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Abstract—We analyze the convergence rates of £ nearest
neighbor density estimation method, under /¢, norm with
a € [1, 00]. Our analysis includes two different cases depending
on whether the support set is bounded or not. In the first case,
the probability density function has a bounded support. We
show that if the support set is known, then the kNN density
estimator is minimax optimal under ¢, with both a € [1,00)
and o = oo. If the support is unknown, the kNN density
estimator is still minimax optimal under /;, but is suboptimal
under /¢, for « > 1, and not consistent under /... In the
second case, the support is unbounded and the probability
density function is smooth everywhere. Moreover, the Hessian
is assumed to decay with the density values. For this case, our
result shows that the /., error of KNN density estimation is
nearly minimax optimal. The /., error for the original kNN
density estimator is not consistent. To address this issue, we
design a new adaptive kNN estimator, which can select different
k for different samples. Using this adaptive estimator, the /.
bound is minimax optimal. For comparison, we show that the
popular kernel density estimator is not minimax optimal for
this case.

Index Terms—Density estimation, KNN, Functional approx-
imation

I. INTRODUCTION

Nonparametric density estimation, whose goal is to es-
timate the probability density function (pdf) based on a
finite set of identically and independently distributed (i.i.d)
samples, is widely used in statistics and machine learning.
For example, nonparametric density estimation can be used
in mode estimation [2], nonparametric classification [3, 4],
Monte Carlo computational methods [5], and clustering [6—
8], etc. Common methods for the nonparametric density
estimation include histogram method, kernel method and
k-Nearest Neighbor (kNN) method [1, 9-12], etc. Among
these approaches, the kernel and kNN methods are popular
ones. The kernel method [2, 13] estimates the density by
calculating the convolution of the empirical distribution with
a symmetric and normalized kernel function. The kNN
method [14] estimates the density value at point x based
on the distance between x and its k-th nearest neighbor.
A large kNN distance indicates that the density is usually
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small, and vice versa. Compared with other methods, the
kNN density estimation method has several advantages. It
is purely nonparametric and hence can flexibly adapt to any
underlying pdf, as long as the pdf is continuous. Moreover,
the kNN method is convenient to use and has desirable time
complexity. The parameter tuning is simple since the only
parameter we need to adjust is k.

Depending on the purpose of the density estimation,
we may use different criteria to evaluate an estimator’s
performance. In some applications, we use the uniform
bound, ie. ||f — f|lso» in which f is the real pdf and
f is the estimated pdf. For example, if we hope to find
the mode, which is the point with maximum pdf [2], then
the accuracy guarantee relies heavily on the supremum
estimation error. For other purposes, such as nonparametric
classification and bootstrapping, it may be better to con-
sider the estimation error in the whole domain, instead
of only considering its supremum value. For example, in
nonparametric classification with Bayes rule, the excess
risk of classification can be bounded with the ¢; error of
the density estimation. The convergence properties of the
kernel density estimation method under different criteria
have already been discussed in many previous literatures, see
[15-19] and references therein. However, the understanding
of the convergence properties of the kNN method is less
complete, and still needs further analysis. In [20], it was
shown that the kNN method is uniformly consistent if the
pdf is smooth everywhere. However, the convergence rate is
still unknown. [21] derived the uniform convergence rate of
the kNN density estimate for one dimensional distributions,
under the condition that the density is bounded away from
zero and the support is a continuous closed interval. The
analysis in [21] is not suitable for other commonly seen
pdfs, especially for those with high dimensions, and those
with unbounded supports such as Gaussian distributions.
Therefore, it is important to extend the analysis of the kNN
density estimators to other types of distributions.

In this paper, we analyze the ¢, with o € [1,00] of the
kNN density estimator for a broad range of distributions. To
the best of our knowledge, this is the first attempt to analyze
the ¢, convergence rates of the kNN density estimator in
general. Our analysis involves two different cases, depending
on whether the support is bounded or not. For both cases,
our analysis includes an upper bound of the estimation error
of the KNN method, and a minimax lower bound on the



performance of all methods. The analysis of both upper
and lower bounds is based on some assumptions on the
smoothness of the pdf, as well as an additional assumption
on the shape of the boundary or the strength of the tail.

In the first case, the pdf has bounded support. To begin
with, we analyze distributions whose pdf is bounded away
from zero. For example, uniform distribution and truncated
Gaussian distribution belong to this case. If the shape of
the support set is unknown, the estimation error near the
boundary of the support will be relatively large. We show
that the ¢, error converges with the minimax optimal rate
for aw = 1, and the error due to the boundary effect will not
make the convergence rate of the ¢; error worse. However,
the impact of the boundary effect becomes more serious as
« increases. Moreover, the {, error does not converge to
zero. This is inevitable since without the knowledge of the
support set, it is impossible to design a density estimator that
ensures uniform consistency. If we have full knowledge of
the shape of the support set and the boundary, then we can
slightly modify the kNN estimator to correct the estimation
bias at the region near the boundary. With the boundary
correction, we show that the /., error converges to zero and
the convergence rate is nearly minimax optimal. We remark
that, for the kernel density estimator, there are also some
boundary correction methods based on data reflection and
transformation [22, 23], but the ¢, rates with « € [1, 00] of
these methods have not been established. We then analyze
distributions whose pdf can approach zero arbitrarily close.
In this case, the distribution can have both boundary and
tail, which means that the pdf drops to zero sharply at some
locations, and go smoothly to zero at other locations. For
this case, it is hard for the kNN density estimator to find an
appropriate k for every locations. We derive an upper and
lower bound of the ¢, error of the kNN density estimator.

In the second case, the pdf is smooth everywhere, and
can approach zero arbitrarily close. For example, Gaussian
distributions belong to this case. Since the pdf is smooth
everywhere, boundary correction is no longer necessary.
However, the density estimation is no longer accurate at
the tail of the distribution. The reason is that f(x) can
actually be viewed as an estimate of the average pdf in the
neighborhood of x with the radius equal to the k£ nearest
neighbor distance of x, hence the estimation bias depends on
whether the pdf in such neighborhood is sufficiently uniform.
If f(x) is very low, then the kNN distance and thus the size
of the neighborhood will be large. As a result, the density
in the neighborhood of x is far from uniform, and thus the
average pdf in the neighborhood of x can deviate from f(x)
significantly, which will cause a large estimation bias. If the
criterion is the ¢, error, we do not need to worry about the
bias occurring at the tail of the distribution, since both f(x)
and f(x) are small. Therefore, we can just use a simple kNN

estimator and derive its convergence rate. However, if we use
the ¢, error as the performance criterion, then we need to
consider the estimation error over the whole support, instead
of only considering its supremum value. As a result, the tail
effect is serious and the ¢, error does not converge to zero.
To address this issue, we design an adaptive kNN estimator
and derive the convergence rate of its ¢, error. Our analysis
shows that under the ¢, criterion, if the first and second
order derivatives of the pdf decay simultaneously with the
pdf itself, then the adaptive kNN estimator is minimax
optimal, and is significantly better than the kernel density
estimator. This result appears to contradict with previous
studies such as [21], which claims that the kNN estimator
performs worse than the kernel density estimator since it
does not handle the tail well. However, the difference is that
previous analysis is based on the assumption on the uniform
bound of the Hessian, while we assume that the distribution
has decaying gradient and Hessian, which holds for many
common distributions, such as Gaussian, exponential and
Cauchy distributions etc.

The remainder of this paper is organized as follows. In
Section II, we provide a simple description of the kNN
density estimator. The convergence properties of the kNN
density estimator for distributions of the first and the sec-
ond cases are discussed in Section III and Section IV,
respectively. We then provide some numerical examples
in Section V. Finally, in Section VI, we offer concluding
remarks.

II. KNN DENSITY ESTIMATOR

Consider a distribution with an unknown pdf f : R? —
R. There are N i.i.d samples, Xq,...,Xy. Our goal is to
estimate the pdf f using these samples. For each point x €
S, in which S is the support set of the random variable,
denote p(x) as the distance between x and its k-th nearest
neighbor among {Xy,...,Xy}, in which k& > 2. Then we
construct the kNN density estimator as follows:

. k-1
709 = MG o) W
in which B(x,p(x)) is the ball with center at x and
radius p(x), while V(B(x,p(x))) denotes the volume of
B(x, p(x)).

An intuitive explanation of (1) is that the estima-
tor constructed in (1) is approximately unbiased. Denote
P(B(x,p(x))) as the probability mass in B(x, p(x)), then
from order statistics [24], we know that P(B(x,p(x)))
follows Beta distribution Beta(k, N — k + 1). As a result,

we have
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therefore ~ with  approximation  P(B(x, p(x))) ~
FEV(B(x,p(x))),
£l = 5B gy~ O

If the pdf is uniform in B(x, p(x)), then P(B(x, p(x))) =
f(x)V(B(x,p(x))). In this case, the first step in (3) holds
with equal sign, which means that the kNN density es-
timator (1) is unbiased at x. Note that it is impossible
that P(B(x, p(x))) = f(x)V(B(x, p(x))) holds uniformly
for all x and p(x). In particular, the difference between
the average pdf in B(x, p(x)) and the pdf at its center x
comes from two sources. Firstly, B(x, p(x)) may exceed
the boundary of the support, thus the average pdf is lower
than f(x). Secondly, even if B(x, p(x)) is a subset of the
support set, the pdf in B(x, p(x)) may not be uniform. Both
sources are considered in our analysis.

Our analysis includes the bound of the estimation error
under /,, criteria with both @ € [1,00) and @ = oo. The £,
error for o« > 1 is defined as

|7 = (/Sﬂx)—f(x)mx)‘l’,

and the ¢, error is defined as

|F = ]| = supl 7o) = £l
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If k is chosen properly, both the ¢, errors of the kNN
estimator (or slightly modified kNN estimator, as will be
explained in details in the sequel) with both o € [1,00)
and o = oo will go to zero as the number of samples N
increases. In this paper, we will analyze the convergence
rates at which these errors converge to zero for two different
types of distributions: distributions with bounded supports
and distributions with unbounded supports.

III. DISTRIBUTIONS WITH BOUNDED SUPPORT

In this section, we analyze the convergence rate of the
kNN density estimator for distributions that have bounded
supports. In particular, we assume that f(x) > 0 only for
x € S, in which S C R? is a bounded set. We will analyze
two different cases: 1) pdfs that are bounded away from zero;
2) pdfs that are not bounded away from zero. The support
S could be disconnected.

For the case where the pdfs are bounded away from zero,
the analysis is based on the following assumption.

Assumption 1. Assume that the following conditions hold:
(a) [ is upper bounded, and is also bounded away from
zero, i.e. there exist two constants m and M, such that m <
f(x) < M forall x € S;
(b) f is L-Lipschitz, i.e. for all x,x' € S,

[f(x) = f(x)] < Lilx = x5 )

(c) The surface area (or Hausdorff measure) of S is no
more than Csg.

