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Abstract—Motivated by control with communication con-
straints, in this work we develop a time-invariant data compres-
sion architecture for linear-quadratic-Gaussian (LQG) control
with minimum bitrate prefix-free feedback. For any fixed control
performance, the approach we propose nearly achieves known
directed information (DI) lower bounds on the time-average
expected codeword length. We refine the analysis of a classical
achievability approach, which required quantized plant measure-
ments to be encoded via a time-varying lossless source code. We
prove that the sequence of random variables describing the quan-
tizations has a limiting distribution and that the quantizations
may be encoded with a fixed source code optimized for this dis-
tribution without added time-asymptotic redundancy. Our result
follows from analyzing the long-term stochastic behavior of the
system, and permits us to additionally guarantee that the time-
average codeword length (as opposed to expected length) is almost
surely within a few bits of the minimum DI. To our knowledge,
this time-invariant achievability result is the first in the literature.

Index Terms—Control systems, control with communication
constraints, network control theory, source coding.

I. INTRODUCTION

I
N THIS work we consider LQG control over commu-
nication networks. Our motivation is a scenario where

measurements from a remote sensor platform are conveyed
wirelessly to a controller. In such a system, the bitrate of the
feedback channel can be tied directly to the amount of physical
layer resources (e.g., time, bandwidth, and power) that must
be allocated to attain satisfactory control performance. Such
resources are inherently scarce. This motivates approaches to
control that minimize communication overhead; potentially
enabling, for example, automated factories where many agents
share the communication medium [1].

We attack this problem via data compression; we develop
quantizers and variable-length codecs for the LQG feedback
link. We consider a setup where at each discrete timestep an
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encoder, co-located with a sensor that can fully observe the
plant, conveys a variable-length packet of bits to a decoder
co-located with the controller. We discuss various prefix con-
straints that can be imposed on the packets. Such constraints
allow the decoder, and possibly other users sharing the same
communication medium, to uniquely identify the end of the
encoder’s transmission. This can enable efficient resource shar-
ing. The packet bitrate provides a notion of communication
cost. We prove that for a fixed control performance, the
approach we propose nearly achieves known lower bounds
on the minimum achievable bitrate. We presently summarize
our contribution.

A. Our Contribution

There have been several data compression architectures
proposed in the prior literature for LQG control with near-
minimum bitrate variable-length feedback. While several
approaches are known to satisfy fixed constraints on the con-
trol cost with near-minimum bitrates, e.g., [2], [3], [4], these
approaches generally require that the output of a quantizer be
losslessly encoded using a time-varying source code; nom-
inally a lossless code perfectly adapted to the probability
distribution of the quantizer’s output at every time t. In this
work, we use tools from ergodic theory to demonstrate that
an architecture based on that of [3] can be used to achieve
near minimum prefix-free bitrate LQG control with a com-
pletely time-invariant quantizer and prefix-free code design.
As the prefix-free code used to encode the quantizer output
is fixed, the scheme satisfies a well-motivated time-invariant
prefix constraint that is significantly stronger than those con-
sidered in the prior art. To our knowledge, this is the first such
result in the literature.

B. Literature Review

This work considers minimum bitrate LQG control via
dithered uniform quantization and variable length coding.
An early paper to consider stabilizing a linear system with
uniformly quantized feedback measurements was [5]. For a
deterministic system, [5] analyzed the long-term behavior of
the chaotic dynamics of the state vector using ergodic the-
ory. The problem of stabilizing a Gauss–Markov plant over a
feedback channel with a random, time-varying rate was con-
sidered in [6]. In the scalar case, a necessary and sufficient
condition for stabilization was derived. In contrast, our work
considers the problem of attaining a fixed control cost with
variable-length coding (the number of bits to be transmitted
at each time is chosen by the encoder, not by nature). This
line of research follows from a model for LQG control with
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minimum rate variable-length feedback from [2]. For scalar
plants, [2] lower bounded the time average expected bitrate
of a prefix-free source codec used as an LQG feedback chan-
nel in terms of Massey’s directed information (DI) [7]. This
motivated a rate-distortion problem for the tradeoff between
(a lower bound on) communication cost, quantified by the DI,
and LQG control performance. The rate distortion problem
was solved for a restricted class of encoders in [2] and a
more general class in [8]. Using entropy-coded dithered uni-
form quantization (ECDQ), [2] and [8] demonstrated that the
DI lower bound was nearly achievable. ECDQ uses uniform
quantizers and a sequence of independent, identically dis-
tributed (IID) uniform random variables shared between the
encoder and decoder to effectively whiten the reconstruc-
tion error [9]. While under some assumptions (e.g., high
quantizer resolutions and smooth source densities [10]), the
reconstruction error in uniform quantization is approximately
uniform over the quantizer cell and uncorrelated with the
input, if a dither is used these hold exactly. Furthermore,
ECDQ has an intuitive rate analysis. In [2] and [8] it was
assumed that at every timestep a quantized measurement is
encoded using Shannon-Fano-Elias (SFE) prefix coding. In
the codeword length analysis, it is assumed that the SFE
codec used is designed optimally at each timestep for the
conditional probability mass function (PMF) of the quantizer
output given the dither realization. The proof of the near-
achievability of the lower bounds then followed from [9]’s rate
analysis.

The quantizer and source codec designs we propose follow
from analyzing a DI/LQG cost rate-distortion function. While
the DI-based bitrate lower bound in [2] purported to apply
to systems using dithering, an error was discovered in [11].
Revised proofs in [11] (see also [12]) and [13] established
that the DI lower bound on time average bitrate holds even
when the encoder and decoder share randomness. The rate-
distortion formulation of [8] was extended to MIMO plants
in [14]. In particular, [14] analyzed the optimization over a
randomized encoder and decoder policy space. This lead to
a formulation of an optimal test channel consisting of an
“encoder” that conveys a linear/Gaussian plant measurement
to a “decoder/controller” consisting of a Kalman filter (KF)
and certainty equivalent controller. The minimal DI attainable
for any limit on LQG control performance was shown to be
a convex (log-det) optimization. In [4], via [15], the DI lower
bound for prefix-free codes was extended to the more general
class of uniquely decodable codes. Analytical lower bounds
on the DI cost as a function of control performance were also
derived. The lower bounds in [4] are applicable to plants with
non-Gaussian process noise. Our work is also related to nonan-
ticipative rate distortion theory and its application to the causal
tracking of Gauss/Markov sources (cf. [16] and [17]). In par-
ticular, a rate-distortion lower bound on the bitrate required
to asymptotically estimate the state of an uncontrolled system
is computed in [18] and [19] via dynamic programming and
reverse waterfilling.

In [3], the achievability approach from [2] was extended to
MIMO plants. In [3], linear measurements, dithered element-
wise uniform quantization, KFs, and certainty equivalent

control are used to develop a system where the feedback from
plant to controller is discrete but with system variables with
identical means and covariances to those in [14]’s optimal test
channel. This ensures that the LQG performance is equivalent
to that in the test channel, and leads to an asymptotic bound
on the conditional entropy of the quantizer output (given the
dither) within a few bits of the DI lower bound. This result
proved that conveying the quantized measurements from the
encoder to the decoder via a time-varying SFE codec that
accounts for the dither asymptotically achieves a time aver-
age bitrate near the lower bound. Dithered quantization and
time-varying entropy coding is likewise used in [19] to demon-
strate the near-achievability of the respective lower bounds.
An achievability approach not relying on dithered quantization
was provided in [4]. The approach in [4] uses lattice quanti-
zation and entropy coding. In particular, using a bound on the
output entropy of a lattice quantizer from [4], [20] demon-
strates that the entropy of quantized innovations is close to
a corresponding lower bound in the high rate/strict control
cost regime. While the quantization/coding approaches in [3],
[4], and [19] can be shown to nearly achieve respective lower
bounds, they rely on time-varying lossless source codecs.

The upper bounds on achievable rate in [2], [3] and [4]
are developed in terms of the output entropy of a quantizer.
While a lossless codec can be used to encode the quantizations
into a variable-length binary string without delay and with an
expected length close to this entropy, this generally requires
the codec to be adapted, at every timestep, to the probability
distribution of the quantizer output. This complication is com-
pounded in [2] and [3], as the source codec must be adapted to
the conditional probability distribution of the quantizer output
given the dither.

Work on control with fixed-length feedback is also rel-
evant. It is well established that a linear plant driven by
unbounded process noise cannot be stabilized in the mean
square sense with feedback that undergoes time-invariant,
memoryless, fixed-length quantization [21]. The problem of
minimum bitrate stabilization with fixed-length feedback was
considered in [22], [23], and [24]. Stabilization via an adap-
tive (zooming) fixed-length quantizer was considered in [22].
Using tools from ergodic theory, [22] analyzed the long-term
behavior of the state and quantizer parameters and proved
the existence of limiting distributions. It is proven that a
particular quantizer achieves finite control cost [22]. In the
present work, we will use similar theory to prove time-
invariant achievability results for variable-length coding under
a constraint on LQG cost. In [23], a theoretical analysis was
conducted to determine the minimum necessary and sufficient
fixed-length feedback bitrate required to stabilize an unstable
scalar linear system driven by process noise with a bounded
α moment. The minimum bitrate required to asymptotically
stabilize the system in any moment β < α is shown to
exceed the plant’s autoregressive coefficient by at most one
bit. This analysis unified special cases appearing in prior work.
A fixed-length stabilization algorithm (a time-varying quan-
tizer design) that achieves [23]’s fundamental limit in the
presence of unbounded process noise was proposed in [24].
In [25], fixed-length quantizers were designed to minimize
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control cost. Using a Lloyd-Max style quantizer designed at
each timestep, an optimal greedy control policy was developed
and exhibited competitive performance [25]. In our work we
consider the less restrictive variable-length feedback setting.

