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Abstract
Game theory is now routinely applied to quantitatively model the decision making of
individuals presented with various voluntary actions that can prevent a given disease.
Most models consider only a single preventive strategy and the case where multiple
preventative actions are available is severely understudied. In our paper, we consider
a very simple SI compartmental model of rabies in the domestic dog population.
We study two choices of the dog owners: to vaccinate their dogs or to restrict the
movements of unvaccinated dogs. We analyze the relatively rich patterns of Nash
equilibria (NE). We show that there is always at least one NE at which the owners
utilize only one form of prevention. However, there can be up to three different NEs at
the same time: two NEs at which the owners use exclusively only the vaccination or
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movement restriction, and the third NE when the owners use both forms of prevention
simultaneously. However, we also show that, unlike the first two types of NEs, the
third kind of NE is not convergent stable.

Keywords Game theory · Vaccination games · Nash equilibria · rabies

Mathematics Subject Classification 91A07 · 92B05

1 Introduction

Since the seminal paper Bauch and Earn (2004), game theory has been increasingly
applied to quantitatively model the decision making of individuals presented with
various voluntary interventions; see, for example Schecter (2021), Buonomo et al.
(2019), Xin et al. (2019), Doutor et al. (2016), Reluga and Li (2013) or Verelst et al.
(2016), Wang et al. (2016) and Chang et al. (2020) for recent reviews. The studies
include recent COVID-19 prevention models (Choi and Shim 2020; Agusto et al.
2022; Piraveenan et al. 2021) as well as models of typhoid fever (Acosta-Alonzo et al.
2020), polio (Cheng et al. 2020; Reluga and Galvani 2011), smallpox (Bauch et al.
2003;Molina andEarn 2015), chickenpox (Liu et al. 2012),measles (Shim et al. 2012),
influenza (Shim et al. 2012), cholera (Kobe et al. 2018) or Hepatitis B (Chouhan et al.
2020; Scheckelhoff et al. 2021). All of these models, similarly to a general model
of Geoffard and Philipson (1997), demonstrate that voluntary prevention alone is not
enough to eliminate the disease when the cost of prevention is high relative to the
cost of the disease. On the other hand, there are models for vector-borne diseases
such as malaria (Broom et al. 2016), dengue (Dorsett et al. 2016), Chagas (Han et al.
2020), chikungunya (Klein et al. 2020), visceral leishmaniasis (Fortunato et al. 2021)
or zika (Angina et al. 2022) or diseases like Ebola (Brettin et al. 2018) that show that
voluntary prevention can help with disease elimination once the cost of prevention is
relatively low. Even in such cases, though, the elimination can never be achieved by
the voluntary prevention alone (Bauch and Earn 2004).

Despite the variance of modeled diseases, the majority of the models have con-
sidered only a single preventive strategy and have not incorporated multiple options.
The notable exceptions include Kobe et al. (2018) who developed a model involving
protection against cholera by vaccination and the use of clean water,and Choi and
Shim (2020) who studied protection against COVID-19 by vaccination and social
distancing.

The aim of this paper is to analyze themultiple prevention options inmore detail and
to study the patterns of the Nash equilibria (NE).Weminimize the number of compart-
ments and parameters of the underlying disease transmission model and focus largely
on the analysis of the game-theoretic component. We use a very simple Susceptible-
Infected compartmental model of rabies in the dog population. We consider two
choices of the dog owners: to vaccinate their dogs or to restrict the movements of
unvaccinated dogs in order to prevent contact with potentially infected other dogs or
wild animals. We determine the equilibria of the disease dynamics and then analyze
the NEs of the population game. We demonstrate that even our simple model yields a
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relatively rich structure of NEs. There is always at least one NE at which the owners
utilize only one form of prevention. However, there can be up to three different NEs
at the same time: the above two at which the owners use exclusively only one form
of the prevention and the third NE when the owners use both forms of prevention
simultaneously. We also show that, unlike the first two types of NEs, the third kind of
NE is not convergent stable. Here, we adopt the notion of convergent stability as done
in Bauch and Earn (2004).

2 Mathematical model

In this section we build a mathematical model for the voluntary prevention of rabies in
dogs. We first introduce a simple compartmental model of rabies transmission. Then,
we add the game-theoretic component that will allow us to investigate individuals’
optimal decisions.

Our compartmental model is a simplification of the model considered in Zhang
et al. (2011) who used Susceptible-Exposed-Infected-Vaccinated structure for both
the dog population and human population. For simplicity, we consider only the dog
population and omit the incubation period.

