
Mathematical Biosciences 356 (2023) 108967

r

h
R
A
0

Contents lists available at ScienceDirect

Mathematical Biosciences

journal homepage: www.elsevier.com/locate/mbs

Original Research Article

Imperfect vaccine can yieldmultiple Nash equilibria in vaccination games
Ian B. Augsburger a, Grace K. Galanthay b, Jacob H. Tarosky c, Jan Rychtář d,∗, Dewey Taylor d
a Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
b Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA 01610, USA
c Department of Mathematical Sciences, High Point University, High Point, NC 27268, USA
d Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, USA

A R T I C L E I N F O

Keywords:
Nash equilibrium
Imperfect vaccination
Multiple equilibria
Game theory
Golden ratio

A B S T R A C T

As infectious diseases continue to threaten communities across the globe, people are faced with a choice to
vaccinate, or not. Many factors influence this decision, such as the cost of the disease, the chance of contracting
the disease, the population vaccination coverage, and the efficacy of the vaccine. While the vaccination
games in which individuals decide whether to vaccinate or not based on their own interests are gaining in
popularity in recent years, the vaccine imperfection has been an overlooked aspect so far. In this paper we
investigate the effects of an imperfect vaccine on the outcomes of a vaccination game. We use a simple SIR
compartmental model for the underlying model of disease transmission. We model the vaccine imperfection
by adding vaccination at birth and maintain a possibility for the vaccinated individual to become infected. We
derive explicit conditions for the existence of different Nash equilibria, the solutions of the vaccination game.
The outcomes of the game depend on the complex interplay between disease transmission dynamics (the basic
reproduction number), the relative cost of the infection, and the vaccine efficacy. We show that for diseases
with relatively low basic reproduction numbers (smaller than about 2.62), there is a little difference between
outcomes for perfect or imperfect vaccines and thus the simpler models assuming perfect vaccines are good
enough. However, when the basic reproduction number is above 2.62, then, unlike in the case of a perfect
vaccine, there can be multiple equilibria. Moreover, unless there is a mandatory vaccination policy in place
that would push the vaccination coverage above the value of unstable Nash equilibrium, the population could
eventually slip to the ‘‘do not vaccinate’’ state. Thus, for diseases that have relatively high basic reproduction
numbers, the potential for the vaccine not being perfect should be explicitly considered in the models.
1. Introduction

Vaccination is one of the most effective ways to control and prevent
the spread of infectious diseases [1]. As infectious diseases continue to
threaten communities across the globe, people are faced with a choice
to vaccinate, or not. Many factors influence this decision, such as the
cost of the disease, the chance of contracting the disease, the population
vaccination coverage, and the efficacy of the vaccine [2].

Individuals tend to choose a vaccination strategy that has the high-
est personal benefit, often without considering how their choice could
lead to vaccination levels that are suboptimal for the entire popu-
lation [3,4]. When the risk of infection and cost of the disease are
high, it is optimal for an individual to vaccinate. However, as the
proportion of vaccinated people in a population increases, the incentive
for unvaccinated people to vaccinate decreases, leading to sub-optimal
vaccination levels in the population [5].

Vaccination game theory gained popularity in recent years because
it is useful in studying complex scenarios in which self-interested
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individuals take actions based on the decisions of the rest of the
population [6]. As argued in [7], by incorporating human behavior,
vaccination games provide more insight and better predictions than
simpler compartmental ODE models. Vaccination game theory is thus
an excellent tool for predicting vaccination coverage [8,9]. The game
theory has been applied to modeling diseases such as smallpox [10,
11], chickenpox [12], monkeypox [13,14], polio [5,15], measles [16],
influenza [17], Ebola [18], COVID-19 [19–21], chikungunya [22],
Hepatitis B [23,24], typhoid [25], and cholera [26].

The above models are all for perfect vaccines, i.e., individuals gain
immunity once vaccinated. However, even the most effective vaccines
are not perfect. The yellow fever vaccine has efficacy 99% [27], MMR
vaccine is 97% effective against measles and rubella, and 88% effective
against mumps [28], the chickenpox (varicella) vaccine is only 90%
effective [29,30]. Imperfect vaccines have still provided many benefits,
such as reducing the severity of symptoms (i.e. lowering the cost of
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the disease), decreasing the rate of transmission, and reducing the
prevalence of the disease in the population [1].

Imperfect vaccines in general have been studied both from math-
ematical [31] and biological [32] perspectives. Models have been
developed for HIV/AIDS [33], SARS [34], malaria [35], cholera [36],
tuberculosis [37], and COVID-19 [38]. Additionally, Magori and Park
[39] studied the consequences of imperfect vaccines, Peng et al. [40]
studied susceptible-infected-susceptible epidemic model with imperfect
vaccination on dynamic contact networks, Abboubakar et al. [41]
explored imperfect vaccines as a way to control arboviral diseases,
and Arino and Milliken [42] related imperfect vaccines to the treatment
of COVID-19.

There are two main mechanisms of imperfect vaccines: ‘‘all-or-
nothing’’ and ‘‘leaky’’ vaccine [43]. An ‘‘all-or-nothing’’ vaccine offers
full protection to a fraction of vaccinated individuals but does not offer
any protection at all to the remainder of the vaccinated population.
On the other hand, a ‘‘leaky’’ vaccine offers partial protection to every
vaccinated individual. Both kind of mechanisms have been extensively
modeled; see for example [44–46] for all-or-nothing vaccines and [47–
50] for leaky vaccines.

From the vaccination game theory perspective, Wu et al. [51]
was one of the first models to consider imperfect vaccines. They
found thresholds for basic reproduction number to influence the out-
comes. Kuga and Tanimoto [52] found out that even an imperfect
vaccine is slightly better than a defense against contagion such as
wearing a mask. Choi and Shim [20] incorporated imperfect vaccine
to COVID-19 model and Augsburger et al. [14] considered imperfect
smallpox vaccine in the prevention of monkeypox. The last two studies
empirically found the existence of multiple equilibria but did not
systematically study the conditions that yield to them.

In our study, we extend a simple SIRV model developed by Bauch
and Earn [6]. We find steady states of the underlying disease transmis-
sion dynamics. We add the game-theoretical component and solve the
resulting vaccination game. We derive explicit conditions for different
Nash equilibria to exist. We show that there is a region of parameter
values where multiple Nash equilibria can exist at the same time.

2. Model

2.1. Compartmental ODE model

We extend a simple SIRV model developed by Bauch and Earn [6]
by adding the possibility of vaccinated individuals getting infected.

The population is divided into four groups: susceptible (𝑆), vacci-
nated (𝑉 ), infected (𝐼), and recovered individuals (𝑅). Individuals are
born at a rate 𝛬. The proportion 𝑝 of the newborns are vaccinated
and enter the 𝑉 compartment. The remaining proportion 1 − 𝑝 enters
the susceptible compartment. The susceptible individuals get infected
at rate 𝛽 𝐼

𝑁 where 𝑁 = 𝑆 + 𝐼 + 𝑅 + 𝑉 is the total population size.
he vaccine is not perfect, and thus even vaccinated individuals can
ecome infected. The vaccine efficacy is 𝑒, and thus the vaccinated
ndividuals become infected at rate (1 − 𝑒)𝛽 𝐼

𝑁 . The infected individuals
recover at rate 𝛾 and the recovered individuals gain lifelong immunity.
All individuals die at a rate 𝜇. The dynamics are summarized in Fig. 1.
The notation is summarized in Table 1.

The model yields the following system of differential equations.
𝑑𝑆
𝑑𝑡

= (1 − 𝑝)𝛬 −
(

𝜇 + 𝛽 𝐼
𝑁

)

𝑆 (1)
𝑑𝐼
𝑑𝑡

= 𝛽 𝐼
𝑁

(

𝑆 + (1 − 𝑒)𝑉
)

− (𝜇 + 𝛾)𝐼 (2)
𝑑𝑅
𝑑𝑡

= 𝛾𝐼 − 𝜇𝑅 (3)
𝑑𝑉
𝑑𝑡

= 𝑝𝛬 −
(

𝜇 + (1 − 𝑒)𝛽 𝐼
𝑁

)

𝑉 (4)
2

Fig. 1. Scheme of the SIRV model.

Table 1
Model notation.
Notation Meaning

𝑆 Susceptible individuals
𝐼 Infected individuals
𝑅 Recovered individuals
𝑉 Vaccinated individuals
𝑁 Total population size
𝜇 Natural death rate
𝛬 Natural birth rate
𝛽 Disease effective transmission rate
𝛾 Recovery rate
𝑒 Vaccine efficacy
𝑝 Proportion of vaccinated newborns
𝐶𝐷 Cost of ‘‘disease" relative to the cost of vaccination

As derived in Appendix A, the system has only one equilibrium
E ∗ = (𝑆∗, 𝐼∗, 𝑅∗, 𝑉 ∗) given as follows.

∗ =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0, if R0(1 − 𝑒𝑝) ≤ 1,
𝛬
𝛽
(

R0(1 − 𝑝) − 1
)

, if 𝑒 = 1 and R0(1 − 𝑝) > 1,
𝛬
𝛽
(R0 − 1), if 𝑝 = 0 and R0 > 1,

𝛬
𝛽

(

R0 −
1

1 − 𝑒

)

, if 𝑝 = 1, 𝑒 < 1, and R0(1 − 𝑒) > 1,

𝛬
𝛽
−𝑏 +

√

𝑏2 + 4(1 − 𝑒)𝑐
2(1 − 𝑒)

, if 𝑒 < 1, 𝑝 ∈ (0, 1) and R0(1 − 𝑒𝑝) > 1.