There is also relevant work pertaining to fixed and vari-
able length strategies for joint-source channel coding. In an
early work considering feedback over noisy communication
channels, [26] proposed to design fixed-length encoder and
controller strategies to minimize LQG cost via an alternat-
ing optimization. Dynamic programming optimizations for the
optimal controller given a fixed encoder, the optimal encoder
given fixed controllers, and related structural results were
derived. More recently [27] developed a family of stabiliz-

ing codes for stabilizing and controlling linear systems over
a packetized erasure channel. Essentially, sequences of packet
messages are designed such that performance guarantee holds
given that some fraction of the packets arrive.

In this work, we refine the analysis on the dithered quan-
tizer output entropy from [3]; restating classical results that
reduce the space-filling gap and bound the unconditioned out-
put entropy of the quantizer. We use ergodic theory to analyze
the long-term behavior of the system, and demonstrate that it
is sufficient to encode the quantizer outputs using a fixed,
time-invariant entropy code without incurring an appreciable
increase in communication cost over [3]. In particular, we
use results from [28] to prove the existence of an invariant
measure for the Markov chain that describes the quantizer’s
inputs. We then use theorems from [29] to verify that the
chain both converges to the invariant measure and has an
ergodic property. Our proof of this measure’s existence follows
from an analysis of Lebesgue weakly transient sets, which,
for Markov chains in Euclidean spaces, provide a necessary
and sufficient condition for the existence of an invariant mea-
sure with a strictly positive probability density function (PDF).
The convergence and ergodicity of the chain is more-or-less
immediate via the verification of an irreducibility condition
often encountered in the literature on Markov Chain Monte
Carlo [29]. We propose to encode the quantizations using
a fixed time-invariant SFE–style source codec designed for
the quantizer output PMF induced the invariant measure. Our
use of a fixed prefix code ensures that the system satisfies
a stronger prefix constraint with respect to prior approaches.
The ergodic property leads to a novel “almost sure” guarantee
on the system’s time average codeword length (as opposed to
time average expected length). We then use basic information
theoretic inequalities to demonstrate that the Kullback-Leibler
(KL) divergence (relative entropy) between the true quan-
tizer output at time t and the output induced by the invariant
measure tends to zero as t → ∞. This recovers a guar-
antee on the time average expected codeword length. After
the initial submission of this work, we generalized our initial
results on time-invariant achievability to a more general class
of LQG control systems. This work’s revision incorporates
these generalizations, some of which appear in the conference
proceedings [30].

Before concluding our discussion of the prior art, it worth
mentioning that the mathematical machinery used to estab-
lish our main result (namely the proofs pertaining to the

existence of the limiting distribution, its ergodic properties,
and proof of the chain’s convergence in the KL sense) are
not the only relevant tools available. In particular, in [31] a
generalization of the notion of Feller regular Markov kernels
(cf. [32]) was introduced and used to study the invariance
and convergence properties of various adaptive quantization
schemes. In the context of quantized control over an erasure
channel, the theory of petite sets was used in [33] to establish
positive Harris recurrence for the general state space Markov
chain describing the adapted quantizer bin size and the system
state. Such chains necessarily admit an invariant probability
measure [33]. There is recent work relating a general state
space Markov chain’s convergence to an invariant measure
in the total-variation sense to convergence in sense of KL
divergence [34]. In [35], this result is used to analyze the
stochastic stability of nonlinear filters in controlled dynamical
systems. A nonasymptotic analysis of the KL-sense conver-
gence of Langevin Markov chain Monte Carlo was performed
in [36] via viewing the diffusion as a gradient flow (path of
steepest descent) in the space of probability measures. For
completeness, in this work we provide a direct, simple proof
via Shannon-type inequalities that the our quantizer’s outputs
converge in the KL sense to the relevant limiting distribution.

Notation and Organization: Constant scalars and vec-
tors are denoted by lower-case letters x. If x is a vector,
[x]i denotes its ith element. For vectors let ‖x‖2 denote the
Euclidean norm, and let ‖x‖∞ = maxi |[x]i|. Matrices are
denoted by capital letters X, the identity matrix in R

m×m

by Im, the 0 vector in R
m by 0m, and the 0 matrix in

R
m×m by 0m×m. Let ‖X‖2 denote the largest singular value

of X. Let ρmax(X) denote the spectral radius of X, namely
ρmax(X) = max |λ| s.t. λ is an eigenvalue of X. We write
P(S)D for “symmetric positive (semi)definite”, and let S

m
+

denote the set of m × m PSD matrices. We let �, � denote
the standard partial order on the PSD cone, e.g., if A, B ∈ R

m,
we write A � B if A − B is PD, likewise A � B if A − B

is PSD. Random scalars or vectors are written in boldface x.
If a is discrete, we write Pa[a = a] = Pa[a], likewise for
conditional PMFs. We write a ⊥⊥ b to denote that a and b

are independent. We write a
a.s.= b if Pa,b[a = b] = 1, and

define
a.s.
≥ b,

a.s.
< b, etc. analogously. For x a random vector,

cov(x) = E[xxT] − E[x]E[x]T. Denote the set of finite-length
binary strings {0, 1}∗. For time domain sequences, let {xt}
denote (x0, x1, . . . ), xb

a = (xa, . . . , xb) if b ≥ a, and xb
a = ∅

otherwise. We let xb = xb
0. For a topological space X, let

B(X) denote the standard Borel σ -algebra of X. For Euclidean
spaces, let λ denote the Lebesgue measure (e.g., if X is R

n,
then for K ∈ B(X), λ(K) is the volume of K in R

n). For a
set K, define the indicator function of x ∈ K as 1x∈S .

In Section II we formulate the problem of LQG con-
trol with minimum rate prefix-free coding in the feedback
link. Section III restates the rate-distortion formulation and
overviews the optimal test channel from [14]. Our main results
are in Section IV. We begin by overviewing the achiev-
ability approach and its key ingredients in Section IV-A.
Section IV-B provides an overview of our time-invariant avail-
ability approach, together with a statement of our main result.
We prove the main result in Section IV-C, relegating the proofs
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Fig. 1. The system model with dithering. The encoder policy allows the
codeword at to be generated randomly given “all the information known to the
encoder at time t”. When at arrives at the decoder, the decoder can randomly
generate its control input given at as well as its previous knowledge. Notably,
both the encoder and decoder share access to δt , an IID sequence generated
“independently” of all past system variables.

of some lemmas to Appendix A in the online supplementary
material. We conclude in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the system model depicted in Fig. 1. We
consider a time-invariant MIMO plant controlled via a feed-
back model where communication occurs over an ideal (delay
and error free) binary channel. The plant is fully observable
to an encoder/sensor block, which conveys a variable-length
binary codeword at ∈ {0, 1}∗ over the channel to a com-
bined decoder/controller. Upon receipt of the codeword, the
decoder/controller designs the control input. Denote the state
vector xt ∈ R

m, the control input ut ∈ R
u, and let wt ∼

N (0m, W) denote processes noise assumed to be IID over
time. We assume W � 0m×m, i.e., the process noise covariance
is full rank. We assume that x0 ∼ N (0, X0) for some X0 � 0.
For A ∈ R

m×m the system matrix and B ∈ R
m×u the feedback

gain matrix, for t ≥ 0 the plant dynamics are given by

xt+1 = Axt + But + wt. (1)

To ensure finite control cost is attainable, we assume (A, B)

are stabilizable.
For generality, we assume that the encoder/sensor and the

decoder/controller may be randomized. In Fig. 1, we assume
that the encoder/sensor and decoder/controller share access to
a common random dither signal, {δt}. The dither is assumed to
be IID over time. In real-world systems, this shared random-

ness can be effectively accomplished using two synchronized
pseudorandom number generators at the encoder and decoder.
The encoder/sensor policy in Fig. 1 is a sequence of causally
conditioned Borel measurable kernels denoted

PE
[

a∞
0 ||δ∞

0 , x∞
0

]

=
{

PE,t = P
at|at−1

0 ,δt
0,x

t
0

}

t
. (2)

The corresponding decoder/controller policy is given by

PC
[

u∞
0 ||a∞

0 , δ∞
0

]

=
{

PC,t = P
ut|at

0,δ
t
0,u

t−1
0

}

t
. (3)

Note that under the dynamics (1), xt
0 is a deterministic func-

tion of x0, at−1
0 , ut−1

0 , and wt−1
0 . We enforce conditional

independence assumptions in the system model by a factor-
ization of the one-step transition kernels for at, δt, ut, and wt.
The assumed conditional independence relationships induced
between the system variables are illustrated through the fac-
torizations of the transition kernels in (4) at the bottom of the
page, and are discussed in Fig. 1. For A,D,U ,W measurable
subsets, for t ≥ 0, we assume the transition kernels factorize
via (4a). The conditional measure of (a0, δ0, u0, w0) given x0

is given in (4b).
The length of the codewords {at} quantifies the communi-

cation cost. For a codeword at ∈ {0, 1}∗, denote its length
in bits by �(at). The problem of interest is to minimize the
time average expected bitrate subject to a constraint on con-
trol performance, quantified via the standard LQG cost. We
will impose prefix constraints on the codewords {at}. These
constraints will allow the decoder (and possibly other agents
sharing the same communication medium) to uniquely identify
the end of the transmission from the encoder. Three possible
prefix constraints are:
Prefix Constraint 1. For any realizations (at−1

0 = at−1
0 , δt

0 =

δt
0, ut−1

0 = ut−1
0 ), for all distinct a1, a2 ∈ {0, 1}∗ with

P
at|at−1

0 ,δt
0,u

t−1
0

[at = a1|at−1
0 = at−1

0 , δt
0 = δt

0, ut−1
0 = ut−1

0 ] > 0

and P
at|at−1

0 ,δt
0,u

t−1
0

[at = a2|at−1
0 = at−1

0 , δt
0 = δt

0, ut−1
0 =

ut−1
0 ] > 0, a1 is not a prefix of a2.

