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Abstract

Monkeypox (MPX) is a viral zoonotic disease that was endemic to Central and West Africa.

However, during the first half of 2022, MPX spread to almost 60 countries all over the world.

Smallpox vaccines are about 85% effective in preventing MPX infections. Our objective is

to determine whether the vaccines should be mandated or whether voluntary use of the

vaccine could be enough to stop the MPX outbreak. We incorporate a standard SVEIR com-

partmental model of MPX transmission into a game-theoretical framework. We study a vac-

cination game in which individuals decide whether or not to vaccinate by assessing their

benefits and costs. We solve the game for Nash equilibria, i.e., the vaccination rates the indi-

viduals would likely adopt without any outside intervention. We show that, without vaccina-

tion, MPX can become endemic in previously non-endemic regions, including the United

States. We also show that to “not vaccinate” is often an optimal solution from the individual’s

perspective. Moreover, we demonstrate that, for some parameter values, there are multiple

equilibria of the vaccination game, and they exhibit a backward bifurcation. Thus, without

centrally mandated minimal vaccination rates, the population could easily revert to no vacci-

nation scenario.

Author summary

Monkeypox (MPX) is a viral disease that recently spread to almost 60 countries all over

the world. Our main goal is to determine whether the smallpox vaccines, which are about

85% effective against MPX, should be mandated or whether voluntary use of the vaccine

could be enough to stop the MPX outbreak. We study a vaccination game in which indi-

viduals decide whether or not to vaccinate by assessing their benefits and costs. We show

that, without vaccination, MPX can become endemic in previously non-endemic regions,

including the United States. We also show that to “not vaccinate” is often an optimal
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solution from the individual’s perspective. Moreover, we demonstrate that, for some

parameter values, there are multiple solutions of the vaccination game and without cen-

trally mandated minimal vaccination rates, the population could easily revert to no vacci-

nation scenario.

1 Introduction

1.1 Monkeypox

Monkeypox (MPX) is a viral zoonotic disease endemic to Central and West Africa [1]. The

MPX cases suffer from mild symptoms such as headaches, fevers, rashes, lesions in their

mouth and on their body [2], although there may be other and potentially severe complica-

tions such as blindness [3] or death [4]; see [5] for a comprehensive review.

It has recently garnered much public attention due to its 2022 outbreaks. From January 1 to

July 4, 2022, 6027 laboratory confirmed MPX cases were reported to WHO from 59 countries,

most of which are considered non-endemic to MPX [6]. Men who have sex with men (MSM)

with new or multiple partners are amongst the most affected [7].

MPX is caused by a virus similar to smallpox virus and the smallpox vaccines provide about

85% protection from MPX [8]. For the current outbreak, [9] recommends (a) post-exposure

prophylaxis (PEP) with an appropriate second- or third-generation vaccine for contacts of

cases, and (b) pre-exposure prophylaxis (PrEP) for people at risk. However, as the MPX epi-

demic continues to unfold, there are calls to use the smallpox vaccine as PrEP in MSM at high

risk of monkeypox virus exposure as it may also reduce transmission into the general popula-

tion [7].

1.2 Mathematical models of MPX

Mathematical modeling is now a standard tool for disease prevention and elimination efforts

[10, 11]. There are very few mathematical models specific for MPX; yet, in recent years, even

before the 2022 outbreak, the modelling activity has been picking up. In [12], the authors

developed the first model to represent MPX and other pox-like infections. The model was later

extended to include the coexistence of HIV and MPX [13]. Culling as a means to prevent MPX

was investigated in [14]. In [15] and [16], the authors studied transmission dynamics with

treatment and vaccination; in [17], the authors developed a model for diagnosing MPX and in

[18], the authors performed stability analysis for equilibria of their ODE system. Other models

include [19] where the authors studied quarantining and public education, [20] and [21]

which concerns human-to-human transmissions. The global and local asymptotic stability and

transmission dynamics were explored in [22]. The impact of smallpox vaccines on MPX epi-

demics was investigated in [23]. The fractional order ODE models were developed in [24] and

[25]. A model incorporating sexual behavior dynamics and stratifying the population into

high- and low-risk groups was developed in [26]. Stochastic models and individual based sim-

ulations for the current outbreak are also being developed [27–30].

The potential for the disease spread in the population can be measured by the basic repro-

duction number, R0, the number of secondary infections from a single infected individual in

a susceptible population [31]. If interventions in disease transmission are implemented, the

number of secondary infections from a single infected individual in an otherwise healthy pop-

ulation is called the effective reproduction number, Re [32]. When R0, or more generally Re is

less than 1, then the disease cannot spread in the population [33].
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1.3 Game theory

In the context of this paper, a game is a mathematical model of a situation where several indi-

viduals interact (directly or indirectly) with one another and where each individual acts in its

own interest [34]. The game theory has a rich history; the modern treatments build on the

ideas of John von Neumann [35] and John Nash [36]; see for example [37–40] or, for more

biologically oriented applications, [41–45].

One way to define the solution of a non-cooperative game is the so-called Nash equilibrium

(NE). In the NE, each player is assumed to know the equilibrium strategies of the other players,

and no one has any incentive to change only their own strategy [36]. In this paper, we will

focus on this concept of NE, but we note that there are other possible approaches, involving

for example bounded rationality [46, 47] or quantal response equilibria [48, 49].

Game theoretical models proved themselves useful in studying complex epidemiological

scenarios in which self-interested individuals take actions based on the decisions of the rest of

the population [50, 51]; and, as argued in [52], by incorporating human behavior into the epi-

demiological models one can get better insight and predictions.

1.4 Vaccination games

Vaccination games are games in which individuals decide whether to vaccinate or not. They

are a class of public goods games [53] because vaccination produces public goods (herd immu-

nity against a disease) that have the following two main characteristics: non-rivalry, i.e., con-

sumption of a good by one person does not affect other individuals, and non-exclusion of

consumption, i.e., it is impossible to restrict the benefits to certain individuals [54]. Vaccina-

tion is prone to free-riding; the “free-riders” avoid the costs associated with vaccination while

benefiting from vaccines taken by others [55]. People balance the perceived costs against the

vaccine’s effectiveness [56] and it is well known that individuals act in a way that maximizes

their self-interests, rather than the interests of the entire group [57].

The vaccination games have been applied to protection strategies to control diseases such as

smallpox [58, 59], chickenpox [60], polio [61], influenza [62], Ebola [63], COVID-19 [64–66],

chikungunya [67], Hepatitis B [68], lymphatic filiarisis [69]. [70] used the game theoretic

framework to assess vaccination strategies with the presence of animal reservoirs of infection.