(5)

where

R0 =
𝛽

𝜇 + 𝛾
(6)

is the basic reproduction number in the unvaccinated population and

𝑏 = 1 + (1 − 𝑒)(1 − R0) (7)

𝑐 = R0(1 − 𝑒𝑝) − 1. (8)

Furthermore,

𝑆∗ =
(1 − 𝑝)𝑁
1 + 𝛽

𝛬 𝐼
∗

(9)

𝑅∗ =
𝛾
𝜇
𝐼∗ (10)

𝑉 ∗ =
𝑝𝑁

1 + (1−𝑒)𝛽
𝛬 𝐼∗

. (11)

We show the detailed calculations in the Appendix A.
Let 𝑝𝐻𝐼 be the minimal level of vaccination needed for achieving a

herd immunity; specifically let 𝑝𝐻𝐼 ∈ [0, 1] be such that R0(1 − 𝑒𝑝) < 1
for all 𝑝 > 𝑝𝐻𝐼 . With this interpretation, we are using 𝑝𝐻𝐼 = 1 as a
hortcut for R0(1 − 𝑒𝑝) > 1 for all 𝑝 ∈ [0, 1], i.e., if 𝑝𝐻𝐼 = 1, then
the disease will not be eradicated even if the whole population gets
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vaccinated. We find

𝑝𝐻𝐼 =

⎧

⎪

⎨

⎪

⎩

0 if R0 ≤ 1
𝛽−(𝜇+𝛾)

𝑒𝛽 if 0 < 1 − 1
R0

≤ 𝑒 ≤ 1

1 if 0 ≤ 𝑒 < 1 − 1
R0

.

(12)

2.2. Game-theoretical framework

We extend the above ODE model by incorporating the game-
theoretic component as done in [6].

A vaccination game is played by susceptible individuals. The in-
dividuals decide whether to vaccinate or stay unvaccinated. They are
assumed to be rational, having complete information about the disease
epidemic, and acting in their own interest. It means that they can
evaluate the potential costs and benefits of their own action depending
on the actions of others and they choose the action that maximizes the
net payoffs (benefits minus costs). The key is that the payoff to the
individual is a function that depends on the action of that individual
and the actions of other players. The payoff incorporates the cost of the
vaccination, the risk of getting infected, and the costs of the disease.

The cost of vaccination includes a combination of monetary costs
(such as a copay or lost wages at work for taking time off to get vac-
cinated, etc.) and sometimes hard to quantify costs in terms of vaccine
side-effects. For example, for COVID-19 vaccines, there is a variety
of side-effects [53] that can range from relatively mild [54] to more
serious [55]. The cost of disease is also a combination of monetary costs
of medical expenses, potentially lost wages or productivity, and/or loss
of quality of life. For simplicity, we will assume that the population is
homogeneous and thus all individuals incur the same costs. With this,
we can assume that the cost of vaccination is 1 and the cost of the
disease, 𝐶𝐷, is expressed relative to the cost of the vaccination.

Assume that the whole population, aside from a single focal individ-
ual, adopts a strategy 𝑝. If the population is large enough, the decision
f a single individual will not have a significant impact on the steady
tate of the dynamics. Thus, in this population, the number of infectious
ndividuals 𝐼∗ is given by (5).
The probability that a susceptible unvaccinated individual contracts
disease in this is thus given by

𝑁𝑉 =
𝛽 𝐼∗

𝑁

𝛽 𝐼∗
𝑁 + 𝜇

. (13)

Similarly, the probability that a vaccinated individual contracts the
disease is

𝜋𝑉 =
(1 − 𝑒)𝛽 𝐼∗

𝑁

(1 − 𝑒)𝛽 𝐼∗
𝑁 + 𝜇

. (14)

s shown in Appendix A, 𝐼∗ is a decreasing function of 𝑝 whenever
∗ > 0. Thus, 𝜋𝑁𝑉 and 𝜋𝑉 are decreasing concave down functions on
0, 𝑝𝐻𝐼 ]; see Fig. 2.
The incentive function ℎ(𝑝) for an individual to vaccinate when the

population vaccination coverage is 𝑝 is given by a difference between
he expected costs if not vaccinated and the cost if vaccinated (includ-
ng the potential cost of contracting the disease). If not vaccinated,
he individuals will contract the disease with probability 𝜋𝑁𝑉 and in
hat instance pay the cost 𝐶𝐷, the cost of the disease relative to the
ost of the vaccine. If vaccinated, the individuals have to pay the unit
accination cost and they can still contract the disease with probability
𝑉 . Thus,

(𝑝) = 𝐶𝐷(𝜋𝑁𝑉 − 𝜋𝑉 ) − 1. (15)

The solution of the vaccination game is called Nash equilibrium and it
is the population vaccination coverage 𝑝 such that in this population
𝑁𝐸 I

3

no individual has an incentive to deviate from the population strategy.
It means that

𝑝𝑁𝐸 =

⎧

⎪

⎨

⎪

⎩

0, if ℎ(0) < 0,
1, if ℎ(1) > 0,
𝑝 ∈ (0, 1), if ℎ(𝑝) = 0.

(16)

We note that the above three options are, a priori, not mutually
exclusive and we will indeed see later that multiple Nash equilibria can
exist. At the same time, when 𝑒 = 1, 𝜋𝑉 = 0 and it was demonstrated
already in [6] that there is a unique 𝑝𝑁𝐸 ∈ [0, 1). When 𝑒 = 1 and the
accine is perfect, 𝜋𝑉 = 0 and thus the shape of the incentive function
is the same as the shape of 𝜋𝑁𝑉 . In particular, ℎ is decreasing since
𝜋𝑁𝑉 is decreasing in 𝑝. However, when 𝑒 < 1, the incentive function
ℎ can be increasing for some values of 𝑝 which yields multiple Nash
equilibria; see Figs. 2 and 4.

Furthermore, the first two cases of (16) are convergently stable Nash
equilibria (CSNE), i.e., regardless of what (nearby) strategy is adopted
in the population, individuals should start to play strategies closer to
the NE, and ultimately adopt the NE strategy [6]. The third case is CSNE
when ℎ′(𝑝) < 0. A NE is CSNE if (1) when 𝑝 > 𝑝𝑁𝐸 and 𝑝 ∈ (0, 1) is
lose enough to 𝑝𝑁𝐸 , then ℎ(𝑝) < 0, i.e., the individual prefers not to
vaccinate (and thus the population vaccination strategy will decrease
once enough individuals make the optimal choice), and (2) when 𝑝 <
𝑝𝑁𝐸 and 𝑝 ∈ (0, 1) is close enough to 𝑝𝑁𝐸 , then ℎ(𝑝) > 0, i.e., the
individual prefers to vaccinate (and the population vaccination strategy
will increase once enough individuals make the optimal choice). In
either case, the population coverage 𝑝 will tend to 𝑝𝑁𝐸 . Finally, when
ℎ(𝑝) = 0 and ℎ′(𝑝) > 0, then 𝑝𝑁𝐸 = 𝑝 is NE but not CSNE.

3. Analysis

To find and classify Nash equilibria, we have to find and classify
roots of the incentive function ℎ. Because the formulas for ℎ are tedious,
instead of studying the function ℎ directly, we will study the auxiliary
function

ℎ(𝑥) = 𝐶𝐷

(

𝑥
𝑥 + 1

−
(1 − 𝑒)𝑥

(1 − 𝑒)𝑥 + 1

)

− 1 (17)

and use the following Lemma to find the correspondence between the
roots and signs of ℎ and ℎ̃.

Lemma 1. For every 𝑝 ∈ [0, 1], ℎ(𝑝) = ℎ̃
(

𝛽
𝛬 𝐼

∗(𝑝)
)

.

