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Abstract

We expose the statistical foundations of deep learning with the goal of facil-
itating conversation between the deep learning and statistics communities.
We highlight core themes at the intersection; summarize key neural models,
such as feedforward neural networks, sequential neural networks, and neural
latent variable models; and link these ideas to their roots in probability and
statistics.We also highlight research directions in deep learning where there
are opportunities for statistical contributions.
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1. INTRODUCTION

In recent years, the umbrella of techniques known as deep learning (DL) (Hinton& Salakhutdinov
2006,LeCun et al. 2015, Schmidhuber 2015,Goodfellow et al. 2016) hasmade significant progress
for prediction problems across computer vision (Krizhevsky et al. 2012), speech recognition (Dahl
et al. 2012), and natural language processing (NLP) (Manning 2015). These success stories are of-
ten attributed to factors such as highly expressive models with millions of parameters, massive
labeled data sets, scalable optimization algorithms, software for automatic differentiation, and
hardware innovations. Yet many of DL’s foundations are closely related to concepts well-known in
statistics: log-likelihood functions, hierarchical modeling, latent variables, and regularization.De-
spite this conceptual overlap, the two worlds of statistics and DL remain relatively disconnected.
One reason may be that the role of statistical thinking in DL is not widely acknowledged or ad-
vertised. Engineering feats and technological improvements are often championed by industry
stakeholders, which may leave statisticians believing that they lack the expertise to push forward
the research frontier. Moreover, the DL literature inherits terminology from its roots in cogni-
tive science (e.g., “neuron,” “activation function”) and has developed a vernacular of its own (e.g.,
“attention”). This lack of a shared language may deter a statistician who is curious enough to read
a DL paper. In this article, we aim to provide a bridge between the two communities by exposing
the statistical foundations of DL, with two primary goals:

1. Explain DL’s concepts, methods, and research trends in a manner accessible to a wide
statistically minded audience

2. Identify opportunities in DL where statistical researchers can contribute new theories,
models, and methods

There have been multiple other articles making these connections in the past, including pa-
pers in the 1990s and early 2000s focusing on non-deep neural networks (NNs) (White 1989,
MacKay 1992, Cheng & Titterington 1994, Neal 1994, Ripley 1996, Stern 1996, Lee 2004), as
well as more recent reviews that specifically make connections with DL (Mohamed 2015, Efron
& Hastie 2016, Polson & Sokolov 2017, Yuan et al. 2020, Bartlett et al. 2021, Fan et al. 2021).
While there is inevitably a degree of overlap across all of these reviews, including this article, our
review complements the existing literature by providing an introduction that balances coverage
and detail (a brief tour). Due to the breadth of work in DL, it is impractical to attempt an ex-
haustive review—for instance, we do not cover deep reinforcement learning. Readers interested
in more details on DL may wish to delve into textbooks such as those by Goodfellow et al. (2016)
and Murphy (2022).

DL and statistics differ not only in terminology and methodology but also (importantly) in
terms of perspective. DL places a strong emphasis on data-driven predictive accuracy for vali-
dating models, whereas in statistics, there is significant emphasis on model interpretability and
uncertainty quantification. This distinction is not new: Breiman (2001) famously argued as much,
Welling (2015) modernized the argument for the DL era, and Efron (2020) provided a recent
perspective. Questions that are natural in a statistical context, such as asymptotic consistency or
posterior concentration, are much less relevant (or arguably not relevant at all) in DL,where mod-
els routinely have thousands, if not millions, of parameters. In essence, deep learners tend to focus
on ŷ rather than θ̂ .

At least part of the reason for DL’s focus on prediction goes back to its roots in pattern recog-
nition and an emphasis on representation learning, where high-dimensional inputs often need to
be transformed into representations (features) that are useful for prediction. For example, in both
image classification and speech recognition, researchers for decades used a two-stage approach to

220 Nalisnick • Smyth • Tran

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

23
.1

0:
21

9-
24

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Ir

vi
ne

 o
n 

09
/1

0/
23

. S
ee

 c
op

yr
ig

ht
 fo

r a
pp

ro
ve

d 
us

e.
 



ST10CH10_Smyth ARjats.cls February 14, 2023 11:46

build classifiers: First, manually define useful functions (filters, templates) to extract features from
signals, and then, learn classification models using the predefined features. A major contribution
of DL has been to replace this two-stage approach with a single model trained end-to-end, from
signals to outputs, where signals (pixels, audio) are transformed to intermediate representations,
in a layer-by-layer manner. The most visible successes of DL have been for problems involving
prediction from perceptual low-level signals (images, speech, text) for which feature extraction is
essential.

In addition, the idea of building models by composing simple building blocks is a fundamental
concept in both DL and statistics, but the two fields approach the concept of compositionality in
different ways. In statistics, there is a rich tradition of using random variables as building blocks,
allowing for likelihood functions to represent complex data-generating mechanisms, sharing sta-
tistical strength across groups and hierarchies, representing dynamics over time, or capturing
random effects and interactions. In contrast, in DL, while the input-output mapping of a deep
model may have probabilistic semantics, the internal building blocks are typically determinis-
tic functions composed in a layered fashion and combined with operations such as convolution.
This determinism yields both strengths and weaknesses. For example, it allows the modeler more
flexibility by removing the need for distributional assumptions, but it makes uncertainty quan-
tification more challenging. A notable exception in this context is deep latent variable models, as
discussed in Section 4, which use internal representations that combine both stochastic variables
and deterministic transformations.

The two fields also different significantly in terms of scale: scale of model complexity, scale
of data sets, and scale of computation. The desire to learn internal representations has led DL
researchers to work with complex NN architectures that contain many learnable weights. This
complexity, in turn, has created a need for ever-larger data sets to build such models. More data
support the learning of more complex (and potentially better predictive) internal representations,
with the result that state-of-the-art models in image, speech, and language modeling are routinely
trained on millions to billions of data points (Bommasani et al. 2022). In contrast, for many typical
statistical analysis problems, data sets at this scale may be completely unavailable (particularly
in application areas such as medicine). Furthermore, in order to handle the very large scales of
models and data, DL also requires significant engineering advances: automatic differentiation to
support high-level model specification, stochastic gradient methods for efficient optimization, and
graphics processing units (GPUs) for efficient linear algebra computations. These have all played
key roles in making DL practical.

2. VISUAL PATTERN RECOGNITION WITH FEEDFORWARD
ARCHITECTURES

The early development of artificial NNs was heavily influenced by ideas from cognitive neuro-
science and human visual perception (McCulloch&Pitts 1943).NNsmade amore pragmatic turn
toward applications in the late 1980s and early 1990s, with hand-written digit recognition being a
challenging benchmark that also attracted interest from the United States Postal Service (LeCun
et al. 1989). Progress slowed throughout the 2000s, but the empirical success of DL in the 2012
ImageNet benchmark competition (Krizhevsky et al. 2012), among other empirical successes in
the early 2010s, focused attention on the field. Since then, deep neural networks (DNNs) have
become a crucial subcomponent of a variety of systems used in problems ranging from language
modeling (Devlin et al. 2019) to autonomous driving (Grigorescu et al. 2020) to playing go (Silver
et al. 2017) to protein folding prediction ( Jumper et al. 2021), bolstering DL’s role as the primary
methodology of interest within the fields of machine learning and artificial intelligence over the
past decade.
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Figure 1

Modified National Institute of Standards and Technology (MNIST) classification: each image x is a 28 × 28 array, each element of
which is a pixel intensity value from {0, . . . , 255}, and each image is associated with a label in {0, . . . , 9}. Abbreviations: a, activation/logit;
h, hidden layer; K, number of classes; k, class index; W, weight matrix (parameters); x, array of pixel values; y, class label.

