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Abstract: Yellow fever is a vector-borne acute viral hemorrhagic disease. It is endemic in tropical
areas of Africa and Latin America but demonstrated the potential for international spread during the
2016 outbreak in Luanda, Angola. Yellow fever can be prevented by vaccination, vector control, and
avoiding mosquito bites. To account for human behavior in disease dynamics, we add a game-theoretic
component to a recent compartmental model of yellow fever transmission. The self-interested
individuals evaluate the risks of contracting yellow fever and choose to vaccinate or avoid the bites
to minimize the overall costs. We find the Nash equilibria, the optimal levels of vaccination and bite
protections if the individuals can decide on the use of only one of the prevention methods as well
as when they can decide on the use of both of them. In the later case, we show that vaccination is
the preferred method of protection from the individual standpoint and, in the Nash equilibrium,
individuals use vaccination only. Our model predicts the vaccination coverage in Angola to be
around 65%, which is in reasonable agreement with the empirical value of 68%. We also study
whether voluntary prevention can lead to the elimination of the disease in endemic areas. We show
that voluntary vaccination alone is not enough to mitigate the risks of outbreaks, suggesting that a
mandatory vaccination policy is necessary.

Keywords: game theory; vaccination games; Nash equilibria; yellow fever

1. Introduction

Yellow fever is a life-threatening acute viral hemorrhagic disease that is endemic in
tropical areas of Africa and Latin America and difficult to distinguish from dengue and
other hemorrhagic fevers [1]. It is transmitted by the bites of infected female mosquitoes
Aedes aegypti [2].

Symptoms, including fever, muscle pain, headache, and nausea or vomiting, usually
appear 3 to 6 days after the bite. For most patients, the symptoms disappear after 3 to
4 days. However, 15% of patients enter a second, more toxic phase affecting several body
systems, including the kidneys [1]. There is no specific drug to treat yellow fever [3] but
good and early supportive treatments for dehydration, liver and kidney failure, and fever
improve survival rates [4].

Yellow fever can be prevented by vaccination, vector control, and by avoiding mosquito
bites [4]. Vaccination is the most important preventive measure against yellow fever. The single
dose vaccine is affordable (costs about $2), 99% effective (within 30 days), and offers life-long
protection [1,5].

Climate changes and shifting mosquito habitats may be behind the recent rise in
yellow fever and other Aedes-borne infections [6–8]. After the 2016 outbreak of yellow fever in
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Luanda, Angola and a linked outbreak in Kinshasa, Democratic Republic of the Congo [9],
the Eliminate Yellow Fever Epidemics (EYE) strategy was developed to respond to the
increased threat of urban outbreaks with international spread [10]. The strategy is guided
by three strategic objectives: (1) protect at-risk populations, (2) prevent international spread
of yellow fever, and (3) contain outbreaks rapidly.

Mathematical modeling is now a standard tool for modeling epidemics and disease
elimination efforts [11,12]. There used to be very few mathematical models of yellow
fever [13,14] although the 2016 outbreak sparked an increased modeling activity [15–19].
Several modeling studies further estimated the basic reproduction number [20–22].

The previous models neglect the impact that human behavior can have on infectious
disease dynamics. Ref. [23] introduced vaccination games and incorporated voluntary
disease prevention into standard epidemics modeling. These new types of models study
complex scenarios in which self-interested individuals take actions based on the decisions of
the rest of the population. As argued in [24], by incorporating human behavior, mathematical
models provide more insight and better predictions. Thus, it is not surprising that the
vaccination game theory is now a vibrant and growing field [25]. The game-theoretical
models are now predictive tools in populations for extracting an optimal decision-making
strategy [26]. They have been applied to study the prevention and elimination of many
different diseases, including Ebola [27], COVID-19 [28–30], monkeypox [31], chikungunya [32],
Hepatitis B [33] or cholera [34].

In this paper, we adapt the mathematical model from [18] that was developed and
calibrated based on the 2016 outbreak in Angola. We incorporate voluntary vaccination and
mosquito bite prevention as two strategies that individuals can take to reduce their risk of
contracting the disease. We show that due to the relatively low vaccination cost, vaccination
is the preferred protection strategy. Moreover, the current vaccination coverage in Angola is
in agreement with our theoretical predictions. Thus, the model suggests that a mandatory
vaccination policy is needed to mitigate the threat of yellow fever outbreaks.