In Assumption 1, we assume in (a) that the pdf is both
bounded above and is also bounded away from zero. Since f
always integrates to 1, (a) also implies that the total volume
of the support Vg satisfies 1/M < Vg < 1/m. (b) bounds
the gradient of the pdf, which can decide the accuracy of the
approximation in (3). It would be tempting to consider some
more general smoothness classes for f. For example, some
distributions may be second order continuous, which means
that both ||V f|| and ||V?f|| is bounded above. However,
with the standard kNN algorithm, the /., convergence rate
will not be further improved comparing with only assuming
the bounded gradient. The reason is that we are bounding the
supremum of the estimation error, which usually happens at
the region near the boundary of the support of the distribu-
tion. If we use the ¢ criterion instead, then it is possible that
the convergence rate can be improved for distributions with
higher smoothness level. However, for simplicity, we only
assume that f is Lipschitz here. Moreover, in (c), we assume
the boundedness of the surface area in (c). This assumption is
important because it restricts the volume of the region near
the boundary, and is thus crucial to bound the estimation
error due to the boundary effect.

A. Ly bound with o € [1,00)

To begin with, we show the convergence rate of the ¢,
error for distributions with bounded supports. The result is
shown in Theorem 1. Throughout the paper, notation a < b
means that there exists a constant C' such that a < Cb.a 2 b
is defined in a similar manner.

Theorem 1. 1) Upper bound. Under Assumption 1, the
kNN density estimator (1) for unknown support satisfies the
following bound:

1
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Let k ~ N2/(2d+2) thon
E[|f-1] | sa+cin-=m. ©)

2) Lower bound for kNN method. Define Y 4 as the set
of all distributions with support sets that satisfy Assumption
1. If L, M are sufficiently large and m is sufficiently small,

then we have
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3) Minimax lower bound for all methods. Now we take
infimum over all possible f, then
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Proof. Please see Appendix A for details. O

In Theorem 1, the upper bound (5) can be proved by
bounding the bias due to the two sources mentioned above,
including the boundary bias and the bias caused by the local
nonuniformity of the pdf. After that, the random estimation
error f —E[f] can be bounded using techniques from order
statistics [24]. The detailed proof is shown in Appendix
A. The lower bound (8) can be shown simply by standard
minimax analysis techniques in [25].

Comparing the upper bound (5) and the minimax lower
bound in (8), it can be observed that if k& ~ N2/(d+2) then
the convergence rate of the estimation error of the kNN
density estimator under ¢; is minimax optimal in terms of
N. This result indicates that for the ¢; bound, the boundary
bias does not make the convergence rate of the kNN den-
sity estimation worse, even if the support is unknown and
boundary correction methods have not been implemented.
An intuitive explanation is that with the increase of sample
size N, the kNN distances p(x) becomes smaller, hence the
probability that B(x, p(x)) exceeds the boundary of the sup-
port becomes lower, and correspondingly, the convergence
rate of the bias due to the boundary effect is the same as that
due to the local nonuniformity of the density. As a result,
the /1 error performance of the kNN density estimator is not
seriously affected by the boundary effect.

However, as « increases, the kNN estimator becomes
suboptimal even if we select the best k£ to minimize the right
hand side of (5). An intuitive explanation is that KNN method
is not good at estimating the density near the boundary, since
when the k nearest neighbor distance of a point exceeds the
boundary, the estimated pdf will be lower than the ground
truth. With the increase of «, the overall error under /,
depends more and more on the region in which | f(x)— f(x)|
is high. Therefore, the kNN estimator is no longer minimax
optimal under ¢, with o > 1.

Furthermore, we would like to remark that (8) can be
improved if the Lipschitzness of f holds for the entire R,
which means that the sharp boundary is replaced by a smooth
one, such that the density decays to zero continuously.

B. ¢, bound with o = 00

From (5) and (8), it can be observed that with the increase
of «, the convergence rates of both the upper bound of /¢,
error of kNN method and the minimax lower bound become
slower. If & — o0, these two bounds do not converge to zero.
The reason is that if x is near the boundary, on which f(x)
changes sharply, the approximation in (3) does not hold and
the bias can be large, and the effect of such bias is crucial
if we use £, error. Note that the minimax lower bound in
(8) has indicated that without the knowledge of support set
S, we can not find a method such that ¢/, error converges

to zero. Therefore, we now assume that the support set S
is known to us, and then modify the kNN estimator by
boundary correction.

Our modified kNN method is designed as following:

_ k—1
- NVs(B(x,p(x)))’

fBo(x) )

in which f pc means the boundary corrected estimator, and
Vs(B(x, p(x))) = V(B(x, p(x)) N S).

Define ¥4 as the set of all distributions with arbitrary
support sets that satisfy Assumption 1, and define ¥ 4(5)
as a subset of X4, such that all distributions in 3 4(.5)
have a common support S. The difference between X 4 and
Y 4(S) is that the support of the latter one is fixed. Then the
following theorem holds:

Theorem 2. Under Assumption 1, if the support S is known,
using the boundary corrected estimator (9), with probability
at least 1 — ¢, the £, bound satisfies

|5 - 1] < <]’f,> b o

Let k ~ N?/(d44+2)(In N)#/(4+2) " then
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Moreover, If L,M,H are sufficiently large and m is
sufficiently small, then

ir}ffseuZpA]E{Hf—me] > 1 a1
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Proof. (12) was proved in [26]. For (10) and (11), please
see Appendix B for detailed proof. O

In Theorem 2, (10) provides an upper bound of the
boundary corrected kNN density estimator (9). For the proof
of (10), we use the following steps. Firstly, we construct
some grid points in the support. Then we find the uniform
bound of estimation error among these grid points. Finally,
we generalize the uniform bound among finite number of
grid points to the whole space. We let the number of grid
points increase with the number of samples, so that the extra
estimation error due to the generalization is not large. The
detailed proof is shown in Appendix B. Moreover, (11) and
(12) provide the minimax lower bound of the /., error with
unknown and known support set, respectively. (11) can be
shown by simply using Le Cam’s lemma [25], while (12)
can be proved easily by standard minimax analysis [25]. We
provide a simple proof of (11) at the end of Appendix B, and
omit the detailed proof of (12) for simplicity. According to



(11), if the support set .S is unknown, then it is not possible to
construct an estimator with the ¢, error converging to zero.
If the support set is known, then the minimax lower bound
becomes (12). Comparing with (10), it can be observed
that if k ~ N2/(4+2)(In N)%/(4+2) then the kNN density
estimator with boundary correction (9) is exactly minimax
rate optimal, which means that the upper and lower bounds
match including the logarithm factor.
We then have the following remarks.

Remark 1. The convergence rate derived in Theorem 2
appears to be slower than the result in [21]. In particular,
[21] assumes that the second order derivative of f exists
and is bounded, then its eq.(k2) and eq.(7) show that it is
possible to select an appropriate k, so that the convergence
rate can be made faster. However, the analysis in [21] does
not take the boundary effect into consideration. In fact, using
similar techniques in Theorem 2, we can show that the
uniform convergence rate of the kNN density estimator for
distributions with bounded support does not improve even
if the second order derivative of f exists and is bounded,
since the boundary bias is actually dominant in this case.

Remark 2. Recall that for ¢, bound, we assume that the
support S is unknown and use the original kNN estimator.
For V-, bound, we assume that S is known, and use the
boundary corrected estimator. We would like to remark that
if the criterion is £, and S is known, then

} > N7

inf sup EH (13)

f resa(s)

Moreover, if we still use boundary corrected estimator (9),

then
fli-A)s () +r

(13) and (14) can be proved by just following steps in
Appendix A, in which the boundary effect is not considered.
We omit the detailed proof here. From these equations, we
see that if we set k ~ N2/(4%2) the upper and lower bound
match.

(14)

C. Extension to the case allowing arbitrarily low pdf

We now consider the case where pdfs are not bounded
away from zero. In particular, in Assumption 1 (a), we
have assumed that f(x) is lower bounded by m. If this
assumption does not hold, then the kNN density estimator
is still consistent but the convergence rate will be slower. In
particular, we have the following theorem.

Theorem 3. Under Assumption 1 (b), (c), and assume that
f(x) < M for some constant M for all x € S, if k 2 In N,

then
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The minimax lower bound (8) still holds.
Proof. Please refer to Appendix C for details. 0

We remark that since Assumption 1 (c) still holds here,
the surface area of S is bounded, thus the volume of S must
also be bounded.

This suggests that for bounded distribution whose pdf is
not bounded away from zero, there exists some gap between
the convergence rate of kNN density estimator and the
minimax lower bound. Note that since the density does not
have a lower bound, the kNN method can not achieve the
best bias and variance tradeoff simultaneously at the region
with high density and that with low density. This explains
the gap between the kNN method and the minimax lower
bound.

We now summarize our results for distributions with
bounded support in Table I, in which we compare the
convergence rates of the kNN density estimator with the
minimax lower bound for various cases. For simplicity, we
only list the convergence rate under the condition that &
has been tuned to optimize the convergence rate. The value
in the table is d if the convergence rate is O(N %), which
means that we ignore the logarithm factors. Moreover, value
0 indicates that the bound does not converge. The ‘Unknown
S’ column shows the results of the original kNN estimator
(1), while the ‘Known S’ column shows the results of the
boundary corrected kNN estimator (9), in which the latter
requires the knowledge of support S. In this table, the
bounds in rows corresponding to kNN methods are upper
bounds (except for the entry marked with *, which is a tight
result), and the bounds in rows corresponding to minimax
are lower bounds. For the cases where the upper and lower
bounds meet (e.g., the cases corresponding to known .S and
f(x) > m), KNN methods are minimax optimal.



Assume f(x) > m Do not assume f(x) > m
Unknown S Known S Unknown S Known S
1 % . 1 1 1
kNN, £, wdt2 a+2 min { a+3° adt2 } a+3
Minimax, 4, | min< 45, L o min § 15, L o
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TABLE I: Convergence rates of the kNN density estimator and the minimax lower bound for various types of distributions

with bounded support.

IV. KNN DENSITY ESTIMATOR FOR DISTRIBUTIONS
WITH UNBOUNDED SUPPORT

In this section, we investigate the ¢, and uniform conver-
gence of the kNN density estimator for distributions that are
smooth everywhere and have unbounded support. For these
distributions, the pdf can approach zero arbitrarily close in
its tail, at which kNN distances are usually large and the
approximation in (3) no longer holds, i.e. the average pdf
in the neighborhood of x can be far away from f(x) at the
tail of the distribution. As a result, the density estimation
at the tails is hard. Unlike the case with bounded support,
the assumptions for deriving ¢, bounds are slightly different,
hence we state the assumptions separately in Theorem 4 and
Theorem 6.

A. {, bound

Now we analyze the convergence rate of the /,, error. To
begin with, we show that the ¢, error of the original kNN
estimator defined in (1) is actually infinite. Recall that X;,
i=1,..., N are the samples for density estimation. Define
R as their maximum distance to x = 0, i.e.

Rzi I{laXN{HXiH}. (19)

Then for all x such that ||x|| > R, we have p(x) < ||x||+R,
since the distance of all the samples can not be more than
|x|| + R away from x. Hence

/ foodx > /| o o

E—1 / 1 d
— —————dX = 00.
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The above result shows that the /1 error of the original kNN
density estimator is always infinite, and is thus not suitable
for distributions with tails. In fact, the estimated pdf does
not decay sufficiently fast with the pdf itself. As a result,
the estimation error at the tail distribution is serious.