2.1 Compartmental model

We consider a very simple transmission model for rabies in domestic dogs. The dog
population is split between susceptible, S, infected, I , and vaccinated, V . The dogs
enter the population at a rate �. A fraction v of the new dogs get vaccinated and enter
the compartment V while the rest, the fraction (1−v), of dogs remain susceptible and
enter the compartment S. For simplicity, we assume that vaccination offers complete
protection against rabies and that the owners re-vaccinate the dogs as the vaccine
immunity wanes. The susceptible dogs become infected at rate (1 − r)β

(
W + I

N

)

where r is the population level at which the dog owners restrict their dogs movement,
β is the transmission rate (of unrestricted dogs), W represents the proportion of wild
animals infected by rabies and N = S + I + V is the total dog population size. For
simplicity, we assume that W is constant. All dogs die of natural causes at a rate μ.
Infected dogs die at an additional rate μR which stands for disease mortality as well
as for intentional quarantine of infectious dogs by their owners. All rates are assumed
positive and we also assume W ≥ 0.

The schematic diagram of the model is shown in Fig. 1 and the model parameters
are summarized in Table 1. The diagram yields the following differential equations.

dS

dt
= (1 − v)� − (1 − r)β

(
W + I

N

)
S − μS (2.1)

dV

dt
= v� − μV (2.2)

d I

dt
= (1 − r)β

(
W + I

N

)
S − (μ + μR)I . (2.3)
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Fig. 1 Scheme of the compartmental ODE model for rabies transmission. The dog population is divided
into susceptible, S, infected, I , and vaccinated, V . The wild animals infected by rabies are denoted by W .
Solid arrows represent the transitions between compartments. The letters next to the arrows specify the per
capita rates of the transitions. Dotted lines represent the influence of one compartment over the transmission
rates

Table 1 Model parameters

Symbol Description Value

� Birth rate 0.08

μ Natural death rate 0.08

μR Disease induced mortality rate 1

β Transmission rate of unrestricted dogs 2.16

W Prevalence of infection in the wild 0.04

v Proportion of dogs being vaccinated (in the whole population) in [0, 1]
r Restriction of dog’s movements (average amongst the unvaccinated population) in [0, 1]
CV Cost of vaccination (relative to losing the dog) > 0, variable

CM Cost of movement restriction (relative to losing the dog) > 0, variable

Except � which is in individuals per year, other rates are per capita per year. Most values derived from
Zhang et al. (2011); see Sect. 2.3

2.2 Game-theoretic component

We add a game-theoretic component to study individual prevention strategies and
introduce the following game inspired by the framework introduced in Bauch and
Earn (2004).

The players of the game are dog owners. In the fully general game, the owners
can choose (a) to vaccinate their dogs, and/or (b) to limit the unvaccinated dogs’
movement and thus influence the transmission rate β. Their strategy is given by a pair
(vind , rind) where vind ∈ {0, 1} specifies if their dog gets vaccinated (1) or not (0)
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and rind ∈ [0, 1] specifies the movement restriction for their unvaccinated dog (with
0 being no restriction and 1 being complete restriction). We will also consider cases
when the owners can choose only to vaccinate or only to restrict their dog’s movement.

There is a cost associated with the vaccination and movement restrictions. We
assume the vaccine costs CV while, for simplicity, the movement restrictions cost
CMrind . The cost is expressed relative to the cost of the dog contracting rabies (and
effectively being lost to the disease), i.e., the cost of losing the dog is assumed to be 1.

The individual’s benefits, or payoffs, depend on the individual’s strategy but also
on the prevalence of rabies in the population, i.e., on the strategies of other players.
Following Bauch and Earn (2004), we assume that all individuals are provided with
the same information such as the knowledge ofW and the overall prevalence of rabies
amongst dogs, I/N . We will also assume that they all use the information in the same
and rational way to assess costs and risks.

The solution of the game, called the Nash equilibrium, is the population-level value
(vNE, rNE) at which no individual can increase their own benefits by deviating from
the population strategy. As in Bauch and Earn (2004), a Nash equilibrium is called a
convergent stable Nash equilibrium (CSNE), if whenever the population is near but
not exactly at the Nash equilibrium and a small number of focal individuals choose
their optimal strategy, the population strategy (as an average) gets closer to the Nash
equilibrium values.

2.3 Calibration

We base most of the demographic and epidemiological parameter values on Zhang
et al. (2011). The values seem consistent with values used in other papers modeling
rabies such as Lu et al. (2021), Zinsstag et al. (2009), Hampson et al. (2007). The
natural death rate is μ = 0.08, i.e., the dogs life for about 12.5 years. The disease
inducedmortality isμR = 1. As in Hampson et al. (2007), Zhang et al. (2011), we will
assume thatRe = 2. Thus, if there is no vaccination andmovement restriction, it gives
β = Re(μ+μR) = 2.16. The value of � is irrelevant and we set it to � = μ = 0.08
to achieve a unit population size in the disease-free equilibrium.

The percentage of rabies positive stray dogs in Bangkok was about 25% (Tep-
sumethanon and Sitprija 2005). The stray dogs account for about 17% of all dogs in
Bangkok (Kasempimolporn et al. 2007) which gives W ≈ 0.25 ∗ 0.17 ≈ 0.04.

