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Abstract

Al assistance is readily available to humans in a variety of decision-making applications. In order to fully understand the
efficacy of such joint decision-making, it is important to first understand the human’s reliance on Al. However, there is a
disconnect between how joint decision-making is studied and how it is practiced in the real world. More often than not,
researchers ask humans to provide independent decisions before they are shown Al assistance. This is done to make explicit
the influence of Al assistance on the human’s decision. We develop a cognitive model that allows us to infer the latent reliance
strategy of humans on Al assistance without asking the human to make an independent decision. We validate the model’s
predictions through two behavioral experiments. The first experiment follows a concurrent paradigm where humans are shown
Al assistance alongside the decision problem. The second experiment follows a sequential paradigm where humans provide
an independent judgment on a decision problem before Al assistance is made available. The model’s predicted reliance strate-
gies closely track the strategies employed by humans in the two experimental paradigms. Our model provides a principled
way to infer reliance on Al-assistance and may be used to expand the scope of investigation on human-AlI collaboration.

Keywords Al-assisted decision making - Cognitive modeling - Reliance - Trust - Confidence

Introduction

Over the past decade, there has been an increase in domains
where Al is used to assist humans by providing recommen-
dations in the context of a prediction problem. Examples
of these Al recommendation systems include making bail
decisions in a legal context (Kleinberg et al., 2018), detect-
ing deception in consumer reviews (Ott et al., 2011), making
medical decisions in diagnostic imaging (Esteva et al., 2017;
Patel et al., 2019; Rajpurkar et al., 2020), recognizing faces
in forensic analysis (Phillips et al., 2018), and classifying
astronomical images (Wright et al., 2017). Such widespread
adoption of Al decision aids has been accompanied by bur-
geoning interest in investigating the efficacy of Al assistance
in collaborative decision-making settings (Yin et al., 2019;
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Park et al., 2019; Zhang et al., 2021; Poursabzi-Sangdeh
et al., 2021; Buginca et al., 2021; Kumar et al., 2021; Chong
et al., 2022; Becker et al., 2022).

To investigate such Al-assisted decision-making,
researchers have designed a variety of workflows. Some
workflows require the human to provide an independent
decision first, then display the Al’s advice which the human
can then use to update their final decision (Yin et al., 2019;
Poursabzi-Sangdeh et al., 2021; Chong et al., 2022). Other
workflows present Al advice alongside the prediction prob-
lem and the human can decide to follow the advice or ignore
it (Rajpurkar et al., 2020; Sayres et al., 2019). Finally, a
few studies force individuals to spend time thinking about
the decision problem by artificially delaying the presenta-
tion of Al advice (Bucinca et al., 2021; Park et al., 2019)
or making Al advice available only when it is requested
(Kumar et al., 2021; Liang et al., 2022). In this work, we
focus on two of the aforementioned workflows of Al-assisted
decision-making and refer to them as paradigms; a detailed
illustration can be found in Fig. 1. We term the first as a
sequential paradigm, where Al advice is displayed only
after the human provides an independent judgment and the
human can choose to revise their initial judgment. We term
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Fig. 1 Illustration of the sequential and concurrent paradigms for Al-assisted decision-making (top two rows). The no-Al assistance paradigm

(bottom row) is used as a control condition for the concurrent paradigm

the second as a concurrent paradigm where Al advice is
displayed concurrently with the prediction problem.

The sequential paradigm provides direct insights about
the human’s reliance on the Al based on two human judg-
ments: the initial independent judgment and a final judg-
ment after receiving the Al advice. This paradigm makes
it easier for experimenters to disentangle the influence of
Al advice on the human’s decision. However, in many real-
world applications, the human user does not independently
make a decision before Al assistance is provided since pro-
viding the AI’s recommendation immediately simplifies the
workflow and can save time. The concurrent paradigm offers
an alternative setting to study Al-assisted decision-making.
One drawback of the concurrent paradigm is the fundamen-
tal ambiguity in data interpretation — it is unclear as to how
one can assess the usefulness of the Al decision aid to the
human user. Since there is no initial human judgment avail-
able before Al advice is offered, there is no direct empiri-
cal observation about any changes the human is making in
their decision-making. Any observed agreement between the
human and the Al, in the concurrent paradigm, could arise
because the human changed their judgment and took the AI’s
advice or the human already arrived at the same judgment
independent of the Al. How, then, do we assess the impact
of Al assistance on the human’s decision?

Our research has three main goals. First, we develop a
computational cognitive model for Al-assisted decision-
making in the concurrent paradigm. The cognitive model
provides a principled way to infer the latent reliance of a
human on the Al assistant in spite of the fact that there are
no direct observations of switching behaviors when a person
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is presented with the Al advice. We empirically validate the
computational model by collecting empirical data from a
behavioral study using both the sequential and concurrent
paradigms. The data from the sequential paradigm offers
a comparison to the concurrent paradigm and provides a
test to assess the merit of the computational framework. We
demonstrate that the model’s predictions of reliance behav-
ior in the concurrent paradigm are qualitatively similar to
the reliance behavior observed in the sequential paradigm.
In addition, we demonstrate that the model can generalize
to held out trials in the concurrent paradigm.

In our second goal, we use the cognitive modeling
approach to understand how a human’s reliance policy
depends on a number of factors related to the human and the
Al Previous research has shown that a human’s confidence
in their own decision influences the tendency to rely on Al
assistance (Lu and Yin, 2021; Pescetelli et al., 2021; Wang
et al., 2022). In addition, reliance on the Al is also affected
by the AI’s confidence in its decision (Zhang et al., 2020).
Another contributing factor is the overall accuracy of the Al.
In some previous research, only a single AI model with a
fixed degree of accuracy was used; for example, an AI model
with an accuracy comparable to human performance (Zhang
et al., 2020) or above human performance (Lai and Tan,
2019; Pescetelli et al., 2021). A few studies have investigated
the effect of varying Al accuracy on reliance strategy (Yin
et al., 2019). In our empirical paradigm, we investigate how
human reliance varies across multiple levels of Al accuracy.
This allows for a more nuanced understanding of the impact
of the AI aid’s accuracy on the human’s reliance behavior.
In addition, we investigate how participant confidence and
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Al confidence scores affect the trial-by-trial reliance strategy
used by participants.