Hence, we begin our discussion by focusing on visual pattern recognition and, in particular, the
task of classifying images into one of K categories or classes. We assume the simplest setting, in
which each image contains one (and only one) of the K candidate objects. As a running example,
we use the well-knownModifiedNational Institute of Standards and Technology (MNIST) image
classification data set (LeCun et al. 1998). This data set is often used for pedagogical purposes, as
it is small enough that training and evaluating models are easy enough to carry out on a typical
laptop. Each MNIST image xn has a resolution of 28 × 28 pixels, which can be represented as
a two-dimensional matrix with each element being a pixel value having an intensity x ∈ [0, 1].
Figure 1a shows samples from the data set for each digit class. The corresponding label is a value
yn ∈ {0, . . . , 9}. The standard data set has a total of N = 70,000 image–label pairs, typically split
into 50,000 training images and 10,000 test images, with 10,000 images used for hyperparameter
tuning and validation.

2.1. Feedforward Neural Networks

Consider how we might go about building a model to predict labels y given pixels x for our image
classification problem. In terms of notation, we can represent the image pixels as a d × 1 vector x,
where d= 784= 28× 28 pixel values for our MNIST images. This vectorization ignores the spa-
tial relationship of pixels but nonetheless can produce accurate classifiers, as we see below—andwe
introduce some spatial information to the modeling setup when we discuss convolutional models
later in this section. Ideally we would like to build a conditional model p(y|x) for our problem,
i.e., a mapping X d 7→ 1K , where X d is the d-dimensional pixel space, 1K is the K-dimensional
simplex, and K is the number of class labels.

We could consider a simple statistical model for p(y|x), e.g., in the form of categorical
generalized linear model (GLM), or multinomial logistic regression:

y|x ∼ Categorical (π), πk = g−1
k (WTx) = exp

{
wT

k x
}∑K

j=1 exp
{
wT

j x
} , 1.

222 Nalisnick • Smyth • Tran

A
nn

u.
 R

ev
. S

ta
t. 

A
pp

l. 
20

23
.1

0:
21

9-
24

6.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lre

vi
ew

s.o
rg

 A
cc

es
s p

ro
vi

de
d 

by
 U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

 - 
Ir

vi
ne

 o
n 

09
/1

0/
23

. S
ee

 c
op

yr
ig

ht
 fo

r a
pp

ro
ve

d 
us

e.
 



ST10CH10_Smyth ARjats.cls February 14, 2023 11:46

Figure 2

Parameter visualization with more positive values of weights shown in white. The NN weight visualization in panel b consists of a
7 × 16 = 112 array of weight images, with each of the individual images corresponding to the weight matrix for each of the 112 hidden
units in the first layer of the NN. Abbreviations: GLM, generalized linear model; NN, neural network.

where π = (π1, . . . ,πK ) = p(y|x) = g−1(WTx) is a vector of conditional class probabilities and g−1

is the inverse link function, as illustrated in Figure 1b with ak(x) = wT
k x.

The parameters of the GLM are represented by the weight matrix W, consisting of K weight
vectors wk, k = 1, . . . , K, each weight vector being of the same dimension d as the inputs. We can
visualize the weights for any weight vector wk by spatially by mapping each weight to the pixel
it corresponds to in image coordinates. Figure 2a shows the resulting spatial visualization of the
weights wk for each of the digit classes, following maximum likelihood estimation of a categor-
ical GLM on the MNIST training data. We see that the GLM has in effect learned templates
for each digit. Whichever template has the largest activation for a given input—as quantified
by wT

k x—determines the class with the highest conditional probability. This trained GLM can
achieve roughly 92% classification accuracy on the standard test set—well above the 10% ac-
curacy of random predictions but still far from the near-perfect test accuracy (99.7%) of typical
DNNs for this problem.

With this GLM as a point of reference, now consider tackling the same classification problem
with a feedforwardNN (a.k.a. a multilayer perceptron). Formulating theNN as a statistical model,
we can build on the idea of a GLM as follows. Instead of ak(x) = wT

k x, we use ak(x) = wT
k h(x), as

in Figure 1c, where h(x) can be viewed as a new nonlinear vector representation of the original
inputs x, a representation that is learned by the NN. The NN model has L layers, where the final
layer still looks like a GLM, parameterizing the conditional expectation of the label: E[y|x] = π =
g−1(WT

L h(x)), where WL is the weight matrix for the final layer.
In the NN model, each internal vector hl (x) at the lth layer, l = 1, . . . , L − 1, is termed a

hidden layer, with each element in each vector termed a hidden unit or neuron. Each layer is com-
puted recursively as hl (x) = σ (WT

l hl−1(x)), where σ (·) is a referred to as an activation function.1

The logistic function σ (z)= 1/(1+ exp {−z}) has historically been a popular choice for activation
functions; we discuss other options later. The initial layer can be defined to simply be the origi-
nal inputs: h0(x) = x, e.g., the pixel values for our MNIST problem represented in vector form.
Dropping the function notation for simplicity [i.e., letting hl (x) = hl ], the complete feedforward

1While NN terminology (e.g., neuron, activation) still reflects the field’s early roots in neuroscience, this
point of view does not necessarily help with understanding NNs as statistical models, nor are many modern
developments in DL driven by biological inspirations.
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NN can be defined as

E[y|x] = g−1(WT
L hL−1 ), hl = σ (WT

l hl−1 ), h0 = x, 2.

where hl ∈ Rdl such that dl is the representation’s dimensionality at layer l. The different matrices
of parameters, denotedW l ∈ Rdl−1×dl , define the successive transformations 1, . . . ,L. There is also
usually an additive bias term at each layer,WT

l hl−1 + bl—we can assume that it is subsumed into
Wl by appending a dimension containing a constant value of 1 to hl−1.

NN models of this form are described as feedforward since information propagates from the
input x to the output E[y|x] through parallel computations of each hidden unit and sequential
computation of each hidden layer, as shown in Figure 1c, with the analogous figure for the GLM
shown in Figure 1b for comparison. The primary difference between the two models is in the
intermediate features h1 and h2 that constitute the hidden layers. The arrows between all layers
emphasize how the W parameters propagate information forward. The modeler is left to choose
the size of the architecture: the number of hidden layers L and the dimensionality (or width) dl
of each hidden representation hl . Principled procedures for setting these values are desirable but
hard to achieve. Thus, in practice, these hyperparameters are often tuned simply by brute force
search: estimating parameters on the training set for different fixed combinations of hyperpa-
rameter values (e.g., on a grid) and selecting the combination that optimizes performance (e.g.,
classification accuracy) on a held-out validation data set.

We can interpret the hidden layers h as adaptive, nonlinear basis functions. These allow the
model itself to transform the original feature space into representations that are better suited for
the classification task. This concept of internal representation learning (Bengio et al. 2013a) is
arguably the single most important characteristic responsible for the success of NNs. Figure 2b
shows the features learned by the first hidden layer when a four-hidden-layer NN is trained on
MNIST. This visualization is analogous to the GLM’s in Figure 2a. The NN learns features that
are local edge detectors, unlike the GLM’s global templates. This allows the model to gradually
build a feature hierarchy, layer by layer. The second hidden layer will compose these features,
and so on with each layer. This behavior makes NNs most effective on low-level raw signals, as
the hidden layers can gradually aggregate information into higher levels of abstraction, e.g., in
the context of classification, learning discriminative features that are useful for prediction at the
output layer.