3 Analysis of the ODE system

First, let us consider the equilibria of the ODE system (2.1)–(2.3), i.e., the solutions
of

0 = (1 − v)� − (1 − r)β

(
W + I

N

)
S − μS (3.1)

0 = v� − μV (3.2)

0 = (1 − r)β

(
W + I

N

)
S − (μ + μR)I . (3.3)
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Fig. 2 The equilibriumvalues of the disease prevalence Iv,r /Nv,r (left), the probability that an unvaccinated

dog becomes infected, πV
v,r (center), and the probability that an unvaccinated unrestricted dog becomes

infected, πM
v,r (center) as a function of v and r when the other parameter values are as in Table 1; the values

of CV and CM do not matter. Note that Iv,r is decreasing in v and r as proved in Lemma 1

By (3.2), V = v �
μ
. By adding (3.1) and (3.3), we get S = (1−v)�

μ
−

(
1 + μR

μ

)
I .

Thus, N = �
μ

− μR
μ
I . We also obtain I as a root of a function

q(I ) = aI 2 + bI + c (3.4)

with

a =
(
1 + μR

μ

) (
(1 − r)β − μR − (1 − r)βW

μR

μ

)
(3.5)

b = �

μ

(
μ + μR − (1 − r)β(1 − v) + (1 − r)βW

[
1 + μR

μ
(2 − v)

])
(3.6)

c = −(1 − r)(1 − v)

(
�

μ

)2

βW . (3.7)

The only biologically reasonable roots are between 0 and �
μ+μR

. We have q(0) =
c ≤ 0 and q

(
�

μ+μR

)
> 0. Thus, there is only one such root of q(I ) and it is given by

Iv,r =
{−b+√

b2−4ac
2a , if a �= 0,

− c
b , otherwise.

(3.8)

If r = 1, we get S = (1 − v)�
μ
and Iv,1 = 0. The same solution is also possible if

r < 1 and either W = 0 or v = 1. When r < 1, W > 0, and v < 1, the disease-free
equilibrium is no longer possible. When W = 0, we can easily obtain the effective
reproduction number asRe = (1−v)(1−r) β

μ+μR
(van den Driessche andWatmough

2002)
The following lemma illustrates that increasing vaccination or movement restric-

tions decreases the number of infectious individuals in the endemic equilibrium. This
is also shown in Fig. 2.
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Lemma 1 The equilibrium values of Iv,r and Iv,r
Nv,r

are non-increasing in v and r.

Moreover, Iv,r and
Iv,r
Nv,r

are decreasing in v and r whenever Iv,r > 0.

Proof First, let us prove that Iv,r is non-increasing in v. We have ∂a
∂v

= 0, ∂b
∂v

=
�
μ

(1− r)β[1−W μR
μ

], and ∂c
∂v

=
(

�
μ

)2
(1− r)βW . By differentiating q(I ) = 0 with

respect to v and using Iv,r ≤ �
μ+μR

, we get

0 = dq(I )

dv
= a′ I 2v,r + 2a

∂ Iv,r

∂v
Iv,r + b′ Iv,r + b

∂ Iv,r

∂v
+ c′ (3.9)

≥ (2aIv,r + b)
∂ Iv,r

∂v
+ �

μ
(1 − r)β Iv,r − �

μ
(1 − r)βW

μR

μ

�

μ + μR

+
(

�

μ

)2

βW (1 − r) (3.10)

= (2aIv,r + b)
∂ Iv,r

∂v
+ �

μ
(1 − r)β Iv,r +

(
�

μ

)2

(1 − r)βW

[
1 − μR

μ + μR

]
(3.11)

≥ (2aIv,r + b)
∂ Iv,r

∂v
. (3.12)

Thus, ∂ Iv,r
∂v

≤ 0. Furthermore, the above inequalities are strict when Iv,r > 0, i.e.,
∂ Iv,r
∂v

< 0 when Iv,r > 0.
Similarly, Iv,r is non-increasing in r . Indeed, ∂c

∂r = − 1
1−r c,

∂b
∂r = − 1

(1−r) [b −
�
μ

(μ + μR)], and ∂a
∂r = − 1

(1−r)

[
a + (

1+ μR
μ

)
μR

]
. Thus, by differentiating q(I ) = 0

with respect to r , we get

0 = d f (I )

dr
= a′ I 2v,r + 2a

∂ Iv,r

∂r
Iv,r + b′ Iv,r + b

∂ Iv,r

∂r
+ c′ (3.13)

= (2aIv,r + b)
∂ Iv,r

∂r
− 1

(1 − r)
[aI 2v,r + bIv,r + c] − 1

(1 − r)
[

− �

μ
(μ + μR)Iv,r + (

1 + μR

μ

)
μR I

2
v,r

]
(3.14)

= (2aIv,r + b)
∂ Iv,r

∂r
+ Iv,r

μ + μR

μ(1 − r)

[
� − μR Iv,r

]
(3.15)

≥ (2aIv,r + b)
∂ Iv,r

∂r
, (3.16)

where the last inequality holds because Iv,r ≤ �
μ+μR

. Thus, ∂ Iv,r
∂r ≤ 0. Also, the

inequality is strict if Iv,r > 0 and thus ∂ Iv,r
∂r < 0 when Iv,r > 0.