Proof. By (15), (13), and (14),

ℎ(𝑝) = 𝐶𝐷(𝜋𝑁𝑉 − 𝜋𝑉 ) − 1 (18)

= 𝐶𝐷

⎛

⎜

⎜

⎝

𝛽 𝐼∗

𝑁

𝛽 𝐼∗
𝑁 + 𝜇

−
(1 − 𝑒)𝛽 𝐼∗

𝑁

(1 − 𝑒)𝛽 𝐼∗
𝑁 + 𝜇

⎞

⎟

⎟

⎠

− 1 (19)

= 𝐶𝐷

⎛

⎜

⎜

⎝

𝛽 𝐼∗

𝑁𝜇

𝛽 𝐼∗
𝑁𝜇 + 1

−
(1 − 𝑒)𝛽 𝐼∗

𝑁𝜇

(1 − 𝑒)𝛽 𝐼∗
𝑁𝜇 + 1

⎞

⎟

⎟

⎠

− 1. (20)

This concludes the proof because, as shown in Appendix B, 𝑁 = 𝛬
𝜇 ,

i.e., 𝑁𝜇 = 𝛬. □

While we are primarily interested in the behavior of the incentive
function ℎ(𝑝) on [0, 1], it will be easier to investigate the function ℎ̃(𝑥)
n [0,∞).

emma 2. For 𝑥 ∈ [0,∞), the sign of ℎ̃(𝑥) is the opposite of the sign of

(𝑥) = (1 − 𝑒)𝑥2 + (2 − 𝑒(1 + 𝐶𝐷))𝑥 + 1. (21)

n particular, the roots of ℎ̃(𝑥) are given by the roots of the function 𝑞(𝑥).
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Fig. 2. (a) Risks of infection if unvaccinated, 𝜋𝑁𝑉 (solid line), or if vaccinated, 𝜋𝑉 (dotted line). (b) Marginal risks of infection if unvaccinated, 𝑑𝜋𝑁𝑉

𝑑𝑝
(solid line), or if vaccinated,

𝑑𝜋𝑉
𝑑𝑝

(dotted line). Parameter values are 𝛬 = 5, 𝜇 = 1, 𝛾 = 1, 𝛽 = 10, i.e., R0 = 5. While 𝜋𝑉 ≤ 𝜋𝑁𝑉 for all 𝑝, the interesting behavior and multiple Nash equilibria are result of the
act that 𝑑𝜋𝑉

𝑑𝑝
can be less than 𝑑𝜋𝑁𝑉

𝑑𝑝
, i.e., the incentive function can be increasing when the vaccine is not perfect. Note that the marginal risk of infection is not continuous at

𝑝 = 𝑝𝐻𝐼 with the value being very low for 𝑝 < 𝑝𝐻𝐼 and 0 for 𝑝 > 𝑝𝐻𝐼 .
i
f

C

T

Proof.

ℎ(𝑥) = 𝐶𝐷

(

𝑥
𝑥 + 1

−
(1 − 𝑒)𝑥

(1 − 𝑒)𝑥 + 1

)

− 1 =
𝐶𝐷𝑥𝑒

(𝑥 + 1)((1 − 𝑒)𝑥 + 1)
− 1 (22)

= −
(1 − 𝑒)𝑥2 + (2 − 𝑒(1 + 𝐶𝐷))𝑥 + 1

(𝑥 + 1)((1 − 𝑒)𝑥 + 1)
= −

𝑞(𝑥)
(𝑥 + 1)((1 − 𝑒)𝑥 + 1)

. □

(23)

Next, we show an intuitive fact that if 𝐶𝐷 < 1, i.e., if the vaccine
costs more than the disease, then nobody would vaccinate.

Lemma 3. If 𝐶𝐷 < 1, then ℎ̃(𝑥) < 0 for all 𝑥 ∈ [0,∞) and ℎ(𝑝) < 0 for
ll 𝑝 ∈ [0, 1].

Proof. If 𝐶𝐷 < 1, then, for any 𝑥 ∈ [0,∞),

𝑞(𝑥) = (1 − 𝑒)𝑥2 + (2 − 𝑒(1 + 𝐶𝐷))𝑥 + 1 (24)

> (1 − 𝑒)𝑥2 + (2 − 𝑒(1 + 1))𝑥 + 1 (25)

= (1 − 𝑒)(𝑥 + 1)2 + 𝑒 > 0. (26)

The conclusions thus follow from Lemmas 2 and 1. □

For the rest of the analysis, we will thus assume 𝐶𝐷 > 1 unless
explicitly stated otherwise.

For 𝑒 = 1, the behavior of ℎ̃ is easy to understand and it is
summarized in the next Lemma.

Lemma 4. If 𝑒 = 1 (and 𝐶𝐷 > 1), the function ℎ̃ is increasing on [0,∞)
and the only root is given by

𝑥𝑒=1 =
1

𝐶𝐷 − 1
. (27)

roof. When 𝑒 = 1, by (17), ℎ̃(𝑥) = 𝐶𝐷
𝑥

𝑥+1 − 1 which is an increasing
function with the only root given by (27). □

Thus, unless explicitly stated otherwise, we will assume 𝑒 < 1,
i.e., we will be dealing with a quadratic function in (21).

The next Lemma quantifies the intuitive fact that if the vaccine
efficacy 𝑒 is too low, then there is no incentive to vaccinate.

Lemma 5. If

4𝐶𝐷

(1 + 𝐶𝐷)2
> 𝑒, (28)

(and 𝑒 < 1 and 𝐶 > 1), ℎ̃(𝑥) < 0 for 𝑥 ∈ [0,∞) and ℎ(𝑝) < 0 for 𝑝 ∈ [0, 1].
𝐷

4

Proof. If (28) holds, then 4𝐶𝐷 > 𝑒(1+𝐶𝐷)2. Thus, the discriminant for
the quadratic function (21) given by

(2 − 𝑒(1 + 𝐶𝐷))2 − 4(1 − 𝑒) = 4 − 4𝑒(1 + 𝐶𝐷) + 𝑒2(1 + 𝐶𝐷)2 − 4 + 4𝑒 (29)

= −4𝑒𝐶𝐷 + 𝑒2(1 + 𝐶𝐷)2 (30)

s negative. Since 𝑞(0) = 1 > 0, 𝑞(𝑥) > 0 for all 𝑥. By Lemma 2, ℎ̃(𝑥) < 0
or all 𝑥 ∈ [0,∞). By Lemma 1, ℎ(𝑝) < 0 for all 𝑝 ∈ [0, 1]. □

3.1. Condition for ‘‘do not vaccinate’’ to be NE and CSNE

First, we prove a general theorem that characterizes the existence
of NE at 0. We note that when 0 is Nash equilibrium, it is automatically
SNE as discussed at the end of Section 2.2.

heorem 1. 𝑝 = 0 is Nash equilibrium if and only if

𝑒 <
R2

0
(R0 − 1) ⋅ (𝐶𝐷 + R0)

. (31)

Proof. By (16), the strategy to not vaccinate is Nash equilibrium if and
only if ℎ(0) < 0. This is, by Lemma 1, equivalent to ℎ̃

(

𝛽
𝛬 𝐼

∗(0)
)

< 0,
i.e., by (5), to ℎ̃(R0 − 1) < 0. By Lemma 2, the last statement is
equivalent to 𝑞(R0 − 1) > 0, i.e., to

0 < (1 − 𝑒)(R0 − 1)2 + (2 − 𝑒(1 + 𝐶𝐷))(R0 − 1) + 1. (32)

The last statement is equivalent to (31). □

To fully understand the condition (31), we will use the following
Lemma which investigates the behavior of the right-hand side of (31)
as a function of R0 or as a function of 𝐶𝐷.

Lemma 6.
R2

0
(R0 − 1) ⋅ (𝐶𝐷 + R0)

≥
4𝐶𝐷

(𝐶𝐷 + 1)2
. (33)

The equality in (33) happens if and only if one of the following equivalent
statements is true:

1. R0 =
2𝐶𝐷
𝐶𝐷−1 > 2,

2. R0 > 2 and 𝐶𝐷 = 1 + 2
R0−2

.

Moreover, when the equality in (33) happens, then
4𝐶𝐷 = 1 − 1 . (34)
(𝐶𝐷 + 1)2 (R0 − 1)2
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Proof. Consider 𝐶𝐷 fixed for a moment and let us study 𝑓 (𝑟) =
𝑟2

(𝑟−1)⋅(𝐶𝐷+𝑟) as a function of 𝑟 ∈ [1,∞). We have 𝑓 ′(𝑟) ⋚ 0 if and only if
2(𝐶𝐷 −1)− 2𝑟𝐶𝐷 ⋚ 0. Thus, the function attains its minimum on [1,∞)
hen 𝑟 = 2𝐶𝐷

𝐶𝐷−1 . Furthermore, 𝑓
(

2𝐶𝐷
𝐶𝐷−1

)

= 4𝐶𝐷
(𝐶𝐷+1)2 . This concludes the

proof of the first part.
Note that 2𝐶𝐷

𝐶𝐷−1 > 2 and thus the inequality (33) is always strict for
0 ≤ 2.
When 2 < R0 = 2𝐶𝐷

𝐶𝐷−1 , then 𝐶𝐷 = 1 + 2
R0−2

which concludes the
proof of the second part.

Finally, if 𝐶𝐷 = 1 + 2
R0−2

, then

4𝐶𝐷

(𝐶𝐷 + 1)2
=

4 R0
R0−2

(

2R0−2
R0−2

)2
=

R0(R0 − 2)
(R0 − 1)2

= 1 − 1
(R0 − 1)2

. □ (35)

.2. Condition for ‘‘always vaccinate’’ to be NE and CSNE

First, we prove a general theorem that characterizes the existence
f NE at 1. We note that when 1 is Nash equilibrium, it is automatically
SNE as discussed at the end of Section 2.2.

heorem 2. The following statements are equivalent.