Prefix Constraint 2. For all distinct a1, a2 ∈ {0, 1}∗ with

Pat [at = a1] > 0 and Pat [at = a2] > 0, a1 is not a prefix
of a2.

Prefix Constraint 3. For all i, j and distinct a1, a2 ∈ {0, 1}∗

with Pai [ai = a1] > 0 and Paj[aj = a2] > 0, a1 is not a prefix
of a2.

Prefix Constraints 1 and 2 were defined in [13]. Constraint 1
is the least strict. It allows any agent with knowledge of the
information possessed by the decoder at time t to uniquely
identify the end of the encoder’s transmission at time t. A
downside, however, is that this information may be neces-

sary to determine the end of the codeword. This complicates
the system architecture and may inhibit other agents from
recognizing the end of the transmission. Constraint 2 is notion-
ally stricter; it guarantees that any agent who knows the
codebook used by the encoder at time t (precisely, the set
{b ∈ {0, 1}∗ : Pat [at = b] > 0}) can uniquely identify the

P
[

(at+1 ∈ A) ∩ (δt+1 ∈ D) ∩ (ut+1 ∈ U) ∩ (wt+1 ∈ W)|at
0, δ

t
0, ut

0, wt
0, x0

]

= PE,t+1

[

at+1 ∈ A|at
0, δ

t+1
0 , xt+1

0

]

PC,t+1

[

ut+1 ∈ U |at+1
0 , δt+1

0 , ut
0

]

P
[

δt+1 ∈ D
]

P
[

wt+1 ∈ W
]

, t ≥ 0, (4a)

P[(a0 ∈ A) ∩ (δ0 ∈ D) ∩ (u0 ∈ U) ∩ (w0 ∈ W)|x0] = P[δ0 ∈ D]PE,0[a0 ∈ A|x0, δ0]PC,0[u0 ∈ U |a0, δ0]P[w0 ∈ W] (4b)
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end of the transmission. Under Constraint 2, agents on the
same network can identify the end of the transmission with-

out knowing (at−1
0 , δt

0, ut−1
0 ). Constraint 3 is a time-invariant

version of Constraint 2. Constraint 3 requires that the pre-
fix condition holds across time, ensuring that any codeword
used at time t is not a prefix of any codeword used at
time t + m for any m. Any user with knowledge of the set
{b ∈ {0, 1}∗ : ∃ t s.t. Pat [at = b] > 0} can uniquely identify
the end of the transmission at any time t. Notably, to identify
the end of the transmission, a user need not know the code-
book used at time t, but only the strings lying in the union of
codebooks across time. Note that Constraint 3 is satisfied if
the same prefix-free code is used for all t.

We are interested in the optimization, for codewords con-
forming to Prefix Constraints 1–3:

inf
PE,PC

lim sup
T→∞

1

T + 1

∑T

t=0
E[�(at)]

s.t. lim sup
T→∞

1

T + 1

∑T

t=0
E

[

‖xt+1‖2
Q + ‖ut‖2

	

]

≤ γ, (5)

where Q � 0, 	 � 0m×m, and γ is the maximum tolerable
LQG cost. The minimization is over admissible sensor/encoder
and decoder/controller policies described by (2) and (3). In
Section III, we discuss a lower bound on (5) that applies to
all encoder and decoder policies conforming to (4) and any
of the Prefix Constraints 1–3. These bounds follow from [13].
Note that Constraint 1 was the notion of prefix-free consid-
ered in [2] and [3], while the “prefix-free” version of the
approach in [4] conforms to Constraint 2. To our knowledge,
no variable-length compression architecture for LQG control
in the prior work is known to both satisfy Constraint 3 and
also achieve a codeword length provably close to any known
lower bound on the optimization in (5).

III. RATE DISTORTION LOWER BOUND

We summarize the relevant results from [13] and [14] into
the following theorem.

Theorem 1: Let the minimum communication cost attained
by the optimization in (5) for an LQG cost constraint γ be
denoted L(γ ). Let S be a stabilizing solution to the discrete
algebraic Riccati equation (DARE) ATSA − S − ATSB(BTSB +
	)−1BTSA + Q = 0m×m, K = −(BTSB + 	)−1BTSA, and
� = KT(BTSB+	)K. Define the convex log-det optimization

R(γ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

inf
P,�,∈Rm×m

P,��0m×m

1
2

(

− log2 det � + log2 det W
)

s.t. Tr(�P) + Tr(WS) ≤ γ ,
P � APAT + W,
[

P − � PAT

AP APAT + W

]

� 02m×2m.

(6)

For a system conforming to Fig. 1, (4), and any of Prefix
Constraints 1–3 we have L(γ ) ≥ R(γ ).

The proof of Theorem 1 is immediate from [13] given
that Constraint 3 is more stringent than Constraint 2. The
interpretation of the optimization in (6) is aided by the
three-stage test channel illustrated in Fig. 2.

Fig. 2. The time-invariant three-stage test channel does not conform to
the system model in Fig. 1, but will be used to analyze the approaches we
propose.

The test channel consists of an “encoder” that conveys a lin-
ear/Gaussian plant measurement to a “decoder”/controller. The
decoder has a time-invariant KF to track the state, followed
by a standard certainty equivalent controller. Denote the min-
imizing P from (6) by P̂. Let C ∈ R

m×m and V ∈ R
m×m,

V � 0m×m be any such matrices that satisfy

P̂−1 −
(

AP̂AT + W
)−1

− CTV−1C = 0m×m. (7)

The decoder receives the measurement yt = Cxt + vt where
vt ∼ N (0m, V) IID and vt ⊥⊥ xt

0. Let P̂+ = AP̂AT + W and
let J = P̂+CT(CP̂+CT + V)−1. Denote the filter’s sequence
of prior and posterior state estimates as {xt|t−1} and {xt|t}. Let
x0|−1 = 0. The filtering recursion is xt|t = xt|t−1 + J(yt −
Cxt|t−1) and xt|t−1 = Axt−1|t−1 + But−1. Define the prior and
posterior error processes and their respective covariances via
et = xt − xt|t−1, Pt|t−1 = E[ete

T
t ] and et|t = xt − xt|t, Pt|t =

E[et|teT
t|t]. Note that for all t ≥ 0, E[et] = 0 and E[et|t] = 0.

When W � 0, a discrete Lyaponov equation can be used to
establish that for any C satisfying (7), (A, C) is detectable;
see [37, below (25)] for a similar argument. Since W � 0m×m,
(A, W

1
2 ) is stabilizable. This implies that limt→∞ Pt|t−1 = P̂+

and limt→∞ Pt|t = P̂ [38]. Recall K = −(BTSB + R)−1BTSA.
The control input at time t given by ut = Kx̂t|t. It can be
shown (see [14]) that, in the architecture of Fig. 2 the control
cost satisfies

lim
T→∞

∑T
t=0 E[‖xt+1‖2

Q + ‖ut‖2
R]

T + 1
= Tr(SW) + Tr(P̂�)

≤ γ , (8)

where (8) follows as P̂ is a feasible solution of (6). The
minimum of (6) is given by (see [14])

R(γ ) = 1

2
log2

det P̂+
det P̂

. (9)

We reiterate that (9) lower bounds the communication cost
attainable in the (original) architecture in Fig. 1. We will
use (8), (9), and the test channel in the following section on
achievability.

IV. UPPER BOUNDS (ACHIEVABILITY)

In this section, we present theoretical results demonstrating
that, assuming access to a uniform dither signal in the archi-
tecture of Fig. 1, uniform (dithered) quantization coupled with
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Fig. 3. The achievability architecture. The dither sequence {δt} are shared
random vectors that are IID uniform on [−
/2,
/2]m. The dither realization
may be used by the entropy codec, but need not be (we consider both cases).

time-invariant prefix-free source coding strategies can be used
to achieve nearly optimal communication bitrate (with respect
to the DI lower bound in (6)). We propose one approach where
quantizations are encoded conditioned on the realization of the
dither, but without any other time adaptation. This approach
conforms to Prefix Constraint 1, and is shown to achieve the
same communication cost as the architecture in [3]. We then
propose an approach where quantization is performed with
dither, but the encoding of the discrete quantizations into code-
words is done without regard to the dither realization. This
leads to a completely time-invariant approach; the same prefix-
free codec is used to encode the quantizations at all time. This
latter approach conforms to Prefix Constraint 3, and achieves
a bitrate at most one-bit-per-plant-dimension worse that the
time-varying approach in [3].

Fig. 3 illustrates an overview of the framework we will
use to demonstrate achievability in this section. The approach
conforms to the architecture in Fig. 1 with the dither signal
chosen as an IID seqeuence of element-wise mutually inde-
pendent uniform random vectors. At a high level, at every
time t, encoder produces a particular linear measurement of the
plant, which it then quantizes into a discrete random variable
(a quantization), qt, using an elementwise uniform quantizer

with subtractive dither. Each element of the dither sequence δt

has IID elements with [δt]i uniform on [−

2 , 


2 ]. The encoder
then encodes qt into a codeword, at, using a lossless Shannon-

Fano-Elias (SFE) prefix-free code. The decoder recovers qt

exactly, and then designs the control input ut using qt, δt, and a
previous KF estimate. In the next subsection, we describe SFE
codes and dithered uniform quantization in the detail necessary
to proceed with our analysis.