2. Mathematical Model

In this section, we build a mathematical model for voluntary protection against yellow
fever. We first introduce a compartmental ODE model of yellow fever transmission.
Then, we add the game-theoretic component that allows us to investigate individuals’
optimal decisions regarding vaccination and bite protection. Finally, to make quantitative
predictions, we describe how we picked the values for the model parameters.

2.1. Compartmental Model

We adapt the model from [18]. We distinguish the human population (subscript H)
and mosquito/vector population (subscript V).

The human population is subdivided into susceptible (SH), exposed (EH), symptomatic
infectious (IH), asymptomatic infectious (AH), toxic fever (TH) and recovered (RH). The vector
population is divided into susceptible (SV), exposed (EV) and infectious (IV).

The human individuals are born at rate ΛH . A fraction p of the individuals is
vaccinated, becomes permanently protected against yellow fever (YF) and enters the
compartment RH . The remaining fraction, (1 − p), remains susceptible and enters a
compartment SH . The susceptible individuals become exposed after a bite by an infectious
mosquito. The per capita rate is given by (1− e)ab IV

NH
, where e ∈ [0, 1] is the level of bite

protection in the population, a is the mosquito biting rate (without any protection), b is the
probability of a transmission of yellow fever virus (YFV) from a mosquito to a human, and
IV

NH
is the number of infected mosquitoes per human. The most common interpretation of e

is the level of repellent usage, but one can also consider other measures, such as avoiding
being outside when mosquitoes are active or avoiding traveling to parts of the town
where YF is more prevalent. After an incubation period σ−1

H , the exposed individuals
move either to a symptomatic stage IH with a probability δ or to the asymptomatic
stage, AH , with probability 1 − δ. Either one of those stages lasts for a period γ−1

H .
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The asymptomatic individuals fully recover and become permanently immune to YFV and
enter RH . The symptomatic individuals enter a toxic stage TH that lasts for a period κ−1

H .
For simplicity, we assume that all cases fully recover and enter RH . All individuals can die
at the natural mortality rate µH .

The vectors are born at rate ΛV as susceptible. They become exposed after they bite a
symptomatic or asymptomatic individual. The force of infection is given as (1− e)ac IH+ψAH

NH
,

where c is the probability of a transmission of YFV from symptomatic cases, and ψc is
the transmission probability from asymptomatic cases. The incubation period is σ−1 after
which mosquitoes become infectious. All vectors die at the natural mortality rate µV .

We also assume that there are m mosquitoes per human, i.e., the total number of
mosquitoes, NV , is given by Λ

µV
= mNH .

The schematic diagram of the model is shown in Figure 1 and the model parameters
are summarized in Table 1. The model yields the following differential equations:

dSH
dt

= (1− p)ΛH −
(

µH + (1− e)ab
IV

NH

)
SH (1)

dEH
dt

= (1− e)ab
IV

NH
SH − (µH + σH)EH (2)

dAH
dt

= (1− δ)σHEH − (µH + γH)AH (3)

dIH
dt

= δσHEH − (µH + γH)IH (4)

dRH
dt

= pΛH + γH AH + κHTH − µH RH (5)

dTH
dt

= γH IH − (µH + κH)TH (6)

dSV
dt

= ΛV −
(
(1− e)ac

IH + ψAH
NH

+ µV

)
SV (7)

dEV
dt

= (1− e)ac
IH + ψAH

NH
SV − (µV + σV)EV (8)

dIV
dt

= σV EV − µV IV . (9)

SH EH

AH

IH

RH

TH

SVEVIV

(1− e)ab IV
NH

µH (1−
δ)σH

µH

δσH γH

µH

γH

µH

κH

µH

µH

pΛH

(1− p)ΛH

ΛV
(1− e)ac IH+ψAH

NH

µV

σV

µVµV

Figure 1. Scheme of the compartmental ODE model for yellow fever transmission. Dotted lines
represent the influence of a compartment over the transmission rates.
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Table 1. Model parameters. The per capita rates are per day. The times are in days.