1. 𝑝 = 1 is Nash equilibrium.
2. 𝐶𝐷 is high enough, specifically

𝐶𝐷 >
R2

0 (1 − 𝑒)2 − 𝑒
𝑒((1 − 𝑒)R0 − 1)

− 1. (36)

3. The vaccine efficacy satisfies

−𝐵 −
√

𝐵2 − 4𝐴R0
2𝐴

< 𝑒 <
−𝐵 +

√

𝐵2 − 4𝐴R0
2𝐴

(37)

where

𝐴 = 1 + 𝐶𝐷 + R0 (38)

𝐵 = −2R0 − 1 − 𝐶𝐷

(

1 − 1
R0

)

(39)

roof. By (16), the strategy to always vaccinate is NE if and only if
(1) > 0. This is, by Lemma 1, equivalent to ℎ̃

(

𝛽
𝛬 𝐼

∗(1)
)

> 0, i.e., by

5), to ℎ̃
(

R0 −
1

1−𝑒

)

> 0. By Lemma 2, the last statement is equivalent

o 𝑞
(

R0 −
1

1−𝑒

)

< 0, i.e., to

> (1 − 𝑒)
(

R0 −
1

1 − 𝑒

)2
+ (2 − 𝑒(1 + 𝐶𝐷))

(

R0 −
1

1 − 𝑒

)

+ 1 (40)

= R2
0 (1 − 𝑒) − 1

1 − 𝑒
− 𝑒(1 + 𝐶𝐷)R0 +

𝑒(1 + 𝐶𝐷)
1 − 𝑒

+ 1, (41)

hich is equivalent to (36).
The equivalence of the last two statements can be shown by alge-

raic manipulations. □

Note that as 𝑒 approaches 1 − 1
R0

from below or 0 from above, the
right hand side of (36) approaches ∞.

To better understand conditions on 𝐶𝐷 and 𝑒 under which 𝑝 = 1 can
be NE, we will use the following two Lemmas.

Lemma 7. The strategy to always vaccinate can be NE only if

𝐶𝐷 > 1
(

1 − 1
√

R0

)2
. (42)

Proof. The condition (37) can be satisfied only if

< 𝐵2 − 4𝐴R0 = 𝐶2
(

1 − 1
)2

− 2𝐶𝐷

(

1 + 1
)

+ 1. (43)
𝐷 R0 R0

5

his is possible only if either

𝐷 >
2
(

1 + 1
R0

)

+
√

4
(

1 + 1
R0

)2
− 4

(

1 − 1
R0

)2

2
(

1 − 1
R0

)2
=

1 + 1
R0

+
√

2
R0

(

1 − 1
R0

)2

(44)

= 1
(

1 − 1
√

R0

)2
(45)

r

𝐷 <
2
(

1 + 1
R0

)

−
√

4
(

1 + 1
R0

)2
− 4

(

1 − 1
R0

)2

2
(

1 − 1
R0

)2
= 1

(

1 + 1
√

R0

)2
< 1.

(46)

Since we need 𝐶𝐷 > 1, 𝑝 = 1 can be NE only if this happens only if
42). □

emma 8. In the notation of Theorem 2,

− 1
R0

>
−𝐵 +

√

𝐵2 − 4𝐴R0
2𝐴

. (47)

and
4𝐶𝐷

(1 + 𝐶𝐷)2
≤

−𝐵 +
√

𝐵2 − 4𝐴R0
2𝐴

. (48)

Moreover, the equality in (48) happens if and only if

𝑒 = 1 −

(

1 +
√

1 + 4R0

2R0

)2

, and (49)

𝐶𝐷 = 2
𝑒
− 1 + 2

√

1
𝑒2

− 1
𝑒
. (50)

Proof. To proof the first inequality, substitute 𝑒 = 1 − 1
R0

into (41).
Since 1 − 𝑒 = R−1

0 , we get

R2
0 (R

−1
0 )−R0−(1− 1

R0
)(1+𝐶𝐷)R0+

(1 − 1
R0

)(1 + 𝐶𝐷)

R0
−1

+1 = 1 > 0. (51)

Thus, as in the proof of Theorem 2, the inequalities in (37) cannot hold.
Consequently, (47) must be true.

To prove the second part of the Lemma, substitute 𝑒 = 4𝐶𝐷
(1+𝐶𝐷)2 into

(40). Since (2 − 𝑒(1 + 𝐶𝐷))2 = 2
√

1 − 𝑒, we get

(1 − 𝑒)
(

R0 −
1

1 − 𝑒

)2
+ (2 − 𝑒(1 + 𝐶𝐷))

(

R0 −
1

1 − 𝑒

)

+ 1

=
(
√

1 − 𝑒
(

R0 −
1

1 − 𝑒

)

+ 1
)2

≥ 0. (52)

Thus, as in the proof of Theorem 2, the inequalities in (37) must hold.
Consequently, (48) must be true.

The equality in (52) (and, consequently, in (48)) happens if only

if
√

1 − 𝑒
(

R0 −
1

1−𝑒

)

= −1, i.e., when 𝑒 = 1 −
(

1+
√

1+4R0
2R0

)2
. Finally,

solving 𝑒 = 4𝐶𝐷
(𝐶𝐷+1)2 for 𝐶𝐷, yields

𝐶2
𝐷 + (2𝑒 − 4)𝐶𝐷 + 𝑒 = 0. (53)

he solutions are given by 4−2𝑒±
√

(2𝑒−4)2−4𝑒2
2𝑒 . Note that only the larger

root is greater than 1 which yields (50). □

3.3. Roots of the incentive function

In this section, we will be concerned with the roots of the functions
ℎ and ℎ̃. First let us state the theorems that gives the formulas for their
roots.
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Theorem 3. If 𝐶𝐷 > 1 and 4𝐶𝐷
(1+𝐶𝐷)2 ≤ 𝑒 and 𝑒 < 1, then there are two

roots of ℎ̃(𝑥) given by

𝑥1,2 =
𝑒(1 + 𝐶𝐷) − 2 ±

√

(𝑒(1 + 𝐶𝐷) − 2)2 − 4(1 − 𝑒)
2(1 − 𝑒)

. (54)

Moreover, the solutions of ℎ(𝑝) = 0 are given by

𝑝1,2 =
R0 − 1 − (1 − 𝑒)𝑥21,2 − 𝑏𝑥1,2

𝑒R0
, (55)

where

𝑏 = 1 + (1 − 𝑒)(1 − R0). (56)

Also, 𝑥1 > 𝑥2 > 0 and 𝑝1 < 𝑝2.

Proof. As in the proof of Lemma 5 under the assumptions of this
heorem, the discriminant of 𝑞(𝑥) is positive. Thus, 𝑞(𝑥) has two real
oots given by (54). By Lemma 2, the roots of ℎ̃ are given by the same
ormulas.
Moreover,

(1 + 𝐶𝐷) − 2 ≥
4𝐶𝐷

1 + 𝐶𝐷
− 2 = 2

𝐶𝐷 − 1
1 + 𝐶𝐷

> 0. (57)

Thus, 0 < 𝑥2 < 𝑥1. To study the roots of ℎ, recall (see also Appendix A)
that 𝐼∗ solves

(1 − 𝑒)
(

𝛽
𝛬
𝐼
)2

+ 𝑏
(

𝛽
𝛬
𝐼
)

− R0(1 − 𝑒𝑝) + 1 = 0. (58)

hus, if 𝑥 = 𝛽
𝛬 𝐼 is a root of ℎ̃(𝑥), it solves

1 − 𝑒)𝑥2 + 𝑏𝑥 − R0(1 − 𝑒𝑝) + 1 = 0. (59)

Consequently, the two roots of ℎ are given by (55). Moreover, since
𝑥1 > 𝑥2 > 0, 𝑝2 > 𝑝1. □

For the completeness, we will find the root of ℎ even in the case of
𝑒 = 1.

Lemma 9. If 𝑒 = 1 and 𝐶𝐷 > 1, there is only one solution of ℎ(𝑝) = 0
given by

𝑝𝑒=1 = 1 −
𝐶𝐷

R0(𝐶𝐷 − 1)
. (60)

Proof. By Lemma 4, there is only one root of ℎ̃ given by 𝑥𝑒=1 =
1

𝐶𝐷−1 .
As in the proof of Theorem 3, the relationship between the roots of ℎ
and ℎ̃ is given by (59). For 𝑒 = 1, this simplifies to

𝑒=1 − R0(1 − 𝑝𝑒=1) + 1 = 0. (61)

hus,

𝑒=1 = 1 −
𝑥𝑒=1 + 1

R0
= 1 −

𝐶𝐷
R0(𝐶𝐷 − 1)

. □ (62)

While the above Theorem 3 gives formulas for the roots of ℎ, it does
ot guarantee that the roots will be in [0, 1]. For example, note that 𝑝𝑒=1
s in [0, 1], or, more precisely, in [0, 1 − 1

R0
) only when 𝐶𝐷 ≥ 1 − 1

R0
.

When 𝐶𝐷 < 1− 1
R0

, then 𝑝𝑒=1 < 0, which means that there is no root of
(𝑝) in [0, 1]. Similarly, we need to find conditions on when 𝑝1,2 ∈ [0, 1].
We will proceed by first determining the intervals on which ℎ̃ is

ncreasing and decreasing.

emma 10. The function ℎ̃(𝑥) is increasing on [0, 𝑥max ) and decreasing on
𝑥max ,∞) where

max = 1
√

1 − 𝑒
. (63)

roof. The statement easily follows from the fact that

(𝑥)′ = 𝐶𝐷𝑒
1 − (1 − 𝑒)𝑥2

. □ (64)

(𝑥 + 1)2((1 − 𝑒)𝑥 + 1)2

6

Table 2
Possible NE and CSNE depending on the signs of ℎ(0), ℎ(𝑝max ) and ℎ(1). We ignore non-
generic cases (such as ℎ(0) = 0) which can happen only for a negligible set of parameter
values. This yields 8 potential combinations, but since ℎ attains its maximum on [0, 1]
at 𝑝max , three of these combinations are not possible.
Sign of Possible NE Possible CSNE

ℎ(0) ℎ(𝑝max ) ℎ(1)

− − − 0 0
− − + Impossible combination
− + − 0, 𝑝1, 𝑝2 0, 𝑝2
− + + 0, 𝑝1, 1 0, 1
+ − − Impossible combination
+ − + Impossible combination
+ + − 𝑝2 𝑝2
+ + + 1 1

Now, we will determine the intervals on which ℎ is increasing and
decreasing and use the intermediate value theorem to determine the
location of the roots of ℎ.