2.2. Maximum Likelihood and Stochastic Optimization

Having defined the feedforward NN,we now turn to model fitting.DLmodels are usually trained
with maximum likelihood estimation, often with an independent and identically distributed
assumption for classification problems. The log-likelihood can thus be written as

ℓ(W1, . . . ,WL )=
N∑
n=1

log p(yn|xn;W1, . . . ,WL ), 3.

where p(yn|xn;W1, . . . ,WL ) = πyn , the probability of the observed class. Usually some form of
regularization is also incorporated into training. Perhaps the most common technique is known
as weight decay in the DL literature. This is, in effect, equivalent to a ridge penalty in statistical
terminology: ℓ(W1, . . . ,WL )+ λ

∑L
l=1 ||Wl ||22, where || · ||22 denotes the squared Frobenius norm

and λ is a parameter that controls the strength of the regularization.Other common regularization
strategies include data augmentation and stochastic perturbations such as dropout (Srivastava et al.
2014), which randomly sets hidden units to zero during training.
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Despite this regularization, a statistician may still worry about overfitting with NNs, given that
they are so overparameterized.Having a held-out validation data set (or usingmulti-fold cross val-
idation, in the small data setting) is the most effective strategy to prevent overfitting. For example,
a useful strategy is early stopping: When fitting the network with an iterative optimization pro-
cedure, we keep training the NN until the validation set’s accuracy begins to decrease—a sign
that overfitting has begun. Yet, NNs can avoid overfitting even when a large reserve of held-out
data is not available. This is because overparameterization is not as dangerous to generalization
as previously suggested by the classical theory of bias versus variance. We discuss this more in
Section 5.1, but good generalization can be observed even in the case of overparameterized linear
models (Hastie et al. 2022).

Returning to the log-likelihood,maximizing ℓ(W1, . . . ,WL) is a nonconvex optimization prob-
lem with no unique solution for the weight parameters due to invariances and nonidentifiability.
In spite of these challenges, relatively simple gradient-based optimization methods are by far the
most widely used and empirically successful method for training NNs. Gradient ascent is a first-
order iterative method for maximization (or, equivalently, gradient descent if performed on the
negated objective), updating an initial set of parameters (randomly initialized) and taking a step in
the direction of steepest increase of the objective function. Given a log-likelihood ℓ, the updates
from iteration t to t + 1 for a single parameter w are performed via

wt+1 = wt + α
∂

∂wt
ℓ(W1, . . . ,WL ) = wt + α

N∑
n=1

∂

∂wt
log p(yn|xn;W1, . . . ,WL ), 4.

where α is a scalar learning rate (a.k.a. step size).
Computing the full gradient above requires summing gradients over each of theN data points,

which may be prohibitively expensive for training sets with millions of high-dimensional data
points. However, a noisy estimate of the gradient can be found by evaluating the likelihood on
only a subset (potentially very small) of data. Define a random mini-batch B of data to be a subset
of B data points created by drawing from the full set of observations (e.g., without replacement).
We can then perform stochastic gradient descent (SGD) (Robbins & Monro 1951, Bottou 2010)
by using the mini-batched likelihood l̃ in place of the full gradient using all N data points:

wt+1 = wt + α
N
B

∂

∂wt
ℓ̃(W1, . . . ,WL ) = wt + α

N
B

∑
i∈B

∂

∂wt
log p(yi|xi;W1, . . . ,WL ). 5.

The method is termed stochastic because the gradient estimate is now a random variable. We
rescale the derivative by N/B so that the likelihood is on the same scale as it would be for the full
data set, which can also be viewed as an adjustment to the learning rate α. The key idea behind
SGD is that when B is much smaller than N, one can make multiple noisy (but computation-
ally cheaper) parameter updates, moving in the direction of a noisy gradient at each step, and
potentially converge much faster (in wall-clock time) compared with steps using the full gradient.

Figure 3 shows the optimization progress for an NN trained with gradient updates computed
using 100, 10, and 1 data point(s). While the three variations start at the same value of the log-
likelihood (y-axis), the curves for 1 and 10 data points are able to make progress much faster as
a function of the total number of data points seen by the optimization algorithm (x-axis). Even
though they are using noisy gradient estimates, there is still enough signal in the estimate that the
computational benefits outweigh the noise in the estimates. In this case, eventually all methods
converge to roughly the same log-likelihood value (past the right-hand side of the frame of the
plot), although in other cases, the varying noise levels may introduce different inductive biases.

While it may seem hopelessly naive to apply a crude first-order method to training deep net-
works, SGD has been found empirically to be a reliable optimization strategy. In fact, the success
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Figure 3

Empirical illustration of the benefits of using stochastic gradients under different sized batches of data points
to compute the gradient estimates with batch size B = 1, 10, 100.

of DL is a testament to the perhaps more surprising success of SGD. Before 2012, NNs were
conjectured to be limited in their usefulness because they would be restricted by the limitations of
SGD (Cheng & Titterington 1994). A more complete understanding of why stochastic gradient
works as well as it does is still an area of active research, but initial evidence suggests the noise
introduced in the gradient estimates can actually be beneficial—for example, for escaping saddle
points, which comprise the majority of critical points in the NN’s optimization surface (Pascanu
et al. 2014).

It is natural to ask why DL relies on first-order rather than second-order information, i.e., the
Hessian. Second-order methods were, in fact, of interest in the early days of NN research (Parker
1987, Becker & LeCun 1989) and are, of course, widely used in statistics in the form of Fisher
scoring. However, the very large number of parameters in modern NNs makes it impractical to
compute and store all second derivatives.Moreover, the conditioning matrix can often be singular.
For these reasons, first-order stochastic gradient methods, and adaptive variations in particular,
have become the default practical choice in trainingDNNs (Duchi et al. 2011,Kingma&Ba 2014).
There are a number of different varieties of such methods, but most operate by storing the empir-
ical moments of the gradients (usually first and second) and using these to condition the next step.

Despite the success of SGD, optimizing NNs does not come without obstacles. To further illu-
minate themechanics of optimization, assumew is a parameter residing at some intermediate layer
of the NN. Expanding the likelihood’s derivative with respect to w via the chain rule, we have

∂ℓ

∂w
= ∂ℓ

∂hL

∂hL

hL−1
. . .

∂hl+1

hl

hl

∂w
. 6.

The derivative is found by multiplicatively passing information backwards from the log-
likelihood ℓ through the hidden representations hl to the to-be-updated parameter w. Because of
this intuition—that information is propagated backward through the NN—gradient-based op-
timization of NNs has been termed backpropagation of errors, or backpropagation, or backprop
(Parker 1985, Le Cun 1986, Rumelhart et al. 1986). As NNs become increasingly deep [e.g., He
et al. (2016) train NNs with 1,000+ layers], it is crucial that the intermediate derivates ∂hl/∂hl−1

remain well-conditioned. For instance, if just one term approaches zero, then all parameters at
shallower layers in the NNwill receive a gradient of zero due to the multiplicative construction of
backpropagation. This specific problem is known as having vanishing gradients, and it can result
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in slow convergence, in the best case. There is also the converse problem for large values, known
as exploding gradients.

Returning to our discussion of the activation function σ (·), the logistic function used to be
a popular choice but has fallen out of favor in recent years. To see why, note that the logistic’s
derivative is σ ′ = σ (1− σ ), and therefore the gradient signal starts to vanish when either σ ≈ 0 or
σ ≈ 1, an effect known as saturation. Rectified activations such as rectified linear units (ReLUs)
(Maas et al. 2013) do not have a bounded range in one or both directions, preventing the type
of saturation that leads to vanishing gradients. Yet changing the activation function alone is of-
ten not enough to mitigate optimization pathologies. Normalization of the hidden units or their
preactivation has become common as well (Ba et al. 2016, Salimans & Kingma 2016, Klambauer
et al. 2017). The most popular instantiation of this regularization is known as batch normalization
(Ioffe & Szegedy 2015) (known as batch norm for short). Roughly speaking, this method applies
the standard z-transform (a− µ̂)/σ̂ to the preactivation values a at each internal layer, where µ̂

and σ̂ are the empirical mean and standard deviation of the current training batch at a particular
layer.