1.5 Content of the current paper

In the current paper, we extend the analysis from [70] by explicitly considering the MPX vac-

cine to be imperfect and allowing for the possibility of infections after vaccination. We focus

on human-to-human transmission as done in [21]. We study Nash equilibria, the solutions of

the vaccination game in which susceptible individuals decide whether or not to vaccinate

against MPX. We calibrate our model based on historical data about MPX and we also use

data from the 2022 outbreaks. The analysis reveals a possibility of multiple Nash equilibria and

the existence of backward bifurcation. We perform sensitivity analysis and also study a hypo-

thetical scenario under which the MPX transmission rate is higher than generally assumed

based on the historical data. We demonstrate that the voluntary vaccination alone will not be

enough to substantially limit the spread of MPX.

2 Model and methods

We adapt a SVEIR compartmental model of MPX [21] and extend it by incorporating the

game-theoretic framework of voluntary vaccination as done in [71].
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Individuals are born susceptible (S) at rate Λ. Without vaccination, a susceptible individual

becomes exposed (E) after coming in contact with an infectious individual (I); this happens at

rate b I
N where N is the population size. The incubation period lasts σ−1 after which the individ-

ual develops MPX. The MPX cases recover (R) at rate γ−1 and gain permanent immunity.

The original model presented in [21] allowed for a proportion of individuals to be vacci-

nated at birth. However, since the smallpox vaccine is no longer mandated at birth, it is more

realistic to consider that the vaccination occurs later in life. As in [65] for the COVID-19 vac-

cine, we will assume the susceptible individuals are vaccinated (V) at rate ψ. While in theory,

ψ 2 [0, 1), there are bounds on how fast the population can be vaccinated. We will thus

assume ψ 2 [0, ψmax] where ψmax is the maximal feasible vaccination rate.

The vaccine does not provide complete protection; the vaccine efficacy is e 2 (0, 1]. It fol-

lows that the vaccinated individuals become exposed at rate ð1 � eÞb I
N.

Finally, all individuals can die of natural causes at a rate μ.

This compartmental model is illustrated in Fig 1. We note that this ODE model is a special

case of a SARS model considered in [74]. The notation is explained and the parameter values

are shown in Table 1. The model calibration is explained in detail in Section 4.

Fig 1. Scheme of the SVEIR model for MPX.

https://doi.org/10.1371/journal.pntd.0010970.g001

Table 1. Model parameters. Times are in days, rates are per capita per day (and Λ is individuals per day). Details on model calibration are shown in Section 4.

Notation Meaning Base value Range Reference(s)

μ Natural death rate 0:01027

365
0:005

365
; 0:02

365

� �
[72]

Λ Natural birth rate 0:011

365
0:005

365
; 0:02

365

� �
[73]

β Transmission rate 0.09 [0.045, 0.18] [21]

γ−1 Infectious period 23.5 [15, 32] [2]

e Vaccine efficacy 0.85 [0.82, 0.9] [4]

σ−1 Incubation period 12 [7, 17] [2]

ψ Vaccination rate variable [0, ψmax]

ψmax Maximal feasible vaccination rate 1

365
N/A Assumed

CV Cost of vaccination 1 N/A Set as a unit

CMPX Cost of MPX infection 2.5 [1, 10] Assumed

C�
MPX Relative cost of MPX CMPX

CV

https://doi.org/10.1371/journal.pntd.0010970.t001
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We extend this ODE model of MPX transmission by incorporating the game-theoretic

component as done in [71] for measles, smallpox, and other childhood diseases or in [65] for

the recent COVID-19 outbreak or [63] for an Ebola outbreak.

A vaccination game is played by susceptible individuals who are assumed to be rational, act-

ing in their own best interests, and having complete information about the MPX epidemic.

The individuals decide whether to vaccinate or stay unvaccinated. The payoff to the individual

is a function that depends on the action of that individual (whether they vaccinate or not) and

the actions of other players (how fast they are vaccinating as a whole). The payoff incorporates

the cost of the vaccination, CV, the risk of getting infected, πNV and πV evaluated below, and

the costs of the MPX infection C�
MPX.

To evaluate the probability of getting exposed to MPX, we follow [71]. We assume that the

epidemics reached a steady state with I� infected individuals. The formula for I� is given later

by (15); it is important to note that I� depends on ψ, the vaccination rate in the population, but

not on the decision of the focal individual.

The probability that an unvaccinated individual becomes exposed to MPX is

pNV ¼
b I�

N

b I�
N þ m

; ð1Þ

where b I�
N þ m is a rate at which individuals with no intention to vaccinate leave the Susceptible

compartment; b I�
N is the rate at which they enter the Exposed compartment.

Similarly, the probability that a vaccinated individual becomes exposed to MPX is

pV ¼
ð1 � eÞb I�

N

ð1 � eÞb I�
N þ m

: ð2Þ

Once exposed, the individual will become infected with probability s

sþm
.

The solution of the vaccination game, the Nash equilibrium (NE), is the population vacci-

nation rate ψNE such that in this situation no individual has an incentive to deviate from the

population strategy, i.e. either (1) ψNE = 0 when πNV < πV for ψ = 0, (2) ψNE = ψ if πNV = πV
when the vaccination rate is ψ, or (3) ψNE = ψmax if πNV > πV when the vaccination rate is

ψ = ψmax.

3 Analysis

3.1 Analysis of the ODE system

The model yields the following differential equations:

dS
dt

¼ L � c þ m þ b
I
N

� �

S ð3Þ

dV
dt

¼ cS � m þ ð1 � eÞb
I
N

� �

V ð4Þ

dE
dt

¼
b

N
S þ ð1 � eÞ

b

N
V

� �

I � ðm þ sÞE ð5Þ

dI
dt

¼ sE � ðm þ gÞI ð6Þ

PLOS NEGLECTED TROPICAL DISEASES Voluntary vaccination may not stop monkeypox outbreak: A game-theoretic model

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010970 December 14, 2022 5 / 29

https://doi.org/10.1371/journal.pntd.0010970


dR
dt

¼ gI � mR: ð7Þ

There are two equilibria of the dynamics (3)–(7). The disease-free equilibrium (DFE)

E0
¼ ðS0;V0;E0; I0;R0Þ is given by L

mþc
; Lc

mðmþcÞ
; 0; 0; 0

� �
, i.e., S0 ¼ N m

mþc
and V0 ¼ N c

mþc
where

N ¼ L

m
is the total population size. [74] derived the effective reproduction number, i.e., the

number of secondary infections from a single infected individual in an otherwise healthy pop-

ulation, as

RðcÞ ¼ R0

m þ ð1 � eÞc

c þ m
: ð8Þ

Here,

R0 ¼
sb

ðs þ mÞðg þ mÞ
ð9Þ

is the basic reproduction number, i.e., the number of secondary infections from a single

infected individual in an otherwise healthy and unvaccinated population.

The DFE is globally asymptotically stable if R(ψ) � 1 [74, Theorem 4.1].

Let ψHI be the minimal level of vaccination needed for achieving a herd immunity; specifi-

cally let ψHI 2 [0, 1) be such that R(ψ)�1 for all ψ � ψHI. It follows that DFE is the only stable

equilibrium for ψ � ψHI and

cHI ¼

0 if R0 � 1;

1 if e � 1 �
1

R0

;

R0�1

1�ð1�eÞR0
m otherwise:

8
>>>>><

>>>>>:

ð10Þ

In particular, if e � 1 � 1

R0
, then no vaccination rate will prevent the epidemic. Moreover, if

ψHI > ψmax, then no feasible vaccination rate can prevent the epidemic.