To improve the performance of the kNN density estimator,
we design an adaptive estimator as following:

(20)

k—1 :
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0 if n <ng,

in which

n=>Y 1(X; € B(x,a)) (22)
i=1
is the number of samples in B(x,a), and
k= [n?]. (23)

In this estimator, we select k adaptively according to (23).
Here a, n. and q are three parameters. a has some effect on
the performance of the estimator, but the convergence rate
does not depend on a. For n., from Theorem 4 shown below,
we need to ensure that [n?] > . ¢ is a crucial parameter. In
Theorem 4, we show that the performance is optimized if we
select ¢ = 4/(d +4), which depends only on the dimension
of X. We note that a, n. and g are fixed parameters that do
not depend on sample size N.

This new estimator can be viewed as density estimation in
two steps. In the first step, we count the number of samples
in B(x,a). This roughly estimates the density at x. Then
we select k adaptively. If the rough estimation of f(x) is
higher, then we use a larger k, and vice versa. The motivation
of the design is that we try to select k to achieve the best
bias and variance tradeoff. If the density is high, then the
kNN distance is usually small, thus we do not need to worry
too much about the bias, and we can then use a larger k.
On the contrary, in the region with small density, we use a
smaller k. Furthermore, from (21), we know that as long as
k—1 > 0, the ¢; estimation error is always infinite. To solve
this problem, we set f(x) = 0 if n is below a threshold n,.

We now bound the convergence rate of the ¢, error
of the kNN density estimator (21), under the following
assumptions.

Assumption 2. Assume that there exist four constants Cy,
C., Cq and 8 € (0,1], such that
(a) The gradient of pdf satisfies

197Gl _
————— < Cy; 24
e e
(b) The Hessian of pdf satisfies
v2
% < Oy, (25)

f(x)



in which |||, denotes the operator norm;
(c) For any t > 0,
P(f(X) < t) < CtP, (26)
The results are summarized in Theorem 4.

Theorem 4. Under Assumption 2, if we set ¢ = 4/(d + 4),
and set n. such that |nl| > «, then

5|77,
— min i,l—&-ﬁ : d+2
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Proof. Please refer to Appendix D for details. O

Here, Assumptions 2 (a) and (b) assume that the first and
second order derivatives decay simultaneously with f(x).
These two assumptions ensure that the bias of the kNN
density estimator is not too large. If we only bound the
gradient and the Hessian without making them decay with
f(x), which means that the first and second order derivatives
can still be high even at the tail of the distribution, then the
convergence rate of ¢, bound will become much slower. In
particular, there is no estimator whose ¢; error is uniformly
consistent, i.e. the minimax lower bound is ©(1) and does
not even converge to zero with the increase of sample size V.
This can be seen from [27], eq.(1). Therefore, it is necessary
to make a more restrictive assumption on the gradient and
Hessian of pdf f. Note that for some common distributions,
Assumptions (a) and (b) are slightly violated. For example,
for the Gaussian distribution, we have ||V f(x)|| < f(x)(1+

W(1/7(0))) and [V2f(x)],) S FG(1+ In(1/F()).
The logarithm factor violates Assumptions (a) and (b).
However, since the gradient and Hessian still decays with
the pdf f, the convergence rate is only slightly affected.
For these distributions, follow the proof of Theorem 4 in
Appendix D, it can be shown that

E{Hf_‘fH} < N~ min{zr 155 e

(28)

for arbitrarily small 6 > 0. We omit the detailed proof here.

Assumption 2 (c) restricts the tail strength of the distri-
bution. A smaller 3 indicates that the tail is stronger. We
assume that 5 < 1, since if 8 > 1, it can be proved
that the support set is bounded, while in this section we
hope to analyze distributions with unbounded support. In
fact, from Assumptions 2 (a) and (b), it can be shown
that f(x) > 0 everywhere, and thus the support must be
unbounded. Now we provide some examples of distributions
satisfying Assumption 2 (c). For one or two dimensional
Gaussian distributions, Assumption 2 (c) is satisfied for
B = 1. For Gaussian distributions with higher dimensions,
Assumption 2 (c) is satisfied for g arbitrarily close to 1.

For Cauchy distributions, Assumption 2 (c) is satisfied with
B =1/2. For t,, distributions, Assumption 2 (c) is satisfied
with 8 = n/(n + 1). Moreover, if a distribution has finite
moments up to infinite order, i.e. E[||X|?] < oo for all
6 > 0, then Assumption (c) holds for all 5 < 1.

For the proof of Theorem 4, we bound E[| f(x) — f(x)|*]
separately depending on whether n > n., in which n is
the number of samples in B(x,a). If n > n,, then given
the value of n, the samples within B(x,a) are conditional
independent. Based on such property, we can then bound
E[f(x) — f(x)|*]. If n < n, then the estimated value is
zero, hence E[| f(x) — f(x)|%] = f*(x). From the bound of
E[|f(x) — f(x)|®] at each x, we can then bound the overall
{,, error. The detailed proof is shown in Appendix D.

Now we show the minimax lower bound of the ¢, error.

Theorem 5. Define YXp as the set of all functions that
satisfy Assumptions (a)-(c) in Theorem 4, if Cy, C., Cy are
sufficiently large, then

inf sup B [~ /| | 2 vl 5 )
f fe¥p «
Proof. Please refer to Appendix E for details. O

Comparing Theorem 4 with Theorem 5, we observe that
the upper bound of the adaptive kNN method and the
minimax lower bound match except for the case [/ =
1—(d+2)a/(d+4), under which the adaptive kNN method
has a logarithm factor.

We would like to remark that the performance of the
density estimator (21) is better than the kernel density
estimator for distributions with heavy tails. To be more
precise, we have the following Proposition.

Proposition 1. For a kernel density estimator
N
a 1 Xi — X
fx) = th;K( . )

in which K (-) is supported on B(0,1), [ K(u)du =1 and
K(u) < K, for some constant K,,. Then

(30)

. 7 ,min{M _2
inf sup E [Hf —f ] >N @+natpd-a:a+i S (3])
h fesp o

Proof. Please refer to Appendix F for details. O

In (31), we take the supremum over all distributions
satisfying Assumptions (a)-(c) in Theorem 4, and take the
infimum over all possible h. The rate in the right hand side
of (31) indicates the theoretical limit such that the kernel
density estimator can not perform better than this limit for
any bandwidth h. This can be proved by analyzing the bias
and the random error separately. Note that E[f(x)] = f+ K},
in which * denotes convolution and Kj(-) = K(-/h)/h%.

The convolution will induce roughly h? bias. We also



provide a lower bound of the random error. The detailed
proof is shown in Appendix F.

Comparing (31) with (27), it can be observed that if
B > 1— «a/2, then the adaptive kNN density estimator and
the kernel density estimator have the same convergence rate
and are both minimax optimal, except a logarithm factor.
For distributions with heavy tails such that 8 < 1 — «/2,
the adaptive kNN density estimator performs better than the
kernel density estimator. In some previous literatures such as
[21], it was believed that the kNN estimator performs worse
than the kernel density estimator for distributions with heavy
tails. However, the previous analysis is based on the uniform
bound of Hessian, while in our Assumptions (b) and (c), the
gradient and Hessian also decay with the pdf. As a result, the
comparison between these two estimators are reversed due
to the difference of assumptions. We provide an intuitive
explanation of the reason why the kNN estimator has a
better convergence rate than the kernel density estimator as
following. In the tail of the distribution, the kNN distances
are large, while for the kernel density estimation, the kernel
size is constant all over R%. As a result, comparing with
the kernel density estimator, the KNN method has a larger
bias but smaller variance at the tail of the distribution. If the
pdf only has bounded Hessian without decaying, than the
larger bias of the kNN method is more obvious. However,
under our assumption, the Hessian decays with roughly the
same rate as the pdf f, hence the bias will not increase
much, and thus the kNN method achieves a better tradeoff
between bias and variance than the kernel density estimator,
especially when £ is selected based on the adaptive rule (23).

We would like to remark here that following similar
idea, it is also possible to construct an adaptive kernel
density estimator with varying bandwidth h. However, the
computational complexity will be higher, since fast kernel
density estimation methods [28, 29] can no longer be used
here, and we have to conduct brute force calculation, which
requires O(N?) time.

B. {+ bound

We now analyze the uniform convergence rate of the kNN
density estimator. For the uniform convergence rate, we only
care about the maximum estimation error. As a result, it is
not necessary to adaptively select k, hence we just use the
simple kNN density estimator (1). The result is shown in
Theorem 6.

Theorem 6. Suppose [ satisfies Assumptions (a), (b) and
(c) in Theorem 4, and the following additional assumption

N ({xlf(x) > m},r) < 20

< (32)

for some v > 0 and all m > 0, in which N denotes the

covering number. Then with probability at least 1 — e,
sup|f(x) — f(x)|

& if d>2

v (33)
EmN+k 2/ if d=1,2.
Let
_4
ped NEOH d>2 (34)
N3 if d=1,2,
then
suplf(x) — f(x)|
N~ /In ¥ if d>2
< L (35)
N (N4 ) i d=12,
Proof. Please refer to Appendix G for details. O

In Theorem 6, we do not have the Assumption (d) in
Theorem 4. Actually, the tail strength does not affect the
uniform convergence rate, since the /., bound only cares
about the supremum error. However, we impose another
assumption on the regularity of {x|f(x) > m}. This
additional assumption is actually very weak and is satisfied
by almost all pdfs.

The proof of Theorem 6 can be divided into two parts.
Firstly, in the region with high pdf, the uniform convergence
rate can be bounded using similar techniques as is used in
the proof of Theorem 2, which involves constructing some
grid points, finding the uniform bound in the grid points,
and then generalizing to the overall uniform bound over
the whole region. However, since the support is unbounded,
such technique can not be simply generalized to the whole
space R, especially to the region with low density, since the
number of grid points will be infinite, and thus the related
union bound does not work. Hence, we provide the uniform
bound of kNN estimator by finding the lower bound of the
kNN distances.

The corresponding minimax lower bound is shown in
Theorem 7.

Theorem 7. Define o as the set of all functions that
satisfy Assumptions (a)-(c) in Theorem 4 and the additional
assumption (32), then

i@mmef—ﬂ’]zNﬁ%. (36)
f feXe 00

Proof. Please see Appendix H for the detailed proof. O

We observe that if d > 2, with a proper selection of k, i.e.
k ~ N*/(d+4) the upper bound of the KNN density estimator



(1) nearly matches the minimax lower bound. If d = 1,
then the upper bound does not match the minimax lower
bound. To explain such gap between (33) and the minimax
lower bound, we can divide the estimation error of f(x)
into two parts. The first part is the inherent difficulty in the
density estimation reflected in the minimax lower bound.
The second part is the estimation error caused by the kNN
method, since k can not be selected to achieve the best bias
and variance tradeoff everywhere. When d = 1, the second
part dominates. In higher dimensional spaces, the first part,
i.e. the inherent difficulty of the density estimation increases,
hence the second part of the estimation error caused by
imperfect bias and variance tradeoff is no longer dominant.
As a result, the ¢, bound is nearly minimax optimal when
d>2.

V. NUMERICAL EXAMPLES

In this section, we provide several numerical experiments
to illustrate the theoretical results derived in this paper. Our
simulation has three parts.

In the first part, we show the convergence plots of the £,
for « = 1,2,3 and ¢, estimation errors. For simplicity, we
assume that the support is known, and use the boundary cor-
rected kNN density estimator (9) for uniform distributions,
which is a typical example of distributions with bounded
support. In the simulation, k is selected to minimize the
£y, error for o € [1,00) and o = oo. The optimal growth
rate of k 2determined by Theorem 1 and 2 are the same, i.e.
k ~ N+ can optimize /, rate for both a € [1,00) or
o = 00. Therefore, we use this rate in the simulation. This
part is shown in Figure 1 (a) and (b).