In our third goal, we use the computational model to
quantify the effectiveness of the reliance strategies employed
by the human. In some instances, people adopt sub-optimal
reliance policies when working with an Al. For example,
it has been found that people will prefer to use their own
(less accurate) forecasts instead of an algorithm if they have
seen the algorithm make mistakes (Dietvorst et al., 2015). In
another study, people placed too much trust in an automated
system (Cummings, 2017). Over- and under-reliance on Al
advice may depend on particular task domains and methods
of interaction (Promberger and Baron, 2006; Castelo et al.,
2019; Logg, 2017). Whereas in these previous studies, the
reliance was assessed at the aggregate level, our cognitive
modeling approach enables us to estimate the trial-by-trial
variations in reliance depending on factors such as the con-
fidence state of the participant and the level of confidence
of the Al for particular problem instances. For particular
combinations of self- and Al confidence (e.g., low self-
confidence and high Al confidence) and particular combi-
nations of human and Al overall accuracy, we can expect
joint decision-making accuracy to be better than the human
or Al alone (Steyvers et al., 2022). An empirical question
is whether participants are able to adopt such a policy. We
compare the reliance policies adopted by participants to
optimal policies and show that in our experiment, people
were quite effective in their adoption of Al advice.

Cognitive Model

Before describing the computational model, we note some
key aspects of the concurrent advice-taking paradigm in par-
ticular that motivate the design of the model. In the experi-
ment, participants have to predict the classification label of
a set of images and a confidence level associated with their

decision. Each participant alternates between two experi-
mental conditions. In the control (no assistance) condition,
participants indicate their predictions without help from the
Al In the Al assistance condition, we follow the concurrent
approach; the Al provides a recommended set of predictions
by highlighting the class labels according to the AI’s con-
fidence scores. The participant can use these recommenda-
tions in any way they want to order to maximize their own
accuracy (see Fig. 2 for an illustration of the user interface in
the experiment). An important aspect of this condition is that
the participant’s prediction reflects a combination of their
own independent decision-making (which is not observable
in this paradigm) and the Al prediction. In other words, the
policy used by the participant to rely on and integrate Al
predictions with their own predictions is not directly observ-
able from their behavior.

The main goal of the computational model is to draw
inferences about the latent advice-taking policies. The
policy can be determined by a number of factors, such as
the confidence state of the participant and the confidence
scores of the Al as well as the overall accuracy of the Al
We develop a hierarchical Bayesian model to draw infer-
ences about the policies not only at the population level
but also at the level of individual participants. In the first
part of the model, a Bayesian Item-Response model (Fox,
2010) is applied to the no-assistance condition to infer
individual differences in ability as well as differences in
difficulty across items (i.e., prediction problems). In the
Al-assistance part of the model, these latent person and
item parameters are used to explain the observed predic-
tion from a participant which depends on their (unobserv-
able) unaided prediction and the advice-taking policy that
determines the likelihood that a participant switches to the
Al prediction or stays with their own prediction. Figure 3
visualizes the graphical model of the computational model
that explains the human predictions with and without Al
assistance.

Fig. 2 Illustration of the behav-
ioral experiment interface in the
Al assistance condition

Al Help : ON

¥%| (M [55] [w
= [0 =
R] (@] [w] [
= (\] (&) o]

Low Al Confidence High

[ v Y voor I o _

¥%| (M 56
= ()] |
i ™

@
N ()

Your Classification Confidence

@ Springer



494

Computational Brain & Behavior (2022) 5:491-508

Fig.3 Graphical model for the
Al-assisted decision-making
model. In the condition without
assistance, Ty and X and z

are observed. In the condition
where Al assistance is provided,
r; and x;; are latent and y, z;,
Cj» and n;, are observed. For
visual clarity, plate notation is
omitted
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Modeling Human Decisions Before Assistance

The computational model for human predictions without
Al assistance is based on a Bayesian Item-Response model
(Fox, 2010). The Item-Response model makes it conveni-
ent to model individual differences in accuracy as well as
differences in item difficulty (where items refer to the indi-
vidual images participants have to classify). To model the
human predictions, we use a three-parameter IRT model to
capture the probability 6, ; that a correct response is made
by person i on item j:

0,
log (1 - 9:',/'> = $;a; = d;

The person parameter a; is an ability parameter that deter-
mines the overall performance of the person across items.
The item parameter d; captures differences in the item dif-
ficulty while the item parameter s; captures discrimination:
the tendency of an item to discriminate between high and
low ability individuals.

In a typical IRT model, the probability of making a cor-
rect response, 6, is used to sample the correctness of an
answer. However, for our model, we code the responses
from individuals in terms of the predicted label. Let x;

ey
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represent the prediction by person i for item j in the absence
of Al assistance. Each prediction involves a choice from a
set of L labels, i.e., x € {1,...,L}. Let z; represent the true
label for item j. We assume that person i produces the cor-
rect label z; on item j with probability 6,; and otherwise
chooses uniformly from all other labels, as follows:

0;; ifz;=m

1-0,)/(L=1) ifz;#m @

p(xiJ' =m)= {
Various model extensions could be considered that allow for
response biases such that some labels are preferred a priori
over other.