2.3. Uncertainty Quantification

Given the large number of parameters in NNs, it is worth considering howmodel uncertainty can
be quantified and controlled. Up to this point in our discussion we have focused on frameworks,
such as stochastic gradient methods, that seek point estimates of parameters—i.e., that optimize an
objective function. An obvious alternative is to turn to Bayesian methodologies, placing a prior on
the parameters, obtaining the posterior, and computing predictions with the posterior predictive
distribution

p(y∗|x∗,D) =
∫
W1 ,...,WL

p(y∗|x∗,W1, . . . ,WL ) p(W1, . . . ,WL|D)dW1, . . . ,WL,

where x∗ is a new observation and D is the training set. This is a very attractive approach for
addressing the all but unavoidable model uncertainty from having such an underdetermined
model. However, the Bayesian approach has two obstacles to its effective implementation for DL
(Izmailov et al. 2021). The first obstacle is that of setting a meaningful prior on the weights. Given
that the weights lack identifiability and even a semantic interpretation, it is difficult to set a prior
beyond one that simply encourages regularization via sparsity or shrinkage. The second major
obstacle is that even if a good prior is found, posterior inference is challenging for NNs of any
practical size. Variational methods can scale to rather large NNs but have intrinsic bias due to
the variational family usually being misspecified. Scaling Markov chain Monte Carlo (MCMC)
methods to large deep networks is currently an active focus of research in Bayesian DL (Izmailov
et al. 2021).

Frequentist-based inference methods can also be applied. The bootstrap may first come to
mind, but simply training an ensemble of networks, each with a different initialization, has been
shown to be more effective than the bootstrap at uncertainty quantification (Lakshminarayanan
et al. 2017). Post-hoc calibration techniques (Guo et al. 2017) are also popular for correcting for
misspecification. A third promising method is that of conformal prediction (Shafer & Vovk 2008,
Angelopoulos et al. 2020), which provides tools for constructing distribution-free guarantees on
the (marginal) coverage of the true label. Figure 4 demonstrates some of these inference pro-
cedures via a one-dimensional regression task (better suited for visualization than classification
in this context). Figure 4 compares a point-estimated NN (Figure 4a) against a Bayesian NN
(Figure 4b) whose posterior is obtained via MCMC. The predictive variance is shown, and as
expected, the MCMC solution collapses its uncertainty where the data are observed and inflates it
elsewhere. Figure 4c and Figure 4d show common strategies to approximate model uncertainty.
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Figure 4

Real-valued regression: To demonstrate model uncertainty, we plot the predictive distribution of (a) a point-estimated NN, (b) a
Bayesian NN (MCMC posterior), (c) a variational Bayesian NN (Gaussian-approximated posterior), and (d) an ensemble of
point-estimated NNs. Abbreviations: MCMC,Markov chain Monte Carlo; MLP, multilayer perceptron; NN, neural network.

While imperfect, variational inference and ensembling are two of the few methods that can scale
to large NNs.

2.4. Convolutional and Other Layer Types

For the sake of simplicity, we introduced only fully connected weight transformations to com-
pute hidden activations at each layer. However, unsurprisingly, other architectures have also been
developed. A particularly popular example is the convolutional layer: For inputs in the form of
images, two-dimensional weight matrices known as filters are spatially convolved across the in-
put, ensuring translation invariance in the input signal. The different hidden units each have their
own associated convolutional filter—in effect, their own feature detector. Convolutional layers
are commonly used for object detection, especially when it is assumed that an object can appear
anywhere in the input image. For MNIST, the digits are all at the center of each image, but if they
could appear elsewhere in the image, then using a convolutional NN would be essential. Despite
MNIST not needing translation invariance for good performance, using a convolutional NN re-
sults in about a 0.3% test error rate compared with about 1% for a nonconvolutional feedforward
NN, and about 7.6% for a logistic GLM.2

2These results are from https://en.wikipedia.org/wiki/MNIST_database.
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Of course, other data types necessitate alternative layer designs. For instance, we may wish
to apply an NN to a task from astronomy: classifying galaxies into types such as elliptical, spiral,
and irregular. As objects in space have no natural orientation, it is common to use rotationally
equivariantNNs for this task (Cohen et al. 2018). In another example,modeling relational data can
benefit from the use of a graph NN (Wu et al. 2020); this approach has been used in applications
ranging from quantum chemistry (Gilmer et al. 2017) to computer program synthesis (Allamanis
et al. 2017) to protein folding ( Jumper et al. 2021).

3. SEQUENTIAL MODELS

We next turn our attention to DL models for sequential data, extending beyond the feedfor-
ward models in the last section. We primarily focus on modeling categorical sequences of the
form y1, . . . , yt , . . . , yT , where t can represent relative position or time. Each yt = (yt1, . . . , ytK ) is a
K-dimensional indicator vector. From a prediction perspective, we are interested in autoregressive
factorizations of the form p(y1, . . . , yT ) =

∏T
t=1 p(yt | y<t ), where p(yt | y<t ) is a distribution over

the K categories at position t conditioned on the history of the sequence y
<t = y1, . . . , yt−1 prior to

t. Although our focus below is primarily on categorical sequences, as we discuss later, the general
ideas of sequential deep models are also applicable to other sequential and time-series modeling
problems.

A very common application of categorical sequential modeling in machine learning is in NLP,
where the categories are characters or words. DL models in this context are known as language
models and have revolutionized the field of NLP in recent years (Brown et al. 2020, McClelland
et al. 2020).Common applications include predicting the next character or word yt+1 in a sequence
conditioned on y

<t+1; generation of new text y′t+1, y
′
t+2, . . . conditioned on preceding context;

classification of an entire passage of text; or translating a sentence from one language into another.
While the DL approaches for each of these tasks differ in the details, there are many common
characteristics.

3.1. Example: Modeling Text at the Character Level

To illustrate some of the basic concepts in sequential DL models, we begin by focusing on the
relatively simple problem of learning an NNmodel that can predict the next character in English
text and that can generate new text conditioned on a partial sequence. For this problem, the K
categories correspond to lower- and uppercase letters a–z/A–Z, digits 0–9, punctuation marks,
and a variety of other symbols, with typically between K = 50 and 100 categories depending on
what symbols we include in the vocabulary for a particular model.3 As a running example in the
discussion below, we use as our text source a concatenation of a number of publicly available arXiv
LaTeX files authored by well-known researchers in statistics, with K = 96 unique characters and
over 150,000 characters in total length.

A simple traditional approach to modeling such data would be to use an mth-order Markov
model, requiring O(Km) parameters, referred to as n-gram models in NLP, with n = m + 1.
Variations on these types of n-gram models have historically been widely used for modeling text
(Halevy et al. 2009) but are obviously limited in terms of their ability to capture high-order de-
pendencies. An alternative option would be to use a state-space model, perhaps with a real-valued
low-dimensional state variable zt with linear-Gaussian dynamics as a function of t, coupled to

3Realistic language models typically use words (or parts of words) as categories, with K ∼ 104–106 depend-
ing on the particular application—for simplicity of exposition, we use the simpler problem of character-level
modeling here.
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a transformation at each position t from the state-space to categorical observations. However,
the parametric assumption of Gaussian dynamics would likely lack the flexibility to effectively
represent the types of dependencies that occur in natural language sequences.

A key innovation in DL in this context was the development of the recurrent neural network
(RNN) [also referred to as an Elman RNN (Elman 1990)] as an improvement over models in the
observation space such as n-grams. An RNN builds on the concept of a state-space model where
the state and observation equations for a standard RNN are typically defined as

zt = σ (Hzt−1 +Wxt ), 7.

p(yt |y<t )= g−1(Azt ), t = 2, 3, . . . , 8.

where xt is an input to the model at position t, with xt = yt−1 (e.g., the previous character or word)
in an autoregressive modeling context, and zt ∈ Rh is a hidden state vector of dimension h × 1.
Both the inputs xt and outputs yt−1 are indicator vectors of dimension K× 1; e.g., for the character
data set above with K = 96, each vector has value 1 for the vector component corresponding to
a particular character and value 0 for all other vector components. A standard convention is to
define the initial hidden state vector z1 as all zeros, so that the first RNN computation unit for the
sequence has input x2 = y1, hidden state vector z2 = σ (Wx2 ), and output p(y2|y1 ) = g−1(Az2 ).