Finally, since Nv,r = Sv,r + Vv,r + Iv,r = �
μ

− μR
μ
Iv,r , it follows easily that

Iv,r/Nv,r is non-increasing (decreasing) in v and r (when Iv,r > 0). 
�

123



   57 Page 8 of 20 V. N. Campo et al.

3.1 Social optimum

Aside from the individual decisions, we will also numerically compute the Pareto
(socially) optimal solution, i.e., the levels of vaccination and movement restrictions
that minimize the overall costs.

First, let us define the costs as

c(v, r) = Vv,rCV + Sv,r rCM + Iv,r , (3.17)

where Vv,r , Sv,r , and Iv,r are equilibrium values of vaccinated, susceptible or infected
dogs when the population vaccination and movement restriction levels are v and r .

For fixed v, the socially optimal value of r is always 0. Conversely, for fixed r , the
socially optimal value of v is 0 when eitherCV ≥ CM orCV < CM and r smaller than
a certain critical value; the optimal v is 1 otherwise. This corresponds to the fact that
when CV < CM , it is cheaper to vaccinate the dogs than to restrict the movement of
unvaccinated dogs. Overall, the Pareto optimal solution is (0, 0), i.e., never vaccinate
and never restrict.

We thus defined the average costs as

c(v, r) = c(v, r)

Nv,r
, (3.18)

where Nv,r is the equilibrium population size. Because of the relatively highmortality,
the two notions of the costs are not equivalent to each other. We will see in Fig. 5 that
the Pareto solution is unique, unless CM = CV < 1 in which case there are infinitely
many of them.

4 Results

We will first consider a game when the dog owners only decide whether to vaccinate
their dogs or not. Then, we will consider the game when the dog owners can only
restrict the movement of their unvaccinated dogs. Finally, we will consider the game
when the dog owners can use both preventive options.

4.1 Optimal vaccination decisions

In this part, we assume that the dog owners can only decide whether or not to vaccinate
the dogs; all other model parameters including r are fixed.

In disease-free equilibrium, the optimal decision is not to vaccinate. Therefore, for
the rest of the section, we assume that the population is in the endemic equilibrium
and I > 0 (specifically, either W > 0, or W = 0 and β

μ+μR
> 1, i.e., Re > 1 when

v = r = 0).
When the owner decides to vaccinate their dog, the owner will pay the cost CV .

If the owner does not vaccinate, the dog will be susceptible and can become infected
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with probability

πV
v,r =

(1 − r)β
(
W + Iv,r

Nv,r

)

(1 − r)β
(
W + Iv,r

Nv,r

)
+ μ

(4.1)

where Iv,r is given by (3.8). By Lemma 1, Iv,r and Iv,r/Nv,r are decreasing in v. Thus,
πV

v,r is decreasing in v; see Fig. 2. As in Bauch and Earn (2004), the Nash equilibrium
is thus unique and given by

vNE =

⎧
⎪⎨

⎪⎩

0, ifCV > πV
v,r forv = 0,

v, which solvesCV = πV
v,r ,

1, ifCV < πV
v,r forv = 1.

(4.2)

Also, vNE is a convergent stable Nash equilibrium (CSNE). If v < vNE, then the best
response is to vaccinate and thus increase the vaccination coverage in the population.
Conversely,when v > vNE, then the best response is to not vaccinate, and thus decrease
the vaccination coverage. In either case, the vaccination coverage in the population
will tend towards vNE.

Furthermore, by Lemma 1, as r increases, Iv,r and Iv,r
Nv,r

decrease. Thus, the risk

of infection πV
v,r decreases as well. Consequently, the equilibrium value of vNE is

decreasing in r . This is shown in Fig. 3. Also, vNE is a continuous function of r .
When r = 1, there is no disease in the dog population and vNE = 0. Similarly,

when CV > 0 is fixed and r < 1 is close enough to 1, vNE = 0. Thus, there are only
three possible shapes of the curve vNE(r) as illustrated in Fig. 3. The shapes depend
on the relation of CV to the following two critical values

πcri t
1,0 = βW

βW + μ
, (4.3)

πcri t
0,0 =

β
(
W + I0,0

N0,0

)

β
(
W + I0,0

N0,0

) + μ
. (4.4)

πcri t
1,0 represents a risk of getting infected solely bywild animals (i.e. in a dogpopulation

with full prevention measures employed), while πcri t
0,0 is the risk of infection by wild

animals and other dogs in a completely unprotected population. We have

1. If CV > πcri t
0,0 , then vaccination is too expensive and the Nash equilibrium is to not

vaccinate even if r = 0, i.e., to not vaccinate for any r and thus vNE(r) = 0 for all
r .

2. When πcri t
1,0 < CV < πcri t

0,0 , then 0 < vNE(0) < 1 and vNE(1) = 0, i.e., the owners
should vaccinate (but not always) when r = 0 and not vaccinate at all when r ≈ 1.