Participants not only make a prediction but also express a
confidence level, Tijs associated with their prediction. In the
experimental paradigm, confidence levels are chosen from a
small set of labels, r; J € {low, medium, high}. In the model,
we assume that predictions associated with higher accuracy on
average lead to higher confidence levels, but that at the item
level, the mapping from accuracy to confidence is noisy. To
capture the noisy relationship between accuracy and confi-
dence, we use a simple generative model based on an ordered
probit model:

r;j ~ OrderedProbit(0, ;, v;, 5;) 3)

i
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In this generative model, normally distributed noise with
standard deviation o; is added to the probability of being cor-
rect 0, ;. The resulting value is then compared against a set
of intervals defined by parameters v;, and the interval which
contains the value determines the resulting confidence level.
Changes in v, can lead the participant to different uses of the
response scale (i.e., using one particular confidence level
relatively often) while o, determines (inversely) the degree
to which accuracy and confidence are related. Note that the
parameters o and v are person-specific to allow for individual
differences in the confidence generating process. Appendix
1 provides more detail on the ordered probit model.

Modeling Human Decisions After Advice

In the model for human decisions in the presence of advice,
let y; ;, represent the observed prediction made by person i
on item j after Al advice is considered from Al algorithm
k. We include a dependence on the type of algorithm as
our empirical paradigm will present Al advice from dif-
ferent algorithms. In the advice-taking model, we assume
that the participant initially makes their own prediction x; ;
independent of the AI advice but that their final decision
Yijx can be influenced by the Al advice. Note that in the
no-assistance condition, the independent predictions x; ; and
associated confidence levels r;; are directly observable, but
they are latent in the Al assistance condition. However, we
can use the IRT model in the previous section to simulate the
counterfactual situation about the prediction and confidence
level that a person would have made if Al advice was not
provided. Specifically, we can use the generative model in
Egs. 1-3 to generate predictions for x; ; and r; ; on the basis of
information about the participant’s overall skill (a) as well as
information about the difficulty of the particular item (dj)'.

In the advice-taking model, we assume that the partici-
pant will stay with their original decision x;; if it agrees
with the AI’s recommendation, denoted by Cike However,
when the original decision is not the same as the AI’s recom-
mendation, we assume the participant switches to the AI’s
recommendation with probability ; ;. Therefore, we can
model the probability that the participant chooses label m
for their final prediction as follows:

a i fx; #FmAc,=m
PO jx=m=q1 ifx;=mAc;=m 4
0 ifx,;#FmAcy#m

! Note that in empirical paradigm, each image is presented in both
the control condition as well as the Al assistance condition to allow
for the estimation of item difficulty parameters for each image.

The variable «; ; ;, determines the tendency of participant i to
trust the Al advice from algorithm k related to item j. In the
next section, we describe how this latent variable can depend
on factors such as the confidence state of the participant as
well as the confidence score of the Al

Note that in this model, when the participant is provided
with Al assistance, the independent prediction x; ; is latent in
our experimental paradigm. Instead of explicitly simulating
the process of first sampling an independent prediction x;;
and then a final prediction y; ; ,, we can simplify the genera-
tive process by marginalizing out ; ;:

t?i‘,~9+ 1- Gi‘/)lag/’k if =MACE=m
POy =m =1 = 1= = )“idzk ifz; #mAcy=m

%(1 _“i,j,k) ifzj;ém/\cj’k *m

&)
In this equation, the probability that the participant selects
label m is split into three different cases. The first case
reflects the probability that the participant makes the cor-
rect decision independently (which happened to agree with
the Al recommendation) or makes an incorrect decision ini-
tially but then adopts the correct Al advice. The second case
reflects the probability that the participant initially selects
an incorrect decision (which happened to agree with the Al
recommendation) or makes another decision different from
the AI but then adopts the incorrect Al advice. The third
case reflects the probability that the participant makes an
incorrect independent decision and decides not to switch to
the AI’s recommendation.

Modeling Individual Differences in Advice-Taking

The key latent variable of interest in the model is @; ; ;, which
determines the willingness of the participant per item to
switch to the AI’s recommended prediction if it differs from
their own prediction. Generally, a;;, can depend on many
characteristics related to the person, item, and classifier.
Here, we will consider functions where @ depends on the
confidence state of the participant for item j (r;;), the Al
confidence score associated with item j (#;,), and the type
of classifier k:

Aijk = G ijs Miko k) (6)

One way to specify function fis based on a linear model
that captures main effects as well as interaction between the
two putative factors. However, to avoid specifying the exact
functional form of f, we will instead simplify the model and
treat function f as a lookup table that specifies the a values
based on a small number of combinations of participant con-
fidence, Al confidence, and classifier type. Specifically, we
create 3 X 4 X 3 lookup table that specifies the & value based
on 3 levels of participant confidence (“low,” “medium,”
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“high”), 4 levels of Al confidence, and 3 types of classifiers
(k). We use a hierarchical Bayesian modeling approach to
estimate individual differences in the policy « (see Appendix
2 for details).

Experiments

To validate our cognitive model, we investigated human per-
formance with and without Al assistance in two paradigms:
the concurrent and sequential paradigm. We will apply the
cognitive model to the concurrent paradigm to infer the Al
reliance strategies by individual participants. The results from
the sequential paradigm serve as a means to validate our cogni-
tive model, as the sequential paradigm allow us to empirically
analyze participant strategies when integrating Al assistance.

In both paradigms, participants have to classify noisy
images into 16 different categories (see Fig. 2 for an example
of the user interface). There were two experimental manipu-
lations. First, the image noise was varied to produce substan-
tial difference in classification difficulty (Fig. 4). Second, we
varied the overall accuracy of the Al predictions across three
conditions: classifier A, classifier B, and classifier C. Classi-
fier A was designed to produce predictions that are, on aver-
age, less accurate than human performance. Classifiers B and
C were designed to produce predictions that are, on average,
as accurate and more accurate than human performance. Each
participant was paired with one type of classifier.

The main difference between the two paradigms is that
in the concurrent paradigm, participants alternated between
blocks of trials where Al assistance was or was not pro-
vided. In the sequential paradigm, there were no alternating
blocks. On each trial, the participant first made an independ-
ent prediction for a image classification problem and was
then given an opportunity to revise their prediction after Al
assistance was provided.