In the second part, we show the convergence plots for
Gaussian distributions, which is an example of distributions
with unbounded support, as is shown in Figure 1 (c) and (d).
We fix a = 0.5 in the simulation, in which a is the parameter
in (22). For the first and the second part, for each £ and each
sample size N, our simulation involves the following steps.

(1) Generate N i.i.d samples according to a distribution,
such as the standard Gaussian distribution;

(2) Find a region on which the probability mass of the
distribution is sufficiently close to 1. For example, for one
dimensional standard Gaussian distribution, this region can
be [—5,5]. Then divide the region into grids of size 0.01;

(3) For each grid point, estimate its pdf value using the
kNN density estimation method, and find its difference with
the true value. Calculate the average and the maximum of
such difference over all grids, in which the former one can
be used as an estimate of the ¢; error by multiplying an
appropriate factor, while the latter one can be used as an
estimate of the /., error;

(4) Repeat (1)-(3) for T' =
average {1 and /., error.

5000 times, and find the

In the third part, we compare the ¢; error of the kNN
density estimator and the kernel density estimator for two
heavy tailed distributions. One is the Cauchy distribution,
fi(z) = 1/(x(1 + 2?)), and the other one is fo(z) =
(Jz| + 1)=2/3/4. In our experiment, if the dimension is
higher than 1, then the high dimensional distribution is just
the simple joint of i.i.d one dimensional distributions. For
a fair comparison, the parameters for both methods are
tuned optimally in the simulation, which means that we
try multiple a in (22) for the kNN estimator, as well as
multiple bandwidths for the kernel density estimator, and
only compare their best performance. In Fig. 1 (e) and (f),
we plot the ratio between the ¢; error of the adaptive kNN
(21) and the kernel density estimators. If the ratio is lower
than 1, then the kNN method performs better than the kernel
density estimator, and vice versa.

We further list the empirical and theoretical convergence
rates in Table II. In Table II, the empirical convergence rates
are the negative slopes of the curves in Fig. 1 (a)-(d), and
the theoretical convergence rates are the results in Theorem
1, 2, 4 and 6. For simplicity, we only show the exponents in
Table II, and ignore the logarithm factor. To be more precise,
we fill ¢ in the table if the convergence rate is O(N~%).

The results in Figure 1 (a)-(d) and Table II show that the
empirical convergence rates of the kNN density estimator
(1), the boundary corrected one (9) or the adaptive one
(21) agree with the theoretical analysis in general. From
Figure 1(e), it can be observed that for Cauchy distributions,
the ratios for both ¢; and ¢y are slightly below 1. This
suggests that the adaptive kNN method performs slightly
better than the kernel density estimator, when the parameters
for both methods are carefully tuned. However, the ratio does
not appear to decrease with the increase of N. This can
be explained by Theorem 4, since the Cauchy distribution
satisfies its Assumption (d) with 8 = 1/2. According to
the theorem and Proposition 1, the convergence rates of the
adaptive kNN method and the kernel method are nearly the
same and are both minimax optimal. As a result, the ratio
does not decrease with N. If the tail is heavier, then the
performance of the KNN method becomes obviously better
than the kernel density estimator. The distribution in Figure 1
(f) satisfies Assumption (d) in Theorem 4 with 8 = 1/3. Our
theoretical analysis in Theorem 4 and Proposition 1 indicate
that the convergence rates of the adaptive kNN estimator are
faster than that of the kernel density estimator under this (.
This can be observed in Figure 1 (f), in which the ratios
are all below 1 except very small sample size N, and decay
with the increase of V.

VI. CONCLUSION

In this paper, we have analyzed the convergence property
of the estimation errors of the kNN density estimator under
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Fig. 1: Numerical simulation results of kNN density estimation. (a) and (b) show the convergence plot of the /1, /5, {3 and
{~, estimation errors with respect to N for one and two dimensional uniform distributions. (c) and (d) correspond to one and
two dimensional Gaussian distributions. In this case, k ~ N?2/3. (e) and (f) compare the adaptive KNN method with the kernel
density estimator for two types of heavy tailed distributions. In (e), f(z) = 1/(w(1+z2)). In (f), f(z) = (Jz| +1)"%/3/4.
The vertical axis is the ratio between the ¢; and ¢5 error of the KNN method and that of the kernel method.

Case {y error {5 error {3 error {o error
Empirical | Theoretical | Empirical | Theoretical | Empirical | Theoretical | Empirical | Theoretical
Uniform, d =1 0.33 0.33 0.31 0.33 0.31 0.33 0.30 0.33
Uniform, d = 2 0.24 0.25 0.24 0.25 0.25 0.25 0.25 0.25
Gaussian, d = 1 0.42 0.40 0.42 0.40 0.41 0.40 0.42 0.40
Gaussian, d = 2 0.40 0.40 0.41 0.40 0.41 0.40 0.42 0.40

TABLE II: Empirical and theoretical convergence rates of density estimation

£, criteria for both o € [1,00) and o = oo. The analysis
is conducted for two types of distributions, including those
with bounded support, and those with unbounded support.
We have shown the following results:

Firstly, for distributions with bounded support, if the
support set is unknown, then the kNN density estimator is
optimal only under the ¢; criterion. With the increase of «,
the kNN method becomes suboptimal under ¢,. Moreover,
the ¢, error does not converge. In fact, there exists no
estimator that is uniformly consistent under /... On the
contrary, if the support set is known to us, then we can
design a proper boundary correction method. With this
correction method, ¢, bounds of the kNN estimator with

both a € [1,00) and & = oo are minimax optimal.

Secondly, for distributions with unbounded support, the
{+ bound is nearly minimax optimal. However, under the
£, criterion, the original kNN estimator does not have a
good performance. In particular, if o = 1, the original kNN
estimator is not even consistent, since the estimated pdf does
not decay sufficiently fast with the real pdf. Therefore, we
have designed an adaptive kNN density estimator, and have
showed that the new adaptive kNN estimator is minimax
optimal. For comparison, we have shown that the kernel
density estimator is not minimax optimal in this case. This
result appears to conflict with previous works, but the
previous works only assume the uniform bound of Hessian.



If the gradient and Hessian of the pdf do not decay, then
the bias at the tail is indeed large. We have compared the
convergence rates of these two methods for distributions with
decaying Hessian, and have shown that the kNN density
estimator with our new adaptive method actually performs
better than the kernel density estimator.

APPENDIX A
PROOF OF THEOREM 1

Proof of upper bound.
Recall that

p k—1
109 = NvTBe B o7
We decompose the estimation error as
fx) = f(x)
B { k—1 B k—1 f(x)]
NV(B(x,p(x)))  NP(B(x,p(x)))
k—1

* | wrmmm sy 1] 1
= Il (X) + IQ(X). (38)

Therefore

E[lf(x) = f(x)|"] < 2271 (B[ 11(x)|"] + E[[ 12(x)]*]) - (39)

Bound of E[|;(x)|*].

E(|L ()]
_E [

Denote A(x) as the distance from x to the boundary of S,
i.e. for all x € S,

k—1 -
(B(x, p(x)))

k-1
NP(B(x,p(x)))

fx)

} (40)

A(x) = inf{||x — u]| |u € 95}, 41)
in which 0S5 is the boundary of S. If p(x) < A(x), then
B(x, p(x)) C S. Since f is Lipschitz,

[P(B(x, p(x))) = f(x)V(B(x, p(x)))|

(%))
< Lp(x)V(B(x, p(x)))- (42)

Hence for sufficiently large k,

= || v e
<k<_<x < A()]

]

) < A(

1
N> . [P%B(x,p(x))) Lolx) < Alx))
‘P<B<x,p<x»>

(43)

Here, (a) uses the assumption that the pdf is lower
bounded by m. If p(x) < A(x), then B(x,p(x)) € S,
therefore P(B(x, p(x))) > muvap?(x). For (b), we use the
following fact

E[PT7%(B(x, p(x)))]

— ; & o, k—1 N—Ek

- ]Ba(k,N—k+1)/“d w1 w) T du

_ P(k+5-a)T(N+1)

['(N+49—a+1)T(k)
AN

< (= 44

< (5 w
in which I'(z) = [~ t*"te~'dt and B(z,y) fo tr=1(

t)¥~Ldt are Gamma and Beta functions, respectively.
If p(x) > A(x), since m < f(x) < M,

H —1 7 kE—1 f(X) @
V(B ) NPB )
v
E—1 @
=E KNP(B(x p<x>>>M> Lplx) > A(X))}

(a) E—1\“ 1
< M*—) E|———
B ( N > [P“(B(x, X

(45)

in which (a) holds because 1/P(B(x, p(x))) and 1(p(x) >
A(x)) are negatively correlated. (b) can be shown in the
same way as (44).



Combining (43) and (45), we have

E[[L )] (;) Tt 4 P(p(x) > A(x)).  (46)
Bound of E[|I>(x)|“].
001 = 0 || 7pthregy | |- @9

To bound the right hand side of (47), we use the following
lemma whose proof can be found in Appendix A-A.

Lemma 1. For k > «,

-1 (48)

|| wrmmpey Y ) 4

Therefore E[|I5(x)|*] < k~%. Combining this with the
bound of [;(x) in (46), we have

E[lf(x) —ﬁf(X)I‘”]
S <fv) m +P(p(x) > Ax) + k3. (49)

Now integrate the above result over x € S. Define

C(k—1)1
o= mugIN

(50)
then P(B(x,79)) > (k —1)/N. Hence, if A(x) > ro,
d
P(B(x,A(x))) > mvdAd(x) = mugrg (A::)>

Then
/P(p(x) > A(x))L(A(x) > 247))dx

(@)
2 fomonr

B(x,A(x))))

(eNP )k 1 X) > 24 rg)dx
0 [ " (22 ( (2e0))
L(A() > 2Hr)dx
¢ /exp —(1-2)(k—1) (Ag)ﬂ dx
2 i o[- (B2

= VS

/01P <exp [—(1 —In2)(k-1) (Afj([)]))d

>t>dt
1 ln%
_ VS/O P(A(U)< <(1—1n2)(k—

1))%0) "

1

©) 1 (lnl)#
<o D rodt
o (1-In2)a(k—-1)a

CsT (1+ %) 7o
(1—In2)a(k—1)a
For (a), note that p(x) > A(x) is equivalent to the event
that the number of samples in B(x, A(x)) is less than k.

Therefore the probability can be bounded using Chernoff’s
inequality:

P(p(x) > A(x))

= P(n(x,Ax)) <k-1)
k—1
< exp(—NP(B(x,A(x)))) <6NP(§(1<31A(X)))> .

Here n(x, A(x)) is the number of samples in B(x, A(x)),
which follows a Binomial distribution with parameter /N and
P(B(x,A(x))).

(b) uses the fact that e~*(et/(k—1))*~! is monotonically
increasing for ¢ > k—1. (c) holds because t—1—Int > (1—
In 2)t for t > 2. In (d), Vi is the volume of the support S,
and U is a random variable following a uniform distribution
in S. In (e), Cg is the constant in Assumption 1 (c), which
refers to the surface area of the support S. In addition,

/ P(p(x) > A())L(A(x) < 2Hro)dx

< /1(A( ) < 24rg)dx < 24rCs.