Theorem 4. The function ℎ is increasing on [0, 𝑝max ) and decreasing on
(𝑝max , 1] where

𝑝max =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if 1 − 1
(R0−1)2

≤ 𝑒 ≤ 1,

R0−1−(1−𝑒)𝑥2max −𝑏𝑥max
𝑒R0

if 1 −
(

1+
√

1+4R0
2R0

)2
< 𝑒 < 1 − 1

(R0−1)2
,

1 if 0 ≤ 𝑒 ≤ 1 −
(

1+
√

1+4R0
2R0

)2
.

(65)

he location of roots 𝑝1 and 𝑝2 can be determined by the signs of ℎ at 0,
max and 1 as shown in Table 2.

roof. Similarly to deriving 𝑝1,2 by (55) from (59), the expression
R0−1−(1−𝑒)𝑥2max −𝑏𝑥max

𝑒R0
is a good candidate for 𝑝max . However, to make

sure that (1 − 𝑒)−1∕2 = 𝑥max = 𝛽
𝛬 𝐼

∗(𝑝max ) for 𝑝max ∈ [0, 1], we need 𝑥max

etween 𝛽
𝛬 𝐼

∗
|𝑝=1 = max

{

0,R0 −
1

1−𝑒

}

and 𝛽
𝛬 𝐼

∗
|𝑝=0 = R0 − 1.

In particular, when (1 − 𝑒)−1∕2 > R0 − 1, i.e., when 𝑒 ≥ 1 − 1
(R0−1)2

,
then 𝑥max is too large to be of the form

𝛽
𝛬 𝐼

∗(𝑝) for any 𝑝 ∈ (0, 1] and
thus ℎ(𝑝) is decreasing for all 𝑝 ∈ (0, 1).

Similarly, when R0 >
1

1−𝑒 and (1− 𝑒)−1∕2 < R0 − (1− 𝑒)−1, i.e., when

< 1 − 1
R0

and 𝑒 ≤ 1 −
(

1+
√

1+4R0
2R0

)2
, then 𝑥max is too small to be

f the form 𝛽
𝛬 𝐼

∗(𝑝) for any 𝑝 ∈ (0, 1] and thus ℎ(𝑝) is increasing for all

𝑝 ∈ (0, 1). Note that
(

1+
√

1+4R0
2R0

)2
> 1

R0
, and so if 𝑒 < 1−

(

1+
√

1+4R0
2R0

)2

then 𝑒 < 1 − 1
R0

.
The last statement of the Theorem follows from the intermediate

value theorem.
Finally, as a remark, observe that 𝑝max ≤ 𝑝𝐻𝐼 . □

3.4. Summary of the analysis

There are three natural thresholds

𝑒1 = 1 − 1
R0

, (66)

𝑒2 = 1 − 1
(R0 − 1)2

, (67)

3 = 1 −

(

1 +
√

1 + 4R0

2R0

)2

, (68)

for the vaccine efficacy 𝑒 that depend only on the value of R0. The
threshold 𝑒 follows from the formula for 𝑝 ; the thresholds 𝑒 and
1 𝐻𝐼 2
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Fig. 3. Illustration of different patterns of NE as they depend on 𝐶𝐷 and 𝑒. For better contrast, the figures have a log scale on 𝑥 and 𝑦 axis. In all figures, 𝛬 = 5, 𝜇 = 1, 𝛾 = 1. (a)
𝛽 = 3 and thus R0 = 1.5, (b) 𝛽 = 5 and thus R0 = 2.5, (c) 𝛽 = 10 and thus R0 = 10. Gray: 0 is the only NE. Red: 1 is the only NE. Blue: The only NE is 𝑝2 ∈ (0, 1) given by (55).
Light blue: three different NE 0, 𝑝1 and 𝑝2. Magenta: three different NE 0, 𝑝1 and 1. In (b), the light blue and magenta regions are present but tiny and thus shown in zoom.
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𝑒3 follow from the formula (65) for 𝑝max . The thresholds create three
atural thresholds for R0. When R0 > 1, 𝑒1 > 0. When R0 > 2, 𝑒2 > 0
nd 𝑒3 > 0. When R0 > 3+

√

5
2 = 1 + 𝜑 where 𝜑 = 1+

√

5
2 is the golden

ratio, then 𝑒2 > 𝑒1. Furthermore, there are four natural boundaries for
𝑒 that depend on 𝐶𝐷 and R0 given by

𝑓1(𝐶𝐷) =
R2

0
(R0 − 1) ⋅ (𝐶𝐷 + R0)

, (69)

𝑓2(𝐶𝐷) =
−𝐵 +

√

𝐵2 − 4𝐴R0
2𝐴

, (70)

3(𝐶𝐷) =
−𝐵 −

√

𝐵2 − 4𝐴R0
2𝐴

, (71)

4(𝐶𝐷) =
4𝐶𝐷

(1 + 𝐶𝐷)2
, (72)

here 𝐴 and 𝐵 are given by (38) and (39). The function 𝑓1 arises
from Theorem 1, 𝑓2 and 𝑓3 arise from Theorem 2 and 𝑓4 arises from
Lemma 5.

The functions 𝑓𝑖 create natural thresholds for 𝐶𝐷 given by

𝐶1 =
1

(

1 − 1
√

R0

)2
, (73)

2 = 1 + 2
R0 − 2

, (74)

𝐶3 =
2
𝑒3

− 1 + 2
√

1
𝑒23

− 1
𝑒3

. (75)

he thresholds arise from Lemmas 6–8.
The main findings can be summarized as follows.

• The disease can be eliminated by vaccination only if 𝑒 > 𝑒1. This
follows from the work in Section 2.

• By Theorem 1, ‘‘do not vaccinate’’ is NE (and CSNE) if and only
if 𝑒 < 𝑓1(𝐶𝐷).

• By Theorem 2, ‘‘always vaccinate’’ is NE (and CSNE) if and only
if 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷).

• By Lemma 7, the functions 𝑓2 and 𝑓3 exist only if 𝐶𝐷 ≥ 𝐶1.
Moreover, 𝑓2(𝐶𝐷) ≥ 𝑓3(𝐶𝐷) for all 𝐶𝐷 ≥ 𝐶1 with the equality
happening exactly for 𝐶𝐷 = 𝐶1.

• By Lemma 8, 𝑓2(𝐶𝐷) < 𝑒1 for all 𝐶𝐷 ≥ 1.
• By Lemma 6, 𝑓1(𝐶𝐷) ≥ 𝑓4(𝐶𝐷) for all 𝐶𝐷 ≥ 1 with equality
happening exactly at 𝐶𝐷 = 𝐶2. We have 𝑓1(𝐶2) = 𝑒2. In particular,
𝑓1(𝐶𝐷) > 𝑓4(𝐶𝐷) for all 𝐶𝐷 ≥ 1 when R0 ∈ (1, 2).

• By simple algebra, when R0 ∈ (1, 2), then 𝑒1 ∈ (0, 1) but 𝑒3 < 𝑒2 <
0. It follows from (65) that the incentive function ℎ(𝑝) attains its
maximum on [0, 1] at 𝑝 = 0. Thus, if ℎ(0) ≤ 0, then ℎ(1) ≤ 0.
Consequently, 𝑓1(𝐶𝐷) < 𝑓3(𝐶𝐷) for all 𝐶𝐷 ≥ 𝐶1. A formula-based
proof is also shown in Appendix B.
7

4. Results

The patterns of Nash equilibria depend on a complex interplay
between the disease basic reproduction number, R0, the cost of the
isease relative to the cost of the vaccine, 𝐶𝐷, and the vaccine efficacy,
. The patterns are illustrated in Fig. 3 and specific conditions on when
different combination equilibria exist are given in Table 3.

Below and in Table 4, we summarize how the outcome depends on
R0.

When R0 < 1, then the vaccine efficacy thresholds 𝑒𝑖, given in (66)–
(68), are not in [0, 1]. In particular, the disease will not become endemic
in the population. Thus ‘‘do not vaccinate’’ is the only Nash equilibrium
(which is also CSNE).

When 1 < R0 < 2, then the incentive function ℎ is decreasing in
[0, 1] and there are only three possible outcomes.

1. When 𝑒 < 𝑓1(𝐶𝐷), then ‘‘do not vaccinate’’ is the only CSNE.
2. When 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷), then ‘‘always vaccinate’’ is the only
CSNE.