A. Key Ingredients

1) Shannon-Fano-Elias Codes [39]: In this section we
briefly outline the SFE approach to prefix-free source cod-
ing. We will pursue a general treatment, but will specialize
the results to the quantization architecture in Fig. 3.

Let q denote a discrete random variable with (countable)
range A. Without loss of generality, it can be assumed that A =
N (if the alphabet is countably infinite) or A = {0, 1, . . . , r},
and that Pq[q] > 0 ∀ q ∈ A. Let δ be a random variable

on support X assumed to be known to both the encoder and
decoder. Consider the problem of encoding q into a prefix-
free codeword, such that it can be recovered at a decoder. In
this scenario, we view q as a quantization, and δ as shared
randomness, akin to the dither sequence. Let Fq|δ(q|δ) =
Pq[q < q|δ]+Pq|δ[q|δ]/2. Define what we will refer to as the
“unsorted, conditional” encoding CU

q|δ : A ⊗ X → {0, 1}∗ as

CU
q|δ(q|δ) =

(

the binary expansion of Fq|δ(q|δ)
truncated to

⌈

− log2

(

Pq|δ
[

q|δ
])⌉

+ 1 bits.
)

(10)

It can be shown that for any realization δ = δ and q1, q2 ∈
A with Pq|δ[q1|δ],Pq|δ[q2|δ] > 0 (e.g., any two quantiza-
tions q1 and q2 with nonzero probability of occurring given
δ = δ), CU

q|δ(q1|δ) is not a prefix of CU
q|δ(q2|δ) and vice

versa [39, Ch. 5.9]. This property mirrors Prefix Constraint 1,
e.g., codewords are prefix-free given the knowledge shared by
the encoder and decoder. If CU

q|δ is used to encode q (given
the realization of δ), then the codeword length satisfies

H(q|δ) ≤ Eq,δ

[

CU
q|δ(q|δ)

]

≤ H(q|δ) + 2. (11)

We now state a construction that achieves a stronger prefix
constraint. Define Fq(q) = Pq[q < q] + Pq[q]/2, and define
the “unsorted, unconditional” encoding function CU

q : A →
{0, 1}∗ as

CU
q (q) =

(

the binary expansion of Fq(q) truncated

to
⌈

− log2

(

Pq

[

q
])⌉

+ 1 bits.
)

(12)

If can be shown that for any distinct q1, q2 ∈ A with
Pq[q1],Pq[q2] > 0, CU

q (q1) is not a prefix of CU
q (q2) and

vice-versa. The encoding CU
q satisfies a prefix-property like

that in Constraint 2; namely the codewords are “prefix-free”
irrespective of the realization of δ [39, Ch. 5.9]. This encoding
scheme achieves a codeword length of H(q) ≤ Eq,δ[CU

q (q)] ≤
H(q) + 2. It turns out that the upper bound on codeword
length can be reduced is the encoder prepossesses q to pro-
duce a random variable that is “sorted” in order of decreasing
probability mass. Assuming without loss of generality that
A = N, let s : A → A be a bijection that re-indexes the
support of q such that Pq[s(0)] ≥ Pq[s(1)] ≥ Pq[s(2)] . . .

Such a bijection s always exists, however it may be extremely
difficult and/or computationally unreasonable to find [15].
Let q = s(q) and the function Fq : A → [0, 1) by
Fq(q) = Pq[q < q] = Pq[q < q]. Define the “sorted,
unconditional” SFE code CS : A → {0, 1}∗ by

CS
q(q) =

(

the binary expansion of Fq(s(q)) truncated

to
⌈

− log2

(

Pq

[

s(q)
])⌉

bits.
)

(13)

It can be shown that for distinct q1, q2 ∈ A, we have that
a1 = CS

q(q1) is not a prefix a2 = CS
q(q2) and vice versa

(cf. [39, Problem 5.28]). We have that H(q) = H(q) and
H(q) ≤ Eq[CS

q(q)] ≤ H(q)+1. We could also define a “condi-
tional sorted” codec CS

q|δ which would allow the upper bound
in (11) to be reduced by one bit. In general however, this would
require the sorting function to depend on the realization of δ.
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2) Uniform Quantizers With Subtractive Dither: In this
section, we introduce some key properties pertaining to
element-wise uniform quantization with subtractive dither.
These results are not new; many are generalizations of results
from [9] described in detail in [3]. Let (
Z)m denote the set
of m-tuples of integer multiples of 
, e.g., r ∈ (
Z)m if, for
some r0, . . . , rm−1 ∈ Z, r = (r0
, r1
, . . . , rm−1
). Define
an element-wise uniform quantizer with stepsize 
 > 0 as
Q
 : Rm → (
Z)m via

[Q
(x)]i = k
, if [x]i ∈
[

k
 − 
/2, k
 + 
/2), (14)

where x ∈ R
m, i ∈ {0, . . . , m − 1}. Let z be a random variable

with range in R
m. Let δ = [δ0, . . . , δm−1]T be independent of

z and such that the [δ]i are IID uniform on [−

2 , 


2 ]. When
z is quantized with an element-wise uniform quantizer with
subtractive dither, the quantization is the random variable with
range (
Z)m defined by

q = Q
(z + δ), (15)

the reconstruction is defined as q̃ = q−δ, and the reconstruc-
tion error as v = q̃−z. The following proposition summarizes
some well-known, useful properties of dithered elementwise
uniform quantizers. We use these properties to analyze the
compression architecture of Fig. 3.

Proposition 1: Let z, δ, q, q̃, and v be as defined above.
Assume that E[z] < ∞, and that E[zzT] = Z where Z ≺ ∞.
We have the following.

(i) The ith element of the reconstruction error [v]i is uni-
formly distributed on the interval [−


2 , 

2 ]. The m

elements of v are mutually independent, and v is
independent of z.

(ii) We have H(q) − H(q|δ) ≤ m.
(iii) Let n be a random vector whose elements are IID uni-

form random variables on [−

2 , 


2 ], and let n ⊥⊥ z. Let
N ∈ R

m×m be diagonal with [N]i,i = 
2/12. We have:

H(q|δ) = h(z + n) − h(n) (16)

= h(z + n) + 1

2
log2

(

( 2πe
12 )m

det(2πeN)

)

, (17)

which implies that

H(q|δ) ≤ 1

2
log2

(

det(Z + N)

det(N)

)

+ m

2
log2

(

2πe

12

)

.

(18)

Proof: Claim (i) is a classic result. See [40, Th. 4.1.1] for
a general proof or [3, Lemma 1] for one specialized to this
case. To see (ii), note that H(q)−H(q|δ) = I(q; δ). Note also
both I((q, z); δ) = I(q; δ) + I(z; δ|q) and also I((q, z); δ) =
I(z; δ) + I(q; δ|z), and thus as z ⊥⊥ δ, I(q; δ) ≤ I(q; δ|z). It
is immediate that I(q; δ|z) = H(q|z). Consider the scalar case
(m = 1) and recognize that given z = z, q can be determined
to be in either the quantization “bin” that contains z, or in one
particular adjacent bin. Thus, for m = 1, H(q|z) ≤ 1. For a
general m, the result follows as H(q|z) ≤

∑m−1
i=0 H([q]i|[z]i).

Equation (16) in (iii) is well-established [40, Th. 5.2.1][3,
Lemma 1 (b)], (17) follows from expanding h(n), and (18)

follows as cov(z+n) = Z+N and Gaussian distributions have
the maximum differential entropy among all distributions with
the same covariance matrix.

We use Prop. 1 (iii) and (ii) to develop bounds on code-
word length in the closed loop system of Fig. 3. Prop., 1(i) is
likewise used to analyze the control performance.

B. Time-Invariant Near-Achievability of the Lower Bound:

Overview

In this section, we describe the internal variables in the
closed loop system in Fig. 3. Our description is sequential but
necessarily recursive. Initially, we will abstract lossless source
coding from the system; namely we will assume that at each
time t the encoder in Fig. 3 produces a discrete quantization,
qt which is conveyed exactly to the decoder. This leads nat-
urally to an analysis of the system’s incurred control cost.
We then propose two strategies to losslessly encode the quan-
tizations into prefix-free codewords {at} in a time-invariant
manner. Finally, we state our main result, namely that these
strategies can attain communication costs that nearly achieve
the lower bound in Section III.

Consider the system in Fig. 3, and define C and V to be cho-
sen optimally via the rate-distortion formulation in (6). Since C

and V are defined with respect to the minimizers of (6) via (7),
we can take V = vIm for some v > 0 without loss of gener-
ality (defining C so that P̂−1 − (AP̂AT + W)−1 = CTV−1C,
where P̂ minimizes (6)). The encoder in Fig. 3 includes a ele-
mentwise uniform quantizer with sensitivity 
. The encoder
and decoder share access to a common dither sequence of
uniform random vectors, denoted {δt}. The components of
each δt vector are IID uniformly distributed on [−


2 , 

2 ] and

the sequence {δt} is both IID over time and conforms to the
conditional independence relationships implied by (4). With
foresight, let the quantizer sensitivity and dither support be

 =

√
12v.

