% 95.83% 0.01 1.00£0.13
B total N-sites, density, %sheet, %helix, %longest helix 83.33% 83.33% 0.3 091%0.13

https://doi.org/10.1371/joumal.pone.0281642.t005
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Table 6. Bootstrapped class-balanced models performance on extra-familial set.

Model Features Class Balance Correctly Classified P-value AUC/CI (95%)
Bootstrap A %sheet, %helix, %longest sheet, %longest helix 83.33% 95.83% 0.01 1.00£0.13
Bootstrap B total N-sites, density, %sheet, %helix, %longest helix 83.33% 83.33% 03 0.89%0.13

https://doi.org/10.1371/joumal.pone.0281642.t006

training set with accuracies just over 97 and low bias errors as shown by 10-fold cross valida-
tion. This result is particularly noteworthy given that the coronaviruses in the feature selection
set were human as were all the other viral sequences in the training set, while the coronaviruses
in the training set are from animal species. On the herpes extra-familial validation set the per-
formance of model A was maintained (96% correctly classified) while that for model B was not
(83%, the same value as the class-balanced score). The extra-familial validation set is a particu-
larly difficult test of the models in that Herpesviridae viruses have roughly 10 glycoproteins
that are not immediately responsible for cell entry, that instead act to activate the primary fuso-
genic glycoprotein or facilitate transport of proteins between the Golgi network and the mem-
brane [51]. These additional glycoproteins may lead to false positives that worsen model
accuracy. These data taken together point to the robustness of each cross-family model for the
five major respiratory families the model was trained on but suggest that only model A may be
fully robust when considering a new viral family.

Our model has limitations in that it was trained on a non-balanced set. This non-balanced
nature of “spike” vs. non-spike in the original sets, however, is reflective of the true distribution
in nature. In addition, bootstrapped models were also generated from the training set by utiliz-
ing datasets that were 50—-50 balanced for “spike” vs. non-spike; this was done to eliminate the
possibility that the accuracy of the models could be due to the fact that non-spike was overrep-
resented in the sets. Irrespective of class balance, models A and B performed equally well at dif-
ferentiating “spike” from non-spike for respiratory virus sequences. Another potential
weakness of our analysis is that the extra-familial validation test set may be too stringent in
that while Herpes viruses can cause respiratory symptoms they are not generally thought of as
respiratory family viruses. Furthermore, since the model was trained on viruses that elicit
respiratory illness, its utility on viral sequences in general is unknown.

These models could be useful in the pre-pandemic stages of an emerging respiratory patho-
gen, aiding in a rapid response to prevent to prevent outbreaks from growing into a pandemic.
Allowing researchers to identify the viral surface glycoprotein responsible for host cell entry
within seconds with a high degree of confidence for an unknown viral sequence, would pro-
vide the global community with the opportunity to quickly focus on a key drug and vaccine
target. The models could also help to characterize pathogens of concern (as, e.g., the WHO pri-
ority diseases 2022 list) prior to the epidemic stage, aiding in preparedness.

Beyond the predictive power of the models, perhaps the most-interesting finding of this
work relates to the signal in the data, suggesting that surface proteins can be characterized by
their secondary structure elements and sequence prevalence. Like the SARS-CoV-2 spike pro-
teins, most viral surface glycoproteins responsible for host cell entry have minimal extended
sheets relative to helices. The helices tend to run anti-parallel in the pre-fusion protein, and
undergo a conformational change to a form with longer contiguous helices post-fusion [52].
Proteins with higher %helix and %longest helix may be more likely to undergo this conforma-
tional change. The likelihood may be further increased if the protein has a low %sheet and %
longest sheet.

The relationship between structure and function has long been discussed at the tertiary
level [53—56]. This work points to a relationship that is discernable and meaningful even at the
secondary structure level through ML approaches. Furthermore, this signal in the data can be
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captured by using standard methods to predict the secondary structural elements from
sequence alone. Taken together this work suggests that models of these types based on pre-
dicted secondary elements and sequence prevalence could potentially be further developed in
the future for rapid sequence annotation in general.
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