Fig.4 Illustration of three
images under different levels of
phase noise. Original images
(left) were not used in experi-
ments and are shown only for
illustrative purposes

Original 0 80
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Methods
Participants

A total of 60 and 75 participants were recruited using Ama-
zon Mechanical Turk for the concurrent and sequential
experiments respectively. To ensure that participants under-
stood the task, they were given a set of instructions describ-
ing the experiment and what they would have to do. Upon
reading all of the instructions, participants were then tasked
with a comprehension quiz to ensure they fully understood
the task. The quiz consisted of having participants classify
five different noisy images with AI help turned off. In order
to participate in the study, participants had to correctly clas-
sify four of the five images in the quiz. Participants were
given two opportunities to pass the quiz. Successful par-
ticipants were then allowed to proceed with the rest of the
experiment.

Images

All images used for this experiment come from the ImageNet
Large Scale Visual Recognition Challenge (ILSRVR) 2012
validation dataset (Russakovsky et al., 2015). Following
(Geirhos et al., 2019), a subset of 256 images was selected
divided equally among 16 classes (chair, oven, knife, bottle,
keyboard, clock, boat, bicycle, airplane, truck, car, elephant,
bear, dog, cat, and bird). To manipulate the classification dif-
ficulty, images were distorted by phase noise at each spatial
frequency, where the phase noise is uniformly distributed
in the interval [—w, @] (Geirhos et al., 2019). Eight levels
of phase noise, w = {0, 80,95, 110, 125, 140, 155,170},
were applied to the images, a different noise level for each
unique image, resulting in 2 unique images per category
per noise level (see Fig. 4 for examples of the phase noise
manipulation).

95 110 125 140 155 170
Phase Noise
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Al Predictions

We used a convolutional neural network (CNN), based on
the VGG-19 architecture (Simonyan and Zisserman, 2014),
pretrained on the ImageNet dataset as the basis for the Al
assistance. Our choice of VGG-19 was motivated by previ-
ous experiments (Steyvers et al., 2022) that showed that the
performance of the VGG-19 model could be manipulated
to produce above-human performance for the challenging
image noise conditions in the experiment.

Three different levels of classifier performance were cre-
ated by differentially fine-tuning the VGG-19 architecture
to the phase noise used in our experiment. All models were
trained with all levels of phase noise. However, to generate
these different levels of performance, the models were fine-
tuned for different periods of time. We used a pilot experi-
ment with 145 participants to assess human performance
at the different noise levels. Classifier A was produced by
fine-tuning for less than one epoch (10% of batches of the
first epoch) and produced a performance level that was on
average below human performance. Classifier B was pro-
duced by fine-tuning for the entirety of one epoch and pro-
duced a performance level that was on average near human
performance. Classifier C was fine-tuned for 10 epochs
and produced a performance level above average human
performance.

Procedure

In both the concurrent and sequential paradigms, partici-
pants were instructed to classify images as best as possible
and to leverage Al assistance, when provided, to optimize
performance. Each participant was assigned to a single
classifier level (A, B, or C) at the start of the experiment
and each was only presented with Al assistance from that
particular classifier; 20 participants were assigned to each
classifier level in concurrent paradigm, and 25 participants
to each classifier level in the sequential paradigm. Partici-
pants were given no information about the accuracy of the
classifier.

Concurrent paradigm In the concurrent paradigm, there
were 256 trials total. Each trial presented a unique image
randomly selected from the set of 256 images. The classifi-
cation trials were separated into 4 blocks where each block
consisted of 48 consecutive trials in which Al assistance was
turned on, and 16 consecutive trials without Al assistance.
The larger number of trials with Al assistance was used to
better assess participants Al reliance strategies under differ-
ent levels of Al confidence. Because of the random order-
ing of images across participants, a particular image was
shown for some participants in the Al assistance condition

and for other participants in the control condition without
Al assistance. Each unique image was shown to a median of
15 participants in the control condition and 45 participants
in the Al assistance condition.

On each trial, participants were shown an interface as
illustrated in Fig. 2. Participants classified images into 16
categories by pressing the response buttons that represented
the categories with visual icons as well as labels (when the
participant hovers the mouse over the button). For each clas-
sification, the participant provided a discrete confidence
level (low, medium, and high). Finally, the rightmost col-
umn of the interface was used for Al assistance. When Al
assistance was turned off, this column displayed nothing.
However, when Al assistance was turned on, a grid of the 16
category options was shown with the same layout as the par-
ticipant response options. Each of the 16 categories would
be highlighted based on a gradient scale associated with the
probability that the Al classifier assigned to the category.
The darker the hue of the highlighted category, the more
confident the classifier was in that selection. Instances in
which the classifier was extremely confident in a single cat-
egory, there would only be one category highlighted with an
extremely dark hue. However, in instances where the classi-
fier was not confident in a classification, there would be mul-
tiple categories highlighted with low hue levels. Participants
were to use the Al assistance to aid their classification deci-
sion so as to optimize their own performance on the task.
At the end of each trial, feedback was provided to enable the
participant to develop an Al reliance strategy tailored to the
particular Al algorithm they were paired with. In the feed-
back phase, the correct response option was highlighted in
blue. If the participant was incorrect, the incorrect response
was highlighted in red.