In Fig 3, both the encoder and the decoder operate identical
time-invariant KFs. We denote the a priori and a posteriori
estimates computed by these filters as xt|t−1 and xt|t, the cor-
responding estimator errors as et = xt − xt|t−1 and et|t =
xt − xt|t, and the error covariance matrices Pt|t−1 = cov(et)

and Pt|t = cov(et|t). The initial a priori estimate is x0|−1 = 0.
The general intuition behind the architecture in Fig. 3 is that
the state vector xt, the estimates xt|t−1 and xt|t, and the control
input ut are equivalent to those in the three-stage separation
architecture of Fig. 2 up to second order. We demonstrate this
presently.

Assume that at time t, the encoder and decoder’s time-
invariant KFs have identical a priori estimates xt|t−1 (this holds
by design at t = 0). We describe the system in Fig. 3 begin-
ning from the encoder’s input (the upper right of the figure)
in a step-by-step fashion.

1) The encoder forms the linear measurement of the plant
state, Cxt, and the associated Kalman innovation Cet.

2) Assume that the dither sequence satisfies δt ⊥⊥
(at−1, δt−1, ut−1, wt−1, et, xt). This is consistent with
the assumptions in (4). The encoder then produces
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a dithered quantization of the innovation, computing
qt = Q
(Cet + δt).

3) The encoder encodes qt (a discrete random variable) into
the codeword at ∈ {0, 1}∗ using a lossless source code.
The codeword at is conveyed to the decoder. As the
coding is lossless, the decoder recovers qt exactly.

4) The decoder uses the recovered quantization and the
common dither to compute the reconstruction q̃t =
qt − δt. Let vt = q̃t − Cet. From Proposition 1, we
have that vt is a vector with IID elements uniformly dis-
tributed on [−


2 , 

2 ] and that vt ⊥⊥ et. By assumption,

the decoder-side KF’s a priori estimate is also xt|t−1. The
decoder uses this to compute the centered measurement
yt = q̃t + Cxt|t−1, equivalently,

yt = Cxt + vt. (19)

Via (19), yt is a linear measurement of the plant state
with additive uniform noise. Given that vt is a determin-
istic function of δt and et, we have δt ⊥⊥ (et, xt), and
that vt ⊥⊥ et, it can be verified that vt ⊥⊥ xt. The effec-
tive measurement matrix is C, and we have E[vt] = 0m

and cov(vt) = 
2

12 I = V .
5) Note that since the encoder has access to qt, δt,

and xt|t−1, it can also compute the centered measure-
ment yt. Both the decoder and the encoder update
their time-invariant KF estimate using yt. Letting J =
P̂+CT(CP̂+CT +V)−1 as in Section III, the encoder and
decoder compute xt|t = xt|t−1 + J(yt − Cxt|t−1).

6) Let K = −(BTSB + 	)−1BTSA as in Section III. The
decoder forms the certainty-equivalent control input via
ut = Kxt|t, which can also be computed at the encoder.
The decoder feeds the control input into the plant, and
both the encoder and decoder KFs compute prediction
updates via xt+1|t = Axt|t + But. Under this feedback
arrangement, one can demonstrate that the sequence of
reconstruction errors {vt} are IID and that vt ⊥⊥ xt for
all t.

Since the {vt} is a temporally white sequence with covariance
V , and since vt ⊥⊥ xt, the linear measurement model in (19) is,
to second order, identical to the one in the optimal three-stage
test channel discussed in Section III. The principal distinction
is that in Fig. 3, the measurement noise is uniform, rather
than Gaussian (cf. (19)). As the measurement models are the
same to second order, the sequences of KF error covariance
matrices, {Pt|t−1} and {Pt|t} will satisfy the same recursions as
the time-invariant KF in Section III’s three-stage test channel.
Thus, we have for P̂ the minimizing P from (6) and P̂+ =
AP̂AT + W, (cf. the discussion before (8)) limt→∞ Pt|t−1 =
P̂+ and limt→∞ Pt|t = P̂. This leads to the following, via the
equality preceding (8).

Proposition 2: Consider the system of Fig. 3 as described
above. So long as qt is recovered by the decoder at every t,
the system attains lim

T→∞
1

T+1

∑T
t=0 E[‖xt+1‖2

Q + ‖ut‖2
R] ≤ γ.

Regardless as to which lossless encoding scheme is used to
encode the qt into the codewords at, Prop. 2 guarantees that
the system in Fig. 3 achieves the desired constraint on LQG
cost.

In much of the prior work (cf. [3], [4]), it was proposed
to encode quantizations {qt} using time-varying codebooks
that were optimized, at every time t, to either the con-
ditional PMF of qt given the dither realization δt or the
unconditional PMF, i.e., producing codewords at via, e.g.,
at = CU

qt|δt
(qt|δt) or at = CS

qt
(qt). Time-asymptotic bounds on

either lim supt→∞ H(qt|δt) or lim supt→∞ H(qt) were gen-
erally derived, and a Cesáro mean argument then used to
upper bound the time-average expected codeword length. As
the {qi} are not identically distributed, these approaches are
time-varying in that the mapping from quantizations qt (in
the unconditioned case) or from quantizations and dither real-
izations δt (in the conditioned case) must generally vary at
every t. Such “perfect” adaptivity require great deal of com-
putational overhead, and preclude arguments that suggest that
the same bound on communication cost can be achieved with
online, adaptive lossless coding schemes would seek to “learn”
the PMF of qt over time. This motivates an investigation of
time-invariant coding schemes.

In this work, we propose to encode the {qt} in a “time-
invariant” manner. In one approach, we encode qt condi-
tionally with an SFE code designed for a fixed conditional
distribution Pq|δ . In this case, the codewords at are computed
via at = CU

q|δ(qt|δ). This approach will still satisfy Prefix
Constraint 1. While this approach is time-invariant in the sense
that if (qt, δt) = (x, y) and also (qt+1, δt+1) = (x, y), then
at = at+1, using a “conditional” codebook essentially requires
that a different prefix-free codec (of the form (12) or (13))
be constructed for every potential realization of one of the δts
(i.e., the conditional encoding uses the realization of the dither
to select which codebook to use). For that reason, we also con-
sider using a fixed time-invariant codebook of the form (12)
or (13) at all t. In other words, we “unconditionally” encode
{qt} with a fixed code of the form (13) designed using some
fixed PMF Pq, i.e., we assume that the codewords at are given
by at = CS

q(qt). Since a fixed prefix code is used at all t,
the system will conform to Prefix Constraint 3, which is the
strongest, time-invariant constraint.

While generally speaking, the use of a fixed codebook
would result in an increased codeword length, our main
result is that for an unconditional (resp. conditional) code-
book designed for a particular fixed PMF (resp. conditional
PMF) Pq (resp. Pq|δ), there is not an appreciable increase in
communication cost. In particular, {qt, δt} is a Markov chain.
We prove our main result by demonstrating that this chain
has a limiting distribution, and that, in fact, encoding the qt

with a lossless code adapted to the limiting PMF of qt (resp.
conditional limiting PMF of qt given δqt) attains a communi-
cation cost close to the lower bound R(γ ). The analysis also
provides new “almost sure” bounds on the time-average code-
word length (as opposed to expected length). This result is
summarized in the following, and is proven in Section IV-C.

Theorem 2:

(i) There exists a conditional PMF Pq|δ : (
Z)m × [ −

/2,
/2]m → [0, 1] such that if CU

q|δ is as defined
in (10) with respect to Pq|δ , and if the source codec in
Fig. 3 encodes the quantization qt with CU

q|δ given the
dither δt at every t (i.e., at = CU

q|δ(qt|δt) for all t), the
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{at} satisfy Prefix Constraint 1 and their lengths will
almost surely satisfy

lim
T→∞

1

T + 1

T
∑

i=0

�(at) ≤ R(γ ) + m

2
log2

(

2πe

12

)

+ 2,

(20)

and furthermore

lim
T→∞

1

T + 1

T
∑

i=0

E[�(at)]

≤ R(γ ) + m

2
log2

(

2πe

12

)

+ 2. (21)

(ii) With Pq|δ defined as in (i), define Pq(q) =
1


m

∫

s∈[−
/2,
/2]m Pq|δ(q|s)ds. Let CS
q be the “sorted”

SFE code for q∞ as defined in (13) with respect to
Pq. If the system in Fig. 3 uses CS

q to encode the quan-
tization qt at every t (i.e., at = CS

q(qt) for all t), then
the codewords {at} will satisfy Prefix Constraint 3, their
lengths will almost surely satisfy

lim
T→∞

1

T + 1

T
∑

i=0

�(at)

≤ R(γ ) + m

(

1 + 1

2
log2

(

2πe

12

))

+ 1, (22)

and the time-average of expected codeword lengths
satisfies

lim
T→∞

1

T + 1

T
∑

i=0

E[�(at)]

≤ R(γ ) + m

(

1 + 1

2
log2

(

2πe

12

))

+ 1. (23)

(iii) Regardless of which lossless codec is used in Fig. 3, in
addition to the bound in Prop. 2, the control cost almost
surely satisfies lim sup

T→∞
1

T+1

∑T
t=0‖xt+1‖2

Q + ‖ut‖2
R < γ .