(52)

(53)

(54)



Hence, from (49), (52) and (54) and (50),
3}~ |

= ([=[i700 - reor] ax)”

< ()
+P(p(x) > A(x)) +

r 1
(a) kE \? _a
~ — ) Cs+k

1

1 ad 1
< Cg (;) m~ () L gmimTa (55)

alR

k%) dx]

1
VS

in which (a) holds because o > 1 and Vg has an upper bound
given Cg, therefore the integration of (k/N)% is dominated
by the second term. The last step uses the inequality Vg <
1/m. The proof of the upper bound is now complete.

Proof of kNN lower bound.

We prove (7) by two steps:

1)3C; >0,if k2 In N,

1

R 1/ ko4
S E H‘f—f‘u 0103 (N> L (56)
2) dC5 > 0 and C5 > 0,
A B N
sup B [Hf— fHoj Cok™% — Cy <N) L (57)

From (56) and (57), it can be simply proved that

supEH F }
fexa a

1
1 k O\ od 0102 _1
> - —_— 58
NmaX{C1Cs (N) 7C'1+03 2},( )
which shows the lower bound of kNN method. Now we
prove (56) and (57) separately.
Proof of (56).

Let fo, n, R, r be four variables that change with the
sample size N. Find n points a;, j = 1,...,n, such that

la; —aj/|| > 5r for any j # j', and ||a;|| > R + 3r for all
j. Let
f(x) = fo,Vz € B(0,R) U {Uj_,B(aj,7)}. (59)
Since the pdf need to be normalized, we have
fo(vaR* + nvgr?) = 1. (60)

In this section, fj is always fixed, and r decreases with V.
This ensures that the volume V' (S) is both upper and lower
bounded.

Moreover, since the surface area is bounded by Cg, we
have

dvgR™ + ndvgr?=! < Cs. (61)
We let
1
= (2]ijdf0) . (62)
Then for all x € B(0,r), define N; = S 1(X; €
B(aj,r)). Then from Chernoff’s inequality,
P(N; > k) < e (m2-2)F, (63)
Therefore, with probability at least 1 — ne_(1“2_%)k, all

balls B(a;, r) have less than k£ samples. In this case, for all

x € U7_; B(aj,r),
P k-1 1k 2
< = - f 64
f(x) < Nuvg(3r)d ~ 34 Nygrd Sdfo ©4)
Hence
oc 2 “ (03
|f dx > 1-— 3d fodx
Uj—1 B(a;.r)

(65)

2
= (1 - 3d> f&nugre.

From (61), we let n ~ Cg(r¢=1)~1 ~ Cs(N/k)' =1/ Then

g
/\f |adX>Cs(N> ;
L (k\
> (COao | —
Q~CS<N> .

Recall that the above equation holds with probability at least
1—ne~(02-3)k Take expectation, (56) is proved.
Proof of (57). From Holder’s inequality, we know that

2V F

Recall (38), f(x) — f(x) = I1(x) + I2(x). Then

B[ 1)) 2| [1eoled -] [ in6x|. @)

From the proof of upper bound, we already know that
the latter term is asymptotically smaller than (k/N)/(ed),
Therefore it suffices to show that E[ [ |Iy(x)|dx > k7).
Recall that

(66)
and

(67)

(63)

9~ (sopse ooy 1) 109 O
and P(B(x, p(x))) follows Beta(k, N — k + 1) distribution.

Therefore, let U ~ Beta(k, N — k + 1), then



faltt o
]

We just need to show that the right hand side of (71) is
. 1
asymptotically greater than k™2

k—1
|57 |

B 1 /k:—l
N B(k,N—k+1) Nu

2| [ 1nGolix]

(71)

1’ P11 — u)N R du

= m
/ ’ (LS PR
= m
/51 ( k]\;ul -1 > 5> uF (1 — w)N Fdu
/51 ( k];ul —1] < 5) (1 — w)N Fdu
(= 1>]!¥z!v L = )

N!, (k — 1)! and (N — k)! can be approximated using
T . 1
Stirling’s formula. It turns out that we can pick § = ck™z,

in which c is constant, such that

(73)

The proof is complete.

Proof of minimax lower bound.

The lower bound can be proved simply by standard mini-
max analysis in [25]. We prove the following two statements
separately:

SupE[ } ZN_#?7 (74)
fE€XA @

and
awefli-r|Jzxe o
f€Xa

Proof of (74). Find 2n points a;, ¢ = —n,—n +

1,...,—1,1,...,n, such that B(a;,7) C S for any 7, and

lla; —a;|| > 2r for any j # ¢, in which the value of r will
be determined later. For v € {—1,1}", let

fv(x) = fo(x) + virg <X;al) —uiryg (

in which

X""”) , (76)
.

fo(x) =1/V(S) (77)

is the pdf of the uniform distribution in support S, fy and
V(S) are fixed and do not change with N, and
1

rd

(78)

n ~

is the maximum number of points that can enable the above
construction, and

g(w) =1~ lu]. (79)

Then for any estimator f, let V be a random variable,
which is uniform in {—1,1}", then

sup E[ }
fexa(s
> sup E{ ]
ve{-1,1}4 @
> E[]F- ]
«

= ZE l/ If - fv|adX]
i=1 B(a;,r)UB(a_;,r)

= nE [/ |f—fv|adx]. (80)
B(ai,r)UB(a_1,r)

Letvy =(1,...,1),and vo = (—1,1,...,
Cam’s lemma [25], we have

1), then from Le

E

/ |f - fv|adX]
B(ay,r)UB(a—1,r)

= ! / — —ND
2 Satl |fv fv ‘adx e (fvqllfvs)
201 [ Blai,r)UB(a_1,r) 2

d+2
z T'd+a6_CNT , (81)

in which c¢ is a constant, D(+||-) is the KL divergence. Hence,
with 7 ~ N71/(d42),

sup ]EH F—
fexa(s)

@ _Ndt2 __a_
} > nritee N L NTaz (82)
«

ie.

sup E (83)

FEDA(S) [Hf_f’u > N-@,

Proof of (75). We still find 2n points, a;, i = —n,—n +
1,...,—1,1,...,n, such that |a; — a;|| > 2r for any j # ¢,



and |ja;|| > R+ r for all 4. ||a;|| and ||a; — a&;|| can be
sufficiently large, in order to ensure that Assumption 1(b)
is satisfied. This indicates that B(0,R) and B(a;,r) are
mutually disjoint. For any v € {—1,1}", let

£o) = o) + 30 2 Mo (x € Blasr)), (84

fo(x) = M;m

in which r will be determined later, and R is selected to
ensure normalization, i.e. [ fy(x)dx = 1.
Now (80) still holds. (81) becomes

/ i~ fvladX]
B(ay,r)UB(a—1,r)

! / —~ND
Z T ‘f 1 f Q‘de e (fV1va2)
2a+1 [ B(a;,r)UB(a_1,r) v v

> pde=Nr (86)

1(x € B(0, R)), (85)

E

From Assumption 1 (c), which bounds the total surface area,

we have
(nrd=t + R Y,y < C, (87)

since R and Cg are fixed, we have nr?—! = 1. Therefore,
let 7 ~ N~1/4  then

E[|f- (88)

@ 1
} > nrd ~ Cgr ~ CgN™ 7,

«

i.e.

flio])zcive e

Combining (74) and (75), the proof is complete.

A. Proof of Lemma 1

Eng&M

/:P (e
| e (P e >
il 11)> dt. (90)

+ [Tp (P < N

To bound the right hand side of (90), we show the following
inequality: if |z| < 1/2, then

-1

|

-1

>t> dt

k—ll)ﬁ
N(1—tw)

O

2
In(1 —1> 22
1—|—w+n( +2) _2793

To show this inequality, we can define g(z) to be the left
hand side of (91). Then
11—z

9"(95) = m

If |z| < 1/2, then ¢"(x) > 4/27. Then (91) can be proved
using Taylor expansion to the second order.
We bound the first term of (90) first. If ¢ > k~, then

k—1 k
N(1 —t=a)

92)

> N (93)

From Chernoff inequality and (91), we know that if k=% <
t <277, then

P(PBe 60 > 5 )

N1 —t=)
en [ek=1\F
. 1—ta
< 1-ta
S L
— k= 1 \"*
< e 1w P ) (94)
(1—ti
k=1 .
— ¢ e ek—kIn(1-—ta)
< ek {k( LI (1 tl> 1)}
el-te exp |— n(l—te)—
- P 1—ta
1 ) 3
< er-te gmarkte (95)
Hence
1
k-1
P | P(B(x, p(x I
[ e (e > i)
k¢ 27 11 , 2
< / 1dt—|—/ er—ta eIkt gt
0 k—e
! k
+/ e?e it
oo 5 2
< k_o‘+62/ em TR gt 4 26751, (96)
0
Let u = (2/27)kt4, then
o0
/e_%kt%dt
0
00 31
< [T (),
0 2k 2
27\ ? _/a
= (= r(f). 7
(50) 5 ©
Therefore
/11:(13(3( x)) > — =1 )dt<k‘5 (98)
X, p(x —_— S .
0 g N(1—t=)



Then we bound the second term of (90).

P (P(B(x,p(x») = N(Z_L) )

k
_ kl e ik
< e 14ta to+l
- k

. +1n(1+ti)1)]

t < 3%
if ok <t< ()

IN

99)

t > (2e)*.

IN
S—
B
o
5
T
Bl
oW
=
+
>
S
e
o
[}
g
=
oW
Sy

IN
/N -~/ N +
O]
EN| ?T“\I
"
N

2
27\ * 2
< %> (=) + (2e)% 51" 4 (@ e_)12*k
< kTR (100)
Therefore
k—1 “ a
Ell=—=——-1] | Sk 2 (101)
[ NP(B(x,p(x))) }
The proof is complete.
APPENDIX B

PROOF OF THEOREM 2

Now we derive the lower bound with fixed S. Since S is
compact, there exists a constant Ny, such that for sufficiently
small 7, the covering number of S with balls with radius r
is bounded by N / r%. Therefore, we use n balls with radius
r to cover the support set S, in which n is the covering
number, n < Np/r?, and

RN
T—mln{(N> Jk }

Denote aj,...,a, as the centers of these balls. For any
€ > 0, define A(N, k) such that

-1 -1
max{D (kN|kN +A(N,k)) ,

k-1 k-1 1 2n
—_—  — :—1 —_—
D ( I A(N, k))} n = (103)

(102)

in which D(p||g) = pIn £+(1-p)In 1=2. Such construction
is designed to derive a bound that holds with probability at

least 1 — e. Then we have the following lemma:

Lemma 2. If k/N — 0 as N — oo, and n < Les(=1e,

then
k2 2n
A(Nk) <4—1/In —. 104
(N, k) < 455/l = (104)
Proof. Please see Appendix B-A for the proof. O
Now we provide a high probability bound of

P(B(x,p(x))). Denote n(B(x,p(x))) as the number
of samples in B(x, p(x)), and define r¢(x,p) such that
P(B(Xv TO(va))) =D Then

P(PBost0) = 5+ A

_ p <n (x,ro (x, e +A(N,k)>> <k 1>
Y e [—ND (1%1”16];1 +A(N, k))}

< ot (105)

in which n (x,7o (x, 52 + A(N, k))) is the number of
samples in B (x, 79 (x, 52 + A(N, k))). From the defi-
nition of ro, we have P(B (x,ro (x, 52 + A(N,k)))) =
(k—1)/N+A(N, k). Hence, n (x, 79 (x, 52 + A(N, k)))
follows Binomial distribution with parameter N and (k —
1)/N + A(N, k). Then using Chernoff inequality, we get
(a). Step (b) comes from (103).
Using similar arguments, we can also obtain

(P st < 5

Using (105) and (106), with probability at least 1 — €, we
have

‘P(B(ai,p(x))) - % < A(N,k),¥i € {1,...,n}(107)

€
— A(N, k)) <5 (106)

In the remainder of tk}is proof, we assume (107) is
satisfied. We decompose |f(x) — f(x)| as following:

suplf (x) — f(x)]

xeSs

Sup|f(X) - f(ai)l + maXIf(ai) — f(a)]
xES g

+sup|f(a;) — f(x)]

xeS
= L (x)+ (x)+ I3(x),

IN

(108)

in which a; is the nearest point to x among {ai, ...
We now bound these three terms separately.