3. Otherwise, there is a unique CSNE between 0 and 1.

The cases correspond to (1) ℎ(0) < 0, (2) ℎ(1) > 0, and (3) ℎ(0) > 0 and
ℎ(1) < 0. When the vaccine is effective enough to eliminate the disease
if enough people vaccinate (i.e., if 𝑒 > 𝑒1, or equivalently, 𝑝𝐻𝐼 < 1),
there are only two options: either 𝑝𝑁𝐸 = 0 if 𝑒1 < 𝑒 < 𝑓1(𝐶𝐷) or
𝑝𝑁𝐸 ∈ (0, 𝑝𝐻𝐼 ) for 𝑒1 < 𝑓1(𝐶𝐷) < 𝑒. In the latter case, as 𝐶𝐷 grows,
𝑝𝑁𝐸 is getting closer to 𝑝𝐻𝐼 .

If 2 < R0 < 1 + 𝜑, where 𝜑 = 1+
√

5
2 is the golden ratio, then

all 𝑒𝑖 ∈ (0, 1) and 𝑒3 < 𝑒2 < 𝑒1. The situation is more complex than
in the case when R0 < 2. We can have multiple Nash equilibria as
illustrated in Fig. 3(b). However, the regions where multiple equilibria
occur are relatively small. Moreover, the multiple equilibria occur only
for vaccines that are not very effective; specifically only if 𝑒 < 1 −

1
(R0−1)2

= 𝑒2 < 𝑒1 = 1 − 1
R0

, i.e., if the vaccine cannot eliminate the
disease. For the vaccine that is efficient enough to eliminate the disease
(𝑒 > 𝑒1, i.e., 𝑝𝐻𝐼 < 1), there are only two possibilities: either 𝑝𝑁𝐸 = 0
if 𝑒1 < 𝑒 < 𝑓1(𝐶𝐷) or 𝑝𝑁𝐸 ∈ (0, 𝑝𝐻𝐼 ) for 𝑒1 < 𝑓1(𝐶𝐷) < 𝑒.

If 1 + 𝜑 < R0, then all 𝑒𝑖 ∈ (0, 1) and 𝑒3 < 𝑒1 < 𝑒2. While
he situation is similar to the case 2 < R0 < 1 + 𝜑 in a sense that
here are no new combinations of the NE, there is now a qualitative
ifference since multiple equilibria exist even if 𝑒 > 𝑒1. Specifically,
hen 𝑓4(𝐶𝐷) < 𝑒 < 𝑓1(𝐶𝐷) and 𝐶𝐷 < 𝐶2, then there are three NE,
< 𝑝1 < 𝑝2. 0 and 𝑝2 are CSNE while 𝑝1 is NE but not CSNE.
The Nash equilibria are illustrated in Fig. 5. We see that as the cost

of the disease increases, the value of the CSNE increases as well and
approaches the value needed for herd immunity. However, there is a
region of 𝐶𝐷 for which three Nash equilibria exist with a third Nash
equilibrium between the two CSNE. This unstable Nash equilibrium
is decreasing in 𝐶𝐷; although it also exists only for a relatively small
region of 𝐶 and only when R > 2.
𝐷 0
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Table 3
All possible combinations of Nash equilibria and conditions on when they occur. The CSNE ‘‘do not vaccinate’’ can occur
under three distinct sets of conditions.
Type of equilibria Conditions on ℎ Equivalent condition(s) on 𝑒

CSNE at 0
𝑝max = 0, ℎ(0) < 0 or 𝑒 ≥ 𝑒2, 𝑒 < 𝑓1(𝐶𝐷) or
𝑝max ∈ (0, 1), ℎ(𝑝max ) < 0 or 𝑒3 < 𝑒 < 𝑒2, 𝑒 < 𝑓4(𝐶𝐷) or
𝑝max = 1, ℎ(1) < 0 𝑒 ≤ 𝑒3, (𝑒 < 𝑓3(𝐶𝐷) or 𝑒 > 𝑓2(𝐶𝐷))

CSNE at 0 ℎ(0) < 0 and 𝑒 < 𝑓1(𝐶𝐷) and
NE at 𝑝1 ∈ (0, 𝑝max ) and ℎ(𝑝max ) > 0 and 𝑒 > 𝑓4(𝐶𝐷) and
CSNE at 1 ℎ(1) > 0 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷)

CSNE at 0 and ℎ(0) < 0 and 𝑒 < 𝑓1(𝐶𝐷) and
NE at 𝑝1 ∈ (0, 𝑝max ) and 𝑝max ∈ (0, 1), ℎ(𝑝max ) > 0 and 𝑒 > 𝑓4(𝐶𝐷) and
CSNE at 𝑝2 ℎ(1) < 0 (𝑒 < 𝑓3(𝐶𝐷) or 𝑒 > 𝑓2(𝐶𝐷))

CSNE at 𝑝2 ℎ(0) > 0, ℎ(1) < 0
𝑒 > 𝑓1(𝐶𝐷) and
(𝑒 < 𝑓3(𝐶𝐷) or 𝑒 > 𝑓2(𝐶𝐷))

CSNE at 1 ℎ(0) > 0, ℎ(1) > 0 𝑒 > 𝑓1(𝐶𝐷), 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷)
Table 4
Patterns of NE and CSNE as they depend on R0. In the last two lines, for the multiple equilibria to exist even when the
vaccine can eliminate the disease (𝑒 > 𝑒1), we need R0 > 1 + 𝜑.
Conditions on R0 Additional conditions Type of equilibria

R0 < 1 none CSNE at 0

1 < R0 < 2
𝑒 < R2

0

(R0−1)⋅(𝐶𝐷+R0 )
CSNE at 0

𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷) CSNE at 1
𝑒 < R2

0

(R0−1)⋅(𝐶𝐷+R0 )
but not 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷) CSNE at 𝑝2

2 < R0

𝑓1(𝐶𝐷) < 𝑒 but not 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷) CSNE at 𝑝2
𝑒2 < 𝑒 < 𝑓1(𝐶𝐷) CSNE at 0
𝑒3 < 𝑒 < 𝑒2 and 𝑒 < 𝑓4(𝐶𝐷) CSNE at 0
𝑒 < 𝑒3 and 𝑒 < 𝑓3(𝐶𝐷) CSNE at 0
𝑓1(𝐶𝐷) < 𝑒 and 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷) CSNE at 1
𝑓4(𝐶𝐷) < 𝑒 < 𝑓1(𝐶𝐷) and 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷) CSNE at 0 and 1, NE at 𝑝1
𝑓4(𝐶𝐷) < 𝑒 < 𝑓1(𝐶𝐷) but not 𝑓3(𝐶𝐷) < 𝑒 < 𝑓2(𝐶𝐷) CSNE at 0 and 𝑝2, NE at 𝑝1
Fig. 4. The incentive function for regions from Fig. 3 with corresponding colors. The full dots correspond to CSNE, the empty circle corresponds to NE that is not convergent
stable. 𝑒 and 𝐶𝐷 varies as shown, the values of other parameters are 𝛬 = 5, 𝜇 = 1, 𝛾 = 1, and 𝛽 = 10 (i.e., R0 = 5). (a) Red for no roots of ℎ (1 is CSNE). (b) Blue for one root of ℎ
(the root is CSNE). (c) Magenta for one root of h (0 is CSNE, 1 is CSNE, the root is 𝑝𝑁𝐸 but not CSNE). (d) Light blue for two roots of h (0 is CSNE, mid 𝑝𝑁𝐸 is not CSNE and
the largest root is CSNE). (e) Gray for no roots of h (0 is CSNE).
8
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Fig. 5. (a)–(c) Nash equilibria (CSNE — solid line, NE that is not CSNE — dotted line, the coverage needed for herd immunity dashed line) and (d)–(f) the price of anarchy,
i.e., in this case the disease prevalence in the population using the NE vaccination coverage. The vaccine effectiveness, 𝑒, varies as shown and the values of other parameters are
𝛬 = 5, 𝜇 = 1, 𝛾 = 1, and 𝛽 = 10 (i.e., R0 = 5). In (a) and (d), the situation is almost as if the vaccine is 100% effective. As 𝐶𝐷 increases, the Nash equilibrium approaches the
coverage needed for herd immunity. In (b) and (e), we can see multiple equilibria; but again as 𝐶𝐷 increases, the Nash equilibrium approaches 𝑝𝐻𝐼 . (c) and (f) exhibits multiple
equilibria as well, but this time the vaccine effectiveness is so low that the herd immunity cannot be achieved.
2
v
d
t
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2
i

Fig. 5 also illustrates the price of anarchy. We measured the price
as the disease prevalence at the Nash equilibrium, i.e., 𝐼∗∕𝑁 where

𝐼∗(𝑝𝑁𝐸 )
𝑁

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇
𝛽 (R0 − 1), if 𝑝𝑁𝐸 = 0,
𝜇
𝛽

(

R0 −
1

1−𝑒

)

, if 𝑝𝑁𝐸 = 1,

𝜇
𝛽 ⋅

𝑒(1+𝐶𝐷)−2±
√

(𝑒(1+𝐶𝐷)−2)2−4(1−𝑒)
2(1−𝑒) , if 𝑝𝑁𝐸 ∈ (0, 1).

(76)

As expected, if 𝑒 is large (𝑒 > max(𝑒1, 𝑒2)), or if R0 < 2, then the price of
anarchy decreases with the cost of the disease and for vaccines that can
eradicate the disease, the price of anarchy approaches 0 as 𝐶𝐷 grows.
Also, the price of anarchy exhibits the same sort of phenomenon as
the Nash equilibria. When the multiple equilibria exist, the price grows
with 𝐶𝐷 at the unstable NE.