In Theorem 2, one can view Pq,δ as the limiting distribu-
tion of the Markov chain for {qt, δt}. Theorem 2 provides
two approaches to losslessly encode the quantizations qt that
are notionally time-invariant. The approach in Theorem 2(i)
proposes to encode and decoder qt conditioned on the real-
ization of the dither δt, which is known at the decoder. In
this approach, the prefix-free codebook used at each t will
generally change, however in contrast to the work in [3], the
codec need not be adapted in both time and with the dither
realization. On the other hand, the approach in Theorem 2(ii)
is truly time-invariant. At every time t, qt is encoded with
a fixed codebook, adapted to the limiting distribution of the
{qt}. This permits us to claim that this approach satisfies
the “time-invariant” Prefix Constraint 3. Notably, Theorem 2
additionally provides an “almost sure” bound on the real-
ization of the time-average codeword length. In addition to
bounds on the “time average of expectations” communication
cost defined in (9), the bounds in (20) and (22) imply that
under the proposed encodings, the realizations of the long-
term time average codeword lengths will almost surely satisfy

the same upper bounds. The result for control performance in
Theorem 2(iii) is analogous.

C. Proof of Theorem 2

In this subsection, we establish a proof of Theorem 2.
We establish that the Markov chain {qt, δt} converges to
some (q, δ). In particular, we demonstrate convergence is
such that the time-average expected communication cost does
not increase. These results follow from a long-term anal-
ysis of the stochastic process {et, δt}. Our analysis relies
on well-established results from ergodic theory from [28]
and [29].

Some properties of {et, δt} will be especially useful. Let
L = AJ and R = (A − LC). Recall that by definition vt =
q̃t − Cet = Q
(Cet + δt) − δt − Cet. Define the function
M : (x, y) ∈ D

m → R
m via

M(x, y) = Rx − L(Q
(Cx + y) − y − Cx). (24)

Via (1) and the KF equations, it can be seen that {et} obeys
the recursion

et = M(et−1, δt−1) + wt−1, (25)

equivalently et = Ret−1 − Lvt−1 + wt−1. Since x0|−1 = 0m,

e0 ∼ N (0, X0), and as (A, W
1
2 ) is stabilizable and (C, A)

is detectable, R is stable with eigenvalues strictly inside the
complex unit circle, i.e., ρmax(R) < 1 [38], [41]. Since
wt ⊥⊥ (et, δt) and δt+1 ⊥⊥ (et+1, wt), via (25), {et, δt} is a
time-homogeneous first order Markov chain on the state space
D

m = R
m⊗[−
/2,
/2]m. The transition probabilities of the

chain are described via a well-defined conditional PDF. Define
the “Gaussian PDF” function N(r;µ,�) : Rm ×R

m × S
m
+ →

R+ via N(r;µ,�) = 1√
(2π)m det �

e− 1
2 (r−µ)T�−1(r−µ). To sim-

plify notation, let ft+1|t = fet+1,δt+1|et,δt
. Via (25), the transition

PDF ft+1|t : D
m × D

m → R+ is

ft+1|t(et+1, δt+1|et, δt)

=
1
δt+1∈

[

− 

2 , 


2

]m


m
N(et+1; M(et, δt), W), (26)

where the indicator function in (26) is “always on” if
(et+1, δt+1) ∈ D

m, and is only included to emphasize
that the support of each of the δt is the m−dimensional
hypercube [−


2 , 

2 ]m. The transition PDF defines a well-

defined regular conditional probability: for K ∈ B(Dm),
we have Pet+1,δt+1|et,δt

[(et+1, δt+1) ∈ K|et, δt]
a.s.=

∫∫

Dm 1(x,y)∈Kft+1|t(x, y|et, δt)dxdy. The Markov chain {et, δt}
has some useful properties that will be used to construct the
encoding PMFs Pq|δ and Pq. Namely, the chain converges
to an invariant measure and has an ergodic property. These
results are summarized in the following technical lemmas,
proven in Appendix A. The proof of the first result uses
the theory of weakly transient sets, namely [28, Th. 5], to
establish the existence of a potential limiting distribution.

Lemma 1: The Markov chain on D
m defined by (26) admits

an invariant PDF; i.e., there exists a function ginv : Dm → R+
such that

ginv(e+, δ+) =
∫∫

(e,d)∈Dm

ft+1|t(e+, δ+|e, δ)ginv(e, δ)dedδ (27)
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and ginv(e, d) > 0 for all (e, d) ∈ D
m. In other words,

the Markov chain admits an invariant probability mea-
sure Pinv : B(Dm) → [0, 1] defined by Pinv[K] =
∫∫

(e,δ)∈K ginv(e, δ)dedδ that is equivalent to the Lebesgue
measure on D

m (i.e., Pinv has a strictly positive PDF).
For intuition, note that if the initial conditions of a Markov

chain are drawn from the invariant measure (e.g., (e0, δ0) ∼
Pinv) then for i ≥ 1 we will have (ei, δi) ∼ Pinv. The
next lemma states that if the initial conditions (e0, δ0) are
continuous random variables, the Pei,δi

converge to Pinv and
that an ergodic property holds. The analysis follows from
[29, Th. 4].

Lemma 2: For λ almost every initial condition, the n-step
transition probabilities of the Markov chain defined by (26)
converge in total variation to the invariant measure, i.e.,
for λ almost every (e0, δ0), limt→∞ supK∈B(Dm) |Pinv[K] −
Pet,δt|e0,δ0 [et, δt ∈ K|e0 = e0, δ0 = δ0]| = 0. Furthermore,
if (e0, δ0) are continuous random variables then for any func-
tion θ : Dm → R with

∫∫

Dm |θ(e, δ)|ginv(e, δ)dedδ < ∞, a
“law of large numbers” holds for {ei, δi} in the sense that
limT→∞ 1

T+1

∑T
i=0 θ(ei, δi)

a.s.= E(e,δ)∼ginv[θ(e, δ)].
Let (e, δ) ∼ Pinv, e.g., let Pe,δ[e, δ ∈ K] = Pinf[K] so that

(e, δ) have the joint PDF fe,δ = ginv. Since (e0, δ0) are contin-
uous random variables on D

m, an immediate consequence of
Lemma 2’s convergence in total variation is that the sequence
of (et, δt) converge in distribution to (e, δ). We now combine
Lemmas 1 and 2 to prove some useful facts about Pinv.

Corollary 1: Let (e, δ) ∼ Pinv. The marginal PDF of e

is fe(e) =
∫

[−
/2,
/2]m ginv(e, δ)dδ. We have that e ⊥⊥ δ

and that δ is a random vector whose elements are IID with
[δ]i ∼ Uniform[−
/2,
/2]. This implies that the invariant
PDF, ginv, factorizes via ginv(e, d) = fe(e)


m for (e, d) ∈ D
m.

Furthermore, we have E[e] = 0 and E[eeT] = P̂+.
Proof: If A is an open interval in R

m and D an open
interval in [−
/2,
/2]m then A × D ∈ B(Dm). Using
the definition of the invariant PDF (27) and the formula for
ft|t−1 from (26), it can be shown that if K = A × D then,
Pe,δ[K] =

∫

A
fe(e)de

λ(D)

m . By Dynkin’s π − λ theorem, this

proves that e ⊥⊥ δ (see [42, Proposition 2.13]).
Define v = (Q
(Ce + δ) − (Ce + δ)). By definition,

M(e, δ) = Re − Lv. By the result just established, δ ⊥⊥ e

and the [e]i are IID uniformly distributed on [−
/2,
/2].
Thus, we can apply the properties of dithered quantizers from
Prop. 1. Namely, by Prop. 1(i) we have v ⊥⊥ e and that

the components [v]i are IID uniform random variables on
[−
/2,
/2]. It can be shown that

E[eeT] = W + RE[eeT]RT + LVLT. (28)

The equality (28) follows from (29)-(34) shown at the bottom
of the page. In particular, (30) follows from the definition
of the invariant PDF, (31) follows from the Fubini/Tonelli
Theorem, (32) follows from (26) (i.e., since given (et−1, δt−1),
et is normal with mean M(et−1, δt−1) and variance W), (33)
follows from (24) and the definition of v above, and
finally (34) (equivalent to (28)) follows from the aforemen-
tioned properties of v and the definition V = 
2

12 Im×m. We
recognize that the identity (28) is a Lyaponov equation in
E[eeT]. This equation has a unique PSD solution [43, Prob.
4.9]. It turns out that this unique solution to (28) is E[eeT] = P̂.
To see this, note that by definition P̂+ satisfies the DARE

P̂+ = A

(

P̂+ − P̂+CT
(

CP̂+CT + V
)−1

CP̂+

)

AT + W.

(35)

Substituting the explicit formulas R = A − LC, L =
AP̂+CT(CP̂+CT + V)−1 and setting E[eeT] = P̂+ in the
right-hand side of (28) exactly recovers the right-hand side
of (35). This proves the result. Since e ∈ L2, we have e ∈ L1.
Given this, reductions analogous to (29) through (28) demon-
strate that E[e] = RE[e]. Since ρmax(R) < 1, it must be that
E[e] = 0m.

An immediate consequence of Lemma 2 and the corollary
is the “almost sure” guarantee on the realization of the time-
average control cost in Theorem 2(iii). By the lemma and
corollary, we have that lim

T→∞
1

T+1

∑T
t=0‖xt+1‖2

Q + ‖ut‖2
R

a.s.=
Tr(�P̂) + Tr(WS). Since Tr(�P̂) + Tr(WS) < γ , this proves
Theorem 2(iii). With (e, δ) ∼ Pinv, let q = Q
(Ce + δ). The
random variable q is describes the quantizer output when its
inputs are drawn from the invariant, limiting distribution. It can
likewise be shown that the (qt, δt) converge in total variation
to (qt, δt). Our general strategy is to design prefix-free codes
for encoding the qt using the limiting conditional and uncon-
ditional PMFs Pq|δ and Pq. Both of these are well-defined;
namely for r ∈ Rm, let B
(r) = {x ∈ R

m : ‖x − r‖∞ ≤ 

2 }

denote a hypercube centered at r. For z ∈ (
Z)m, we have
Pq|δ[z|δ = δ] = Pe[Ce ∈ B
(z − δ)]. Likewise, again for
z ∈ (
Z)m, Pq[z] = 1


m

∫

δ∈[− 

2 , 


2 ]m Pe[Ce ∈ B
(z − δ)]dδ.