;an}.



Bound of [;(x).

1F) - Flan)]
_ kE—1 _ kE—1 ‘
Vs(Bx,px)) _ NVs(Blarp(a))
( ) VS( (aup(az))
= NP(B(ar, p(a)) | Vs(B(x, p(x))) "“09)

Here, M is the constant in Assumption 1 (a), which upper
bounds f(x) for all x € S. Now we show that p(x) >

pla;) - r:
Blx,pla;) — 1) C B(x.pla;) -

C  Blaj,p(a;)).

la; —x][)
(110)

Recall that p(a;) is the kth nearest neighbor distance of a;,
B(a;, p(a;)) contains k — 1 points, thus B(x, p(a;) — r)
contains no more than k& — 1 samples. Hence, p(x) > p(a; —
T).

If (107) is satisfied, then for sufficiently large IV,

(k=1)M ‘ p(a) ‘
I < -1
1x) =< N (52 — A(N,K)) | (p(aq) —7)?
1
< 2M|—— — 1. (111)
(1- )
According to the definition of r in (102), we have
T < <Z\4’Ud)d r
p = \P(B(aip(a)))
< (Mvd ) ' r
o % - A(Na k)
Mvd B k %
= (kl — A(N k)) (N)
N )
L\
< (N) . (112)
Bound of I5(x). For all x € S,
. -1 k—1
70916091 < |5 ) NP(BG /%)
‘NP ’f (113)

According to (104), if k/In N — oo and k/N — 0, for
sufficiently large N, when (107) holds,

1

‘NP)) - (114)

Moreover, under (107),
k-1 k—1
NVs(Bar ) NP(Blap)’ ™
k—1 ‘P(B(ai’p)) — f(ai)Vs(B(ai, p)) ‘
NP(B(aj,p)) Vs(B(ai, p))

(i) k—1 I

= NP(Banp) "’

(b) k—1 11

< 7 ~1Pu(B(a;

— NP(B(aZ, )) (mvd) ( (al?p))
1 1 1

< L(mug 3k

< (E)"
< (v)

(115)
In (a), we use the Lipschitz assumption:
|P(B(ai, p)) — f(ai)Vs(B(ai, p) N .5)|
= f(x) = f(a))dx
B(ai,p)ﬂS
< / L|x —a;|| dx
B(ai,p)ﬂS
< LpV(B(ay,p)NS). (116)

(b) uses the fact that P(B(a;, p)) > mvgp?.

Plugging (114) and (115) into (113), we can show that
as long as (107) holds, the following result holds for all
1=1,...,n

Flas) — fla)] £ ’“W 4 (j;) .

According to (32), the additional assumption in Theorem 6,
it is possible to let
} . (118)

A\ 2

n < No/r? S./\/'omax{<k> Jk
Hence, from (117) and (118),

. N B\

i) — In — — ) .
Fas) 1 2T+ (%)
Bound of I5(x). According to Assumption (b) and the
definition of r in (102),
F(0) = f(@0)] < Lmin |x — ai]| < Lr S k3.

Recall that (112), (119) and (120) are all obtained under
(107), which holds with probability at least 1 — e¢. Based on
these three equations, and use the upper bound of n in (118),
we know that there exist two constants C; and C5 such that

709 o5 (5) er s

(117)

ol

(a;)| S k2 (119)

(120)

(121)



holds for all x € S with probability at least 1 —e. The proof
is complete.

A. Proof of Lemma 2
From the definition of KL divergence, we have

#*D(plle) _p 1-p

= . 122
9q? ¢ (1—-q)? (12
It %p < q < 2p, and p is sufficiently small, we have
D 1-—
9"D(plla) o P p (123)

R S
d¢> T 4p? (1-2p)2 ~ 8

Here we let p = (k—1)/N. Since k/N — 0, for sufficiently
large N, p will be sufficiently small. Therefore

0? k-1 N N
—D | —— > >
9 ( N |q> “8k—1) ~ 8k
holds for (k —1)/(2N) < ¢ < 2(k — 1)/N. Moreover, it
can be shown that lirr%)D(pH%p)/p =In2-1/8 >1/8, and
p—

lin%)D(p||2p)/p = 1-—1n2 > 1/8. Hence for sufficiently
p—

(124)

large N, k/N is sufficiently small, we have

min{D <k:]:71||k:2;v1) ,D(k;'z(/@]\; 1))}

kE—1
> —. 125
Z SN (125)
According to the condition n < %eé(k_l)f, we have
1 2n k—1
—In — —_— 12
N SBN (126)

Therefore, using the second order Taylor expansion,

D (k_ 1||% +A(N,k)>

N
(a) k—1 k-1 1 9°D (5L|q
=D( ~ I >+2 éqf; ) A%(N, k)
q=£
(i) } inf WAQ(N k)
- 2%<q<2(’9]\71) 8q2 ’
N
> m—kAQ(N,k). (127)

In (a), & is in between (k—1)/N and (k—1)/N +A(N, k).
(b) holds because (125), (126) and the definition of A(N, k)
in (103) imply that (k—1)/N+A(N,k) < 2(k—1)/N and
(k—1)/N — A(N,k) > (k—1)/(2N).

Similarly,

k-1 k-1 N
D~ - AN > ——A*N 12
(51 - A = a2 a2
also holds. According to (103), we have

N 1.2
—AXNE) < —In 22

16k N e (129)

Thus (104) holds. The proof of Lemma 2 is complete.

Now we prove the corresponding minimax lower bound
of the /., bound with unknown support, and show that no
method is uniformly consistent. Let the distribution be one
dimensional, fi(z) =1 in (0,1), and fo(z) = N/(N —1)
in (0,1 —1/N). Use Le Cam’s lemma [25],

. A 1 -
e [[F 1] = gl

fexs
1
> §€—N1n Nl\ll
1
.} (130)
2e

On the contrary, if the support is known, then the minimax
bound for known boundary has been derived in [26].

APPENDIX C
PROOF OF THEOREM 3

In this appendix, we analyze the ¢, convergence rates
with a € [1,00) and o = oo of the kNN density estimator
with bounded support but without the lower bound on the
density, which means that the pdf can approach zero.

A. {, bound

Upper Bound. Similar to Appendix A, we still decom-
pose f(x) — f(x) into I1(x) and I5(x). E[I(x)*] can be
bounded in the same way as Appendix A. Now we bound
E[I;(x)?]. Note that if B(x,r) C S, then from the Lipschitz
assumption, we have

P(B(x,1)) — fx)V (B(x, )| < LrV(B(x,7)). (13)

Therefore, if f(x) > 2Lr, then

%f(x)V(B()g r)) < P(B(x,r)) <

| o

Fx)V(B(x,7))(132)

Define

A(x) = min { fz(};),inf{ﬂx —ul|ue 85}} . (133)



Then for sufficiently large k,
k—1

x,p(x)))
)]

NP(B(x,p

—
S]
=

,\
INS

<

L
N
Kl
< (3) e
in which (a) follows the same steps as (43), and (b) comes
from (132). Moreover,

(134)

= || st po ~ e e ™|
1(plx) < AG)]
< ]E_max{ Nv(k( 1x ) |
(_ g( )}1 }
Y g <2NP3((§( ( f(x)> 1(p(x)<A(x))}
= () = i
- (135)

in which (a) uses (132).
From (134) and (135),

HNV o (X)) NP(g(_ 1,)(X)))f<><> :
1(p(x) < A(X)l
. mi“{(f@)d fg(xxf“(x)}
—¢ <<§)+> (136)

Now we analyze the case p(x) > A(x). In particular, we
discuss the following two cases, denoted by event £ and

EQI
Er: p(x) > A(x), f(x)/2L < p(x) < inf{[x —ul/ju e
95}, P(B(x,p(x))) > k/(2N).

Es: p(x) > A(x), but at least one of the other two
conditions of E are not satisfied.

19

If Fy happens, then from the Lipschitz assumption, we
have

P(B(x,p(x))) < (f(x) + Lp(x))V(B(x, p(x)))-

Since P(B(x,p(x))) > k/(2N), and f(x) < 2Lp(x), we
have

(137)

k

e < BLp()V (Blx, o)) (138)
i.e.
plx) > (6%,?“);1 (139)
Then
H NV B0 A kzw;(zl;( 1 G’ a 1)
= E[W{(Nw <_,p<x>a>>)
(gvmg(_,l /%) | 1EE”J
g max{(k—vl 6vgNL dl)
(é(’“ - ”f:a;a(} 1; >])
- 1
< E_max{(ﬁ)ﬁ7fa<x>}1<fsl> (140)

Note that from (132), we have

(o)) = or(o(-5)

Ud

= S [ ). (141)
If
f(x) > <2d§ded) - (142)
then
P (3 ( f;’L‘))) > 2 (143)
then
P(E,) <P <p(x) > f;?) < e~ (Imln2)k, (144)



Hence

(140) <

o {(£)""0)
(o< (5 )
(

=| =

+max{<> S (x )}
o

\ V

2d+2k:Ld> ) o~ (1-n2)k
Nvd

S (Z) +fa( ) (171n2)k' (145)
Now we discuss Fs.
k—1 k—1 @
= || ¥v e e ~ Sy )| 1)
< P(p(x) > inf{[x — ul ju € 85})
+P | B(x, p(x)) < 2]]€\7>
< P(p(x) > inf{]lx — ul ju € OS})
+ exp [— <1n2 — ;) k} . (146)

Combine (136), (145), (146), we can get the bound of
E[|I;(x)|%]. Moreover, note that the bound of E[|I5(x)|*]
derived in Appendix A still holds. Therefore

E[1fx) - 7x1°]
+P (p(x) > inf{[x — ul| ju € 95})

1 o
+ exp [— <1n2 — 2]€>:| + k2.

Since (52) still holds, we have

B[~

([ = [1760 - o] ax) ’
{(5)7we3) )

k T 1k a1 11
N(N) Vsa +O§ <N) Vsa + k 2‘{;‘(148)

Lower Bound. Note that now we derive the lower bound of
kNN method instead of the minimax lower bound.