3. When CV < πcri t
1,0 , then vNE(r) = 1 for all r small enough while vNE(r) = 0 for r

large enough, i.e., with no or only small movement restrictions, full vaccination is
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Fig. 3 Left: Dependence of the optimal vaccination decision, vNE, on r . Right: The equilibrium prevalence
of infected dogs, I/N , in the population where the movement restriction is r and the vaccination level is
vNE. CV = 0.2 (full squares), CV = 0.6 (dashed line), CV = 0.7 (solid line), CV = 0.75 (dotted line)
and CV = 1 (empty circles). Value of other parameters as in Table 1

beneficial while nobody should vaccinate if the unvaccinated dogs are significantly
restricted in the movement.

If W = 0, then πcri t
1,0 = 0. Thus, there are effectively only two outcomes as we will

never have CV < 0.
For the use in Sect. 4.3, let r0(CV ) be the smallest value of r such that vNE(r) = 0.

It follows from (4.2) that r0(CV ) solves CV = πV
0,r , i.e., more explicitly

CV =
(1 − r)β

(
W + I0,r

N0,r

)

(1 − r)β
(
W + I0,r

N0,r

)
+ μ

. (4.5)

We can see in Fig. 5 that the Pareto optimal value of v is smaller or equal to vNE
when CV ≥ CM or when r is small enough. If CV < CM and r is large enough, the
Pareto optimal solution is larger than vNE. This is because when r is high, it is cheaper
to vaccinate than to restrict the movement of unvaccinated dogs.

4.2 Optimal movement restrictions

Here, we consider a game in which the dog owners can only decide how much they
restrict movement of their unvaccinated dogs and all other model parameters including
v are fixed.

Assume that the rest of the population is using r while the focal owner uses rind .
The risk of infection for the (unvaccinated) dog of a focal individual is given by

π(rind) =
(1 − rind)β

(
W + Iv,r

Nv,r

)

(1 − rind)β
(
W + Iv,r

Nv,r

)
+ μ

. (4.6)
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The owner will choose rind ∈ [0, 1] that minimizes the overall costs, i.e., minimizes
the function

h(rind) = CMrind + π(rind). (4.7)

We have

h′ = CM −
μβ

(
W + Iv,r

Nv,r

)

(
(1 − rind)β

(
W + Iv,r

Nv,r

)
+ μ

)2 , (4.8)

and thus h′′ < 0. Hence, the minimum of h must occur at the endpoints of the interval
[0, 1], i.e., either at 0 or 1. The condition h(1) < h(0) is equivalent to

CM < πM
v,r , (4.9)

where

πM
v,r =

β
(
W + Iv,r

Nv,r

)

β
(
W + Iv,r

Nv,r

)
+ μ

. (4.10)

Thus, the optimal choice for the focal individual is

rind =

⎧
⎪⎨

⎪⎩

1, if (4.9) is true, i.e., if CM < πM
v,r ,

0, if CM > πM
v,r ,

0 or 1, if CM = πM
v,r .

(4.11)

In other words, while the dog owners can choose any value r from [0, 1], their optimal
choice is given by either 0 or 1. Also, by Lemma 1, as r increases, πM

v,r decreases. Thus
rind is a non-increasing function of r . Hence, as in the previous section, and similarly
to the social distancing game considered in Choi and Shim (2020), the NE is obtained
in the scenario where the individual payoff is consistent regardless of whether or not
one adopts a movement restricting strategy. Thus, the NE is unique and given by

rNE =

⎧
⎪⎨

⎪⎩

0, ifCM > πM
v,0,

r , which solvesCM = πM
v,r ,

1, if CM < πM
v,1.

(4.12)

Also, by Lemma 1, πM
v,r is decreasing in v; see Fig. 2. Thus rind and consequently

rNE is a non-increasing function of v This is shown in Fig. 4.
When v = 1, every dog is vaccinated and the movement restriction option is

irrelevant as it applies only to unvaccinated dogs. For consistency, we will still define
rNE even in this instance. We will set rNE = 1 if CM < πcri t

1,0 = βW
βW+μ

, and rNE = 0
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Fig. 4 Left: Dependence of the optimalmovement restrictions, rNE, on v. Right: The equilibriumprevalence
of infected dogs, I/N , in the population where the movement restriction is rNE and the vaccination level is
v. CM = 0.2 (full squares), CM = 0.6 (dashed line), CM = 0.7 (solid line), CM = 0.75 (dotted line) and
CM = 1 (empty circles). Value of other parameters as in Table 1. On the right, the line with empty circles
starts above 0.5 but the figure is truncated to better show what happens for CM < 1

otherwise. This will preserve the continuity of rNE as a function of v. Note that then
rNE = 1 (for any value of v) if and only if CM < πcri t

1,0 .
Similarly to the analysis in the previous section, the rNE is CSNE and the outcomes

depend on the relationship between CM and the two critical values πcri t
1,0 and πcri t

0,0
defined in (4.3) and (4.4). We again have the following three possibilities for the
function rNE(v) as illustrated in Fig. 4.