The endemic equilibrium exists only when R(ψ) > 1. Moreover, the endemic equilibrium is

locally asymptotically stable whenever R(ψ) > 1. The theoretical results and simulations per-

formed in [74] suggest that it is globally asymptotically stable when R(ψ) > 1 and the initial

population satisfies E|t = 0 > 0 or I|t = 0 > 0. These results are also supported by [75] who stud-

ied a similar model without the E compartment.

Thus, for any set of parameter values, there is only one stable equilibrium of the ODE sys-

tem. Let us denote it by E�
¼ ðS�;E�; I�;R�;V�Þ. As done in [74], setting the derivatives of (3)–

(7) to 0 and solving the resulting system of algebraic equation yields a polynomial equation for

I� in the form

I�ðaI�2 þ bI� þ cÞ ¼ 0 ð11Þ

where

a ¼
b

N

� �2

ð1 � eÞ ð12Þ
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b ¼
b

N
m 1 þ

ð1 � eÞðc þ mÞ

m þ ð1 � eÞc
1 � RðcÞ þ ð1 � eÞ

c

m

� �� �

ð13Þ

c ¼ mðc þ mÞð1 � RðcÞÞ: ð14Þ

The equation aI�2 + bI� + c = 0 has no positive root when R(ψ) < 1. Thus, if R(ψ) � 1, I� = 0 is

the only biologically relevant solution of (11). On the other hand, as seen above, when R(ψ) >

1, the disease-free equilibrium corresponding to I� = 0 is not stable. Thus, we have

I� ¼

0; if RðcÞ � 1; i:e:; if c � cHI;

�
c
b

; if RðcÞ > 1; and e ¼ 1;

�bþ

ffiffiffiffiffiffiffiffiffi
b2�4ac

p

2a ; otherwise;

8
>>>>><

>>>>>:

ð15Þ

Note that I� is always non-increasing in ψ and it is decreasing in ψ whenever I� > 0 (and

e > 0).

Furthermore, it follows easily from the algebra that

S� ¼
L

b I�
N þ c þ m

ð16Þ

E� ¼
m þ g

s
I� ð17Þ

R� ¼
g

m
I�

ð18Þ

V� ¼
cS�

ð1 � eÞb I�
N þ m

: ð19Þ

3.2 Solving the vaccination game

Let C�
MPX ¼

CMPX
CV

be the expected cost of MPX infection expressed relative to the cost of the vac-

cine. The incentive function h(ψ) for an individual to vaccinate when the population vaccina-

tion rate is ψ is given by a difference between the expected costs if not vaccinated and the

expected costs if vaccinated (including the potential cost of contracting MPX), i.e., we can

assume

hðcÞ ¼ C�
MPX

s

s þ m

� �

ðpNV � pVÞ � 1: ð20Þ

Here, s

sþm

� �
is the probability an exposed individual becomes infected. It follows that the Nash
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equilibrium is given by

cNE ¼

0; if hð0Þ < 0;

rootðsÞ of h; if in ½0; cmax�;

cmax; if hðcmaxÞ > 0:

8
>>><

>>>:

ð21Þ

3.3 Calculations of the Nash equilibria

Here we show detailed calculations for the Nash equilibria of the vaccination game and find

the roots of h(ψ) = 0. We will study the function

~hðxÞ ¼
C�

MPXs

s þ m

� �
x

x þ 1
�

ð1 � eÞx
ð1 � eÞx þ 1

� �

� 1 ð22Þ

¼

C�
MPXs

s þ m

� �

xe

ðx þ 1Þðð1 � eÞx þ 1Þ
� 1:

ð23Þ

Note that hðcÞ ¼ ~h b

L
I�

� �
; and while we are primarily interested in the behavior of h(ψ) on [0,

ψHI), we will investigate the function ~hðxÞ on [0, 1).

It follows that ~hðxÞ⋚0 if and only if

0⋚ð1 � eÞx2 þ 2 � e 1 þ
C�

MPXs

s þ m

� �� �

x þ 1: ð24Þ

We will assume
C�
MPXs

sþm
> 1, as otherwise the right-hand side of (24) is positive for x � 0.

Note that this is a reasonable assumption; μ � σ and thus sþm

s
� 1 and if C�

MPX < 1, then the

vaccine would cost more than the disease, i.e., nobody would vaccinate. We will also assume

2 � e 1 þ
C�
MPXs

sþm

� �� �2

� 4ð1 � eÞ > 0, i.e.,

4
C�
MPXs

sþm

1 þ
C�
MPXs

sþm

� �2
� e < 1: ð25Þ

When (25) does not hold, there are no real roots of ~h and the right-hand side of (24) is positive

for x � 0. When (25) holds, the roots of ~h are given by

x1;2 ¼

e 1 þ
C�
MPXs

sþm

� �
� 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e 1 þ
C�
MPXs

sþm

� �
� 2

� �2

� 4ð1 � eÞ
r

2ð1 � eÞ
:

ð26Þ

Setting (15) equal to I�
1;2

¼ L

b
x1;2 where x1,2 is given by (26), we obtain

�m2ð1 � eÞx2
1;2

¼ mðc þ mÞð1 � RðcÞÞ þ m2 1 þ
ð1 � eÞðc þ mÞ

m þ ð1 � eÞc
1 � RðcÞ þ ð1 � eÞ

c

m

� �� �

x1;2: ð27Þ
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Simplifying (27) and solving for ψ yields

c1;2 ¼
mð�ð1 � eÞx2

1;2
þ ðð1 � eÞðR0 � 1Þ � 1Þx1;2 þ R0 � 1Þ

1 þ ð1 � eÞðx1;2 � R0Þ
: ð28Þ

3.4 Analysis of the Nash equilibria

In the context of vaccination games studied in this paper, there are two kinds of NE. If h(ψNE)

= 0 and h0(ψNE) < 0, then ψNE is called a convergent stable Nash equilibrium (CSNE) [71]. If

the population adopts a strategy ψ � ψNE, then it will evolve even closer to ψNE. For similar rea-

sons, if h(0) < 0 or if h(ψmax) > 0, then 0 or ψmax are CSNEs. However, when h(ψNE) = 0 and

h0(ψNE) > 0, then ψNE is not CSNE, as a small deviation from ψNE will result in even larger

deviation.

We note that there is a difference between the usual vaccination games (such as [70, 71])

that assume e = 1 and our more general case with e < 1. If e = 1, the incentive function h(ψ) is

decreasing in ψ and ψHI < 1. Thus, assuming ψHI < ψmax, there is ψ > ψHI for which I� = 0

and h(ψ) = −1 < 0. Consequently, there is at most one root of h(ψ) which exists if and only if

h(0) � 0. However, when e < 1, there can be multiple roots of h and also multiple Nash equi-

libria as demonstrated later.