(147)

=] =
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Given a compact set .S, find an n-packing of S, i.e.
ap,...,an, such that ||a; — a;|| > 127y, in which

1/ &k \12
ro = —
0 4 NUdfO )

and fo = 1/Vs. n is set to be the packing number, therefore

(149)

1 ~ :g (150)
Then let
00 = fot 3 alx—a). (1s1)
in which -
g(u) = (152)

—Lrg if
—L(2r¢ — |[u)) if ro < |lul| <2rg+4
L(26 +2rg — |luf) if 2ro+6 < |Jul| <27+ 26

0 if 2rg + 26 < ||uH < 6ro,

with § being selected such that

/ g(u)du = 0.
B(0,670)

Then if x € B(a;, 1) for some i, if 2r¢+2§ < p(x) < 5ro,

ten P(B(x, () = oV (Bl o)

[[ul[ <o

(153)

E[| () = f(x)|*]
> P(27‘0+2(5<p( )<5T0)

E[|f(x) = f(x)|*[2ro + 26 < p(x) < 5ro]
= P(2T0+2(5<p( )<57"0>

k—1
v~
<5’I"()]

(%))
270 + 20 < p(x)
= P(2ro + 26 < p(x) < 5r)
_ k}—l «

B P ey o ™

|29 + 20 < p(x) < 5rg]

_ E-LJC _f(x)a}
~ T INPBx px)) "’

—P(p(x) ¢ [2r + 26, 5r9))

I k—1 @

B PG o ™

Ip(x) ¢ [2r0 + 26, 570]]

=

(154)
Define
€ = P(p(x) & [2ro + 20, 5r(])
-1 @
{)Z\Wfo - f(X)

[p(x) ¢ [2ro + 26, 5r]] . (155)



From Chernoff inequality,

k
< o NP(BGH) (eNP(B(XﬁTo)))

k
k(5/4)d 5e
4
d
exp [— ((i) —1In i) k] . (156)

We can obtain a similar bound for P(p(x < 2r¢ + 24)).

Therefore, ¢ decays exponentially with k, if k grows faster
than In N.

P(p(x) > 5ro)

Then
Ellf() — fI°]
E—1 @
= szp B )0 I }‘6
k—1 «
= ’E [NP<B<x,p<x>>>f°] A
— e F e
= L% —e (157)
Then
[ Bl - £6017ax

Y

/ E[|f(x) — £(x)|*]dx
Ui, B(a;,ro)

2 nL%gV(B(a,m9))
~ nLo‘rg‘"’d

~  L%§

~ (k> !
Nfo) -

To ensure that f(x) > 0 everywhere, especially in B(a;,r),
we need to ensure

(158)

fo—Lrg >0, (159)
ie.
k d
fo>L (16]VUdfo> , (160)
we let fo ~ (k/N)Y/(@+1)  then
R kO 7T
[0~ feoriaxz () ve aen
ie.
N k ﬁ 1
sli-o )z (x) " e

21

Moreover, (56) and (57) still hold here. As a result,

sws|f-s ]z (5) v

1

1 k’ od 1
g (5) Rt (163)

B. lo bound

Upper Bound. Most of the steps are the same as Ap-
pendix B, except (115), which changes since we have
removed the lower bound on the density.

Now we derive the bound of

‘ k-1 - E-l
NVs(B(ai,p(ai))) NP(B(a;,p(a;))”
again. We discuss two cases separately: p(x) < f(x)/(2L)
and p(x) > f(x)/(2L).
If p(x) < f(x)/(2L), then
k-1 - LS S
NVs(B(ai,p(ai)) NP(B(a;p(a;))”
_ k-1 Lo(ay)
NP(B(amai))) P 1
(a) 2P(B al,p a;)))\*
- NP( (a;, p(a;)) L )
k _1_ _1
S P Y(B(ai, p ( ) f d(X)
® k (k—1 ato,
< v (5 awm) i)

(164)

in which (a) comes from the Lipschitz condition, and (b)
comes from (107).

Moreover, using similar steps as those used in (135), we
can show that

k—1 k-1

NVs(B(a;, p(a;))) NP(B(ai,p(ai)))f(ai)
S flai)- (165)
Hence
T - NPT
NVS(B(az, P(az))) NP(B(a“ p(al))) i
< min { (;) d f_‘li(ai)af(ai)}
: <]];) h (166)



If p(x) > f(x)/(2L), then similar to (140), we can show
that

7 k—1
NP(B(a;, p(a;)))

f(ai)

(167)

E\ &1
1095 () (168
Therefore from (166) and (167),
k—1 k—1
NVs(Blas p(a))  NP(Bla, pla)))
< <N) . (169)
Other steps are the same as Appendix B. Then
1
Hch — fHOO < <ka) Tt 1n§. (170)

Lower Bound. The lower bound can just be obtained from
(163), by taking the limit o — oo.

APPENDIX D
PROOF OF THEOREM 4

In this section we show the ¢, convergence rate of the
kNN density estimator with adaptive k.

Define
f+(x,7) = sup f(x'), (171)
x'€B(x,r)
_(x, = inf N. 172
foGer) =t f) (72)
Then we have the following two lemmas.
Lemma 3. For all r > 0,
fexr) < 9T f(x), (173)
fo(x,r) > e % f(x). (174)

Proof. Please see Appendix D-A for the detailed proof. [J
Lemma 4. For r < q,

[P(B(x,7)) = f(x)V(B(x,7))l

< C’17"2V(B(x,r))f(x), (175)
in which
Cy = %C’beaca. (176)

Proof. Please see Appendix D-B for the detailed proof. [J

22

Define

Il (X) =
k—1 (X)

k—1
{ NV(B(x,p(x))) (J)VP(B(X’P(X)))

(177
if n>n.

if n<ng,
Ir(x)

k-1 -
- (NP(B(x,p(x))) - 1) f(x) if n>n (178)
—f(x) it n<ne.

Then f(x) — f(x) = [1(x) + B(x).

Bound of E[|I;(x)|*].

We discuss two different cases:

Case 1: f(x) > 1/N. Denote n as the number of samples
in B(x,a). If n > n,, then

|11 (x)|
_ ko1 ‘P<B<x,p<x>>> e
NP(Bx. o)) | V(B(x, p(x)))
(a) k_l 2X X
< WCIP( )f( ) 2
® ko1 (€S P(B p)) )
S NPB ) M )( vaf () )
< Gt PP (Blx o)) e, (179

in which (a) uses Lemma 4. For (b), note that p(x) < a
always holds, using Lemma 3,

P(B(x,p(x))) = f-(x,r)vap’(x)

> e Cugpt(x)f(x).  (180)
Then
E[|11(x)"||n]
< ali-3)(x) (J’;) E[PE0(Bx, px)))n]
(a) @ 2 2 a(%_l)
< (ﬁ;) fa(l—a)(X)Pa(a—l)(B(x,a)) (S)
(O] 20 2
< N3 pe(1-3)
< N-ope(i-30-0), (181)

If n < ne, then I;(x) = 0. Hence
Nfa]E[na(lfg(lfq))]

ElL(x)*] <
< N%(NP(B(x,a)))*(1-7(1-2)

~ N—%(l—q)fa(lf%(lfq))(x)7 (182)
in which the last step uses
P(B(x,a)) < f(x,a)vga? < €% f(x)vgad.  (183)

Now we use the following lemma.



Lemma 5. ([30], Lemma 6) If P(f(X) < t) < Cyt® for
any t > 0, then for any p > 0 and any sequence sy — 0,

if B>p
/ S (%)

so if B=p (184)
With this lemma,

sf\fp if B<p.
N 1
JEinGor (50 ) Jiax <
N=F0-0  if B>142(1—¢q)—a
N-@H-DInN if B=1+2%(1-¢q) -«
N—e+b=1) if B<1+2%(1—¢q)— o

(185)

Case 2: f(x) <1/N.
In this case,

B[ ()]
kE—1 k—1 @
= F { NV(B& ) NPB ) >
1(n > n,)
eaca(k‘ -1) N @
< E KNP(B@p(x)))f ( ’>
1(n > n,)
ENY L. 1 .
< (N) fH B [E {P%B(x, )| }
1(” > nC)]
ENY L. 1 n \"
s (N> F R [pa@(x,a)) (k - 1)
1(n >n.)]
kE\® .. . N©
~ (%) (186)
Then
[ EIR GO < )lax
< / o x ( ) dx
5 —(a+B— 1) (187)
Hence
/E[Ih(X)I“]dx < (188)
Nomin{EFOm0etBo1}ie g 21 o (1 2(1—q))
N-@-DIn N iff=1-a(l-2(1-gq).

Bound of E[|I(x)|].
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Case 1: f(x) > e®“an./(Nvg). If n > n,, then

E[| ()| |n] = )
= || vy 1| ] 76
- HNP _1<x>Q‘NP<;<x,a>>+
m— ]f“(X)
< 2071 (x)

n

( HNP _1( )  NP(B(xa))

.

rmea 1 )
(189)
Similar to Lemma 1, it can be shown that
(k=DP(Bx.a) [ 1,
o e e N EU D
Hence
k—1 n *
|| vrwesy ~ vrw e )
< n® )
~ NoP*(B(x,a))
na(lfg
NoPa(B(x,a) (151
If n < nc, then
[2(x)|* = f9(x) (192)
Therefore,
E[[Z2(x)|*]
na(lfg
S ) (E N“P“(B(x,a))]
+E [ NP(B(x.)) -1 }) + f*(x)P(n < n.)
(@ No(1-8) pe(1-%)(B(x, a))

)
+ [ (x)P(n < n)

B () + SO (x)P(n < )
< N*%afa@ﬁ)(xwf“(x) P(n < n). (193)

Now we integrate each term over x. Use Lemma 5, we have

/ N—3opa(1-9) (x)1 (f(x) s o

AP
N’Ud ) X
N2«
N=@H-DIn N if B=1-(1-

if f>1-(1-%)a
§) a (194)
N=le+=D  jf B<1—(1-%)a



Moreover, from the Chernoff inequality,

P(n <n.) <

e —aC,
exp[—e="Ce Ny f(x)] ( Ne

Then

/&%@Hnsmn(ﬂmz

< Nf(oﬂrﬁfl).

Therefore

/E[uz(x)la]l (f(x) 2 6?\23)

N~3e if B>1-(1-
N-@H-DIn N if B=1-(1-
N-+8=Djf B<1—(1—

Case 2: f(x) < e®“an,/(Nvg). Then

E[|L(x)|"] =
kE—1

E[Nﬂmewm

+f4(x)P(n < n¢)

[}

-1

kE—1 @
< ?%{(NPuﬂxp@»Q (”“"Z”J}
120 2 ()P(n > o) + f(x)P(
< ).
Hence

aCl,
/EHIQ(X)|°‘]1 (f(x) < 6N”> dx < N~@+8-1) (199)

Vq

Combining Case 1 and Case 2, we have

/wamwuxs

N— min{%a,a+ﬁ—1} if B 3& 1 _ (1
N-@-DIm N if B=1-(1-

Let ¢ = 4/(d +4), then

[ B0 - i <

N— min{%,a-&-ﬁ—l} lf
N-@=DIn N if

i.e.

efli -] =
N—rﬂin{ﬁ,l—‘r@} lf
N5 N ir

——

N\Qw\emm

~—

PG> n,)
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A. Proof of Lemma 3

8f+ (Xa T) /
—_ = sup ||V f(x
o o V6
< Co sup f(xX)
x'€B(x,r)
< Cofy(x,r). (203)
By solving the above equation,
fr(x,7) < e f(x). (204)
Similarly,
fo(x,7) > e %" f(x). (205)

B. Proof of Lemma 4

P(B(x,r)) — f(x)V(B(x,r)|
- / (f(u) - £())du
B(x,r)

- [ [V
B(x,r)
+(u—%)TV2f()(u - x)] du

= %ﬂWB@m»sm>HVWWN
veB(x,r)

< V(B L)

op

< ?2v<< P, (206

in which the last step comes from Lemma 3.