When the vaccine is perfect, the risk of infection if unvaccinated
is a decreasing function while the risk of infection if vaccinated is 0.
When the vaccine is not perfect, both risk functions are decreasing.
However, the marginal risk of infection can differ for vaccinated and
unvaccinated individuals. This causes the possibility for the incentive
function to be increasing on the whole or part of [0, 1] as demonstrated
in Fig. 4. And, as a result, there can be multiple Nash equilibria.

5. Conclusions and discussion

We investigated the effects of an imperfect vaccine on the outcomes
of a vaccination game in which individuals decide whether to vaccinate
or not based on their own interests. We used a simple SIR compart-
mental model for the underlying model of disease transmission. We
modeled the vaccine imperfection by adding the compartment with
vaccinated individuals from which there is still a possibility to become
infected after encountering an infectious individual. We determined
explicit conditions for the existence of different Nash equilibria, the so-
lutions of the vaccination game. Unlike in the case of a perfect vaccine,
we have seen that there can be multiple equilibria. The outcomes of the
game depend on the complex interplay between disease transmission
9

dynamics (the basic reproduction number), the relative cost of the
infection, and the vaccine efficacy.

When the vaccine is effective enough to eliminate the disease (𝑒 >
1 − 1

R0
), and the basic reproduction number is low (R0 < 1 + 𝜑 ≈

.62), then there is very little difference between perfect or imperfect
accines. Individuals will choose to vaccinate only if the cost of the
isease is above a certain threshold and the Nash equilibrium vaccina-
ion level will increase with the cost of the infection. Consequently, the
impler models that assume that a vaccine is perfect are good enough
pproximations.
However, when the basic reproduction number is larger than 1+𝜑 ≈

.62, then there is a region where multiple Nash equilibria exist. Specif-
cally, we need the vaccine efficacy to be less than 1 − 1

(R0−1)2
and the

cost of the infection roughly between 1+ 2
R0−2

and (1−R−0.5
0 )−2. Under

these conditions, there can be three Nash equilibria at the same time:
‘‘do not vaccinate’’ is convergently stable Nash equilibrium (CSNE),
there is another CSNE with a relatively large value of vaccination, but
there is also a Nash equilibrium between the two and this third one is
not convergently stable. The existence of multiple Nash equilibria has
important implications for the public health officials. Unless there is a
mandatory vaccination policy in place that would push the vaccination
coverage above the value of unstable Nash equilibrium, the population
could eventually slip to the ‘‘do not vaccinate’’ state. Thus, for diseases
that have relatively high basic reproduction number, the potential for
the vaccine not being perfect should be taken into proper consideration.

Most of the previous vaccination game theory models assumed that
the vaccine is perfect. As a consequence, the models predicted only
a single Nash equilibrium. Wu et al. [51] explicitly studied imperfect
vaccines and used Fermi’s updating rule for imitation of the vaccination
behavior. They discovered a similar threshold for the basic reproduc-
tion number, but their game always had a single Nash equilibrium as
if the vaccine was perfect. Choi and Shim [20] studied an imperfect
vaccine for COVID-19 prevention. The underlying COVID-19 disease
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dynamics was more complicated than the simple SIRV dynamics consid-
ered here and the vaccination was not done at birth. However, Choi and
Shim [20] also observed the multiple Nash equilibria for certain ranges
of parameter values. A similar result was obtained by Augsburger et al.
[14] who considered a SVEIR model of imperfect smallpox vaccine
against monkeypox. Unlike our model which assumed vaccination at
birth, the models considered in [14,20] considered vaccination at any
stage prior to infection exposure. While Augsburger et al. [14] did
not try to systematically quantify the conditions on NE and CSNE
patterns, their result are remarkably similar to the results presented
here; specifically the existence of multiple equilibria was observed
for relatively large R0. This suggests that the findings of this paper
are robust and do not significantly depend on the underlying disease
transmission dynamics.

Our research can be expanded in several ways as discussed below.
First, we modeled the vaccine imperfection as a ‘‘leaky’’ vaccine

rather than ‘‘all-or-nothing’’ vaccine. The calculations would change
slightly for the ‘‘all-or-nothing’’ vaccine; the factor 1−𝑝 for the propor-
tion of unvaccinated individuals would have to be replaced by (1−𝑒𝑝) =
1−𝑝)+𝑝(1−𝑒). Here 1−𝑝 corresponds to unvaccinated individuals and
𝑝(1−𝑒) corresponds to vaccinated individuals with a (complete) vaccine
ailure. While we believe that even this kind of vaccine imperfection
ould yield multiple Nash equilibria of the vaccination game, it is
mportant for the modelers to distinguish between the two kinds [43].
Second, we assumed homogeneous population in which all indi-

iduals perceive the cost of the disease and the cost of the vaccine
n the same way. However, individuals may have different underlying
onditions which can make them more vulnerable to a particular
isease such as COVID-19 [56] causing the perceived cost of disease to
ary in the population. Similarly, in countries with limited healthcare,
ndividuals may live at various distances from the vaccination sites,
reating a heterogeneity in the cost of the vaccination. This assumption
f heterogeneous costs could significantly alter our results. In the
resent (homogeneous) model, if the cost of the disease is smaller than
he cost of vaccination, individuals do not vaccinate. However, in the
eterogeneous model, even if the average cost of disease is smaller
han the average cost of vaccination, there can still be a non-negligible
roportion of population who perceive the cost of disease to be signifi-
antly larger than the cost of vaccine and opt to vaccinate. Thus, there
ill be an inherent heterogeneity in the vaccination decisions and it yet
emains to be seen whether multiple equilibria will exist even in this
ore realistic scenario.
Finally, as discussed in [39], there are many kinds of vaccine

mperfections. We focused on the case when the vaccine reduces the
ransmission rate. However, the vaccine can also reduce the proportion
f exposed hosts becoming infectious or the length of the infectious
eriod in vaccinated individuals. We anticipate that multiple Nash
quilibria will occur even in the latter two cases, but they deserve more
etailed and explicit investigation.
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ppendix A. Calculations of the equilibria of the dynamics

The equilibria of the dynamics (1)–(4) are obtained by solving the
ollowing system of algebraic equations.

= (1 − 𝑝)𝛬 −
(

𝜇 + 𝛽 𝐼
𝑁

)

𝑆 (A.1)

= 𝛽 𝐼
𝑁

(

𝑆 + (1 − 𝑒)𝑉
)

− (𝜇 + 𝛾)𝐼 (A.2)

0 = 𝛾𝐼 − 𝜇𝑅 (A.3)

0 = 𝑝𝛬 −
(

𝜇 + (1 − 𝑒)𝛽 𝐼
𝑁

)

𝑉 . (A.4)

By adding (A.1)–(A.4), we get

𝑁 = 𝛬
𝜇
. (A.5)

By (A.2), we have that either 𝐼 = 0 or

0 =
𝛽
𝑁

(

𝑆 + (1 − 𝑒)𝑉
)

− (𝜇 + 𝛾). (A.6)

If 𝐼 = 0, then, by (A.3), 𝑅 = 0. By (A.1), 𝑆 = (1 − 𝑝)𝑁 and by
(A.4) 𝑉 = 𝑝𝑁 . Thus, the disease-free equilibrium E 0 = (𝑆0, 𝐼0, 𝑅0, 𝑉 0)
is given by ((1 − 𝑝)𝑁, 0, 0, 𝑝𝑁).

We find the effective reproduction number, i.e., the number of
secondary infections from a single infected individual in an otherwise
healthy population, using the procedure outlined in [57]. The only
compartment carrying the infection is 𝐼 . The inflow of new infections is
given by 𝐹 = 𝛽((1−𝑝)+(1−𝑒)𝑝) and the outflow is given by 𝑉 = −(𝜇+𝛾).

R(𝑝) = 𝜚(𝐹𝑉 −1) =
𝛽

𝜇 + 𝛾
(1 − 𝑒𝑝). (A.7)

ote that

(𝑝) = R0(1 − 𝑒𝑝) (A.8)

where R0 =
𝛽

𝜇+𝛾 is the basic reproduction number in the unvaccinated
population.

The DFE is locally asymptotically stable if R(𝑝) < 1 and the endemic
equilibrium is stable if R(𝑝) > 1 [57].