The parameters of this RNN model are weight matrices W, A, and H of dimension h × K,
K × h, and h × h, respectively. Analogous to the hidden units in feedforward networks, σ (.) is a
nonlinear recurrent activation function (e.g., logistic or ReLu), which gives the model nonlinear
dynamics, and g−1 is an output link function that maps the linear transformation of the hidden
(deterministic) state zt to the output domain (typically a multinomial logit, as with feedforward
models with categorical outputs).More generally, for real-valued observations, g−1 can map to the
mean of p(yt |y<t ) for some parametric form p, with an additional additive noise term vt , analogous
to a standard state-space modeling approach.

Figure 5a provides a visual representation of the RNN state and observation equations at
position t. The RNN bears some similarity to the feedforward model from Section 2 with the
important difference that the hidden variable zt is now both a function of the input xt as well

Figure 5

(a) A visual representation of a recurrent neural network (RNN) computational unit, implementing the state
and observation equations for position t, with recurrent dependence of zt on zt−1, resulting in a categorical
prediction or sample ŷt , and with RNN model parameters (weight matrices) θ = W,H, A. (b) An example of
multiple RNN units being chained together to create an RNN model that can predict the next character in a
sequence of characters, specifically p, r, e, d, . . . .
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as a function of the hidden state variable zt−1 from the previous position, providing context for
the current prediction in a recurrent manner based on the past history of the sequence. Deep
versions of the simple RNN unit in Figure 5a can be created by vertically stacking additional
hidden recurrent layers between each input and output.

Figure 5b shows an example of an RNN applied to our character modeling problem. Specifi-
cally, for the partial sequence pred, we see that at each position, the model combines the hidden
state and observed character from the previous position to produce the current hidden state, from
which the model output is generated. The observed data (in this case, a subsequence from the
word predict) are shown at the top, indicating the true target output for the model. The param-
eters (weight matrices) θ = W, A,H are shared across the different positions t in the model. The
number of individual weights for this model scales as O(Kh + h2), avoiding the O(Kn) explosion of
parameters for observation-level models such as n-grams, which becomes impractical even for rel-
atively small n when the number of categories K is large [e.g.,K≈ O(105) for word-level language
models].

Once we know the parameters of an RNN model, we can use it in a generative autoregressive
fashion to simulate sequences, sampling an output y′t at each timestep t from the current con-
ditional distribution, then using this as input at position t + 1 to combine with zt to generate
the next hidden state vector zt+1, sampling a y′t+1 from the new conditional output distribution at
t + 1, and so on. The dynamics pt (yt+1|yt , zt ) at the observation level are not homogeneous as a
function of t but are functions of the history (as summarized by zt ), in contrast to (say) a fixed-order
Markov model.

3.2. Estimating the Parameters of a Recurrent Neural Network

The unknown parameters W,A, and H of an RNN model in Figure 5b are learned in a manner
similar to that for categorical outputs in DL feedforward models, i.e., by maximizing a categorical
conditional log-likelihood:

ℓ(W,A,H; y) =
T∑
t=1

log p(yt |y<t ,W,A,H). 9.

This sum is typically over multiple sequences (e.g., multiple sentences), where each sequence
is treated as conditionally independent of the others—here, for simplicity, we write the log-
likelihood as one sequence of length T. Regularization terms are typically added to the
log-likelihood as with training of feedforward models. As with feedforward models, it is also com-
mon practice in DL to use first-order gradient methods to train sequential deep models given the
typical numbers of parameters in RNN models. SGD using mini-batches is, again, also widely
used, given that in many NLP applications, models are trained on vast amounts of text data—e.g.,
all of Wikipedia or large crawls of public Web pages, resulting in billions of words being used
during model training.

From Figure 5b we see that, in principle, the relevant gradients (per parameter) for the
log-likelihood can be computed by propagating backwards (backpropagation in time) the relevant
information from later predictions to earlier parts of the model (e.g., see Jurafsky & Martin
2022, chapter 9). In practice, long text sequences are divided into multiple shorter segments to
make this approach practical. However, as with feedforward models, significant numerical issues
(such as unstable gradients) can arise in gradient-based training of RNN models. This has led
to the development of modified RNN computation units that exert more direct control of how
information is passed along the hidden-unit chain. For example, Hochreiter & Schmidhuber
(1997b) proposed the long short-term memory (LSTM) unit by introducing more complex
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Figure 6

Predicted character-level probabilities for an RNN model conditioned on different prefixes (from [the p] to [the prediction]).
The five highest conditional probabilities and the associated characters are shown for each prefix. The characters include letters as well
as punctuation such as space, comma, and period.

RNN computation units that can control or gate how much information is passed forwards and
backwards (compared with the standard unit illustrated in Figure 5a). In addition to improving
optimization aspects of RNNs, LSTMs can also improve the effectiveness of how the hidden
states represent past sequence information. Most modern usages of RNNs in DL use the LSTM
unit or similar ideas for gating information (Cho et al. 2014).

To illustrate these ideas, we fit an RNN to the LaTeX text described earlier, with K = 96
unique characters and a text sequence of length 152,499 characters, with h = 128 as the di-
mensionality of the hidden unit layer, optimizing the conditional log-likelihood using SGD.
Figure 6 shows illustrative examples of conditional distributions produced by the model, con-
ditioned on different subsequences from the history [the prediction]. As the history of the
sequence progresses, the RNN captures the predictive uncertainty, from high uncertainty at the
start of the word prediction, to low uncertainty toward the end.

We can also simulate sequences of characters from this model in a generative fashion, e.g.,

And matrix $\WLS$ is a given to describe a space of the diffusion of the

set of the accuracy of $\mu$ is will be the restrict the bagged

confidence studying the response ...

We see that while the trained RNN has captured many local aspects of character dependence
(including some LaTeX syntax), the longer text lacks both syntactic and semantic coherence, and
readers need not worry that RNNs will soon be writing statistics papers. However, with more
training data and using more advanced models that extend beyond the relatively simple RNN,
modern deep language models are now able to generate surprisingly coherent text (Brown et al.
2020).

3.3. Generalizing the Recurrent Neural Network Concept

The basic RNN model described above can be extended and generalized in a variety of differ-
ent ways. One such variant is to have input and output sequences x and y that are in one-to-one
correspondence but from different vocabularies, for example, in NLP, where the input is a se-
quence of words and the output sequence corresponds to the parts of speech to be predicted
(nouns, verbs, adjectives, etc.) for each word. Another common NLP task is to build a model to
assign a categorical class label y to an entire sequence x1, . . . , xT , where the training data consist of
(sequence, label) pairs, e.g., assigning a positive, neutral, or negative label to a review [the prob-
lem of sentiment analysis (Wang et al. 2018)]. A more challenging NLP task involves mapping
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from one sequence to another, where the two sequences can be of different lengths [also known
as sequence transduction (Graves 2012)]. This type of sequence mapping problem is at the heart
of problems such as machine translation (mapping a sentence in one language to a sentence in
another) or automated chat-bots (generating a response sentence given a human-generated sen-
tence in a conversation), where the training data consist of pairs of such sequences. A well-known
DL approach for this type of problem is to use two coupled RNNs [the seq-to-seq approach
(Sutskever et al. 2014)], with one RNN (the encoder) producing a hidden representation z of
the first sequence at the end of an RNN chain, and the second RNN (the decoder) taking as
input this encoded representation z and generating the second (output) sequence. Although the
modeling details differ across the various models above, training of these models proceeds in a
largely similar manner to that for the standard autoregressive RNN described earlier: minimiz-
ing the negative log-likelihood (or some regularized variant) using stochastic gradient methods
while paying close attention to computational and numerical issues related to sequence length and
vanishing gradients.