3.5 Uncertainty and sensitivity analysis

We performed uncertainty and sensitivity analysis using the Latin hyper-cube sampling with

partial rank correlation coefficient (LHS-PRCC) scheme [76, 77]. The scheme is described in

detail in [78] and their MATLAB and R implementation can be found in [79]. Our MATLAB

code, including the code for uncertainty and sensitivity analysis, is in the S1 Code.

The Latin Hyper-cube Sampling (LHS) is a stratified sampling without replacement; the

random parameter distributions are divided into intervals of equal probability and the sam-

pling is independent for each parameter. This method provides an unbiased estimate of the

average model output while it requires fewer samples than simple random sampling to achieve

the same accuracy [80].

The partial rank correlation coefficient (PRCC) between model parameter p and model out-

put O is a correlation coefficient

rRp ;RO
¼

CovðRp;ROÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðRpÞVarðROÞ

q ð29Þ

between Rp and RO which are residuals of the rank-transformed linear regression models for

p and O. PRCC is a robust sensitivity measure for nonlinear but monotonic relationships

between inputs and the output, as long as little to no correlation exists between the inputs [78].

4 MPX calibration

4.1 Demographic parameters

We used data from the CDC to establish the natural birth rate and natural death rate. From

[73], the birth rate in the U.S. in 2020 was 11.0 per 1,000. We will thus assume m ¼ 11

1000�365
per

individual per day. From [72], the death rate in the U.S. in 2020 was 1,027.0 deaths per 100,000

population. We will thus assume L ¼ 0:01027

365
.
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4.2 Disease progression

The MPX incubation period lasts 7–17 days [2]. We thus assume σ−1 = 12 days on average.

The prodromal period lasts 1–4 days [2] and the rash period lasts 14–28 days [2]. We thus

assume that γ−1 = 23.5 days on average.

4.3 MPX related mortality

For the simplicity of the ODE model and its analysis, we do not consider any MPX related

mortality. While the mortality was reported to be as high as 11% [4], and in recent times the

case fatality has been 3–6% [81], the current 2022 outbreak has over 6000 reported cases of

MPX and only 3 deaths [6]. We note that [82] reports 66 deaths in African countries and there

may be a time lag in death reporting. Thus, there may be a non-negligible mortality even in the

current outbreak. Yet, the mortality is likely relatively small to make substantial impacts on the

main conclusions.

4.4 Vaccine efficacy

Data from Equateur Province of Democratic Republic of Congo from 1981 to 1986, in the

years following smallpox eradication, suggest that smallpox vaccine conferred 85% protection

against monkeypox [2]. For the purpose of this paper, we will thus assume e � 0.85.

The data are described in detail in [4]. Within the household contacts, the attack rate

among unvaccinated individuals was 9.28 and among the vaccinated individuals it was 1.31

[4, Table 5]. Thus, the vaccine efficiency was estimated as 1 � 1:31

9:28
� 0:855. However, the

numbers within the house differ by gender. For males, the efficacy was 1 � 0:85

8:61
� 0:9 while for

females the efficacy was 1 � 1:74

9:91
� 0:82.

Given that in the 2022 MPX outbreak, 99.5% (4385/4406) of cases for which the sex is

known are men [6], it may be tempting to adopt e = 0.9 based on the above calculations. How-

ever, the nature of contacts for data collected in [4] was likely different from the nature of con-

tact in the 2022 outbreak in MSM.

The 3rd generation smallpox vaccine Imvanex (Modified Vaccine Ankara—MVA) has

been authorised by the European Medicines Agency, but scientific evidence on the vaccine

effectiveness of MVA against MPX is still lacking [84]. Overall, a more recent estimate of vac-

cine efficacy is needed.

4.5 Basic reproduction number

While the basic reproduction number is not a parameter of the model, we will use the estimate

of R0 to derive an estimate of β by R0γ as in a section outlined below.

Using data collected in the Democratic Republic of the Congo between 1966–1984, [21]

estimated the basic reproduction number for monkeypox as R0 � 2.13 with bounds between

1.46 and 2.67.

To estimate R0 for the 2022 MPX outbreak, we used data from [85], who shared their raw

data set of MPX cases on github [86]. We used SAS to obtain incidence rates for the whole

world as well as for Spain, England, and Germany, which were the three countries with the

most cases; the SAS code is provided in the S2 Code.

We used an online tool [83] to estimate R0 from the incidence data as follows. We set the

sliding window to 7 days, set prior mean value for R0 to 2.1, and prior SD to 0.3. We assumed

all transmissions to be local (for the lack of better data). We used the serial interval by distribu-

tional estimate, using the option “Parametric without uncertainty” and set the mean to 9.7,

and SD to 0.5 [87]. The results are summarized in Table 2. While the estimates vary and
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generally decrease in time, there are some relatively high values of R. This leaves the possibility

of R0 > 3 open at least for the current 2022 outbreak.

4.6 Transmission rate

By (9), and assuming μ � σ and μ � γ,

R0 ¼
sb

ðs þ mÞðg þ mÞ
�

b

g
: ð30Þ

Thus,

b � R0g: ð31Þ

Based on estimates of R0 from [21] discussed above, we get β � 2.13/23.5 � 0.09 with bounds

between 1.47/32 � 0.045 and 2.67/14 � 0.18. We note that this estimate agrees with a relatively

crude estimate from [70] who used transmission risk data from [88] to arrive at the same

value.

4.7 Validation

To validate our choice of parameters and their ranges, we run the sensitivity analysis of the

basic reproduction number on the parameter values and ranges as specified above and in

Table 1.

The estimated basic reproduction number is R0 � 2.11, and the average value during the

uncertainty analysis was 2.53; see Fig 2. This value seemed reasonable and in agreement with

historical data; see Fig 3.

We also plotted the actual new MPX cases as obtained from [85] against the model’s pre-

dicted incidence. We numerically solved the system (3)–(7). The number of new cases at day d
was obtained as σE|t=d. We normalized it so that at the start of the epidemic we have σE|t=0 = 1;

see Fig 3. We note that the best match appears for β � 0.29. However, this would yield R0 �

6.8 which is more in the order of R0 for smallpox [89]. The fit is still good enough for β � 0.18

which yields R0 � 4.23. This is still larger than the usual estimates for MPX. However, as

shown in Table 2, such a value of R0 is not completely unreasonable for the 2022 MPX out-

break. Consequently, while we will do most of our calculations for β = 0.09 which seems to be

Table 2. Estimated effective reproduction number for the 2022 MPX outbreak using method from [83] on MPX reported cases data from [85].