Sequential paradigm In the sequential paradigm, there were
192 trials total. Each trial presented a unique image ran-
domly selected from the set of 256 images. On each trial,
participants were first tasked with classifying an image
on their own and were shown the interface as displayed in
Fig. 2 but without Al assistance (the third column showing
Al assistance was completely blank). After selecting their
initial classification decision and submitting their response
by selecting a confidence level, participants then were pro-
vided with Al assistance. The user interface at this stage
looked exactly like Fig. 2 and the procedure for displaying
Al confidence was the same as in the concurrent procedure.
With AT assistance turned on, participants then made a final
classification decision for the image shown and submitted
their response by selecting their confidence level. Once a
final classification was made, participants were provided
feedback for 3 s.
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Results

Figure 5 shows the average accuracy across noise lev-
els, Al classifier accuracy levels, Al assistance condi-
tions, and the concurrent and sequential advice-taking
paradigms. In both the concurrent and sequential proce-
dures, substantial performance differences are observed
as the level of image noise varies, ranging from near
ceiling performance at the zero noise level to close to
chance-level performance (i.e., 1/16 = 0.0625) at the
highest noise level. Across all classifier conditions,
human performance improves with Al assistance, espe-
cially at intermediate levels of noise, as illustrated in
Fig. 6. For classifiers B and C, the AI assistance pro-
duces performance levels comparable to the Al alone.
For classifier A, the Al assistance improves human

performance even though the Al assistance’s accu-
racy is below human performance, on average. Note
that this result is possible when participants rely on Al
assistance on select trials when participants are in a
low confidence state and the classifier is in a relatively
high confidence state (see Appendix 5 for an analysis
of the relationship between human and Al confidence).
Overall, these results show that participants are able to
rely on AT assistance to produce complimentarity — the
joint human-Al accuracy is equal to or better than either
the human or the AI alone.

The results are very similar across the concurrent and
sequential paradigms. The average human accuracy with Al
assistance for classifiers A, B, and C is 57%, 62%, and 68%
respectively in the concurrent paradigm and 56%, 61%, and
65% respectively in the sequential paradigm. A Bayesian
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Fig. 7 Advice-taking policies inferred from the advice-taking behav-
ior in the concurrent paradigm (top row) and observed in the sequen-
tial paradigm (bottom row). The policy determines the probability of
taking the Al advice as a function of human confidence (colors), clas-
sifier confidence (horizontal axis), and type of classifier (columns).

independent samples #-test showed no evidence for a differ-
ence in performance for any the classifiers (i.e., all Bayes
Factors < 1)% That these results are consistent and very
similar in both the concurrent and sequential experiments
suggests that the experimental advice-taking paradigm does
not produce important differences in how humans rely on
and integrate Al assistance.

Model-Based Analysis

The empirical results showed that the concurrent and
sequential advice-taking paradigms produce similar levels of
accuracy across all experimental manipulations. In this sec-
tion, we report the results of applying the cognitive model
to the data from the concurrent paradigm.

We used a Markov chain Monte Carlo (MCMC) proce-
dure to infer model parameters for the graphical model as

2 Bayes factors were computed using JASP (JASP Team , 2022) with
the default priors that came with the software.

1 0 0.2 0.4 0.6 0.8 1
Classifier Confidence

The colored areas in the top row show 95% posterior credible inter-
vals. The colored areas in the bottom row reflect the 95% confidence
interval of the mean based on a binomial model. The inferred advice-
taking parameters (f) are converted from log-odds to probabilities in
this visualization

illustrated in Fig. 3 (see Appendix 2 for details). Generally,
the model is able to capture all the qualitative trends in the
concurrent paradigm (see Appendix 4 on an out-of-sample
assessment of model fit). We focus our analysis on two key
parameters estimated by the model: f, the advice-taking pol-
icy at the population level, and «, the advice-taking policy
for individual participants. In the next sections, we illus-
trate the inferred policies and compare the results against the
empirically observed strategies from the sequential advice-
taking paradigm. In addition, we analyze how effective the
policies are relative to the set of all possible policies that
participants could have adopted, ranging from the worst to
best policies.

Inferred Advice-Taking Policies

Figure 7, top row, shows the inferred advice-taking pol-
icy f as a function of classifier confidence, participant
confidence and classifier. These policies represent the
behavior of an average participant at the population level
of the model. Figure 8 shows examples of inferred advice-
taking policies (@) from a subset of individual partici-
pants. Overall, the probability of taking Al advice differs
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Fig. 8 Inferred advice-taking policies for a subset of 7 individual par-
ticipants in the concurrent paradigm. The policy determines the prob-
ability (@) of taking the classifier advice as a function of human con-

substantially across classifiers. Advice is more likely to
be accepted when the participant is in a low confidence
decision-state and the classifier provides high confi-
dence recommendations. In addition, across the different
levels of classifier accuracy, advice is more likely to be
accepted from high accuracy classifiers. Overall, these
results show that the advice-taking behavior depends on
a number of factors and is not based on simple strategies
that rely solely on the confidence level of the Al or the
confidence level of the participant. In addition, the results
show that the advice-taking behavior is adjusted when the
Al assistance becomes more accurate, from classifier A
to classifier C, showing that participants are sensitive to
Al accuracy.

Figure 7, bottom row, shows the empirically observed
reliance strategies for the sequential paradigm. This
analysis focuses on the subset of trials where the initial
prediction from the participant differs from the AI pre-
diction (which is not yet shown) and then calculating the
proportion of trials where the participant switches to the
Al prediction. Importantly, even though there are some
quantitative differences that can be observed between the
reliance strategies in the two paradigms, the qualitative
patterns are the same. Thus, the results from the sequen-
tial paradigm provide a key validation of the cognitive
model. The latent strategies uncovered by the cognitive
model in the concurrent paradigm are very similar to
those observed in the sequential paradigm.
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fidence (colors), classifier confidence (horizontal axis), and type of
classifier (rows). Colored areas show 95% posterior credible intervals

Effectiveness of the Advice-Taking Policies

We now address the question of how effective are the
participants’ advice-taking policies. How much better (or
worse) could participants have performed if they changed
their advice-taking strategy? Figure 9 shows the range of