Symbol Description Value Source

ΛH Human birth rate (per 1000) 0.04/365 [35]

µH Human natural death rate (61 ∗ 365)−1 [36]

a Mosquito biting rate 0.5 [37]

b Transmission probability from vector to host (per bite) 0.4 [37]

c Transmission probability from host to vector (per bite) 0.5 [38]

σ−1
H Duration of the latent period in host 4 [39]

σ−1
V Duration of the latent period in vector 10 [40]

γ−1
H Duration of the infectious period (host) 4 [41]

κ−1
H Duration of the toxic case 8 [41]

µ−1
V Vector life span 20 [37]

δ Proportion of the severe cases 0.15 [1]

ψ Non-severe case relative infectivity 0.2 estimated

p Proportion of vaccinated individuals variable in [0, 1]

e Bite prevention strategy variable in [0, 1]

CV/CYF Cost of vaccination relative to the cost of YF 2/30 [5,42]

CB/CYF Cost of bite prevention 3/30 estimated

ΛV Vector birth rate m ΛH
µH

µV

2.2. Game-Theoretic Component

We add a game-theoretic component to study individual vaccination and bite prevention
strategies and introduce the following game inspired by the framework introduced in [23].

The players of the game are susceptible individuals. The individuals can (a) choose to
vaccinate against YF or not, and (b) choose to protect themselves against mosquito bites.
Their strategy is given by a pair (pind, eind) where pind specifies if they vaccinate (pind = 1)
or not (pind = 0), and eind ∈ [0, 1] specifies the bite prevention (with eind = 0 being no
prevention and eind = 1 being a complete prevention). We will also consider cases when
individuals can choose only to vaccinate or only to prevent bites.

There is a cost associated with vaccination and bite prevention. We assume the vaccine
costs CV and, for simplicity, the bite prevention costs CBeind. We assume that the cost of
contracting YF and proceeding to the symptomatic and toxic stage is CYF, while the cost of
asymptomatic stage is assumed to be 0.

The solution of the game, called the Nash equilibrium, is the population-level value
(pNE, eNE) at which no individual can increase their own benefits by deviating from the
population strategy.

The individual’s benefit depends on the individual’s strategy but also on the prevalence
of YF in the population, i.e., on the strategies of other players. Following [23], we assume
that all individuals are provided with the same information and that they all use the
information in the same and rational way to assess costs and risks.

2.3. Model Calibration

Most of the specific model parameter values were taken from [18], and the original
sources are shown in Table 1. The birth and death rates in Angola were found in [35,36].

We estimated the relative infectivity of asymptomatic cases as ψ = 0.2 as opposed to
ψ = 0.1 used in [18]. This value brought the basic reproduction number in line with other
models as discussed in the model validation section.

The cost of the vaccine was estimated as CV = $2 [5], while the cost of yellow fever
disease was estimated as CYF = $30 [42]. We could not find reliable estimates for the cost
of bite protection, but since the protection must be ongoing rather than one time, we used
CB = $3 to indicate a slightly bigger cost than the cost of the vaccine.
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3. Analysis of the ODE System

Because we assume no disease-induced death, the population size remains constant at
NH = ΛH

µH
and NV = mNH = ΛV

µV
. There are two equilibria of the dynamics.

3.1. Disease-Free Equilibrium

The disease-free equilibrium E0 = (S0
H , E0

H , A0
H , I0

H , T0
H , R0

H , S0
V , E0

V , I0
V) is given by

S0
H = (1− p)NH , R0

H = pNH , S0
V = NV and E0

H = A0
H = I0

H = T0
H = E0

V = I0
V = 0.

Similarly as in [18], the effective reproduction number is

R = (1− p)1/2(1− e)R0, (10)

where

R0 =

√(
ψ(1− δ) + δ

)
a2bcm

(
σV

σV + µV

)(
σH

σH + µH

)(
1

γH + µH

)(
1

µV

)
(11)

is the basic reproduction number in the population without vaccination (p = 0) and without
any bite prevention (e = 0).

The disease-free equilibrium is locally asymptotically stable if R < 1 and unstable
if R > 1 [43]. It follows that the population will reach the disease-free equilibrium if
p ≥ pHI(e) where

pHI(e) =

0, if (1− e)R0 ≤ 1,
1− 1

(1−e)2R2
0
, otherwise,

(12)

or if e ≥ eHI(p) where

eHI(p) =

{
0, if (1− p)1/2R0 ≤ 1,
1− 1

(1−p)1/2R0
, otherwise.