E[eeT] =
∫∫

(e,d)∈Dm

eeTginv(e, δ)dedδ (29)

=
∫∫

(e,d)∈Dm

eeT
∫∫

(s,t)∈Dm

ft+1|t(e, δ|s, t)ginv(s, t)dsdtdedδ (30)

=
∫∫

(s,t)∈Dm

(∫∫

(e,d)∈Dm

eeTft+1|t(e, δ|s, t)dedδ

)

ginv(s, t)dsdt (31)

=
∫∫

(s,t)∈Dm

(

W + M(s, t)M(s, t)T)ginv(s, t)dsdt (32)

= W + E(e,δ)∼Pinv [(Re − Lv)(Re − Lv)T] (33)

= W + RE[eeT]RT + LVLT, (34)
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Assume first that the “unconditional”, “sorted” encoding
adapted to q is used, i.e., at every t, at = CS

q(qt). By the
definition of CS

q(qt), the codeword length satisfies �(at) ≤
− log2(Pq(qt)) + 1.The “law of large numbers” afforded by
Lemma 2 gives

lim sup
T→∞

1

T + 1

T
∑

i=0

�(at) ≤ lim
T→∞

∑T
i=0 − log2

(

Pq(qt)
)

T + 1
+ 1

a.s.
≤ H(q) + 1, (36)

where (36) follows since E(e,δ)∼Pinv [Pq(q)] = H(q). At every
t, the expected codeword length satisfies E[�(at)] ≤ Eqt

[ − log2(Pqt
(qt)) + log2

(

Pqt (qt)

Pq(qt)

)

+ 1]; equivalently, we have

H(qt) + DKL(qt||q) ≤ E[�(at)] (37)

≤ H(qt) + DKL(qt||q) + 1. (38)

We will use these observations directly to establish
Theorem 2(ii); namely we will use (36) together with
a bound on H(q) to establish (22). Likewise, to estab-
lish (23), we will bound lim supt→∞H(qt) and prove that
lim supt→∞DKL(qt||q) = 0. Taking the Cesáro mean
then completes the argument. The analyses used to estab-
lish Theorem 2(i) is completely analogous. If at every t, the
system encodes qt given the realization of δt using an unsorted
encoding adapted to Pq|δ , e.g., assume at = CU

q|δ(qt|δt). By the
definition of CU

q|δ(qt|δt), the upper bound in (36) is replaced

by lim sup
T→∞

1
T+1

∑T
i=0 �(at) ≤ H(q|δ)+2, and the bound in (38)

is replaced with

H
(

qt|δt

)

+ DKL
(

qt||q|δt

)

≤ E[�(at)] ≤ H
(

qt|δt

)

+ DKL
(

qt||q|δt

)

+ 2 (39)

where the conditional KL divergence is DKL(qt||q|δt) =
Eqt,δt

[ log2

(

Pqt |δt (qt|δt)

Pq|δ(qt|δt)

)

]. We bound H(q|δ) to estab-
lish (20), and we both bound lim supt→∞H(qt|δt) and prove
that lim supt→∞DKL(qt||q|δt) = 0 to establish (21).

Lemma 3: We have

H(q|δ) ≤ R(γ ) + m

2
log2

(

2πe

12

)

, (40)

H(q) ≤ R(γ ) + m + m

2
log2

(

2πe

12

)

, (41)

lim sup
t→∞

H(qt|δt) ≤ R(γ ) + m

2
log2

(

2πe

12

)

, and (42)

lim sup
t→∞

H(qt) ≤ R(γ ) + m + m

2
log2

(

2πe

12

)

. (43)

Proof: We first analyze H(q|δ). Since by definition q =
Q
(Ce + δ) and by Corollary 1 e ⊥⊥ δ, we can apply
Proposition 1(iii). Setting z = Ce in the statement of
Prop. 1, noting that E[CeeTCT] = CP̂CT by Corollary 1,
and recalling that by definition V = 
2

12 Im×m, we have
H(q|δ) ≤ 1

2 log2(det(CP̂CT + V)) − 1
2 log2(det(V)) +

m
2 log2(

2πe
12 ). Since by definition P̂−1 = P̂−1

+ + CTV−1C

(see (7)), the matrix determinant lemma gives det(CP̂+CT +
V) = det(P̂+) det(V) det(P̂−1). Since R(γ ) = log2(det(P̂+))+
log2(det(P̂−1)) via (9), we have H(q|δ) ≤ R(γ )+m

2 log2(
2πe
12 ).

By Prop. 1(ii), H(q) ≤ m + H(q|δ). The derivation of
the bounds on lim supt→∞ H(qt|δt) and lim supt→∞ H(qt)

is completely analogous. Using Prop. 1(iii), we have
H(qt|δt) ≤ log2(det(CE[ete

T
t ]CT + V)) − 1

2 log2(det(V)) +
m
2 log2(

2πe
12 ). Taking the limit of both sides, and recalling that

limt→∞ E[ete
T
t ] = P̂ gives the bound on lim supt→∞ H(qt|δt).

As H(qt) − H(qt|δt) ≤ m, the bound on lim supt→∞ H(qt)

follows.
From the preceding discussion (cf. (36)), Lemma 3 proves

the bounds on the realizations of time average codeword length
in Theorem 2’s (20) and (22). To use a Cesáro argument to
establish (21) and (23), we must demonstrate that the KL
divergences DKL(qt||q|δt), DKL(qt||q) tend to 0 as t → ∞.
This is the subject of the following lemma.

Lemma 4: We have limt→∞ DKL(qt||q|δt) = 0 and
limt→∞ DKL(qt||q) = 0.

Proof: It can be shown via Jensen’s inequality that if a, b are
random variables that are absolutely continuous with respect
to Lebesgue measure such that a is absolutely continuous with
respect to b, then DKL(Q
(a)||Q
(b)) ≤ DKL(a||b). Thus, we
have DKL(qt||q) ≤ DKL(Cet + δt||Ce + δ). Since δt and δ are
identically distributed, et ⊥⊥ δt, and e ⊥⊥ δ, the data process-
ing inequality (DPI) for KL divergences (cf. [44, Th. 2.15])
gives DKL(Cet + δt||Ce + δ) ≤ DKL(et||e). The proof that
DKL(qt||q|δt) ≤ DKL(et||e) is analogous. To begin, recognize
that for each δ ∈ [−


2 , 

2 ]n, DKL(qt||q|δt = δ) ≤ DKL(Cet +

δ||Ce+δ|δt = δ) where both et ⊥⊥ δt and e ⊥⊥ δt. Applying the
DPI for every realization δ and using the fact that, by indepen-
dence, Pet|δt

= Pet and likewise Pe|δ = Pe completes the argu-
ment. Thus, we can prove the lemma by demonstrating that
limt→∞ DKL(et||e) = 0.

Let {νt} denote an IID sequence of random variables uni-
formly distributed on [−
/2,
/2]m, let {ωt} be IID with
ωt ∼ N (0m, W), and let λ ∼ N (0m, X0). Assume {ωt}, {νt},
and λ are mutually independent. Let “

D=” denote “equality

in distribution”, e.g., we write a
D= b to imply a and b are

identically distributed. From (25), we have et = Ret−1 −
Lvt−1 + wt−1. Via Prop. 1(i) and the factorization of system
variables in (4), it can be verified that wt ⊥⊥ et, vt, wt−1 and
vt ⊥⊥ et, vt−1, wt. Thus, by this recursive definition of {et},
et

D= Rt
λ +

∑t−1
i=0 Ri(ωi − Lνi). Likewise, by definition of

e, we have that both e
D= limt→∞ Rt

λ +
∑t−1

i=0 Ri(ωi − Lνi)

and e
D= limt→∞

∑t−1
i=0 Ri(ωi − Lνi), which follows since

Lemma 2’s convergence in total variation implies weak con-
vergence. Define the random variables g≤t =

∑t−1
i=0 Ri

ωi,u≤t =
−
∑t−1

i=0 RiLνi, and s>t = limr→∞
∑r

i=t Ri(ωi − Lνi) the limit
is well defined by Kolmogorov’s two-series theorem. By def-

inition, et
D= Rt

λ + g≤t + u≤t and e
D= g≤t + u≤t + s>t. Note

that g≤t ∼ N (0m,
∑t−1

i=0 RiW(Ri)T). We have

DKL(et||e) = DKL(Rt
λ + g≤t + u≤t||g≤t + u≤t + s>t)

≤ DKL(Rt
λ + g≤t||g≤t + s>t) (44)

≤ DKL(Rt
λ + g≤t||g≤t + s>t

∣

∣s>t), (45)

where (44) follows from the data processing inequality for KL
divergence and (45) follows since conditioning increases KL
divergence (see [44, Th. 2.14 (e)]).
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Given s>t = s, (45) simplifies to a KL divergence
between two m−dimensional multivariate Gaussians. Let �t =
∑t−1

i=0 RiW(Ri)T and � t = �t + RtX0(R
T)t. Since λ ⊥⊥ g≤t by

construction, Rt
λ + g≤t ∼ N (0m, � t). Also by construction

(g≤t,λ) ⊥⊥ s>t. Thus, we have

DKL
(

Rt
λ + g≤t||g≤t + s>t

∣

∣s>t = s
)

= DKL
(

N
(

0m, � t

)

||N (s, �t)
)

, (46)

and

DKL
(

N
(

0m, � t

)

||N (s, �t)
)

= 1

2
loge

(

det �t

det � t

)

+
Tr
(

�−1
t � t

)

2
+ sT�−1

t s

2
− m

2
,

(47)

where the divergence in (47) is in nats. Let dt = loge(
det �t

det � t
)+

Tr(�−1
t � t)−m. Taking the expectation over realizations s, we

have

DKL
(

Rt
λ + g≤t||g≤t + s>t

∣

∣s>t

)

= 1

2

⎛

⎝dt +
Es>t

[

sT
>t�

−1
t s>t

]

2

⎞

⎠. (48)

It is immediate that s>t ∈ L2, so (48) is always finite.
We analyze each of the terms in (48) in turn. Since � t �
�t � W � 0m×m, we have that det �t, det � t > 0. Since
R is globally asymptotically stable (with ρmax(R) < 1),
we have well defined, equal limits limt→∞ �t = �∞ and
limt→∞ � t = �∞ (see Proposition A.4 in Appendix A).
Thus, limt→∞ loge(

det �t

det � t
) = 0 and limt→∞ Tr(�−1

t � t) = m,
implying limt→∞ dt = 0.