Models that perform sequential processing, like RNNs, can struggle with remembering the
relevant information (e.g., across multiple sentences). Consider modeling the text “Rose lives in
the Netherlands. . . . She enjoys speaking [X],” where [X] is the word to be predicted. “Nether-
lands” is a strong clue in predicting the next word (i.e., that she speaks Dutch), but it could be
hard for a model to retrieve that information, depending on how much content is in the “. . .”
part of the sequence. The concept of attention (Bahdanau et al. 2015) aims to break this depen-
dence by allowing the NN to directly access the information at previous timesteps. Yet, attention
alone does not necessarily break the sequential nature of RNN computation. To admit paral-
lelized computation, Vaswani et al. (2017) introduced the Transformer model. The core idea is to
use masking—indicator variables that allow some inputs to be included in the computation and
others not—to preserve the autoregressive structure. The usual architecture design decisions as
described for object recognition are applied, as one must select, for example, the sequencing and
choice of layers, architecture depth, and layer width.

While RNNs and attention-based models have largely been developed for categorical se-
quences such as text, the basic concepts underlying these models are applicable to a much broader
variety of prediction problems involving sequences and time. For example, RNNs have been
adapted to develop models for problems that are familiar to statisticians, such as time-series fore-
casting (Wang et al. 2019b,Hewamalage et al. 2021, Lim & Zohren 2021), continuous-time point
processes (Mei & Eisner 2017, Chen et al. 2020), and survival analysis (Ranganath et al. 2016,
Wang et al. 2019a). There is also a growing body of work on models and inference methods that
bridge the gap between RNNs and more traditional statistical models, such as stochastic RNNs
(Krishnan et al. 2017), deep state-space models (Rangapuram et al. 2018), and Bayesian RNNs
(McDermott & Wikle 2019), as well as latent space approaches for continuous-time and irreg-
ularly sampled time series using ordinary differential equation models parameterized via NNs
(Chen et al. 2018). The development of DL models in these areas has yet to see the types of dra-
matic improvements in prediction performance that accompanied the development of DL, in part
because many of the typical applications (in medicine, economics, and climate) do not have access
to the massive volumes of data used in building DL models from text data, for example.

4. LATENT VARIABLE MODELS AND IMAGE GENERATION

Our focus up to this point has been on supervised learning. But since the early days of NN re-
search, there has always been significant interest in unsupervised learning, motivated broadly by
ideas from artificial intelligence and cognitive science. For example, can NNs mimic the ability
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Figure 7

Samples from neural generative models. (a) The variational autoencoder samples were produced by Doersch (2021), and (b) the Glow
samples by Kingma & Dhariwal (2018); both are used with permission of the authors.

of humans to learn structure from perceptual signals (e.g., audio, visual) from the world around
them? As a concrete example, consider the images of digits shown in Figure 7a. Do these look like
images from the MNIST data set (see Figure 1a for reference)? Despite their visual similarity to
MNIST, they are not from the data set but rather samples generated from an NN fit to MNIST.
Next, consider Figure 7b. These images are not of real people. Rather, the images were also gen-
erated by an NN, this one trained on a data set of celebrity images known as CelebA. These are
cases of what is known as generative modeling in DL: The primary goal is to generate novel sam-
ples that plausibly could have been part of the training set. The task is similar to (nonparametric)
density estimation, where we hope to capture the true distribution P(x) as faithfully as possible.
As we will see, for some of the models in this class, we do have access to a density estimator, and
for others we do not. Yet the quality of the samples drawn from the model is usually given more
emphasis, as density and sample quality do not always correlate (Theis et al. 2016).

Models based on unsupervised learning have applications ranging from dimensionality reduc-
tion to data synthesis, although much of the excitement in this area stems from the desire to build
intelligent systems. The intuition is that if our models can perfectly capture the training distribu-
tion, then they must understand the data. Models that only discriminate (e.g., classifiers) are then
performing an easier cognitive task—just like it is easier to recognize quality art than to produce
it. While the field of statistics also tries to build models to represent the data with as high fidelity
as possible, a major difference is that these neural generative models are built with complete data
agnosticism.Relatively few, if any, bespokemodeling decisions aremade, but rather, theNN-based
model is designed to be as powerful and rich as computational limits allow.

4.1. Dimensionality Reduction with Autoencoders

To introduce this class of models, consider the task of dimensionality reduction: We wish to learn
a new representation of the data that discards noise and other unimportant information. Principal
component analysis (PCA), manifold learning, and clustering are all well-known and well-studied
methods for such a task. As discussed in Section 2, DNNs, too, are performing dimensionality
reduction by nature of learning their hidden layers. Yet in that case, the dimensionality reduction
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Figure 8

Autoencoder diagrams comparing (a) a fully deterministic architecture with (b) its stochastic counterpart. In the latter, there is a
stochastic latent variable, denoted with z. During optimization of the model, this latent variable is sampled using a
reparameterization—denoted r(ϵ̂;ϕ(x)), where ϵ is the reparameterized version of z and ϕ(x) are the parameters of the variational
approximation—that allows for end-to-end differentiation. Abbreviations: x, data; W, weights for computing hidden units; h, hidden
units; x̃, reconstruction of data; ϕ(x), parameters of variational approximation (as a function of x); ẑ, sample of latent variable; ϵ̂,
samples from reparameterized distribution; x̂, sample from model.

is done with respect to the supervision signal (e.g., the class), so that the information that informs
the prediction is preserved rather than a general summary of the data.

The autoencoder (AE) (a.k.a. a diablo network or auto-associator) (Bourlard & Kamp 1988,
Baldi & Hornik 1989, Cottrell 1989, Hinton & Salakhutdinov 2006) is the simplest NN archi-
tecture designed for unsupervised learning and dimensionality reduction. The AE’s goal is to
reconstruct the data from a lossy representation of those same data. Specifically, the model takes
an observation x as input, computes at least one hidden layer h, and then tries to predict the
observation x back from h. An AE with multiple hidden layers can be defined as

x̃ = g−1(WT
L hL−1 ), hl = σ (WT

l hl−1 ), h0 = x, 10.

where x̃ is the predicted reconstruction of the input x. g−1 is again a link function that maps
to the domain of the data. W, h, and σ are defined as before for feedforward NNs. The AE
is fit by minimizing an appropriate reconstruction loss between x and x̃, e.g., ||x− x̃||, with re-
spect to the parametersW1, . . . ,WL. A depiction of a simple one-hidden-layer AE can be seen in
Figure 8a.

Despite their lack of a probabilistic interpretation, AEs can be grounded by noticing that they
are equivalent to PCA under special conditions (Baldi & Hornik 1989).When (a) the reconstruc-
tion error is the squared loss, (b) σ is the identity function, and (c) there is one hidden layer such
that W1 = WT

2 —meaning the weight matrices are tied—then an AE performs PCA. In this re-
stricted case, the dimensionality of h’s role as an information bottleneck is clear: The number of
hidden units corresponds to the number of eigenvectors used in the corresponding PCA.

4.2. Probabilistic Autoencoders for Generative Modeling

If the AE were given a probabilistic interpretation, then it could both perform dimensionality re-
duction and generate samples.The latter would be useful for synthesizing data as well as telling the
user the degree of information loss. One simple variant that gives the AE a probabilistic formula-
tion is the denoising autoencoder (DAE) (Vincent et al. 2008, 2010). Instead of passing x into the
first layer, a DAE takes as input a corruption of x: x′ ∼ P(x′|x), where P(x′|x) is the noise model.
Gaussian noise is one example: x′ ∼ N(x,6). Bengio et al. (2013b) showed that the DAE can then
be interpreted as a transition operator generating an ergodic Markov chain whose asymptotic
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distribution is the data-generating distribution P(x). Vincent (2011) also provides a probabilistic
interpretation via score matching.