World Spain England Germany

Day Mean SD Mean SD Mean SD Mean SD

10 6.27 0.50 2.07 0.18 2.67 0.33 2.93 0.29

15 11.37 0.61 1.47 0.13 4.80 0.40 3.06 0.27

20 3.54 0.17 1.33 0.11 4.11 0.32 2.02 0.16

25 1.71 0.07 2.66 0.16 1.48 0.12 2.32 0.15

30 1.38 0.06 2.20 0.14 1.35 0.10 2.75 0.15

35 1.54 0.05 1.19 0.07 1.81 0.11 2.00 0.10

40 2.22 0.06 2.17 0.10 2.26 0.12 1.56 0.07

45 1.81 0.05 1.83 0.08 1.67 0.09 1.25 0.06

50 1.76 0.04 1.56 0.07

55 1.36 0.03 0.74 0.04

https://doi.org/10.1371/journal.pntd.0010970.t002
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in agreement with all previous estimates and historical data, we will also consider β = 0.18, the

upper bound for β estimates.

4.8 Maximal feasible vaccination rate

We did not locate any data on the maximal feasible vaccination rate. We will assume that the

population can get vaccinated about once a year, i.e., ψmax = 1/365. In the U.S., at the time of

writing, the demand for the vaccine exceeds the supply [90] and for large populations, the vac-

cine supply is likely the most important factor limiting the vaccination rate. However, even for

Fig 2. Uncertainty analysis of R0. Parameter values and ranges as specified in Table 1. The average value of R0 is about

2.53.

https://doi.org/10.1371/journal.pntd.0010970.g002

Fig 3. Actual (black dots) and predicted incidence. Full red line is for β = 0.09, dashed is for β = 0.19 and dotted is for

β = 0.29. All other parameters are as specified in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g003
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smaller populations and/or during the times the vaccine supply will be restored, there may be

logistical issues (such as limited supply of qualified nurses and doctors) preventing a signifi-

cantly faster vaccination rate.

4.9 Costs of vaccination and costs of MPX

There can be many types of costs associated with vaccination, including the actual cost for vac-

cination, time loss, and travel cost that all have negative effects on the probability of complete

vaccination [91].

Similarly, the expected cost of the disease CMPX includes possible medication costs, doctor

charges, time loss and similar direct and indirect costs.

We were not able to locate any reliable and accurate values for CV and CMPX applicable to

the current outbreak. We note that [70] used CV = 4 based on [92] and CMPX = 100 based on

[93]. However, those values are for the Democratic Republic of the Congo and based on histor-

ical data. In the current 2022 outbreak, especially in the U.S., the vaccine is provided for free,

and the cost is thus limited to indirect costs such as taking the time off work to get vaccinated

and possibly dealing with minor vaccine side effects [94]. At the same time, the MPX infection

does not seem to add any extra monetary expenses to the individuals, apart from mild symp-

toms and taking the time off from work although cases of severe pain have been reported. We

will thus assume C�
MPX to be somewhere between 1 and 10 and note that in reality, the value

will likely be different from person to person.

The value of C�
MPX plays a role in the incentive function given in (20). The formula contains

s

sþm

� �
, the probability an exposed individual becomes infected, which, for MPX parameters

discussed above, is approximately 1. Here, we can assume that C�
MPX is not affected by natural

mortality. However, if the MPX infection lasts significantly longer, one would have to carefully

account for the effects of natural mortality.

Furthermore, we note that while the real costs are important, what truly matters for the

individuals are the perceived costs of the disease and vaccination; yet the actual model does

not change when we change the interpretation of C�
MPX from “real” to “perceived” relative cost.

5 Results

Historical data indicate that MPX outbreaks can be eliminated by vaccination. Indeed, the esti-

mates for the vaccine efficacy e � 0.85 and basic reproduction number R0 � 2.13 based on

data from 1966–1984 [21] mean that e > 1 � 1

R0
. Thus, the vaccination rate needed to achieve

herd immunity, ψHI, is finite. For the parameter values considered in Table 1, we get μ/ψHI �

0.61, meaning that if the whole population at risk can be vaccinated in about 61% of the aver-

age lifespan, then herd immunity will be reached. Fig 4 illustrates the uncertainty and Fig 5

shows the sensitivity analysis of μ/ψHI. It shows a natural result that in order to achieve MPX

elimination, the vaccination has to be done faster if the transmission rate, β, or the infectious

period, γ−1, increase. On the other hand, the vaccination can be done slower if the vaccine effi-

cacy, e, increases.

Figs 6–8 illustrate the Nash equilibrium values, the MPX prevalence, and the annual MPX

incidence in the population using the optimal voluntary vaccination rates. For the parameters

as in Table 1, the NE is to “not vaccinate” as long as C�
MPX, the cost of MPX relative to the cost

of vaccine, is less than about 2.6. Without vaccination, the prevalence would be about 3.5 cases

per 104 individuals. However, even with optimal voluntary vaccination and relatively high

C�
MPX � 10, the MPX prevalence in the equilibrium is more than 0.5 cases per 104 population.

The annual incidence without any vaccination is almost 60 cases per 104; and even with
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optimal voluntary vaccination and C�
MPX � 10, the incidence would stay around 10 cases per

104 population.

To better illustrate how the outcomes depend on different parameter values, Fig 9 shows

the NE as e and C�
MPX vary while β = 0.09 (and thus R0 � 2.11). For these values, there are only

two possibilities, either ψNE = 0 is the only NE or there is a unique positive NE, 0 < ψNE <

ψmax. Fig 10 further illustrates what happens when the transmission rate β increases to 0.18, or

equivalently, if R0 increases to 4.23. There are now four distinct regions: the region where 0 is

the only NE is almost the same, but the region with unique positive ψNE < ψmax is significantly

Fig 5. Sensitivity analysis of μ/ψHI. Parameter values and ranges as specified in Table 1. For those values, μ/ψHI � 0.61

meaning that to achieve herd immunity, the whole population at risk has to be vaccinated in about 61% of the average

lifespan.

https://doi.org/10.1371/journal.pntd.0010970.g005

Fig 4. Uncertainty analysis of μ/ψHI. Parameter values and ranges as specified in Table 1. For those values, μ/ψHI �

0.61 meaning that to achieve herd immunity, the whole population at risk has to be vaccinated in about 61% of the

average lifespan. The average value of μ/ψHI is about 0.53.

https://doi.org/10.1371/journal.pntd.0010970.g004
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smaller and a new region where ψNE = ψmax appeared for medium values of e and large enough

values of C�
MPX. More importantly, there is also a region with three distinct NE. Fig 11 shows

the regions of NE when C�
MPX and R0 varies while e = 0.85. We can see that the region with

three NE exists only for relatively high values of R0 (about 4 and more). The region exists only

for a narrow range of values of C�
MPX, although the range gets wider as R0 increases.

Figs 12–15 show graphs of incentive functions corresponding to the different NE regions in

Figs 9–11. Specifically, Fig 12 illustrates an incentive function in a region where ψNE = 0 is the

only NE. Fig 13 is an example of an incentive function where ψNE 2 (0, ψmax) is the only NE.

The incentive function with multiple roots is shown in Fig 14, while the incentive function for

the region where NE is the maximal vaccination rate is shown in Fig 15.