Actual

Wo_rst 97% Bgst

v lauisse|

Best

g Jalisse|

2 Jeysseln

0.7

0.55
Accuracy

0.6 0.65

Fig.9 Accuracy of the advice-taking policy at the population level
relative to the best and worst possible advice-taking policies. The dis-
tributions show the accuracy of randomly sampled advice-taking pol-
icies. To quantify the participants’ performance levels, percentages
show the percentile rank of their performance relative to the accuracy
distribution over all possible policies
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all possible outcomes across different instantiations of the
advice-taking policies. The accuracies of the worst and
best possible advice-taking strategies were inferred by an
analysis that optimizes performance conditional on the
performance of the participants (Appendix 3). Note that
the worst to best accuracies span the range of all possible
outcomes. To understand how effective the average par-
ticipants’ policies (f) are on this range, we used a Monte
Carlo sampling procedure to derive the accuracy distribu-
tion over all strategies (see Appendix 3 for details) and
compute the percentile rank of the participant strategies in
this distribution. These results show that the actual poli-
cies adopted by participants were highly effective, scoring
in or near the top 10% of all possible strategies. Figure 10
shows the percentile rank for all individual participants
when the effectiveness analysis is applied to the individual
participant data. While a small subset of participants used
suboptimal reliance strategies, the majority of participants
used highly effective strategies.
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Fig. 10 Individual differences in the effectiveness of advice-taking
strategies as assessed by the percentile rank relative to the distribu-
tion of all possible advice-taking policies

Discussion

Appropriate reliance on Al advice is critical to effective col-
laboration between humans and Al. Most research on Al-
assisted decision-making has focused on gaining insight into
the human’s reliance on Al though empirical observations
based on trust ratings and comparisons of observed accu-
racy and final decisions by humans and Al. For instance,
in work that uses trust as a proxy for reliance, individuals
are required to report their trust in the Al assistant (Lee
and See, 2004). However, self-reported trust is not a reliable
indicator of trust (Schaffer et al., 2019). Researchers have
also compared the accuracy of the human-Al team when Al
assistance is provided to the accuracy without assistance
(Lai and Tan, 2019). However, this difference in accuracy is
directly correlated with the performance of the AI. Another
method used to investigate reliance is based on analyzing
the agreement between the human’s final decision and the
AT’s prediction (Zhang et al., 2020). This approach is prob-
lematic when used in the concurrent paradigm — while
agreement can occur because of an individual’s trust in
the Al, it can also occur because the individual might have
arrived at the same prediction as the Al even without the
AT’s assistance. Finally, in experiments using the sequen-
tial paradigm, reliance can be assessed by the propensity of
individuals to switch to the AI's recommendation for those
cases where their initial independent decision differs from
the AI (Zhang et al., 2020; Yin et al., 2019). While this is
a simple and straightforward procedure to gain insight into
a reliance strategy, it cannot be applied to the concurrent
paradigm as the individual’s independent response is inher-
ently unobservable.

Instead of using empirical measures to assess reliance, we
developed a cognitive modeling approach that treats reliance
as a latent construct. The modeling framework provides a
principled way to reveal the latent reliance strategy of the
individual by using a probabilistic model of the advice-taking
behavior in the concurrent paradigm. It can be used to infer
the likelihood that a human would have made a correct deci-
sion for a particular item independently even when their inde-
pendent decision is not directly observed. The model is able
to make this inference because it assumes that people, at the
same levels of skill, will likely make the same prediction. The
model allows us to investigate the difference between agree-
ment with the Al and switching to Al advice (two metrics
often used to assess trust) without explicitly asking the human
to respond independently to each problem. In order to apply
the model, empirical observations are needed that assess peo-
ple’s independent decisions without the assistance of an Al

We showed that the Al reliance strategy inferred by the
cognitive model on the basis of the concurrent paradigm is
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qualitatively similar to the Al reliance strategy observed in
the sequential paradigm. Therefore, this demonstrates that
a latent modeling approach can be used to investigate Al-
assisted decision-making. The reliance strategy estimated by
the model showed that participants discriminatively relied
on the Al and varied their reliance from problem to prob-
lem. Participants were more likely to rely on the Al if they
were less confident in their own decisions or when the Al
was relatively confident. In addition, participants relied more
heavily on Als that were more accurate overall. This find-
ing is consistent with (Liang et al., 2022) who showed that
people rely on Al assistance more when the task is difficult
and when they were given feedback about their performance
and the AI’s performance.

The results also showed that participants were able to
build very effective reliance strategies compared to the opti-
mal reliance strategy. We believe that participants were able
to achieve this because of the following reasons. First, this
is a simple image classification task and most people are
experts at identifying everyday objects from images. This
enables people to have a good understanding of their own
expertise and confidence on any presented image. Second,
in our experiment, people received feedback after each trial,
which gave them the opportunity to learn about the Al assis-
tant’s accuracy and confidence calibration. This feedback
allowed people to build reasonable mental models of the Al
assistant when paired with any of the three classifiers.

Finally, our results showed that the concurrent and sequen-
tial Al assistance paradigms led to comparable accuracy. Some
researchers have argued that the sequential paradigm is superior
to the concurrent paradigm because the initial unassisted pre-
diction encourages independent reflection which could lead to
retrieval of additional problem-relevant information (Green and
Chen, 2019). However, consistent with our study, other stud-
ies have found no difference in overall performance between
the concurrent and sequential paradigm (Bugcinca et al., 2021).
Another factor that could be relevant is the timing of Al assis-
tance. The Al advice can be presented after some delay which
provides the decision-maker additional time to reflect on the
problem and improve their own decision-making accuracy (Park
et al., 2019). Another possibility is to vary the amount of time
available for people to process the Al prediction after it is shown
making it more likely for people to detect Al errors (Rastogi
et al., 2022). Overall, more research is needed to understand the
effects of soliciting independent human predictions and varying
the timing of the Al recommendation.