(13)

This is illustrated in Figure 2.

Figure 2. Dependence of the effective reproduction number,R, on vaccination coverage p and bite
protection levels e in the population. Other parameter values as in Table 1. The number of secondary
infections can be estimated byR2. Note thatR < 1, i.e., one can contain outbreaks whenever p > 0.8,
regardless of the value of e. If the bite prevention is higher, the vaccination coverage needed for
R < 1 decreases. If e > 0.6, the outbreaks can be contained even without the vaccination.
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3.2. Endemic Equilibrium

The endemic equilibrium E∗ = (S∗H , E∗H , A∗H , I∗H , T∗H , R∗H , S∗V , E∗V , I∗V) is stable ifR > 1.
To highlight the dependence on p and e, we express I∗V as

I∗V(p, e) = NH
(1− p)(1− e)2R2

0 − 1
(1−e)ab

µH
+ (1− p)(1− e)2R2

0
µV+σV

mσV

. (14)

Furthermore,

E∗V =
µV
σV

I∗V (15)

S∗V = NV − I∗V − E∗V (16)

S∗H = (1− p)
ΛH

µH + ab I∗V
NH

(17)

E∗H =
(1− p)ΛH − µHS∗H

µH + σH
(18)

A∗H = (1− δ)
σH

µH + γH
E∗H (19)

I∗H = δ
σH

µH + γH
E∗H (20)

T∗H =
γH

µH + κH
I∗H (21)

R∗H = pNH +
γH A∗H + κHT∗H

µH
. (22)

Note that by (14), I∗V(p, e) is decreasing in p and e.

4. Results

Our overall aim is to understand what the individuals would choose if they can
decide about about the optimal use of vaccination and bite prevention simultaneously.
To achieve this, we will first consider a game when the individuals only decide whether
to vaccinate or not, assuming the bite prevention level is fixed. Then, we will consider
the game when the individuals decide on the bite protection, assuming the vaccination
level is fixed. We will then combine these two results and derive optimal actions when the
individuals can use both preventive options at the same time. We validate the model by
comparing our reproduction number to previous studies. We also compare the predicted
vaccination coverage at Nash equilibrium with the actual coverage in Angola. We conclude
this section by sensitivity analysis to see how different parameters influence the predictions
of our model.

4.1. Optimal Vaccination Decisions

Let us first assume that individuals can only decide whether or not to vaccinate; all
other model parameters including e are fixed.

In the disease-free equilibrium, the optimal decision is not to vaccinate. Therefore,
for the rest of the section, we assume that the population is, or at least can be, in the endemic
equilibrium, i.e.,R0 > 1.

For a moment, assume that the rest of the population uses a strategy p and the
focal individual is still making a choice whether to vaccinate or not. When the focal
individual decides to vaccinate, they will pay the cost CV . If they do not vaccinate, they
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will remain susceptible. In this case, they can become exposed and eventually proceed to
the symptomatic stage with probability

π =
(1− e)ab I∗V (p,e)

NH

(1− e)ab I∗V(p,e)
NH

+ µH

δσH
σH + µH

(23)

where I∗V(p, e) is given by (14). Thus, the expected cost of not getting vaccinated is given
by πCYF. Note that, I∗V(p, e)/NH is decreasing in p. Thus, π is decreasing in p. Moreover,
when p = 1, π = 0. Thus, as in [23], the Nash equilibrium is unique and given by

pNE =

{
0, if CV > πCYF for p = 0,
p, which solves CV = πCYF.

(24)

In particular, pNE < 1 regardless of e. Additionally, pNE is a convergent stable Nash
equilibrium (CSNE). If p < pNE, then the best response is to vaccinate. Conversely, when
p > pNE, then the best response is to not vaccinate. In either case, the vaccination coverage
in the population will tend toward pNE.

Furthermore, as e increases, I∗V(p, e) does not increase and so the risk of infection π is
non-increasing in e. Consequently, the equilibrium value of pNE is non-increasing in e. This
is shown in Figure 3a.