Fig 6. The optimal voluntary vaccination rates. The lines are color coded corresponding to the regions shown in Fig

9 which shows a diagram for Nash equilibria as e and C�
MPX vary. Blue: 0 is the only NE and it is CSNE. Brown: positive

ψNE is the only NE and it is CSNE. Red dashed line shows the value of ψHI. Unless varied or otherwise specified, the

parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g006

Fig 7. MPX prevalence in a population that uses optimal voluntary vaccination rates. The lines are color coded

corresponding to the regions shown in Fig 9 which shows a diagram for Nash equilibria as e and C�
MPX vary. Blue: 0 is

the only NE and it is CSNE. Brown: positive ψNE is the only NE and it is CSNE. Unless varied or otherwise specified,

the parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g007
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Figs 16–18 illustrate what happens when the transmission rate β increases to 0.18. Without

vaccination, the MPX prevalence and annual incidence increase roughly by a factor of 1.5.

There is also a backward bifurcation for C�
MPX � 2:25. For those values, we have three optimal

voluntary vaccination rates. Only 0 and the largest value are CSNE. The medium vaccination

rate, ψNE,1 is NE but not CSNE. From the public health perspective, it means that there is a

need for public policy to mandate the vaccination rate to be at least ψNE,1; otherwise the

Fig 8. Annual MPX incidence in a population that uses optimal voluntary vaccination rates. The lines are color

coded corresponding to the regions shown in Fig 9 which shows a diagram for Nash equilibria as e and C�
MPX vary.

Blue: 0 is the only NE and it is CSNE. Brown: positive ψNE is the only NE and it is CSNE. Unless varied or otherwise

specified, the parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g008

Fig 9. Nash equilibria as e and C�
MPX vary. Blue: 0 is the only NE and it is CSNE. Brown: positive ψNE is the only NE

and it is CSNE. Unless varied or otherwise specified, the parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g009
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Fig 10. Nash equilibria as e and C�
MPX vary for higher transmission rate, β = 0.18. Other parameters are as in Table 1

unless they vary or are otherwise specified. Blue: 0 is the only NE and it is CSNE. Brown: positive ψNE < ψmax is the

only NE and it is CSNE. Light blue: three NEs, 0 and the larger NE are CSNE. Red: maximal feasible vaccination rate is

the only CSNE.

https://doi.org/10.1371/journal.pntd.0010970.g010

Fig 11. Nash equilibria as R0 and C�
MPX vary; β is estimated by (21) as β � R0γ. Other parameters are as in Table 1.

Blue: 0 is the only NE and it is CSNE. Brown: positive ψNE < ψmax is the only NE and it is CSNE. Light blue: three NEs,

0 and the larger NE are CSNE. Red: maximal feasible vaccination rate is the only CSNE.

https://doi.org/10.1371/journal.pntd.0010970.g011
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voluntary rate would decline to 0. When C�
MPX is large enough for ψNE > 0 to exist, the vaccina-

tion rate is larger in this case compared to case when β = 0.09. Consequently, the prevalence

and incidence in the population using ψNE is lower when β is bigger.

To further assess what could happen without vaccination, Figs 19 and 20 show the uncer-

tainty and sensitivity analysis of MPX prevalence and incidence of unvaccinated population.

The average prevalence is around 6.5 cases in 104 population and the average annual incidence

is around 110 cases per 104 population, further underlying the importance of vaccinations to

try to curtail the outbreak.

Fig 12. The incentive function for the parameters in the blue region of Fig 9 where 0 is the only NE and CSNE.

Full black circle is the CSNE, the red circle corresponds to ψHI. Unless varied or otherwise specified, the parameters are

as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g012

Fig 13. The incentive function for the parameters in the brown region of Fig 9 where ψNE > 0 is the only NE and

CSNE. Full black circle is the CSNE, the red circle corresponds to ψHI. Unless varied or otherwise specified, the

parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g013
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6 Conclusions and discussion

We applied the vaccination game theory framework developed by [71] to the compartmental

model of MPX transmission [21] explicitly incorporating the possibility of MPX infections

even for the vaccinated population.

Without vaccination, MPX could become endemic with relatively high prevalence (3.5

cases per 104) and incidence (almost 60 cases per year per 104) levels. We identified optimal

voluntary vaccinations rates, i.e. rates that are likely to be adopted by the population without

any central or government mandates and interventions. For a relatively low cost of MPX infec-

tion (less than 2.5 times the cost of the vaccine), to not vaccinate is unfortunately an optimal

strategy from the individual standpoint. Even as the cost of infection increases, the optimal

Fig 14. The incentive function for the parameters in the light blue region of Fig 10. There are three NE at the same

time. Full black circles are the CSNE. The empty circle is NE that is not CSNE. The red circle corresponds to ψHI.

Unless varied or otherwise specified, the parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g014

Fig 15. The incentive function for the parameters in the red region of Fig 10. Full black circle is the CSNE. There is

no ψHI. Unless varied or otherwise specified, the parameters are as in Table 1.

https://doi.org/10.1371/journal.pntd.0010970.g015
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voluntary vaccination rate is not enough to substantially decrease the number of MPX cases.

Mandatory vaccination for individuals at risk is therefore highly recommended.

The result that voluntary vaccination alone is not enough to eliminate MPX is not surpris-

ing. It is a consequence of the low cost of MPX infection (relative to the cost of vaccination). It

has already been demonstrated before that the tendency of individuals to optimize self-interest

can lead to vaccination levels that are suboptimal for a community [95] and similar predictions

have been made in general [96] as well as for specific scenarios involving yellow fever [97],

typhoid fever [98], cholera [99], and Hepatitis B [100].

Fig 16. Optimal voluntary vaccination rates when β = 0.18. Other parameters are as in Table 1 unless they vary or

are otherwise specified. The lines are color coded corresponding to the regions shown in Fig 10 which shows a

diagram for Nash equilibria as e and C�
MPX vary. Blue: 0 is the only NE and it is CSNE. Brown: positive ψNE is the only

NE and it is CSNE. Red dashed line shows the value of ψHI. Light blue shows a backward bifurcation when there are

three NE at the same time. The full lines are CSNE, the dotted line is not.

https://doi.org/10.1371/journal.pntd.0010970.g016

Fig 17. MPX prevalence in a population that uses optimal voluntary vaccination rates; β = 0.18 and other

parameters as specified in Table 1. The lines are color coded corresponding to the regions shown in Fig 10 which

shows a diagram for Nash equilibria as e and C�
MPX vary. Blue: 0 is the only NE and it is CSNE. Brown: positive ψNE is

the only NE and it is CSNE. Light blue: three NEs, 0 and the larger NE are CSNE.

https://doi.org/10.1371/journal.pntd.0010970.g017
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Moreover, we demonstrated that, for some parameter values, specifically a relatively low

cost of MPX infection and relatively high rate of MPX transmission, there are multiple Nash

equilibria of the vaccination game and the solutions exhibit backward bifurcation. For the pub-

lic health officials, this means that a minimal vaccination rate has to be mandated in this case,

as otherwise the population vaccination rate would decline to 0. The existence of multiple