Our empirical and theoretical work comes with a number
of limitations. First, we provided trial-by-trial feedback to
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help participants with the task of building a suitable mental
model of Al performance. However, feedback is not always
possible in real-world scenarios (Lu and Yin, 2021). Future
research should investigate modeling extensions that model
the cognitive process when participants do not receive feed-
back at all or receive feedback after a delay. Second, while
the cognitive model captured the general process of advice
taking based on a latent reliance policy, it did not model
the process of establishing the reliance policy over time.
Therefore, one important model extension, which we leave
for future research, is to model the trial-by-trial adjustments
of the reliance policy as a function of beliefs held a priori
by participants about the accuracy of Al algorithms and
external signals of Al confidence and accuracy as well as
internally generated confidence signals.

Appendix
Appendix 1. The ordered probit model

The ordered probit model, r ~ OrderedProbit(0,v, o) is a
generative model that maps a (latent) value 6 to one of R + 1
discrete scores r € {0, ..., R}. In this process, noise is added
to the latent value resulting in a new latent value, 8’ = 0 + ¢,
where € ~ N(0, o) and the resulting discrete score is deter-
mined by the interval where 6’ lies:

0 if 0 <v,

1ifv, <6 <v,

2 ifv, <0 < v, )
R if 0 > v,

r =

The ordered vector v = [vy, ..., vg] represents the transition
points between different discrete scores. With this construc-
tion, the probability of producing a score r = m conditional
on the latent value 0 is:

P(r = m|6,6) = ©((v,y,1 = 0)/0) = D((v,, — )/0)  (8)

where @ is the cumulative standard normal distribution and
Vg = —00.

For our empirical (concurrent) paradigm, we use
the ordered probit model to map the latent probabil-
ity correct, 8 to three different levels of confidence,
r € {Low, Medium, High}. Figure 11 shows an example of
how the latent scores are mapped to confidence levels. Note
that the higher value of the parameter ¢ (top panel) results in
a noisier mapping of latent probabilities to discrete scores.
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Fig. 11 Illustration of the
ordered probit model to produce
three levels of confidence. Top
and bottom panels are produced
withe = 1/10and o0 = 1/60
respectively

081

—

— 06

Appendix 2. Details on model inference

We used Markov chain Monte Carlo (MCMC) to infer
model parameters and obtain samples from the posterior
distribution, conditioned on the observed data. We chose
JAGS for posterior inference (Plummer et al. , 2003). To
facilitate posterior inference, the inference procedure was
separated into two stages. In the first stage, the observed
data Xijs % and rij from the no AI assistance condition
was used to infer all model parameters related to person
and item differences (ai,dj,sj) and confidence generating
process (o;, v;). As a result of this stage, we computed
posterior predictive distributions for the latent (independ-
ent) decisions x;; and associated confidence levels r;; for
the AT assistance condition. In the second inference stage,
the posterior modes of x;; and r;; were used as observed
data, along with Yijks Ciks Zs and Ny to infer the advice-
taking model parameters «;;,. In theory, one does not
need to separate the first and second stage of inference
and model parameters can be estimated in one joint pro-
cedure. We followed this two-stage inference process to
facilitate the comparison with the optimization experi-
ments (described in the next section). For both the first and
second stage inference process, we ran the sampler with 8
chains with a burn-in of 1000 iterations before taking 50
samples per chain. The chains mixed appropriately. For
prior distributions, we used normal priors for the ability
and discrimination IRT parameters, consistent with pre-
vious Bayesian IRT modeling (Fox , 2010): a; ~ M0, 1),
s; ~ M1, DI(0,), where I(0, ) denotes truncation a values

b Confidence level (r)

Low
Medium
High

0.4 0.5 0.6 0.7 0.8 0.9 1
Latent score (0)

below zero. Because of the large item differences in the
classification task, we use a uniform prior spanning a
large range of item differences, dj ~ Uniform(—10, 10).
For the generative process of the confidence levels, we
used 7; ~ Uniform(0, 15),0;, = 1/7;. In addition, we
used uniform priors on the two cutpoints needed to pro-
duce three levels of confidence, Vip ~ Uniform(0, 1),
v;» ~ Uniform(0, 1), with the constraint that the cutpoints
are ordered (i.e., v;; < ;).

Finally, for the advice-taking process, the Al reliance
parameter « is treated as a 3 X 4 X 3 lookup table for each
individual i where entries are determined by the three con-
fidence levels of the participant (“low,” “medium,” and
“high”), 4 classifier confidence levels (0.00-0.35, 0.35-0.57,
0.57-0.78, 0.78-1.00), and 3 Al classifiers (A, B, and C).
The classifier confidence levels were chosen to evenly dis-
tribute the observations across bins. Changing notation, the
Al reliance parameters can be represented by «; ., Where r
indexes the participant confidence level and 7 is the (discre-
tized) Al confidence level. We use a hierarchical Bayesian
approach to estimate the individual differences in reliance
policies by assuming that these are sampled from a normal
distribution on the log-odds scale log <laa—”kk > ~ N, 1> ®)-

The parameter f represents the advice—taidng policy at the
population level, the tendency across participants to accept
Al advice. The standard deviation ¢ captures the spread in
individual differences. For priors, we use 3, ,, ~ M0, 3). In
addition, because there are relatively few “medium” confi-
dence levels, we imposed an order constraint,

ﬂl,ﬂ,k S ﬁz,ﬂ,k’ ﬁz,f],k S ﬂ3»’7sk f0r n= 1, e 4, and k = 1, ...3.
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Fig. 12 Advice-taking policies derived from an optimality analysis to
maximize accuracy conditional on human confidence and accuracy.
The policy determines the probability of taking the AI advice as a

Appendix 3. Optimality analysis

The inferred advice-taking policies show that participants
use a number of different factors in sensible ways. A natu-
ral question is what could participants have done differently
in order to optimize their performance. We conducted an
optimality analysis to identify the best possible policy to
better understand the strategies that would have maximized
accuracy in the Al-assistance condition. Importantly, in
this analysis, the goal is to identify the most effective pol-
icy conditional on the performance of the participants and
confidence states before Al assistance is provided. In other
words, in the optimality analysis, we are not changing any
assumptions about the ability of participants to classify
images and express their confidence in their prediction —
we are only considering scenarios where participants might
have utilized the Al assistance in different ways. Also, we
are not considering how participants have to learn about
the effectiveness of their Al reliance policy over the course
of the experiment.