(a) (b) (c)
Figure 3. Herd immunity values (black) and Nash equilibria values (blue in (a), red in (b) and the
black dot in (c)). Unless varied, the parameters are as specified in Table 1. The white regions represent
a parameter combination for which R < 1 and the outbreaks can be contained. The gray regions
represent a parameter combination for whichR > 1. (a) The optimal voluntary vaccination coverage,
pNE, (blue) and the vaccination coverage needed for herd immunity, pHI (black), as they depend on e.
Here we assume that e is fixed and individuals can only choose whether to vaccinate or not. Both pNE

and pHI are decreasing functions of e and pNE < pHI. (b) The optimal voluntary bite protection level,
eNE, (red) and the bite protection level needed to achieve herd immunity, eHI, (black) as they depend
on p. Here we assume that individuals can only choose how much they want to prevent bites while
the vaccination coverage p is fixed. Both eNE and eHI are decreasing functions of p and eNE < eHI.
(c) Nash equilibrium of the general game (black dot) when individuals can choose vaccination and
bite prevention. The Nash equilibrium is at the intersection of the curves from (a,b).

When e = 1, there is no disease in the population and thus pNE = 0. Similarly,
when CV > 0 is fixed and e < 1 is close enough to 1, pNE = 0. Thus, there are only two
possibilities as illustrated in Figure 3, depending on the relation of CV/CYF to

Ccrit =
ab I∗V (0,0)

NH

ab I∗V(0,0)
NH

+ µH

δσH
σH + µH

, (25)

where I∗V(0, 0) is an equilibrium value of I∗V when e = p = 0. We have
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1. If CV/CYF > Ccrit, then vaccination is too expensive and the Nash equilibrium is to
not vaccinate, even if e = 0, i.e., to not vaccinate for any p and thus pNE(e) = 0 for
all e.

2. When CV/CYF < Ccrit, then 0 < pNE(0) < 1 and pNE(1) = 0, i.e., the individuals
should vaccinate (but not always) when e = 0 and not vaccinate at all when e ≈ 1.

This is illustrated in Figure 4a.
Figure 4b shows the incidence rate of new YF infections in the population where

individuals use the voluntary vaccination at the optimal (from the self-interest point of
view) levels.

(a) (b)
Figure 4. (a) Parameter regions where voluntary vaccination is beneficial (gray) and not beneficial
(white). The boundary between the two regions represents the optimal voluntary vaccination
coverage, pNE. The red dotted line is the vaccination coverage needed for herd immunity, pHI.
As CV/CYF increases, pNE decreases while pHI remains constant. When CV/CYF reaches the critical
level Ccrit given in (25), pNE becomes 0. At that point, the relatively high vaccine cost makes “do
not vaccinate” an optimal strategy from the individuals’ perspective. (b) As CV/CYF increases,
the difference between pHI and pNE grows. This means that the number of price of anarchy increases.
When CV/CYF reaches the critical level Ccrit, pNE becomes 0 and the price is maximal (shown by the
dotted line). For our scenario, we evaluated the price of anarchy as the number of new symptomatic
yellow fever infections per year per 104 population when individuals use the Nash equilibrium level
of protection. In both figures, e = 0 and the values of all other parameters are as in Table 1.

4.2. Optimal Bite Prevention

Here, we consider a game in which the individuals can only decide how much they
prevent the vector bites. All other model parameters including p are fixed.

Assume that the rest of the population is using e, while the focal individual uses eind.
The risk of infection for the focal individual is given by

π(eind) =
(1− eind)ab I∗V(p,e)

NH

(1− eind)ab I∗V(p,e)
NH

+ µH

δσH
σH + µH

. (26)

The individual will choose eind ∈ [0, 1] that minimizes the overall costs, i.e., minimizes
the function h(eind) = CBeind + π(eind)CYF. We have

h′ = CB −
µHab I∗V(p,e)

NH(
(1− eind)ab I∗V(p,e)

NH
+ µH

)2
δσH

σH + µH
CYF, (27)

and thus h′′ < 0. Hence, the minimum of h must occur either at eind = 0 or eind = 1.
The condition h(1) < h(0) is equivalent to

CB
CYF

<
ab I∗V(p,e)

NH

ab I∗V (p,e)
NH

+ µH

δσH
σH + µH

. (28)



Games 2022, 13, 55 9 of 14

Thus, the optimal choice for the focal individual is

eind =

{
1, if (28) is true,
0, otherwise.