Nash equilibria for vaccination games is a relatively new and not yet fully investigated phe-

nomenon. To our knowledge, [65] is the only other work in the vaccination game theory

Fig 18. MPX incidence in a population that uses optimal voluntary vaccination rates; β = 0.18 and other

parameters as specified in Table 1. The lines are color coded corresponding to the regions shown in Fig 10 which

shows a diagram for Nash equilibria as e and C�
MPX vary. Blue: 0 is the only NE and it is CSNE. Brown: positive ψNE is

the only NE and it is CSNE. Light blue: three NEs, 0 and the larger NE are CSNE.

https://doi.org/10.1371/journal.pntd.0010970.g018

Fig 19. Uncertainty analysis for the MPX prevalence in 104 unvaccinated population (the average is

approximately 6.5).

https://doi.org/10.1371/journal.pntd.0010970.g019
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where multiple equilibria occur for a single action, although the backward bifurcation has not

been investigated there; moreover [97] and [101] investigated multiple equilibria in vaccina-

tion games with two preventive actions.

Our results underline the importance of proper estimation of the vaccine efficacy and the

reproduction number for the current MPX outbreak [102]. The estimates of basic reproduc-

tion number R0 � 2.13 [21], the effective reproduction number R � 0.83 [8, 103] and vaccine

efficacy e � 0.85 [8] are all based on historical data from 1966—1984, during or soon after

smallpox vaccinations ended. The current outbreak affects primarily MSM, not children, and

there are signs that R0 can be bigger than expected [104]. If R0 is larger than 4, then even a

slight decrease of vaccine efficacy can mean that even with full vaccination, the MPX outbreak

may not be stopped. Moreover, in that scenario, the transmission rate would likely be large

enough to have multiple Nash equilibria and backward bifurcation.

As with any other mathematical model, our model has a number of limitations and simpli-

fying assumptions.

We performed the analysis as if MPX already reached the endemic state, which is fortu-

nately not yet the case for most of the countries. The vaccination adoption behaviour can hap-

pen at about the same time scale as the infection dynamics, allowing for co-evolution [105].

The coupling of game and epidemic models can lead to oscillations in vaccine uptake over

time [95]. The vaccine-generated herd immunity can lower disease incidence so much that

real or perceived vaccine risks causes individuals to cease vaccinating which in turn causes

uptick in disease incidence [106]. There is even a potential for a significant instability if the

perceptions of vaccine and infection risks are homogeneous in the population [95]. We expect

that the oscillations would be even more profound with the vaccine imperfection.

Furthermore, we assumed that individuals are well informed about MPX which is also not

the case. In the U.S., almost half the respondents (47%) feel that their knowledge level about

MPX is poor or very poor [107]. Moreover, infectious diseases can be under-reported, and

MPX is no exception with testing only recently expanding [108]. Also, at the time of writing,

Fig 20. Uncertainty analysis for the MPX annual incidence per 104 unvaccinated population (the average is

approximately 110).

https://doi.org/10.1371/journal.pntd.0010970.g020
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the demand for the vaccine exceeds the supply [90], i.e. the maximal feasible vaccination rate is

relatively low. There is now a growing body of literature on disease transmission and misinfor-

mation [109–111]. Misinformation can prevent the suppression of epidemics [112]. It is quite

conceivable that, similarly to what happened with HPV vaccine in Denmark [113], a misinfor-

mation about MPX vaccine can diminish vaccine coverage.

Perhaps the most severe limitation is that we assumed homogeneous well mixed population

and, as a result, we obtained a single Nash equilibrium for most parameter values. Complex

networks provide a better platform for more realistic modeling [52, 114–116] and explicitly

incorporating social networks within MSM community [117–119] would thus greatly improve

the model. Heterogeneity in the population yields the heterogeneity in vaccinating actions

[120]. The individuals with many contacts typically have higher inclination to voluntary vacci-

nate and this can help inhibit the outbreaks [121]. As another extension into heterogeneous

populations, one could incorporate the fact that different individuals can perceive the cost of

MPX and the cost of vaccination differently. This assumption could significantly alter our

results. In the present (homogeneous) model, if the cost of MPX is smaller than the cost of vac-

cination, individuals opt not to vaccinate. However, in the heterogeneous model, even if the

average cost of MPX is smaller than the average cost of vaccination, there can still be a non-

negligible proportion of population who perceive the cost of MPX as significantly larger than

the cost of vaccine and, as a result, opt to vaccinate.

One has to keep in mind that no model can be fully realistic and account for every detail

[122, 123] and so, despite all the above shortcomings, our model provides a reasonable, and

not so positive, outlook into what could happen without any mandate for vaccinations and/or

possibly other measures to stop the unfolding MPX outbreak.
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4. Ježek Z, Grab B, Szczeniowski M, Paluku K, Mutombo M. Human monkeypox: secondary attack

rates. Bulletin of the World Health Organization. 1988; 66(4):465. PMID: 2844429

5. Hatmal MM, Al-Hatamleh MA, Olaimat AN, Ahmad S, Hasan H, Ahmad Suhaimi NA, et al. Compre-

hensive Literature Review of Monkeypox. Emerging Microbes & Infections. 2022; 11(1):2600–2631.

https://doi.org/10.1080/22221751.2022.2132882 PMID: 36263798

6. WHO. World Health Organization. Multi-country outbreak of monkeypox; 2022. External Situation

Report 1, published 6 July 2022.

7. Petersen E, Zumla A, Hui D, Blumberg L, Valdoleiros S, Amao L, et al. Vaccination for monkeypox pre-

vention in persons with high-risk sexual behaviours to control on-going outbreak of monkeypox virus

clade 3. International Journal of Infectious Diseases. 2022;. https://doi.org/10.1016/j.ijid.2022.06.047

PMID: 35788415
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11. Behrend MR, Basáñez MG, Hamley JI, Porco TC, Stolk WA, Walker M, et al. Modelling for policy: the

five principles of the Neglected Tropical Diseases Modelling Consortium. PLoS Neglected Tropical

Diseases. 2020; 14(4):e0008033. https://doi.org/10.1371/journal.pntd.0008033 PMID: 32271755

12. Bhunu C, Mushayabasa S. Modelling the transmission dynamics of pox-like infections. International

Journal of Applied Mathematics. 2011; 41(2).