We now establish that limt→∞ Es>t [s
T
>t�

−1
t s>t] = 0.

Let pt:r =
∑r

i=t Ri(ωi − Lνi). For any t, by definition
limr→∞ pt:rpT

t:r = s>ts
T
>t, where we again note that the limit is

well defined by Kolmogorov’s two-series theorem. Then, we
then have for any t

E[sT
>t�

−1
t s>t] = E

[

Tr
(

�−1
t lim

r→∞
pt:rpT

t:r

)]

(49)

≤ Tr
(

�−1
t lim inf

r→∞
E[pt:rpT

t:r]
)

, (50)

where (50) follows from Fatou’s lemma and the linearity of the
trace/expectation. Let � = limj→∞

∑j

i=0 Ri(W + LVLT)(RT)i,
where the limit is well defined since R has ρmax(R) < 1.
It is easy to see directly that lim

r→∞
E[pt:rpT

t:r] = Rt�(RT)t.

Consequently, from (50), we have

E

[

sT
>t�

−1
t s>t

]

≤ Tr
(

�−1
t Rt�

(

RT)t
)

. (51)

It is immediate that �−1
t � W−1. Since ρmax(R) < 1

taking the limit of both sides of (51) as t → ∞ gives
limt→∞ E[sT

>t�
−1
t s>t] = 0. Since limt→∞ dt = 0, tak-

ing the limit of both sides of (48) as t → ∞ gives that
limt→∞ DKL(Rt

λ + g≤t||g≤t + s>t|s>t) = 0. Since D(et||e) ≤
DKL(Rt

λ + g≤t||g≤t + s>t|s>t) this proves the lemma.
Since DKL(qt||q) and DKL(qt||q|δt) both tend to 0 as t →

∞, taking the time averages of (38) and (39) and applying
Cesáro means gives (21) and (23) respectively.

V. CONCLUSION

In this work we demonstrated that dithered quantization can
enable a time-invariant encoding architecture to achieve near
minimum bitrate prefix-free feedback in LQG control systems.
There are several interesting opportunities for future work. An
extension of our time-invariant achievability argument to non-
singular codes is essentially immediate. In both the conditional
and unconditional “time-invariant” approaches presented in
this work, the difference between the upper and lower bounds
on time average bitrate is linear in plant dimension (e.g., for
the fully time-invariant scheme of Theorem 2(ii), the upper
bound in (23) is about 1 + 1.26m bits above the lower bound
R(γ )). In the time-varying (but dither free) scheme in [4],
the gap between upper and lower bounds is O(log(m))). This
follows from [4]’s use of more sophisticated lattice quantiz-
ers [4]. We believe that using (dithered) lattice quantizers in
place of uniform quantizers in the present setup could reduce
the scaling of our upper bounds with plant dimension. Another
opportunity is to explore the ergodic properties of the quan-
tizer output in the achievability approach proposed in [4]; this
could lead to a dither-free time-invariant achievability result.

Another opportunity is to expand this work to a more gen-
eral class of MIMO plants. An extension to partially observed
plants (where the encoder has access only to a noisy measure-
ment of the plant) requires a modified converse (lower-bound)
analysis. An reasonable staring point for this line of research
is the rate distortion formulation in [14, Sec. VII]. It is notable
that in several areas, our proofs rely on the fact the process
noise covariance is full rank (e.g., W � 0m×m); in particu-
lar this assumption is used liberally in establishing Lemmas 1
and 2. A starting point for relaxing this assumption is the rate-
distortion formulation of [14, Th. 1], which could be used to
design an optimal test channel akin to that of Section III. It
would also be useful to formulate a non-time-asymptotic anal-
ysis of the convergence of communication and control costs
in our proposed approach.

Finally, it would also be interesting to examine adaptive
zero-delay source coding codecs in our present context; it
seems likely that the properties of the invariant measure
established in Section IV-C may be useful in analyzing the
asymptotic redundancy of such approaches.
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[42] G. Žitković, “Theory of probability (lecture notes).” 2013. [Online].
Available: https://web.ma.utexas.edu/users/gordanz/lecture_notes_page.
html

[43] G. Dullerud and F. Paganini, A Course in Robust Control Theory. New
York, NY, USA: Springer, 2000.

[44] Y. Polyanskiy and Y. Wu, Information Theory: From Coding to

Learning (Book Draft). Cambridge, U.K.: Cambridge Univ. Press,
2022. [Online]. Available: https://people.lids.mit.edu/yp/homepage/data/
itbook-export.pdf

Travis C. Cuvelier (Graduate Student Member,
IEEE) received the B.S. and M.Eng. degrees in
electrical and computer engineering from Cornell
University, Ithaca, NY, USA, in 2015 and 2016,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Electrical and
Computer Engineering, The University of Texas
at Austin. He previously held internships with
LGS Innovations and The MITRE Corporation.
He is affiliated with the Wireless Networking
and Communications Group, the Oden Institute

for Computational Engineering and Sciences, and the Applied Research
Laboratories, The University of Texas at Austin. His research interests include
broad areas of signal processing and information theory with applications to
network control systems and wireless communications.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 10,2023 at 20:34:04 UTC from IEEE Xplore.  Restrictions apply. 



772 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 3, NO. 4, DECEMBER 2022

Takashi Tanaka (Senior Member, IEEE) received
the B.S. degree in aerospace engineering from the
University of Tokyo, Tokyo, Japan, in 2006, and the
M.S. and Ph.D. degrees in aerospace engineering
(automatic control) from the University of Illinois at
Urbana–Champaign, Champaign, IL, USA, in 2009
and 2012, respectively. From 2012 to 2015, he was
a Postdoctoral Associate with the Laboratory for
Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA, USA.
From 2015 to 2017, he was a Postdoctoral

Researcher with the KTH Royal Institute of Technology, Stockholm, Sweden.
Since 2017, he has been an Assistant Professor with the Department of
Aerospace Engineering and Engineering Mechanics, University of Texas at
Austin, Austin, TX, USA.

Robert W. Heath Jr. (Fellow, IEEE) received the
B.S. and M.S. degrees in electrical engineering from
the University of Virginia, Charlottesville, VA, USA,
in 1996 and 1997, respectively, and the Ph.D. degree
in electrical engineering from Stanford University,
Stanford, CA, USA, in 2002. From 1998 to 2001,
he was a Senior Member of the Technical Staff then
a Senior Consultant with Iospan Wireless, Inc., San
Jose, CA, USA, where he worked on the design and
implementation of the physical and link layers of
the first commercial MIMO-OFDM communication

system. From 2002 to 2020, he was with The University of Texas at Austin,
most recently as the Cockrell Family Regents Chair in Engineering and the
Director of UT SAVES. He is currently a Distinguished Professor with North
Carolina State University. He is also the President and the CEO of MIMO
Wireless, Inc. He authored the book titled Introduction to Wireless Digital

Communication (Prentice Hall, 2017) and Digital Wireless Communication:

Physical Layer Exploration Lab Using the NI USRP (National Technology
and Science Press, 2012), and coauthored the book titled Millimeter Wave

Wireless Communications (Prentice Hall, 2014) and Foundations of MIMO

Communication (Cambridge University Press, 2018). He was the recipient of
the 2017 EURASIP Technical Achievement Award and the 2019 IEEE Kiyo
Tomiyasu Award. He has been a coauthor of a number award winning confer-
ence and journal papers, including recently the 2016 IEEE Communications
Society Fred W. Ellersick Prize, the 2016 IEEE Communications and
Information Theory Societies Joint Paper Award, the 2017 Marconi Prize
Paper Award, and the 2019 IEEE Communications Society Stephen O. Rice
Prize. He is currently the Editor-in-Chief of IEEE Signal Processing Magazine

and a Member-at-Large of the IEEE Communications Society Board of
Governors. He was a Distinguished Lecturer and a member of the Board of
Governors in the IEEE Signal Processing Society. In 2017, he was selected as a
Fellow of the National Academy of Inventors. He is also a licensed Amateur
Radio Operator, a Private Pilot, and a Registered Professional Engineer in
Texas.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 10,2023 at 20:34:04 UTC from IEEE Xplore.  Restrictions apply. 