1. If CM > πcri t
0,0 , then rNE(v) = 0 for all v, i.e., the cost of movement restriction is

prohibitively high to restrict unvaccinated dogs in any fashion no matter what is
the vaccination coverage in the population.

2. If πcri t
1,0 < CM < πcri t

0,0 , then 1 > rNE(0) > 0 and rNE(1) = 0, i.e., the owners
should somewhat restrict (but never fully) their unvaccinated dog if the vaccination
coverage is relatively low, but do not restrict at all once the vaccination coverage
is above a certain threshold.

3. If CM < πcri t
1,0 , then rNE(v) = 1 for all v ∈ [0, 1], i.e., the owners should fully

restrict the dog movement regardless of the vaccination coverage in the population.

As before, the third option is possible only if W > 0.
To be used in the next section, note that

πV
v,r ≤ πM

v,r (4.13)

with the equality happening only when r = 0. Also, let us define a critical value,
C = C(CV ), by

C = πM
0,r0(CV ) =

β
(
W + I0,r0(CV )

N0,r0(CV )

)

β
(
W + I0,r0(CV )

N0,r0(CV )

)
+ μ

, (4.14)

where r0(CV ) solves (4.5). Note that whenCM = C , then rNE(0) is the smallest value
of r for which vNE(r) = 0; see Fig. 7.
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We can see in Fig. 5 that the Pareto optimal value of r is smaller or equal to rNE in
all circumstances.

4.3 Vaccination andmovement restriction

Here, we consider the general game in which the owners decide both (a) whether
to vaccinate their dogs or not and (b) how much they restrict unvaccinated dogs’
movement.

The NE (vNE, rNE) in this instance must satisfy that vNE is the NE of the game
when r = rNE is fixed (as discussed in Sect. 4.1) and rNE is the NE of the game
when v = vNE is fixed (as discussed in Sect. 4.2). Graphically, the NE happens at the
intersection of the two curves from Figs. 3 and 4 (or when the end point of one of the
curves lies on the other curve) as illustrated in Fig. 5. The fact that there is always at
least one NE follows from the continuity of vNE(r) and rNE(v). However, theoretically
there can be more than one NE as the curves can intersect more than once.

Since there are three shapes of the functions vNE(r) and three shapes of rNE(v),
there are at least nine different scenarios for us to investigate in general. However, the
results will depend also on the relationship between CV and CM with each other.

Assume that the parameters �,μ,μR , β are fixed. We will investigate the possible
outcomes depending on the values of CV and CM and their relationship to πcri t

0,0 and

πcri t
1,0 and themselves. The schematic results are summarized in Fig. 6.

1. When CM > πcri t
0,0 , then there is only one NE in the form (vNE, 0) where vNE can

take any value in [0, 1]. This is illustrated in the top row of Fig. 5.
2. When CM < πcri t

1,0 , then there is only one NE in the form (0, 1). This is illustrated
in the bottom row of Fig. 5. This option is not possible if W = 0 because then
πcri t
1,0 = 0.

3. When CV > πcri t
0,0 , then there is only one NE in the form (0, rNE) where rNE can

take any value in [0, 1]. This is illustrated in the right column of Fig. 5.
4. When πcri t

1,0 < CV < πcri t
0,0 and πcri t

1,0 < CM < CV , then there is only one NE in
the form (0, rNE) where rNE ∈ (0, 1). This is illustrated in Fig. 5 when CM = 0.05
and CV = 0.1.

5. When πcri t
1,0 < CV < πcri t

0,0 and CV < CM < C(CV ) for the critical value

C(CV ) defined by (4.14), then there are three NEs (v
(i)
NE, r (i)

NE), i = 1, 2, 3 where

0 = v
(1)
NE < v

(2)
NE < v

(3)
NE < 1 and 1 > r (1)

NE > r (2)
NE > r (3)

NE = 0. This is illustrated in
Fig. 5 when CM = 0.15 and CV = 0.1.

6. When πcri t
1,0 < CV < πcri t

0,0 and C(CV ) < CM for the critical value C(CV ) defined
by (4.14), then there is only one NE in the form (vNE, 0) where vNE ∈ (0, 1). This
is illustrated in Fig. 5 when CM = 0.5 and CV = 0.1.