13. Bhunu CP, Mushayabasa S, Hyman J. Modelling HIV/AIDS and monkeypox co-infection. Applied

Mathematics and Computation. 2012; 218(18):9504–9518. https://doi.org/10.1016/j.amc.2012.03.042

PMID: 36345302

14. Tchuenche JM, Bauch CT. Can culling to prevent monkeypox infection be counter-productive? Sce-

narios from a theoretical model. Journal of Biological Systems. 2012; 20(03):259–283. https://doi.org/

10.1142/S0218339012500106

15. Usman S, Adamu II, et al. Modeling the transmission dynamics of the monkeypox virus infection with

treatment and vaccination interventions. Journal of Applied Mathematics and Physics. 2017; 5

(12):2335. https://doi.org/10.4236/jamp.2017.512191

16. Lauko I, Pinter G, TeWinkel R. Equilibrium analysis for an epidemic model with a reservoir for infection.

Letters in Biomathematics. 2018; 5(1):255–274. https://doi.org/10.30707/LiB5.1Lauko

17. Tom JJ, Anebo NP. A Neuro-Fussy Based Model for Diagnosis of Monkeypox Diseases. International

Journal of Computer Science Trends and Technology. 2018; 6(2):143–153.

18. TeWinkel RE. Stability analysis for the equilibria of a monkeypox model [PhD Thesis]. The University

of Wisconsin-Milwaukee. Milwaukee, WI; 2019.

19. Somma SA, Akinwande NI. Sensitivity Analysis for the Mathematical Modelling of Monkey Pox Virus

Incorporating Quarantine and Public enlightenment campaign. FULafia Journal of Science & Technol-

ogy. 2020; 6(1):54–61.

20. Lasisi N, Akinwande N, Oguntolu F. Development and exploration of a mathematical model for trans-

mission of monkey-pox disease in humans. Mathematical Models in Engineering. 2020; 6(1):23–33.

https://doi.org/10.21595/mme.2019.21234

PLOS NEGLECTED TROPICAL DISEASES Voluntary vaccination may not stop monkeypox outbreak: A game-theoretic model

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010970 December 14, 2022 24 / 29

https://doi.org/10.1016/S1473-3099(19)30294-4
http://www.ncbi.nlm.nih.gov/pubmed/31285143
https://doi.org/10.1093/cid/cit703
http://www.ncbi.nlm.nih.gov/pubmed/24158414
https://doi.org/10.4269/ajtmh.2005.73.428
https://doi.org/10.4269/ajtmh.2005.73.428
http://www.ncbi.nlm.nih.gov/pubmed/16103616
http://www.ncbi.nlm.nih.gov/pubmed/2844429
https://doi.org/10.1080/22221751.2022.2132882
http://www.ncbi.nlm.nih.gov/pubmed/36263798
https://doi.org/10.1016/j.ijid.2022.06.047
http://www.ncbi.nlm.nih.gov/pubmed/35788415
https://doi.org/10.1093/ije/17.3.643
http://www.ncbi.nlm.nih.gov/pubmed/2850277
https://www.who.int/publications/i/item/who-mpx-immunization-2022.1
https://doi.org/10.1371/journal.pntd.0008033
http://www.ncbi.nlm.nih.gov/pubmed/32271755
https://doi.org/10.1016/j.amc.2012.03.042
http://www.ncbi.nlm.nih.gov/pubmed/36345302
https://doi.org/10.1142/S0218339012500106
https://doi.org/10.1142/S0218339012500106
https://doi.org/10.4236/jamp.2017.512191
https://doi.org/10.30707/LiB5.1Lauko
https://doi.org/10.21595/mme.2019.21234
https://doi.org/10.1371/journal.pntd.0010970


21. Grant R, Nguyen LBL, Breban R. Modelling human-to-human transmission of monkeypox. Bulletin of

the World Health Organization. 2020; 98(9):638. https://doi.org/10.2471/BLT.19.242347 PMID:

33012864

22. Peter OJ, Kumar S, Kumari N, Oguntolu FA, Oshinubi K, Musa R. Transmission dynamics of Monkey-

pox virus: a mathematical modelling approach. Modeling Earth Systems and Environment. 2022;

8:3423–3434. https://doi.org/10.1007/s40808-021-01313-2 PMID: 34667829

23. Spath T, Brunner-Ziegler S, Stamm T, Thalhammer F, Kundi M, Purkhauser K, et al. Modeling the pro-

tective effect of previous compulsory smallpox vaccination against human monkeypox infection: from

hypothesis to a worst-case scenario. International Journal of Infectious Diseases. 2022; 124:107–112.

https://doi.org/10.1016/j.ijid.2022.09.022 PMID: 36126863

24. Peter OJ, Oguntolu FA, Ojo MM, Oyeniyi AO, Jan R, Khan I. Fractional order mathematical model of

monkeypox transmission dynamics. Physica Scripta. 2022; 97(8):084005. https://doi.org/10.1088/

1402-4896/ac7ebc

25. El-Mesady A, Elsonbaty A, Adel W. On nonlinear dynamics of a fractional order monkeypox virus

model. Chaos, Solitons & Fractals. 2022; 164:112716. https://doi.org/10.1016/j.chaos.2022.112716

PMID: 36247712

26. Bragazzi NL, Han Q, Iyaniwura SA, Omame A, Shausan A, Wang X, et al. Adaptive changes in sexual

behavior in the high-risk population in response to human monkeypox transmission in Canada can

control the outbreak: insights from a two-group, two-route epidemic model. Available at SSRN

4202918. 2022;.

27. Ko Y, May Mendoza V, Mendoza R, Seo Y, Lee J, Jung E. Estimation of monkeypox spread in a non-

endemic country considering contact tracing and self-reporting: a stochastic modeling study. Journal

of Medical Virology. 2022;. https://doi.org/10.1002/jmv.28232

28. Khan A, Sabbar Y, Din A. Stochastic modeling of the Monkeypox 2022 epidemic with cross-infection

hypothesis in a highly disturbed environment. Math Biosci Eng. 2022; 19:13560–13581. https://doi.

org/10.3934/mbe.2022633

29. Qureshi M, Khan S, Bantan RA, Daniyal M, Elgarhy M, Marzo RR, et al. Modeling and Forecasting

Monkeypox Cases Using Stochastic Models. Journal of Clinical Medicine. 2022; 11(21):6555. https://

doi.org/10.3390/jcm11216555 PMID: 36362783

30. Bisanzio D, Reithinger R. Projected burden and duration of the 2022 Monkeypox outbreaks in non-

endemic countries. The Lancet Microbe. 2022; 3(9):e643. https://doi.org/10.1016/S2666-5247(22)

00183-5 PMID: 35753315

31. Driessche Pvd, Watmough J. Further notes on the basic reproduction number. In: Mathematical epide-

miology. Springer; 2008. p. 159–178.

32. Adam D. A guide to R–the pandemic’s misunderstood metric. Nature. 2020; 583(7816):346–349.

https://doi.org/10.1038/d41586-020-02009-w PMID: 32620883

33. van den Driessche P, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for

compartmental models of disease transmission. Mathematical Biosciences. 2002; 180:29–48. https://

doi.org/10.1016/S0025-5564(02)00108-6 PMID: 12387915
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with optimal personal protection strategies. Bulletin of Mathematical Biology. 2018; 80(10):2580–

2599. https://doi.org/10.1007/s11538-018-0476-5 PMID: 30203140
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