A more direct probabilistic interpretation can be had by thinking of AE-like architectures as
latent variable models. The earliest work in this direction is the density network (MacKay &
Gibbs 1999), which one can view as a form of nonlinear factor analysis with the NN serving as the
nonlinearity (McDonald 1962, Yalcin & Amemiya 2001). MacKay & Gibbs (1999) define a latent
variable z and assume the data are generated by an NN-parameterized conditional distribution:

x ∼ p (x|z;W), z ∼ p (z), E[x|z] = g−1(WT
L hL−1 ), and h0 = z, 11.

where p(z) denotes a prior on the latent variable. An NN with L layers of parameters W =
{W1, . . . , WL} takes as input z and outputs the mean of the conditional distribution. MacKay
& Gibbs (1999) used importance sampling to estimate the marginal likelihood, p(x; W) =
+zp(x|z; W)p(z)dz, and fit the NN weights using this objective.

Yet MacKay & Gibbs’s (1999) approach does not scale to large NNs. This class of models
fell out of favor until Kingma & Welling (2014) and Rezende et al. (2014) noticed that NNs
could also be used to perform inference for the latent variables and the whole architecture could
be trained with end-to-end differentiation. This insight leads to a unified model known as the
variational autoencoder (VAE).The core idea is to define an inference network to form a posterior
approximation:

q (z;ϕ(x)) ≈ p(z|x), ϕ(x) = g−1(UT
L h

′
L−1 ), and h′

0 = x 12.

where ϕ(x) are the parameters of the posterior approximation (as a function of a given x) and
U1, . . . ,UL are the parameters of the inference NN. Both networks can be trained simultaneously
using a reparameterized stochastic evidence lower bound:

p(x;W) ≥ Eq(z;ϕ(x))
[
log p (x|z;W)

] −KLD
[
q(z;ϕ(x))||p(z)]

= Eq(ϵ)
[
log p (x|r(ϵ;ϕ(x));W)

] −KLD
[
q(z;ϕ(x))||p(z)]

≈ 1
S

S∑
s=1

log p (x|r(ϵ̂s;ϕ(x));W)−KLD
[
q(z;ϕ(x))||p(z)], 13.

where s indexes the samples in the Monte Carlo expectation and KLD[q(z;ϕ)||p(z)] denotes the
Kullback–Leibler divergence between the approximate posterior and the prior. Most crucially,
r(ϵ;ϕ(x)) represents a reparameterization that allows us to draw samples from q(z;ϕ(x)) via a
fixed distribution q(ϵ). One example of such a function is the location-scale form for Normals:
ẑ = r(ϵ̂;µϕ (x), σϕ (x)) = µϕ (x)+ σϕ (x)⊙ ϵ̂,where ϵ̂ ∼ N(0, 1).Another example would be inverse
transform sampling using q(z)’s CDF. Representing the stochastic variable z in this way allows for
end-to-end differentiation, as we now have access to the partials with respect to the inference
network’s parameters: ∂ ẑ/∂Ul = (∂ ẑ/∂ϕ)(∂ϕ/∂h′

L ) . . . (∂h
′
l/∂Ul ). Figure 8b shows a diagram of

the VAE,with the inference and generative networks composed via r(ϵ̂;ϕ(x)).When the inference
and generative processes are thought of as a unified computational pipeline, the resulting structure
resembles a traditional AE, which is how the VAE got its name. The VAE was one of the first
modern generative models that showed a compelling ability to generate high-fidelity samples, as is
demonstrated inFigure 7a.The VAE can also perform density estimation, but only approximately
via Monte Carlo integration.

4.3. Other Types of Neural Generative Models

A variety of other deep generative models have been developed, and we briefly outline them here.
One of the most popular is the generative adversarial network (GAN) (Goodfellow et al. 2014).
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GANs reformulate the task of density modeling into an adversarial game in which a generator NN
tries to simulate data so that a discriminator NN cannot tell the difference between the generated
and observed samples. The assumption is that if the discriminator cannot tell the two apart, then
the generator must be a good model of the data. The concept is similar in spirit to approximate
Bayesian computation (ABC) (Rubin 1984),which compares simulated data to the observations via
some statistic ormetric and retains the parameters that generated the simulation—treating them as
a posterior sample—if the statistic is within some threshold. In GANs, the discriminator serves as
the metric comparing the fake and real data.Themajor difference between ABC andGANs is that
GANs are trained by differentiating through the adversarial process, treating it as an optimization
objective. Mohamed & Lakshminarayanan (2017) discuss GANs from a generalized framework,
showing various proper scoring rules resulting in valid discriminators. The GAN framework can
also be used for approximate inference for model parameters (Mescheder et al. 2017, Tran et al.
2017), although using GANs for inference is made difficult by their inability to provide a density
estimate.

Another type of neural generative model is the normalizing flow (NF) (Tabak & Turner 2013,
Rezende &Mohamed 2015, Papamakarios et al. 2021). These models use NNs to reparameterize
a simple distribution into one with richer complexity. Specifically, the data density p(x) is modeled
as p(x;ψ) = pz(T−1

ψ
(x)) |∂ T−1

ψ
/∂x|, where pz(z) is the simple base distribution that is being repa-

rameterized via the NN function Tψ, and where ψ are the parameters (weights) of the NN. After
performing maximum likelihood estimation for ψ, samples can be drawn via ẑ ∼ p(z), x̂ = Tψ (ẑ).
TheNNs are carefully designed so that the volume element |∂ T−1

ψ
∂x| is easy to compute (i.e., does

not require computing an arbitrary Jacobian determinant). For instance, autoregressive flows
allow for a triangular Jacobian matrix whose determinant is just the product of the diagonal
terms (Kingma et al. 2016, Papamakarios et al. 2017, Huang et al. 2018). The images shown in
Figure 7b were generated by a particular NF model known as a Glow (Kingma & Dhariwal
2018). NFs have the added benefit that their density function can usually be evaluated quickly, as
is necessary for model fitting.

Two final types of popular deep generativemodels are diffusionmodels (DFs) and energy-based
models (EBMs). For DFs, like with NFs, the underlying idea is to transform a simple distri-
bution x0 ∼ p0(x0) into a richer distribution that can model real-world data sources. Whereas
NFs use one deterministic transformation, DFs instead use a series of conditional distributions:
p(x1:T |x0 ) =

∏T
t=1 p(xt |xt−1 ). EBMs are the most general class as they define a Gibbs density:

p(x) = exp{−E(x)}/∫
x
exp{−E(x)}dx, where E(x) ∈ R is known as an energy function and the

denominator is the normalizing constant. While the energy function can be defined in many
ways, recent work using classifiers to define the free energy has been shown to be quite effective
(Grathwohl et al. 2019).

5. SELECTED TOPICS FROM THE RESEARCH FRONTIER

Our review above touches on some of the more well-established aspects of DL. In this final sec-
tion of the article, we discuss additional topics in DL that involve a number of open research
problems that may be of particular interest to statisticians.

5.1. Theories of Deep Learning

Attempts to theoretically characterize DNNs are primarily concerned with their expressive power,
the characteristics of their optimization landscape, and their ability to generalize to unseen data.
Regarding expressivity, Cybenko (1989) showed that sigmoidal architectures are universal ap-
proximators. These approximation results, however, may require the NN to have an exponential
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number of hidden units, and there have been recent attempts to characterize the depth (Yarotsky
2017) and width (Lu et al. 2017) required to achieve a given approximation level. Moreover, there
are parallel attempts to understand the differences in the classes of functions able to be represented
by deep versus shallow networks. Results such as those of Baldi & Vershynin (2019) and Eldan &
Shamir (2016) suggest that deep networks represent fewer, but more sophisticated, functions than
shallow counterparts.