7. When CV < πcri t
1,0 and πcri t

1,0 < CM < C(CV ) for the critical value C(CV ) defined

by (4.14), then there are three NEs (v
(i)
NE, r (i)

NE), i = 1, 2, 3 where 0 = v
(1)
NE <

v
(2)
NE < v

(3)
NE = 1 and 1 > r (1)

NE > r (2)
NE > r (3)

NE = 0. This is illustrated in Fig. 5 when
CM = 0.05 and CV = 0.01. This option is not available if W = 0 because then
πcri t
1,0 = 0.
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Fig. 5 The Nash equilibria solid curves (red for rNE as a function of v and blue for vNE as a function
of r ) and black (CSNE) or white (NE that is not CSNE) circles at the intersection of the curves. Pareto
optimal solutions as dashed curves or orange stars (if CV = CM = 1, the orange star is under the black
circle; if CV = CM = 0.25, there are infinitely many Pareto optimal solutions shown by a thick orange
curve that is overlapping with the blue and red dashed curves). The underlying shades correspond to the
average societal cost c given in (3.18). The parameter values are as in Table 1 and the values of CV and
CM change as indicated in the figures. CV = 0.25 < πcri t

1,0 in the left column, πcri t
1,0 < CV = 0.7 < πcri t

0,0

in the center column, and CV = 1 > πcri t
0,0 in the right. Also, CM = 0.25 < πcri t

1,0 at the bottom row,

πcri t
1,0 < CM ∈ {0.6, 0.8, 0.9} < πcri t

0,0 in the middle rows and CM = 1 > πcri t
0,0 in the top row
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Fig. 6 Schematic diagram of the patterns of NEs as they depend on the values of CM and CV for fixed
�,μ, μR , β as in Table 1. (1, 0) denote the NE “always vaccinate, never restrict”, (0, 1) is “never vaccinate,
fully restrict”, (0, 0) is “ never vaccinate, never restrict”, etc. 3NEs denote a situation where we have three
different Nash equilibria as shown in Fig. (5) for CM = 0.6,CV = 0.25 or CM = 0.8,CV = 0.7. The
empty square in the top right corner is (0, 0), i.e., “never vaccinate and never restrict”

8. When CV < πcri t
1,0 and C < CM for the same critical value C as above, then (1, 0)

is the only NE. This is illustrated in Fig. 5 when CV = 0.01 and CM = 0.5 or
CM = 0.15. This option is not available if W = 0 because then πcri t

1,0 = 0.

When πcri t
1,0 < CM = CV < πcri t

0,0 , then there are two NEs, (0, rNE) and (vNE, 0)
where rNE, vNE ∈ (0, 1). This is illustrated in Fig. 7. If r = 0, then vNE is such a value

of v for which CV = πV
v,0 = β

(
W+ Iv,0

Nv,0

)

β
(
W+ Iv,0

Nv,0

)
+μ

. Similarly, the smallest value of v for

which rNE = 0 has to satisfy CM = πM
v,0 = β

(
W+ Iv,0

Nv,0

)

β
(
W+ Iv,0

Nv,0

)
+μ

. This means that the two

values coincide if CM = CV . Conversely, when we consider the situation at vNE = 0,

note that rNE is such a value of r for which CM = β
(
W+ I0,r

N0,r

)

β
(
W+ I0,r

N0,r

)
+μ

. However, then we

get

CV = CM = πM
0,r =

β
(
W + I0,r

N0,r

)

β
(
W + I0,r

N0,r

) + μ
>

(1 − r)β
(
W + I0,r

N0,r

)

(1 − r)β
(
W + I0,r

N0,r

) + μ
= πV

0,r .

(4.15)

Thus, vNE = 0 even for lower values of r since decreasing r increases (1− r) as well
as I0,r

N0,r
. In the same way, we see that the red curve is always above the corresponding

blue curve and they intersect only at the point where r = 0 or v = 0.
There can also be two NEs (0, rNE) and (vNE, 0) (where rNE ∈ (0, 1) and vNE ∈

(0, 1]) if CM = C(CV ) as illustrated in Fig. 7 for CM = 0.35 and CV = 1.
To see that the above are the only possibilities and that the NEs shown in Fig. 5 are

indeed representatives of all possibleNEs, let us considerwhat happens the red andblue

curve intersect. By using the implicit differentiation on CM = πM
v,r = β

(
W+ Iv,r

Nv,r

)

β
(
W+ Iv,r

Nv,r

)
+μ

,
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Fig. 7 For non-generic parameter values requiring precise equalities, there can be two NEs and infinitely
many Pareto optimal solutions. Left: CM = CV . Right CM = C for the critical value C defined by (4.14).
Other parameter values as in Table 1. As in Fig. 5, the underlying colors corresponds to the average societal
cost c given in (3.18)

we get that the slope of the red curve is −( ∂ f
∂v

)
/
( ∂ f

∂r

)
where f = β

(
W + Iv,r

Nv,r

)
.