Specifically, we start the analysis with the inferred con-
fidence state of the participant () and accuracy (@) of the
predictions before Al assistance is considered. We then find
out what strategy (at the individual level, a, or at the popula-
tion level, #) would have maximized the accuracy of the final
predictions (y) after Al assistance. The analysis is applied
separately for each classifier A, B, and C.

The goal of the optimality analysis is to identify the best
and worst possible advice-taking policy (a; ;) conditional
on inferred accuracy (91;;‘)’ confidence state (r; J) of the par-
ticipant for individual items before Al assistance is provided,

and classifier type k. For the inferred accuracy 6, ;, we took
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Classifier Confidence

function of human confidence (colors), classifier confidence (horizon-
tal axis), and type of classifier (columns)

the posterior mean for each item based on our MCMC pro-
cedure. For the confidence state rijs We took the posterior
mode for each item.

The analysis was based on a brute-force search conducted
separately for the three types of classifier. In this search, the
parameter values a were discretized into 80 equally spaced
values between 0 and 1, and then searching the space across
3 levels of DM confidence (r;;) and 4 levels of Al confi-
dence (77;). We then applied Egs. 6-5 to identify the a policy
that produced the highest as well as the lowest accuracy of
predictions y;;, in Eq. 5. The parameters were subject to an
order constraint identical to the order constraint imposed in
the MCMC procedure: a should be monotonically increasing
for higher levels of participant confidence.

Figure 12 shows the resulting optimized policies ()
at the average participant level. These policies only take
on extreme values such that advice is either always taken
(f = 1) or never taken (f=0) for particular combinations
of participant and classifier confidence. Similar to the par-
ticipant strategies, the results show that classifier advice
should more readily be adopted when the participant is in
a low confidence state and the classifier is in a high con-
fidence state’.

3 Note that the optimal policy for classifier B shows that advice
should be accepted more often than for classifier C even though clas-
sifier B performs worse on average than classifier C. This result can
be attributed to between-group differences in classifiers B and C as
well as differences in classifier calibration.
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Deriving the percentile rank of participants policies

We conducted a Monte Carlo procedure to estimate the per-
centile rank of the accuracy of participants’ policies relative
to accuracy achieved by random strategies. In this Monte
Carlo procedure, we sampled q; ik from a uniform (0,1)
distribution separately for the 3 levels of DM confidence
(r;;) and 4 levels of Al confidence (77;). We computed the
expected accuracy for each of the a;;, samples. We next
computed the percentile rank of the actual participants’
policy relative to this distribution.

Appendix 4. Out-of-sample model predictions

To assess model fit of the concurrent experiment, we used a
10-fold cross-validation approach to compute out-of-sample

model predictions for the human decisions and confidence
levels. For each individual, the observed data from the Al
assistance and no Al Assistance condition was randomly
partitioned into 10 disjoint test sets. For the no Al assis-
tance condition, model parameters were inferred on the basis
of observed predictions x and confidence levels r for each
training fold. For the test set, we used the MCMC inference
procedure described in Appendix 2 to infer the predictions x
and confidence levels r for the test set. For the Al assistance
condition, the model has to predict the withheld data on y,
the decisions made with the aid of the Al

Figure 13 shows the out-of-sample model predictions
and observed data. One point of deviation is that the model
somewhat underpredicts the size of the assistance effect
(bottom row). However, the model captures all qualitative
trends in the data.
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Fig. 13 Model predictions and observed data for human performance
with and without AI assistance in the concurrent paradigm. Model
predictions and data are shown with lines and points respectively.

Error bars reflect the 95% confidence interval of the mean of the
observed data based on a binomial model
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Appendix 5. Relationship between human and Al
confidence

Prior to Al assistance, human confidence levels are cor-
related with Al confidence scores, with Spearman’s rank
correlations of 0.28, 0.43, and 0.47 for Al classifiers A,
B, and C respectively (in this analysis, we are combining
results across the sequential and concurrent conditions).
Therefore, what is a difficult problem for the human par-
ticipant (e.g., a high noise classification problem) tends to
be challenging for the classifier as well. Figure 14 provides
more detailed information about the relationship broken
down by classifier and degree of image noise. For ease
of interpretation, Al confidence scores were discretized
into three labels “Low,” “Medium,” and “High” where

the cutoffs to define the labels were chosen such that the
marginal frequencies of the labels matched the marginal
frequencies of human confidence ratings (note that in the
experiment, the participants did not see these discrete Al
confidence labels).

For low noise conditions (phase noise levels at 110 or
lower), there is a stronger correspondence between human
and Al confidence, such that there are few cases (fewer than
14% for classifier C) where the human is in a low confidence
state and the Al is in a high confidence state (or vice versa).
However, for the more challenging high-noise classification
problems (phase noise levels above 110), the correspond-
ence between human and Al confidence is reduced and in
roughly a third of cases, the human and Al are in opposite
confidence states.
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Fig. 14 Relationship between Al and human confidence scores prior
to Al assistance across Al classifiers and noise levels. Percentages in
each row show the relative number of Al discretized confidence lev-
els given a particular level of human confidence. Al confidence lev-
els were discretized into three labels to match the marginal frequen-
cies of the human label frequencies (34%, 25%, and 41% for “Low,”
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“Medium,” and “High” ratings). The results are combined across the
concurrent and sequential conditions without Al assistance. Low
noise (top row) includes the 0, 80, 95, and 110 phase noise levels
whereas high noise (bottom row) includes the 125, 140, 155, and 170
phase noise levels
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