While DNNs have been shown to be universal approximators for some time, these results do
not guarantee anything about the class of functions that can be reached by SGD. Thus, there
has been much interest in studying the optimization landscape of these models. For many years,
it was thought that NN optimization would be hopelessly plagued by local minima (Cheng &
Titterington 1994). However, this concern has been alleviated, to a degree, with more recent
conjectures that it is not local minima but saddle points that comprise many of the loss surface’s
critical points (Dauphin et al. 2014, Kawaguchi 2016). The intuition is that it is unlikely that
the optimization surface will be going the same direction in every dimension, as is necessary to
build a local minimum. In consequence, much attention has been given to escaping saddle points
efficiently ( Jin et al. 2017). In addition to classifying critical points, the qualities of the minima
are also of interest. In particular, whether minima are wide and flat versus narrow and sharp has
been of keen interest (Hochreiter & Schmidhuber 1997a, Keskar et al. 2017). The intuition is that
wide minima are likely to generalize to never-before-seen data since there is a neighborhood of
parameters that represent roughly equivalent solutions.

Lastly, understanding the mystery of generalization performance of DNNs is another very
active research topic: While DNNs as a model may be expressive and can capture expressive
functions through optimization, how do they avoid overfitting? Methods for determining model
complexity by counting the number of parameters (e.g., information criterions) are notably inef-
fective for determining whether NNs are likely to be overfit to a training set. In fact, the classic
bias-variance trade-off has been shown to break down for NNs. Recent results have shown the ex-
istence of a double descent curve. Consider plotting generalization (test) error for a deep network
as a function of model complexity (e.g., number of parameters or weights). As model complexity
increases (on the x-axis), the generalization error (on the y-axis) exhibits the expected bias-variance
U-shaped trade-off as underfitting gives way to overfitting. However, once the complexity is at
the point where the model has fully interpolated the data, the generalization error can again
decrease (hence, double descent) and decrease to the point that the best model (in terms of gen-
eralization error) has far more parameters than data points. This type of phenomenon has been
observed in the past for overparameterized models (Duin 2000), and the general topic of double-
descent is now a very active area of research inDL (Belkin et al. 2020,Nakkiran et al. 2021,Viering
& Loog 2021), although theoretical progress (not surprisingly) has primarily occurred in terms of
understanding this phenomenon with simpler nonneural models (Hastie et al. 2022, Bartlett et al.
2020, Mei & Montanari 2022).

5.2. Interpretability, Causality, Fairness, and Trustworthiness

DNNs are often criticized for being black boxes. The complexity of a typical DNNmakes it diffi-
cult to extract an understanding of how it makes predictions, when or why it may perform poorly,
and what assumptions are baked into the model (Lipton 2018). Recent work in interpretability
(Doshi-Velez & Kim 2017, Guidotti et al. 2018) can be broadly understood under three main di-
rections: developingmethods to better understand existing architectures, designingmodels that by
construction are more interpretable, and designing methods to investigate the data that influence
the fit of a model. As an example of the first, one can examine the gradient of an NN with respect
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to its input features in order to understand their importance for prediction (Simonyan et al. 2014).
As an example of the second, the knowledge encoded by anNN can be approximated by a decision
tree with the hope of getting the predictive power of the former and the interpretability of the lat-
ter (Letham et al. 2015). Thirdly, Aamodt & Plaza (1994) and Kim et al. (2016) use statistical tools
in model criticism in order to find patterns in the data not explained by prototypical examples.
This delivers insights into parts of the input space that do not provide good explanations.

Related to explainability is the notion of causal inference (Pearl 2009). As causal inference
relies on flexible function approximation, DL provides a toolbox of methods that are attractive
to plug into existing semiparametric inferential frameworks. For instance, within the potential
outcomes framework, Shi et al. (2019) propose an NN for estimating treatment effects. In the
structural framework,Xia et al. (2021) propose anNN-based structural causal model.Looking for-
ward, Schölkopf et al. (2021) highlight future directions, including that of using the representation
learning capabilities of NNs to identify high-level causal variables from low-level observations.

There is also significant interest in the fairness of DL models, where the goal is to ensure
nondiscrimination, due process, and understandability in decision-making (Zemel et al. 2013,
Mehrabi et al. 2021).Policymakers, regulators, and advocates have expressed fears about the poten-
tially discriminatory impact of machine learning, with many calling for further technical research
into the dangers of inadvertently encoding bias into automated decisions. Recent work poses the
problem under causal inference (Kusner et al. 2017) where evaluating the fairness of a model can
be formalized as reasoning about counterfactuals such as how a classifier may change predictions
if the demographic group or gender of the predicted individual were different. Of particular rel-
evance to DL is bias, in terms of predictive disparities in a model due to underrepresentation of
certain demographic groups. Given that DL models for images and text are often trained on mil-
lions or billions of examples, this bias can be implicit in data sets and hard to detect and remove,
which has led to recent interest in debiasingmethodologies for DL (Savani et al. 2020). Also of rel-
evance are the notions of differential privacy (Dwork 2011) and differential fairness (Foulds et al.
2020), which aim to bound the effect of including different data points or features, respectively,
on the model fit.

Since DNNs overwhelmingly are used to parameterize conditional distributions, there is per-
haps even more concern about ensuring these models receive only proper inputs—that is, inputs
that are drawn from the same distribution as the original training set. NN verification (a.k.a. val-
idation) has received attention since the early 1990s (Bishop 1994), and most approaches to this
problem take the perspective of satisfiability (Zakrzewski 2001), showing that the DNN’s error is
bounded. Another approach is to derive theoretical guarantees on the robustness (usually taking
the form of class prediction invariance) within regions of input feature space (Wong & Kolter
2018, Zhang et al. 2019). This line of work is especially relevant for defending against adversarial
examples (Goodfellow et al. 2015), small (imperceptible) input perturbations that are designed to
result in an incorrect prediction. Another popular trend is to expose the model to samples that are
unlike the training set and optimize so that the model’s predictive distribution is highly entropic
for these samples (Malinin & Gales 2018, Hafner et al. 2019, Hendrycks et al. 2019).

5.3. Hierarchical Modeling and Meta-Learning

As in statistics (for example, in Bayesian hierarchical modeling), the development of hierarchical
modeling frameworks, which allow for the sharing of knowledge and statistical strength across
data sets and subtasks, is another active research area in DL. Given that NNs are simply non-
linear functions, they can be incorporated into hierarchical Bayesian modeling by using them to
parameterize a random variable at one level as a function of a higher-level random variable. We
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covered perhaps the simplest instantiation of this in Section 4.2 with the VAE. Johnson et al.
(2016) extended the idea further so that general graph structures can be used to define the la-
tent random variables. The DL concepts of meta-learning (Finn 2018) and learning to learn
(Heskes 2000, Andrychowicz et al. 2016) have a less rigorous tie to hierarchical modeling in statis-
tics but still share similarities.To give an example of one variant, episodicmeta-learning (Lake et al.
2015, Santoro et al. 2016, Finn et al. 2017, Ravi & Larochelle 2017) aims to define and estimate
models that can generalize to several tasks, including tasks with very little data or tasks unlike the
tasks on which it was trained (but that still share some conceptual overlap). Meta-learning ap-
proaches often use task-specific models, and these specialized models have some form of tied
parameterization to allow for information sharing across tasks. One way to generate these task-
specific models is to use a hypernetwork (Ha et al. 2017), an NN that outputs the parameters of
another NN.

6. CONCLUSION

During our brief tour of DL, we have presented the foundations of feedforward, sequential, and
unsupervised architectures. While the particular details are sure to change going forward, DL
will continue to thrive when prediction is the primary task and a hierarchy of representations
is needed to extract signal from data. Despite its success, innovations in DL are still needed in
order for it to keep pace with requirements such as interpretability, uncertainty quantification,
reliability, and safety, as dictated by modern applications. From autonomous driving to finance
to health care, tried and true methods from statistics, such as model validation and criticism, are
likely to be very useful in deploying DL models with confidence. Given that DL operates at new
scales (in both model and data size) that are not yet common in statistics, the field of statistics
has the opportunity to enrich itself by engaging with these new challenges. We hope our article
facilitates such discussions, bringing about innovation at the intersection of statistics, data science,
and DL.
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