(29)

Additionally, as e increases, the right-hand side of (28) decreases. Thus eind is a
non-increasing function of e. Hence, as in the previous section, NE is unique and given by

eNE =


0, if

CB
CYF

<
ab I∗V (p,e)

NH

ab I∗V(p,e)
NH

+ µH

δσH
σH + µH

for e = 0,

e, which solves
CB
CYF

=
ab I∗V(p,e)

NH

ab I∗V (p,e)
NH

+ µH

δσH
σH + µH

.

(30)

Additionally, the right-hand side of (28) is decreasing in p and thus eind and consequently
eNE is a non-increasing function of p. This is shown in Figure 3b.

Similarly to the analysis in the previous section, the eNE is CSNE.
The outcomes depend on the relationship between CB/CYF and the critical value Ccrit

defined in (25).

1. If CB/CYF > Ccrit, then eNE(p) = 0 for all p, i.e., the cost of bite prevention is too high
no matter what is the vaccination coverage in the population.

2. If CB/CYF < Ccrit, then 1 > eNE(0) > 0 and eNE(1) = 0, i.e., the individuals should
somewhat prevent vector bites (but never fully) if the vaccination coverage is
relatively low, but do not prevent them at all once the vaccination coverage is above
a certain threshold.

This is illustrated in Figure 5a.
Figure 5b shows the incidence rate of new YF infections in the population where

individuals use the voluntary vaccination at the optimal (from the self-interest point of
view) levels.

(a) (b)
Figure 5. (a) Parameter regions where voluntary bite protection is beneficial (gray) and not beneficial
(white). The boundary between the two regions represents the optimal voluntary bite protection
level, eNE. The red dotted line is the bite protection level needed for YF elimination, eHI. As CB/CYF

increases, eNE decreases while eHI remains constant. When CB/CYF reaches the critical level Ccrit,
eNE becomes 0, i.e., at that point, the relatively high cost of bite protection makes “do not protect
against bites” an optimal strategy from the individuals’ perspective. (b) The price of anarchy is again
evaluated as the number of new symptomatic yellow fever infections per year per 104 population
when individuals use the Nash equilibrium level of protection. As CB/CYF increases, the difference
between eHI and eNE grows. This means that the number of price of anarchy increases. When CB/CYF

reaches the critical level Ccrit, eNE becomes 0 and the price is maximal (shown by the dotted line). In
both figures, p = 0 and the values of all other parameters are as in Table 1.
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4.3. Optimal Vaccination and Bite Prevention

Here, we assume that individuals decide whether to vaccinate as well as whether to
prevent the bites. The strategy is thus given by a pair (p, e) and the NE (pNE, eNE) must
satisfy that pNE is a NE of the game when e = eNE is fixed (as discussed in Section 4.1) and
eNE is a NE of the game when p = pNE is fixed (as discussed in Section 4.2). As demonstrated
in Figure 3c, only the equilibrium (pNE, 0) is possible, although there is a relatively narrow
region of CB values for which up to three NEs are possible. A similar situation is discussed
in more detail in [44].

4.4. Validation

For the parameter values given in Table 1, Formula (11) yieldsR0 ≈ 2.26, i.e., a single
infectious case results in R2

0 ≈ 5.1 secondary infections [43]. This is reasonably close to
previous modeling studies estimating the number of secondary infections around 5 or
more [18,21,22].

Our model also predicts that one needs about 80% of people to be vaccinated for
R < 1, which is in agreement with [10].

Finally, the game theoretical analysis predicts the NE to be around 65%. This is in
a reasonable agreement with about 68% in Angola overall [45]. Additionally, following
the 2016 YF outbreak, the vaccination coverage in Luanda province shot up from 57.9% to
92.9% in 2017 and has been on a slow but steady decline to 89.1% in 2022, while the overall
vaccine coverage in Angola has been slowly rising. This may demonstrate the voluntary
choice of new individuals in Luanda province to not get vaccinated, given the already high
vaccination coverage there.