Now, assume 𝐼 > 0. By (A.3),

=
𝛾
𝜇
𝐼. (A.9)

By (A.1) and (A.4),

𝑆 =
(1 − 𝑝)𝛬
𝜇 + 𝛽

𝑁 𝐼
(A.10)

𝑉 =
𝑝𝛬

𝜇 + (1−𝑒)𝛽
𝑁 𝐼

. (A.11)
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Plugging in (A.10) and (A.11) into (A.6), we get

=
R0
𝑁

(

(1 − 𝑝)𝑁
1 + 𝛽

𝛬 𝐼
+ (1 − 𝑒)

𝑝𝑁

1 + (1 − 𝑒) 𝛽𝛬 𝐼

)

. (A.12)

When 𝑒 = 1, it follows from (A.12) that
∗ = 𝛬

𝛽
(R0 − 1). (A.13)

When 𝑝 = 0, it follows from (A.12) that
∗ = 𝛬

𝛽
(R0 − 1). (A.14)

Similarly, when 𝑝 = 1, it follows from (A.12) that

∗ = 𝛬
𝛽
(R0 −

1
1 − 𝑒

). (A.15)

From now, we will assume that 𝑝 ∈ (0, 1). After several algebraic
steps, the (A.12) yields

1 − 𝑒)
(

𝛽
𝛬
𝐼
)2

+ [1 + (1 − 𝑒)(1 −R0)]
(

𝛽
𝛬
𝐼
)

−R0(1 − 𝑒𝑝) + 1 = 0. (A.16)

This means that

𝐼∗ = 𝛬
𝛽
−𝑏 +

√

𝑏2 + 4(1 − 𝑒)𝑐
2(1 − 𝑒)

(A.17)

where

𝑏 = 1 + (1 − 𝑒)(1 − R0) (A.18)

𝑐 = R0(1 − 𝑒𝑝) − 1. (A.19)

Once 𝐼∗ is found, 𝑆∗, 𝑅∗, 𝑉 ∗ are given by

𝑆∗ =
(1 − 𝑝)𝑁
1 + 𝛽

𝛬 𝐼
∗

(A.20)

𝑅∗ =
𝛾
𝜇
𝐼∗ (A.21)

𝑉 ∗ =
𝑝𝑁

1 + (1−𝑒)𝛽
𝛬 𝐼∗

. (A.22)

We conclude the section by showing that 𝐼∗ is always non-
increasing in 𝑝 and it is decreasing whenever 𝐼∗ > 0. By (A.8) and
(A.17), when 𝑒 < 1, 𝑝 ∈ (0, 1) and R0(1 − 𝑒𝑝) > 1, we get

𝜕𝐼∗

𝜕𝑝
=
(

𝜕𝐼∗

𝜕𝑐

)(

𝜕𝑐
𝜕𝑝

)

(A.23)

=

(

𝛬
2𝛽(1 − 𝑒)

4(1 − 𝑒)

2
√

𝑏2 + 4(1 − 𝑒)𝑐

)

(

−R0𝑒
)

(A.24)

= −
R0𝑒

√

𝑏2 + 4(1 − 𝑒)𝑐
< 0. (A.25)

Similarly, when 𝑒 = 1,
𝜕𝐼∗

𝜕𝑝
= −𝛬

𝛽
R0 < 0. (A.26)

Appendix B. Formula based proof

Theorem. 𝑓1(𝐶𝐷) < 𝑓3(𝐶𝐷) when 𝐶𝐷 > 4 and R0 ∈ [R𝑒𝑥𝑖𝑠𝑡𝑠,R𝑖𝑛𝑡) where

R𝑒𝑥𝑖𝑠𝑡𝑠 =
𝐶𝐷+2𝐶3∕2

𝐷 +𝐶2
𝐷

(𝐶𝐷−1)2 and R𝑖𝑛𝑡 =
2𝐶𝐷
𝐶𝐷−2 .

1. To begin, we must know where 𝑓3 exists, or when the discrimi-

nant of (37) is 0. We find for R0 > R𝑒𝑥𝑖𝑠𝑡𝑠 =
𝐶𝐷+2𝐶3∕2

𝐷 +𝐶2
𝐷

(𝐶𝐷−1)2 > 1 for
𝐶𝐷 > 1, the discriminant is ≥ 0.

2. Next to understand when 𝑓3 > 𝑓1 at R𝑒𝑥𝑖𝑠𝑡𝑠, we evaluate 𝑓3
(R𝑒𝑥𝑖𝑠𝑡𝑠, 𝐶𝐷) and 𝑓1(R𝑒𝑥𝑖𝑠𝑡𝑠, 𝐶𝐷), to which we find 𝑓3(R𝑒𝑥𝑖𝑠𝑡𝑠, 𝐶𝐷)
=

√

𝐶𝐷
1−

√

𝐶𝐷+𝐶𝐷
and 𝑓1(R𝑒𝑥𝑖𝑠𝑡𝑠, 𝐶𝐷) = 𝐶𝐷

−2+6
√

𝐶𝐷−5𝐶𝐷+2𝐶3∕2
𝐷

. We find
𝑓3(R𝑒𝑥𝑖𝑠𝑡𝑠, 𝐶𝐷) > 𝑓1(R𝑒𝑥𝑖𝑠𝑡𝑠, 𝐶𝐷) for 𝐶𝐷 > 4, otherwise for 1 <
𝐶 < 4 we have 𝑓 (R , 𝐶 ) < 𝑓 (R , 𝐶 ).
𝐷 3 𝑒𝑥𝑖𝑠𝑡𝑠 𝐷 1 𝑒𝑥𝑖𝑠𝑡𝑠 𝐷
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3. To finish the proof we need to show there is only one point of
intersection for 𝐶𝐷 > 4 and R0 > 1 and that it is greater than
R𝑒𝑥𝑖𝑠𝑡𝑠. To do this we can solve for the roots of the following
function 𝑓𝑖𝑛𝑡(R0, 𝐶𝐷) = 𝑓1(R0, 𝐶𝐷) − 𝑓3(R0, 𝐶𝐷). Solving for the
roots and simplifying, we get the following cubic:

R0
(

(𝐶𝐷 − 2)R2
0 + (𝐶2

𝐷 − 2 − 3𝐶𝐷)R0 − 2𝐶𝐷(𝐶𝐷 + 1)
)

= 0 (B.1)

Then, factoring we get:

(R0 − 0)(R0 − (−1 − 𝐶𝐷))(R0 − (
2𝐶𝐷

𝐶𝐷 − 2
)) = 0. (B.2)

We see that at most three intersections exist at the roots, how-
ever we can immediately disregard roots at R0 = 0 and R0 =
−1−𝐶𝐷 as R0 must be > 1 for 𝐶𝐷 > 1, under our assumptions in
the Analysis section. So, only one intersection exists for 𝐶𝐷 > 4
and this intersection is unique to 𝑓1 and 𝑓3 by the Lemma below,
which we may denote as R𝑖𝑛𝑡 =

2𝐶𝐷
𝐶𝐷−2 > 2. Finally we have that

R𝑒𝑥𝑖𝑠𝑡𝑠(𝐶𝐷) < R𝑖𝑛𝑡(𝐶𝐷). We get this using the fact that R𝑒𝑥𝑖𝑠𝑡𝑠(4) =
R𝑖𝑛𝑡(4) and

𝜕R𝑒𝑥𝑖𝑠𝑡𝑠
𝜕𝐶𝐷

< 𝜕R𝑖𝑛𝑡
𝜕𝐶𝐷

< 0, point-wise for 𝐶𝐷 > 4.

o we have shown that 𝑓3 > 𝑓1 at R𝑒𝑥𝑖𝑠𝑡𝑠 and there exists at most one
point of intersection for which R𝑒𝑥𝑖𝑠𝑡𝑠 < R𝑖𝑛𝑡 when 𝐶𝐷 > 4. Thus we
ave 𝑓3 > 𝑓1 for R0 ∈ [R𝑒𝑥𝑖𝑠𝑡𝑠,R𝑖𝑛𝑡) for 𝐶𝐷 > 4.

emma. For 4 > 𝐶𝐷 > 2, R𝑖𝑛𝑡 is the intersection between 𝑓1 and 𝑓2 and
or 𝐶𝐷 > 4, R𝑖𝑛𝑡 is the intersection between 𝑓1 and 𝑓3

To show R𝑖𝑛𝑡 is between 𝑓1 and 𝑓2, for 4 > 𝐶𝐷 > 2, we first establish

< R𝑚𝑖𝑛𝑓1
= 2𝐶𝐷

𝐶𝐷−1 < R𝑒𝑥𝑖𝑠𝑡 =
𝐶𝐷+2𝐶3∕2

𝐷 +𝐶2
𝐷

1−2𝐶𝐷+𝐶2
𝐷

for 1 < 𝐶𝐷 < 9. Since
R𝑚𝑖𝑛𝑓1

is the unique minimum point for R0 > 1, 𝑓1 is increasing for
R0 > R𝑒𝑥𝑖𝑠𝑡𝑠. We then find 𝑓1(R𝑒𝑥𝑖𝑠𝑡𝑠) > 𝑓2(R𝑒𝑥𝑖𝑠𝑡𝑠) when 1 < 𝐶𝐷 < 4.
hus if 𝑓1(R𝑒𝑥𝑖𝑠𝑡𝑠) > 𝑓2(R𝑒𝑥𝑖𝑠𝑡𝑠) for 𝐶𝐷 < 4, and 𝑓1 is increasing for
ll R0 > R𝑒𝑥𝑖𝑠𝑡𝑠 > 0, then there must be a strictly positive intersection
etween 𝑓1 and 𝑓2 or no strictly positive intersection at all. But R𝑖𝑛𝑡 >
> 0 only for 𝐶𝐷 > 2, so we have for 4 > 𝐶𝐷 > 2,R𝑖𝑛𝑡 is the intersection
etween 𝑓1 and 𝑓2. Finally for 𝐶𝐷 < 2, we have R𝑖𝑛𝑡 < 0, so there
oes not exist a strictly positive intersection point and so 𝑓1 > 𝑓2 > 𝑓3
lways. This allows us to conclude that for 𝐶𝐷 > 4, R𝑖𝑛𝑡 > 0 must be
he intersection between 𝑓1 and 𝑓3.

ppendix C. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.mbs.2023.108967.
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