APPENDIX E
PROOF OF THEOREM 5

Define fy(x) such that

= if Ix|| < r
folx) = { %Rd if |x—c| <R,
in which R is fixed and r = N7 . |lc|| is sufficiently large,
so that B(0,7) and B(c, R) do not intersect. For other x,
i.e. for x ¢ B(0,7) U B(c, R), fo is designed such that f
satisfies Assumptions (a)-(c) with constant Cy, C,. and Cyg/2.

Let g(x) be a function supported in B(0, 1), with | g|| , <
Jgm, in which

In2
"= 207
Im = G4vyn 3 (207)
and
1
V29 ()], < 5. (208)



The above constructions are possible for sufficiently large
Cp, C.and Cy.Find a;,i = —n,—(n—1),...,—1,1,...,n
such that B(a;,1) are mutually disjoint, and B(a;,1) C
B(x,r) for all i. Define

Jv(x) = fo(x Z[ —%g(x—a,

in which v € {—1,1}".
According to Varshamov-Gilbert Lemma [31], there exists
Ng elements v, j = 1,...,Ng, Ng > 2"/8, such that

i)| (209)

H(vW vk) > n/8 for all 0 < j <k < Ng, in which H
is the Hamming distance. Denote
V={vW j=1,... Ng} (210)

Then the KL divergence between f,, ;) and f, &) is bounded
by

D(fyi |l fvir)
< H(V(i),v(j))
1

/ <f0(x)+Ng(x—a,»)

B(ai,l)UB(a,i,l)

e

()+%Mx—m) box—a)

1 1 X
- N (X—al ﬁ (X—a_l)

g
(a)
< a0 | f
B(a;,1)UB(a_1,1)

*|9(X —a;) —g(x—a_;)| ln3dx}

< 41n3”d]i’[m H(v®,v). @11
For (a), we observe that due to symmetry,
/ fo(x) (212)
(ab,l)uB(a,L,l)
L Jol0) + gl —a) = dglx—a)

fo( ) = ﬁg( —a;) + ygx—a)
Also note that g,,, < 1/4, f(x) = 1/N for x € B(a;,1) U
B(a_;,1), we have
’1 fo(x) + N!J(X —a;) — ygx—a)
fo(x) = fg(x —ai) + gg(x —a

thus (a) holds.
Since we have N samples, denote P, as the joint
distribution of these N samples, then

D(Pyi || P

<In3, (213)

4ln3vdgmH(V(j),v
nln2. (214)

wm) < (k))

1
< 41In3nvegm = I
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Define

(Iz&rgmian—fv (215)
v 1

Let V be a random variable that is uniformly distributed in
V), and the corresponding estimate is V, then from Fano’s
inequality,

mz}txD(Pv(j) || Pyxy) + In2
supP(V#£V) > 1--2 N
v niNg
+nln2+In2
> 1,% 216)
For sufficiently large N,
1
PIVAV) > 5. 217)
Note that if V %V, then
~ « 1
(ER = T
«
1 2 “
> SH(V.V)x /( g(x)) dx
> / “(x)d (218)
2 e | 97 (x)dx.

To satisfy the assumptions, the maximum n we can take
isn ~1/rt ~ N'=8. Then
} 1 n

[ = 34N«

Moreover, from the standard minimax analysis in [25], it
can be proved that

el

Combine these two bounds, we have

/ga(x)dx > N—(e+8-1) 219)

(220)

o 2
} > N-E
o ~Y

inf sup E H F—
I fexs

} > y-min{a 55 (921
«

the proof of the minimax lower bound of density estimation
with ¢ criterion is complete.

APPENDIX F
PROOF OF PROPOSITION 1

In this appendix, we show a lower bound of the ¢
estimation error of the kernel density estimator. Recall that
the kernel density estimator is defined as

N
1 X
)th;K<

in which [ K (u)du = 1. For simplicity, we assume that
K is supported in B(0, 1).

X) : (222)



Firstly,

ef|7-s B {1760~ oolax) |

(/ fetreon - ool ax) '
1f * Kn = fll, (223)

in which x means convolution and K,(-) = K(-/h)/h%
f * Kp(x) is a weighted average of pdf in B(x,h). Then
for arbitrary f that satisfies assumption (a)-(c), we have

J

I
=

v

1f* Kn = flly 2 0° (224)
Moreover, define
L if x|l <r
x)={ Wyt 225
fO( ) { CTO if ||X—C|| < R, ( )

in which ||c|| is sufficiently large so that B(0, r) and B(c, R)
do not intersect.

In order to ensure that fo(x) satisfies Assumption (c), we
set

r = (Nvugh?)™ 7", (226)

and for x ¢ B(0,7) U B(c, R), fo is constructed so that
Assumptions (a)-(c) are satisfied. Denote Ny as the number
of samples in B(0,r). Then from Chernoff inequality, for
arbitrary e, for sufficiently large N,

P(NO > 2f0(X)’Ud’I"dN) 67(2 1n271)f0(x)”d""dN

IAIA

€. (227)

Note that f(x) > 0 only if B(x,h) contains at least one
sample. Hence, with probability at least 1 —e¢, for sufficiently
large N,

v ({x1f(x) = 0})

> v =V (B0, N {xI/(x) > 0})
> ugr? — Novgh?
> wgr?(1 — 2fo(x) Nvgh?)
. %Wd. (228)
Then
-1, = ([1700-seorax)”
> ( () — F1(F ) > o>dx) ’
B 1 \“1 c
- {(Nvdhd) 2”‘”"]
IO
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From (226), we have

E[|7- 1] |z vnty-= (230)
From (223), (224) and (230), we have
ww sllr- o] J 2 o
€xp

Moreover, the minimax lower bound is
inf sup E [Hf— f
f ress

Kernel density estimator can not have a better convergence
rate than the minimax lower bound. Therefore

inf sup E {Hf—f‘
h fexp

| 2 yomlat 5 @)

2(a+B8-1) 2

} > N @ saraaa aia ), (233)

APPENDIX G
PROOF OF THEOREM 6

Despite that for the ¢, error we do not use an adaptive
kNN estimator, for the convenience of analysis, we still pick
an arbitrary a > 0, and define

_ 2e4Ca;
" Nuga?’

This construction ensures that if f(x) > f., then Lemma 4
holds for all » < a. Define

fe (234)

S ={xlfx) > [}, (235)
and divide S into two parts:
S1 = {x|B(x,h) C S}, (236)
Sy = S\ S5, (237)
in which
h:min{(llfi)d,;}a (238)

We provide the uniform bound of the estimation error within
S and S¢ separately.

Bound in S. Similar to the case with bounded sup-
port, find ay,...,a,, such that UB(a;,r) covers S. Define
A(N, k) such that

max {D <k;71|k];1 + A(N, k)) ,

k—1 k-1 1 dn

Then follow steps in the proof for distributions with bounded
support, with probability at least 1 — ¢/2,

(239)

P - S <A, o



for all © = 1,...,n. Similar to Lemma 2, it can be shown
that
k2 4
A(N, k) < 4W2 In =2 (241)

From Lemma 3,

P(B(a;,a)) > f_(x,a)vga® > e~ % f(x)vga’

2k
> e Y fygat > = (242)
N
As long as (240) holds, for sufficiently large N,

P(B(a;, p)) <
p<a.
Then the bounds of I;(x), I2(x) and I5(x) are the same
as Appendix B, except that (115) becomes
kE—1 k—1
NV(Blarr)  NP(Blasp) )
k—1 ‘P(B(ai,p))—f(ai)V(B(ai,p))’
NP(B(a;, p)) V(B(ai; p))

(k—1)/N + A(N,k) < 2k/N. Therefore,

(@) & 2 a; n
S NPB@ ) @) (Hl f(az))
k—1 ¢*C«P(B(ai, p)) ) * a.
= NP(B(a;, p)) C( “df(az) ) (@)
<1+ln1>
f(a;)
TN i d>2
S {(’)mN if d—1 34

in which (a) comes from Lemma 4.
Therefore, following the remaining steps in Appendix B,
we have

suplf(x) — f(x)| S
xeSs

(E)IImN+k 2 /Y if d>2

EmN+k 2 /Y i d=1

Bound in S°.

Recall the definition of S; in (236), for all x ¢ S, there
exists a x’ such that ||x” — x|| < hand x’ ¢ S. Since X’ ¢ S,
f(x') < fe. Hence for all x ¢ Sy,

a

(244)

P(B(x,h)) < fi(x,h)V(B(x,h))
S f+(X/» Qh)V(B(Xa h))
< 2fV(B(x,h)). (245)
From (238),
2f.V(B(x,h)) < % (246)

Define event E;, such that X; ¢ S and pp_1(X;) <
ro, in which pg_1(X;) is the (k — 1)-th nearest neighbor

27

distance of point X;, and F/ = Ué\leEj. Then according to
Chernoff inequality,

P(E;) =P (X; & S1, pr—1(X;) <o)
< E [efwfl)P(B(x,m))

(e(N - 1)P(B(Xj,7“0)))k_1 1(X, ¢ Sl)]

k-1

IN
9]
|
ol
=
RS
pi=e DO
(9]
N—
Ead

— o (m2-3)k (247)
Hence

P(E) =P (U, E;) < Ne (2= 2)k, (248)

If k/In N — oo, then for sufficiently large N, P(E) <

€/2. The remaining proof assumes that E does not happen.
This condition holds with probability at least 1 — ¢/2. Then
p(X;) > hif X; ¢ S;. For all x € §°, we have p(x) >
h/2, because if p(x) < h/2, then there exists at least k
points in B(x, h/2). According to the definition of .S, S; and
Sa, B(x,h/2) NSy = 0, thus B(x,h/2) C S¢. Therefore
3IX; € S7, and pr_1(X;) < h, which contradicts with the
assumption that £ does not happen. Therefore p(x) > h/2
holds for all x € S¢. Then

Vo(B(x, 1) > grvah, (249)

and
f(x) < k—1 < k—1
= NV(BGx o)) ~ NV (B (x, 11))

2d(k - 1) c

From (238),
k
fe) £ - (2s1)

From (243) and (251), for sufficiently large N, with proba-
bility at least 1 — ¢,

sup|f(x) = f(x)| S
()T N+ k3 /Y if

d>2
EmN+E 2 /Y if d=1,2.

APPENDIX H
PROOF OF THEOREM 7

(252)

Define

F0) = ol + g (X22) <ty (X2

2)@%)



in which fy is a fixed pdf, which ensures that fy(x) > m
for x € B(ay,r) N B(ag,r). g(u) is an arbitrary function
that supports on B(0, 1), has bounded Hessian and reaches
its maximum g,, at u = 0. Then for any estimator f ,

w[li-s] = s ef]f-5]]
fede 00 ve{—1,1} -
2 Ef|f-s ]
1 —
2 Zval 7fU2Hoo€ ND(fU1||fv2)
2 7,267Nrd+4 ) (254)
Let 7 ~ N~=1/(d+4) then
sup B[[[f - f] ] 2 5ot 259)
f€Xc 0
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