4.5. Sensitivity Analysis

We performed a sensitivity analysis based on [46]. The sensitivity index of pNE on
parameter x is calculated as

(
x

pNE

)
·
(

∂pNE
∂x

)
. The sensitivity index −0.5 means that 1%

increase in a parameter value x will result in a 0.5% decrease in pNE. The calculations of
the sensitivity of eNE are analogous. The results are shown in Figure 6.
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Figure 6. Summaries of the sensitivity analysis of (a) pNE and (b) eNE based on [46]. Only parameters
for which the absolute value of the sensitivity index is greater than 0.005 are shown. The sensitivity

index of pNE on a parameters x calculated as
(

x
pNE

)
·
(

∂pNE
∂x

)
. The sensitivity index −0.5 means that

1% increase in a parameter value x will result in a 0.5% decrease in pNE. The values of parameters
that are not varied are as specified in Table 1.

We can see that the sensitivities of pNE and eNE on various parameter values are
similar, although the sensitivity indices of eNE are roughly three to four times as much as
those for pNE. The NE values increase most with the increase in the mosquito biting rate
a, but are also quite sensitive to the transmission probabilities b and c, and the number
of mosquitoes per human. On the other hand, the equilibrium values decrease with the
increased mortality of mosquitoes, µV and the shortening of the human incubation period.
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In all of these instances, the more likely it is to contract the disease, the higher the value of
NE will be.

Similarly, decreasing the cost of vaccination or the bite protection (relative to the
cost of the disease) also increases the NE values and lowers the incidence rates at this
voluntary equilibrium.

5. Conclusions and Discussion

In this paper, we adapted the compartment model of yellow fever transmission
developed by [18]. We added the game-theoretic component and used the model to study
the voluntary prevention strategies by vaccination or bite protection. We calibrated the
model based on the values from the literature and mostly in agreement with the parameter
values used in [18]. We validated the model prediction based on the current vaccination
coverage and trends in Angola.

The model shows that vaccination, as opposed to bite protection, should be a preferred
way to protect against the disease. In agreement with previous studies [10], our model
predicts that one needs about 80% vaccination coverage to contain the outbreaks of yellow
fever in urban areas. This is in agreement with previous models of YF without the
game theoretical component. Our model indicates that from the individual perspective,
the optimal vaccination coverage is about 65%, which is in a reasonable agreement with
the actual coverage in Angola. Thus, we show that voluntary vaccination alone is not
enough to eliminate yellow fever from endemic areas and to mitigate the risks of outbreaks.
These predictions are in line with similar studies on other vector borne diseases [47–49] or
diseases when the cost of protection is relatively high, such as typhoid [50].

Studies on the prevention of other vector-borne diseases such as chagas disease [51]
suggest that individuals behave rationally and that the actual level of protective action depends
on the cost of the protection. Thus, from the policy making perspective, the vaccine should be
made available for the population at as little cost as possible. This will align the selfish optimal
voluntary vaccination coverage with the societal optimum of herd-immunity coverage.

Our model has several limitations. We assumed a homogeneous, well-mixed population
and, as a result, we obtained a single Nash equilbrium. To model real-world populations,
complex networks provide a better platform [24,52]. Heterogeneity in the population yields
heterogeneity in vaccinating actions [53]. The individuals with many contacts may have
higher inclination to voluntarily vaccinate than individuals with fewer contacts, and this
can largely inhibit the outbreaks [54]. At the same time, we note that YF is transmitted
by mosquitoes rather than directly from a person to another person. Thus the usual
social network methodology may not apply in a straightforward way. The use of the
multi-agent-simulation (MAS) methodology [55–61] would possibly allow for much higher
flexibility and realism in the modeling approach, taking into account both geographical and
social heterogeneity. This approach could also capture the qualitative difference between
vaccination, which is a one-time decision, and bite protection, which is a repeated action.

Our model can be extended in several ways. Vector control is another preventative
measure that could be considered. The control is closely linked to the social structure and
living conditions. We focused on urban transmission and thus ignored the sylvanic cycle
with non-human primates acting as alternative hosts for yellow fever. Incorporating the
primates into the model is, thus, the next natural step which will account for the fact that
as cities grow, they become increasingly connected to areas with YF potential. Additionally,
the model should account for intensified population movement to the cities from rural
areas [10].
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