Similarly, by implicit differentiation of CV = πV
v,r = (1−r)β

(
W+ Iv,r

Nv,r

)

(1−r)β
(
W+ Iv,r

Nv,r

)
+μ

, we get that

the slope of the blue curve is −(
(1 − r) ∂ f

∂v

)
/
(
(1 − r) ∂ f

∂r − f
)
. Because, by Lemma

1, ∂ f
∂v

< 0 and ∂ f
∂r < 0, we thus have that the slope of the blue curve is larger than the

slope of the red curve. Consequently, the red and blue curve can intersect only once.
Finally, let us observe that the NEs in the form (0, rNE) or (vNE, 0) are CSNEs (for

generic parameter values) while the NE in the form (v
(2)
NE, r (2)

NE) ∈ (0, 1)2 is not. This
is illustrated in Fig. 8. Indeed, first consider the NE in the form (0, rNE). In the game
when players can only choose whether to vaccinate or not vNE = 0 is CSNE; similarly,
rNE is a CSNE in the game where the players could only choose how much to restrict
the movement. Thus, for any strategy (v, r) close to (0, rNE), the players will prefer to
vaccinate less and theywill prefer to restrict less if r > rNE and restrictmore if r < rNE.
The proof that (vNE, 0) is a CSNE is similar. To show that (v(2)

NE, r (2)
NE) ∈ (0, 1)2 is not

a CSNE, we note that the intersecting curves split the neighborhood of the intersection
into four regions and while the intersection is “attracting” from two of the regions, it is
“repelling” from the other two regions—when (v, r) is left from the intersection, right
from the blue curve (representing CSNEs from the vaccination only game) but below
the red curve (representing CSNEs from the restrictions only game), the individuals
will prefer to vaccinate even less and restrict evenmorewhichwill drive the population
away from the equilibrium point. Note that the red and blue curves intersect only in
the way illustrated in Fig. 8 because as proved above, the red line is below the blue
line left from the intersection while it is above right from the intersection.

In generic cases when there is a unique Pareto optimal solution, the solution is
always to use only one of the prevention methods (and never more than the CSNE
level). Since the multiple CSNEs happen only when CV < CM , the Pareto optimal
solution in that case is to not restrict dog movements at all and use vaccination only.

123



A game-theoretic model of rabies in domestic dogs... Page 17 of 20    57 

Fig. 8 Schematic diagrams of convergence stability of different NEs. The NEs (0, rNE) (top left) and
(vNE, 0) (top right) denoted by full black circles are convergent stable as long the point does not fall on
the corner of the blue or red curve as in the bottom row. The NE (v′

NE, r ′
NE) (top center) or the NEs in the

bottom row denoted by an empty circle are not convergent stable because once we are in the gray area, the
population strategy will tend to go away from the NE

5 Conclusions and discussion

We applied the game-theoretic framework (Bauch and Earn 2004) to a simple com-
partmental ODE model of rabies transmission. We studied the effects of having two
different preventive strategies the dog owners can use—vaccination or movement
restriction. We have seen that there is a relatively rich structure of possible patterns
of NEs. There can be only one NE in the form (vNE, 0), i.e., the individuals should
only vaccinate (to a various degree, including not at all) but not limit the movement of
unvaccinated dogs. Similarly, there can be only one NE in the form (0, rNE), i.e., the
individuals should not vaccinate at all but should limit the movement of unvaccinated
dogs to a various degree. There can also be three NEs at the same time, the two “pure”
ones as described above together with the “mixed” NE.

Ourmodel can be extended in several ways. First, we focused on the game-theoretic
aspect and largely simplified the actual disease transmission dynamic. Considering
SEI, SIS, SIR, or SIRS dynamics would be the next natural step. We believe that our
results, in particular the existence ofmultipleNEs,will persist even for those dynamics.
However, it is conceivable that when the underlying dynamics is significantly more
complex, such as the one considered in Choi and Shim (2020), the structure of NEs
can become even more complicated.

Second, we assumed that vaccines offer complete protection. This is not entirely
realistic (Wu et al. 2011; Magori and Park 2014; Arino andMilliken 2022). Thus even
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vaccinated dogs can become infected their owners should be deciding on how to limit
their movement. Third, we focused only on the dog population while rabies easily
spread from canines to humans (Zhang et al. 2011; Bolzoni et al. 2014; Neilan and
Lenhart 2011; Lu et al. 2021; Layan et al. 2021). The dog owners as well as individuals
without dogs thus face an additional decision whether or not to vaccinate themselves.

Finally, we note that the two protective actions we considered in our model were
qualitatively different. Vaccination is a strictly binary option, one either vaccinates the
dog or does not. One may argue that vaccine waning and the need for re-vaccination
makes the decision a little more complex; but even with these complexities, the strat-
egy choice is essentially discrete. On the other hand, movement restriction offers a
continuity of options from none to full restriction. We have shown that even with
this strategy continuum, the optimal choice for individual dog owners is to either
restrict the movement completely or not at all, making the vaccination and movement
restriction somewhat comparable. However, from the game-theoretic perspective, the
options are not equivalent and interchangeable. This is, for example, demonstrated by
the fact that “never vaccinate but fully restrict” cannot be NE with any other NE while
“always vaccinate and never restrict” can be NE alone or with other NEs. It would be
interesting to study the situation when the two protective actions are qualitatively com-
parable from the beginning. Specifically, one can create and analyze a model where
susceptible individuals have various vaccination options available. This is the case for
COVID-19 for which there are now numerous vaccines that offer various levels of
protection while having different costs and side-effects (Beatty et al. 2021) that range
from relatively mild (Riad et al. 2021) to more serious (Ciccarese et al. 2022).
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